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Abstract: Multiple sclerosis (MS) is a demyelinating disease that results in a broad array of symptoms,
including impaired motor performance. How such demyelination of fibers affects the inherent neurophysio-
logical activity in motor circuits, however, remains largely unknown. Potentially, the movement errors
associated with MS may be due to imperfections in the internal model used to make predictions of the motor
output that will meet the task demands. Prior magnetoencephalographic (MEG) and electroencephalo-
graphic brain imaging experiments have established that the beta (15-30 Hz) oscillatory activity in the senso-
rimotor cortices is related to the control of movement. Specifically, it has been suggested that the strength of
the post-movement beta rebound may indicate the certainty of the internal model. In this study, we used
MEG to evaluate the neural oscillatory activity in the sensorimotor cortices of individuals with MS and
healthy individuals during a goal-directed isometric knee force task. Our results showed no difference
between the individuals with MS and healthy individuals in the beta activity during the planning and
execution stages of movement. However, we did find that individuals with MS exhibited a weaker post-
movement beta rebound in the pre/postcentral gyri relative to healthy controls. Additionally, we found that
the behavioral performance of individuals with MS was aberrant, and related to the strength of the post-
movement beta rebound. These results suggest that the internal model may be faulty in individuals with
MS. Hum Brain Mapp 38:4009–4018, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Multiple sclerosis (MS) is a demyelinating disease that
impacts the function of the central nervous system, and
often results in impaired muscular performance. Previously,
we have shown that individuals with MS have greater errors
when attempting to control the precision of the lower
extremity force production [Arpin et al., 2016; Davies et al.,
2015]. While these results are insightful, the neurophysiolog-
ical abnormalities that may be responsible for the reduced
muscular force control remains unknown. Potentially, the
errors in the precision of the force production may partly be
a result of imperfections in the internal model that is used to
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make accurate predictions of the motor output that will
meet the task demands.

Prior research has established that the brain maintains and
updates an internal model that is used to predict the muscu-
lar synergies necessary to achieve a motor goal [Kording
et al., 2004; Shadmer, 2004; Wolpert, 2007]. This internal
model is used to formulate a motor plan based on sensory
feedback and knowledge of results from prior attempts to
achieve the motor goal. The motor plan is then transformed
into a motor command, which contains the predicted muscu-
lar synergies required to achieve the motor goal. Once the
motor command is executed, the sensory feedback that occurs
can then be compared with the sensory feedback expected by
the internal model. Any mismatch between the actual and
expected sensory feedback can be used to make corrections to
the movement trajectory [Kording et al., 2004; Shadmer, 2004;
Wolpert, 2007]. A breakdown in any of these processes may
contribute to the errors observed in the precision of the force
production of individuals with MS. However, determining
where that breakdown may occur (i.e., motor planning,
execution, or feedback stage) is inherently difficult due to the
speed at which each of these processes occurs.

Advances in neuroimaging and neurophysiological tech-
niques have allowed the neural oscillatory activity serving
motor control to be noninvasively imaged in human par-
ticipants, and such studies have suggested that distinct
neural oscillations correspond to the planning and execu-
tion aspects of movement. Electroencephalography (EEG)
and magnetoencephalography (MEG) are currently the
only brain imaging techniques with sufficient temporal
resolution to assess these neural oscillations. Numerous
EEG and MEG experiments have shown that prior to the
onset of movement, cortical oscillatory activity across the
sensorimotor cortices decreases in the beta frequency
range (15–30 Hz) [Cheyne et al., 2006; Jurkiewicz et al.,
2006; Pfurtscheller and Lopes da Silva, 1999]. This decrease
in the amount of power found in the beta band, commonly
termed beta desynchronization, is thought to reflect task-
related changes in the firing rate of local populations of
neurons, as they begin to prepare for the specific demands
of the pending movement. The consensus is that this beta
event-related desynchronization (ERD) is related to the
formulation of the motor plan, because it occurs well
before the onset of movement [Alegre et al., 2003], occurs
earlier for easier motor tasks [Kaiser et al., 2001], and
because the amplitude of the response is influenced by the
certainty of the movement pattern to be performed
[Tzagarakis et al., 2010]. Additionally, upon completion of
a movement, there is a robust beta frequency event-related
synchronization, which is referred to as the post-movement
beta rebound (PMBR) [Gaetz et al., 2010, 2011; Tzagarakis
et al., 2010; Wilson et al., 2010, 2011, 2014]. Traditionally, this
PMBR was believed to represent the active inhibition of
neuronal networks after movement termination [Neuper
and Pfurtscheller, 2001; Salmelin et al., 1995; Solis-Escalante
et al., 2012] and/or afferent feedback to the motor cortices

[Cassim et al., 2001; Houdayer et al., 2006; Parkes et al.,
2006]. However, recent experimental work has shown that
changes in the PMBR may reflect the certainty of the feedfor-
ward motor actions that were executed based on the internal
model [Tan et al., 2016].

While the central role of beta neural oscillatory activity in
motor performance is well appreciated, there has been lim-
ited effort to use this knowledge to more precisely character-
ize the motor deficits seen in individuals with MS. Of note,
one previous EEG study assessed beta neural oscillations in
patients with MS during a self-paced hand movement task
[Leocani et al., 2001], but this study was limited to scalp-
level analyzes and movement of the upper extremities.
Additionally, a recent MEG study examined motor-related
oscillations in patients with MS [Barratt et al., 2017], but this
study also focused on the upper extremities and no studies
to date have examined oscillatory activity during a lower
extremity motor task in patients with MS. Therefore, the
purpose of this study was (1) to determine if beta oscillatory
activity is altered in individuals with MS compared to
healthy controls when completing a knee extension target
matching task, and (2) to identify if there is a relationship
between beta oscillatory activity and the precision of the
knee joint muscular force production.

METHODS

Subjects

Fifteen individuals with relapsing-remitting or secondary
progressive MS (Age 5 56.1 6 6.5 years; Female 5 12) and fif-
teen healthy age and sex matched individuals (Age 5 55.1 6

6.9 years; Female 5 12) participated in this study. The
individuals with MS had an average Kurtzke Expanded Dis-
ability Status Scale of 5.5 6 0.7, which indicated that on aver-
age they could walk independently for at least 100 m. At the
time of data collection, none of the patients had a relapse or
a change in medication for at least 3 months. All testing was
done at the University of Nebraska Medical Center. The
Institutional Review Board at the University of Nebraska
Medical Center reviewed and approved the protocol for
this investigation. Additionally, all participants provided
informed consent prior to participation in this study.

Experimental Paradigm

The participants were seated upright in a magnetically-
silent chair. The experimental paradigm consisted of an iso-
metric knee extension target matching task. The participants
used their most affected leg (nondominant for the healthy
comparison group) to match target forces that varied ran-
domly between 5 and 30% of the participant’s maximum iso-
metric knee extension force. The target force was visually
displayed as a box on a back-projection screen that was �1
meter in front of the participant at eye level, and the force
generated by the participant was shown as a smaller box
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(beneath the larger box) that moved vertically based on the
isometric force generated (Fig. 1A). Each participant per-
formed 120 target matching trials. Each trial lasted 5.0 s and
was followed by a 5.0 s rest period. If the participant suc-
cessfully matched the target, the trial ended early and any
additional time was added to the 5.0 s of rest. A successful
match occurred when the box representing the participant’s
isometric force was inside the target box for 0.3 s, and this
was followed by the presentation of a fixation cross until the
start of the next trial.

A custom-built magnetically-silent force transducer was
used to measure the isometric knee extension forces gener-
ated by the participants (Fig. 1B). This device consisted of
a 20 x 10 cm airbladder that was inflated to 317 kPa, and
fixed to the anterior portion of the lower leg just proximal
to the lateral malleoli (ankle). A thermoplastic shell
encased the outer portion of the airbladder and was
secured to the chair with ridged strappings. Changes in
the pressure of the airbag as the participant generated an
isometric contraction were quantified by an air pressure
sensor (Phidgets Inc., Calgary, Alberta, CA), and were sub-
sequently converted into units of force. The force data was
concurrently collected with the MEG data at 1 kHz. For
each trial, the reaction time, amount of overshoot, average
rate of force development to the target, time to initially
reach the target, and the time to successfully match the
target were computed offline. Separate t-tests at the 0.05
alpha level were used to determine if there were differ-
ences in the behavioral variables of the respective groups.

MEG Data Acquisition and Coregistration

All MEG recordings were conducted in a one-layer mag-
netically shielded room (ETS-Lindgren Oy, Eura, Finland)

with active shielding engaged for advanced environmental
noise compensation. During data acquisition, participants
were monitored via real-time audio-video feeds from
inside the shielded room. Neuromagnetic responses were
acquired with a bandwidth of 0.1–330 Hz and were sam-
pled continuously at 1 kHz using an Elekta Neuromag
system (Helsinki, Finland) with 306 MEG sensors, includ-
ing 204 planar gradiometers and 102 magnetometers. With
the use of the MaxFilter software (Elekta), each MEG data-
set was individually corrected for head motion during
task performance, and subjected to noise reduction using
the signal space separation method with a temporal
extension [Taulu and Simola, 2006]. Note that mean head
movement was less than 5 mm across the whole recording
in both groups (MS: 0.47 cm; Controls: 0.31 cm), and was
corrected to the starting head position prior to MEG data
pre-processing.

Four coils were affixed to the head of each participant and
were used for continuous head localization during the MEG
experiment. Before the experiment, the location of these coils,
three fiducial points, and the scalp surface were digitized to
determine their three-dimensional position (Fastrak 3SF0002,
Polhemus Navigator Sciences, Colchester, VT, USA). Once
the participant was positioned for MEG recording, an electric
current with a unique frequency label (e.g., 322 Hz) was fed
to each of the four coils. This induced a measurable magnetic
field and allowed each coil to be localized in reference to the
sensors throughout the recording session. Since the coil loca-
tions were also known in head coordinates, all MEG measure-
ments could be transformed into a common coordinate
system. With this coordinate system (including the scalp sur-
face points), each participant’s MEG data was coregistered
with structural T1-weighted MRI data using three external
landmarks (i.e., fiducials) and the digitized scalp surface

Figure 1.

(A) Depiction of the target matching task. The isometric knee

extension force generated by the participant animates the yellow

box to ascend vertically to match the green target box. Each

trial lasted 5.0 s and was followed by a 5.0 s rest period. If the

participant successfully matched the target, the trial ended early

and any additional time was added to the 5.0 s of rest. A

successful match occurred when the box representing the par-

ticipant’s isometric force was inside the target box for 0.3 s. (B)

Depiction of the custom-built pneumatic force transducer that

was positioned just proximal to the lateral malleolus of the par-

ticipant. [Color figure can be viewed at wileyonlinelibrary.com]
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points prior to source space analyzes. Structural MRI data
were aligned parallel to the anterior and posterior commis-
sures and transformed into the Talairach coordinate system
[Talairach and Tournoux, 1998] using the volumetric sub-
space warping method implemented in BrainVoyager QX
version 2.2 (Brain Innovations, The Netherlands).

MEG Pre-Processing

Artifact rejection was based on a fixed threshold
method, supplemented with visual inspection. In brevity,
this fixed threshold methodology was applied to each par-
ticipant’s data individually, and consisted of rejecting
epochs containing signal amplitudes and/or gradients that
exceeded a given threshold on any planar gradiometer.
Two participants with MS and two controls were excluded
from data analysis due to excessive MEG artifacts, which
resulted in a large number of rejected epochs. To assess
the beta ERD, 10.0 s epochs were defined from 23.0 to
17.0 s, with the onset of movement defined as time 0.0 s
and the baseline defined as 21.6 to 21.2 s. To assess the
PMBR, 10.0 s epochs were defined from 24.8 to 15.2 s,
with the offset of movement defined as time 0.0 s and the
baseline defined as 24.6 to 24.2 s. Note that the baseline
and epoch definitions were adjusted to accommodate the
temporal location of movement, which naturally varied due
to the different definition of time zero (i.e., movement-onset
versus movement-offset) across the two analysis types (i.e.,
ERD and PMBR). Artifact-free epochs for each sensor were
transformed into the time-frequency domain using complex
demodulation (resolution: 2.0 Hz, 25 ms) and averaged over
the respective trials to generate plots of the mean spectral
density. These data were then normalized by dividing the
power value of each time-frequency bin by the mean power
during the respective baseline periods.

Sensor Level Statistics

We determined the precise time-frequency bins of inter-
est for both the beta ERD and the PMBR by conducting
separate statistical analyzes of the spectrograms corre-
sponding to a subset of planar gradiometers (106 sensors)
centered on the midline near the sensorimotor cortices.
Each time-frequency bin in the spectrogram was initially
evaluated using a mass univariate approach based on the
general linear model. Briefly, we conducted one sample t-
tests on each time-frequency bin across all participants,
and the output spectrograms of t-values (one per sensor)
were thresholded at P< 0.05. Next, the time-frequency
bins that survived this threshold were clustered with tem-
porally and/or spectrally neighboring bins that were also
above the threshold, and a cluster value was derived by
summing all of the t-values of all data points in the clus-
ter. Nonparametric permutation testing was then used to
derive a distribution of cluster values, and the significance
level of the observed clusters was tested directly using this

distribution [Ernst, 2004; Maris and Oostenveld, 2007].
Note that we have followed a similar statistical method in
several recent publications [Heinrichs-Graham et al., 2014,
2015, 2016a, 2016b]. For each comparison, 10,000 permuta-
tions were computed to build a distribution of cluster val-
ues. Based on this analysis, the time-frequency windows
that contained significant oscillatory events across all
participants were identified for the beamforming analyzes.

MEG Source Imaging and Virtual

Sensor Extraction

A minimum variance vector beamforming algorithm
was used to calculate the source power across the entire
brain volume [Gross et al., 2001; van Veen et al., 1997].
The single images were derived from the cross spectral
densities of all combinations of the 204 MEG planer gradi-
ometers within the time-frequency ranges of interest, and
the solution of the forward problem for each location on a
grid specified by input voxel space. Following convention,
the source power in these images were normalized per
participant using a separately averaged pre-stimulus noise
period of equal duration and bandwidth [Hillebrand et al.,
2005]. Thus, the normalized power per voxel was com-
puted for the time-frequency ranges of interest over the
entire brain volume per participant at 4.0 3 4.0 3 4.0 mm
resolution. Each participant’s functional images were
transformed into a standardized space using the transform
previously applied to the structural MRI volume [Talair-
ach and Tournoux 1998]. The MEG pre-processing and
imaging was performed using the BESA software (BESA
version 6.0), and MEG-MRI coregistration was performed
using the BrainVoyager QX (Version 2.2) software.

Once all functional images were in the same anatomical
space, the ERD and PMBR beamformer images were aver-
aged across all participants separately to identify the peak
responses. We then extracted virtual sensors corresponding
to the peak voxel of each response. The virtual sensors were
created by applying the sensor weighting matrix derived
through the forward computation to the preprocessed signal
vector, which resulted in a time series with the same tempo-
ral resolution as the original MEG recording [Cheyne et al.,
2006; Heinrichs-Graham and Wilson, 2016a,b]. Once the vir-
tual sensors were extracted, they were transformed into the
time-frequency domain and the power, relative to baseline,
was averaged across the frequency window of interest per
unit time for each individual to derive the temporal evolu-
tion of the key oscillatory responses. Statistical analysis of
these voxel time series was then performed using a
two-stage approach similar to that used for the sensor-level
analyzes, except that two sample t-tests (not one-sample)
were conducted on each data point in the time series. The
output was thresholded at P< 0.05 and we controlled for
Type 1 error by conducting nonparametric permutation
testing using the same cluster t-value and 10,000 permuta-
tions approach that was used in the sensor-level analyzes
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[Ernst, 2004; Maris and Oostenveld, 2007]. Finally, we aver-
aged the power across the time windows of significant dif-
ference for each individual to derive the strength of the
event-related neural activity (see below), and these data
were entered into Pearson product moment correlations to
determine if there was a correlation between event-related
neural activity and the respective behavioral variables.

RESULTS

Demographic and Behavioral Data

As noted in the MEG pre-processing section, two partici-
pants with MS and two controls were excluded due to
excessive MEG artifacts. Following these exclusions, the
two groups did not statistically differ on age or sex (MS:
age 5 57.1 6 6.3 years, females 5 11; Controls: age 5 55.1 6

6.9, females 5 12). However, significant differences were
found between the two groups for all behavioral measures
(Fig. 2). Individuals with MS had a longer reaction time
(MS 5 0.49 6 0.16 s, Controls 5 0.36 6 0.06 s, P 5 0.01), greater

amount of overshoot (MS 5 7.43 6 2.69%, Controls 5 4.58 6

1.59%, P 5 0.003), slower average rate of force development
to the target (MS 5 40.0 6 19.7 N/s, Controls 5 60.7 6 22.0
N/s, P 5 0.02), longer time to initially reach the target
(MS 5 1.20 6 0.36 s, Controls 5 0.91 6 0.23 s, P 5 0.02), and
longer time to match the target (MS 5 2.72 6 0.47 s, Controls 5

2.01 6 0.23 s, P 5 0.00005). Altogether the results indicate that
the precision of the isometric knee force production was
reduced for the individuals with MS.

Sensor Level Analysis

Grand averages of the peak sensor, which was located
near the leg area of the sensorimotor cortices, showed a
more robust beta ERD when time-locked to movement onset
(Fig. 3A), and a stronger PMBR when time-locked to move-
ment offset (Fig. 3B). Based on our statistical analysis, we
found a significant beta ERD in the 14–30 Hz frequency
range from approximately 20.6 to 2.45 s (P< 0.00001;
cluster-corrected). Additionally, a significant PMBR
was found ranging from 14 to 30 Hz from approximately

Figure 2.

Group averages (mean 6 SD) for reaction time, amount of overshoot, average rate of force development

to the target, time to initially reach the target, and time to match the target. * p< .05.
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1.275 to 4.075 s (P< 0.00001; cluster-corrected). To image these

neural responses, we focused on the 400 ms time-frequency

windows corresponding to the maximum beta ERD and

PMBR respectively, determined by the grand average of the

peak sensor for movement onset and offset (i.e., Beta

ERD 5 16–26 Hz, 20.4 to 0 s; PMBR 5 16–26 Hz, 1.9 to 2.3 s).

Beamformer and Peak Voxel Analysis

Beamformer images corresponding to the maximum
beta ERD (16–26 Hz, 20.4 to 0.0 s) and PMBR (16–26 Hz,
1.9 to 2.3 s) were computed in each participant and aver-
aged across both groups. The peak voxel time series (i.e.,
virtual sensor) were then extracted in each participant

Figure 3.

Grand averaged time-frequency plots of the peak sensor, which was

located near the leg area of the sensorimotor strip. The same sensor

was used in all participants for both the ERD and PMBR analyzes. The

analysis was time-locked to movement onset (top) to assess the beta

ERD, and to movement offset (bottom) to assess the PMBR. For the

beta ERD analysis (top), movement onset was defined as time 0.0 s

and the baseline was defined as 21.6 to 21.2 s. A strong pre- and

peri-movement ERD (blue) can be seen from approximately 20.6 to

2.2 s. This response was strongest in the beta range, but also

stretched into the alpha range. For the PMBR analysis (bottom),

movement offset was defined as time 0.0 s and the baseline was

defined as 24.6 to 24.2 s. A strong PMBR (red) could be seen from

approximately 1.2 to 4.0 s. As with the ERD, the response was stron-

gest in the beta range, but also stretched down into the alpha band.

[Color figure can be viewed at wileyonlinelibrary.com]
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individually, and examined statistically for group differ-
ences as a function of time. No significant between-group
differences were found for the beta ERD during the plan-
ning or execution period of the virtual sensor time course
(P 5 0.73; cluster-corrected). However, group differences
were found in the virtual sensor time course of the PMBR,
and these reflected significantly weaker PMBR activity in
the individuals with MS from 1.25 to 1.65 s (P 5 0.049;
cluster-corrected; Fig. 4). A weaker PMBR response was
also seen from 1.675 to 2.05 s in the individuals with MS,
but this difference did not survive correction for multiple
comparisons (P 5 0.070; cluster-corrected).

Lastly, we also found moderate negative correlations
between the strength of the PMBR (averaged from 1.25 to
1.65 s) and the time to successfully match the target
(r 5 20.54, P 5 0.004), and time to initially reach the target
(r 5 20.42, P 5 0.03). We also found a moderate positive
correlation between the strength of the PMBR and the rate
of force development (r 5 0.40, P 5 0.05). No significant
correlations were found between the strength of the PMBR
and the amount of overshoot (P 5 0.32), or reaction time
(P 5 0.07).

DISCUSSION

The purpose of this study was to evaluate neural oscilla-
tory activity in the sensorimotor cortices of individuals
with MS and healthy individuals during a goal-directed
knee extension task. Our primary finding was that individ-
uals with MS exhibited a weaker PMBR in the precentral
and postcentral gyri relative to healthy individuals. Our

results also demonstrated that the precision of the isomet-
ric knee force production was reduced in individuals with
MS, and that the strength of the PMBR was correlated
with performance of the isometric knee force task.

Our MEG results showed no differences between indi-
viduals with MS and healthy individuals in the pre- and
peri-movement beta ERD. This finding was contrary to
our prediction, as motor planning deficits have previously
been reported in individuals with MS [Ternes et al., 2014],
and multiple studies have connected the beta ERD
response to motor planning [e.g., Alegre et al., 2003;
Heinrichs-Graham and Wilson, 2015; Kaiser et al., 2001;
Tzagarakis et al., 2010]. Prior EEG work also found that
the latency and amplitude of the beta ERD did not differ
between healthy individuals and nonfatigued individuals
with MS (classified by the Fatigue Severity Scale) [Leocani
et al., 2001]. However, this study did find increased beta
ERD in fatigued individuals with MS compared to nonfa-
tigued individuals and healthy individuals [Leocani et al.,
2001]. This may suggest that fatigue is related to the beta
ERD response in individuals with MS. Given these some-
what conflicting reports, additional studies are warranted
to further identify the interrelationships between motor
planning deficits in patients with MS, beta ERD responses,
and the severity of fatigue symptoms.

In our study, individuals with MS exhibited a weaker
PMBR in the pre- and post-central gyri relative to healthy
individuals. Similar findings were previously reported in an
EEG study of self-paced movements of the hand in individu-
als with MS [Leocani et al., 2001], and abnormal PMBR
responses were also detected in a recent MEG study of
visuomotor performance involving the hands of patients

Figure 4.

(A) Grand averaged beamformer image of the post-movement

beta rebound (PMBR; 16–26 Hz, 1.9–2.3 s) from all participants

indicated that the response was generated by the leg area of the

pre/postcentral gyri. (B) Group averaged time series of the beta

activity (16–26 Hz) extracted from the peak voxel. Time is

shown on the x-axis, with movement offset occurring at 0.0 s,

while relative power (expressed as a percentage from baseline)

is shown on the y-axis. The PMBR was significantly stronger in

healthy controls (blue line) relative to patients with MS (orange

line) from 1.25 to 1.65 s. The shaded area around each line

denotes the standard error of the mean (SEM). [Color figure

can be viewed at wileyonlinelibrary.com]
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with MS [Barratt et al., 2017]. Together, these results provide
mounting evidence that the PBMR response is disturbed in
individuals with MS. Recent work indicates that the ampli-
tude of the PMBR may be related to the uncertainty in the
feedforward estimations of the internal model [Tan et al.,
2016]. Since a stronger PMBR appears to be related to
improved certainty of the internal model, we speculate that
the internal model may be faulty in individuals with MS.
Prior work appears to agree with this hypothesis. Using a
multisensory model of sensory feedback control, Heenan
et al. [2014] found that there appears to be a mismatch
between the predicted and actual arm dynamics exhibited
by individuals with MS during a reaching task. Further-
more, they suggest that the muscular control problems seen
in individuals with MS may be due to an inability to adapt
the internal estimate of movement duration to account for
increases in the visual processing time. Taken together, this
suggests that the internal model may become corrupt over-
time due to demyelination in the cortical and spinal tracts
that are necessary for relaying sensory feedback and prop-
erly updating the internal model. Alternatively, it has also
been hypothesized that the PMBR may represent afferent
feedback to the motor cortices [Cassim et al., 2001; Houdayer
et al., 2006; Parkes et al., 2006]. This hypothesis may be
linked to the hypothesis that the PMBR is related to the cer-
tainty of the internal model, as sensory feedback is crucial to
maintaining and updating the internal model. Regardless of
this connection, the idea that a reduced PMBR may indicate
a disruption in afferent feedback could explain the impaired
behavioral results of the individuals with MS, as afferent
feedback is necessary to make corrections to the movement
trajectory [Kording et al., 2004; Shadmer, 2004; Wolpert,
2007]. Additionally, the PMBR has also been suggested to
represent the active inhibition of neuronal networks after
movement termination [Neuper and Pfurtscheller, 2001;
Salmelin et al., 1995; Solis-Escalante et al., 2012; Heinrichs-
Graham et al., 2017]. This hypothesis may also account for
the reduced behavioral performance of our individuals with
MS, as a reduced PMBR may impair the inhibition of the
motor cortex, allowing for unwanted movements to occur.

Our behavioral results show that individuals with MS
have impairments in the precision of the lower extremity
force production, which is consistent with our previous
work [Arpin et al., 2016; Davies et al., 2015]. Specifically,
we found that individuals with MS had slower reaction
times and a greater amount of overshoot of the presented
targets. These impairments in behavioral performance may
suggest motor planning deficits. However, no differences
were seen in the pre-movement beta ERD, suggesting
that motor planning was intact in these individuals. We
propose that this apparent contradiction could be due to a
number of factors. While motor planning may be intact,
the demyelination of the cortical and spinal tracts may
cause a delay in the signal from the cortex to the muscle
[Conte et al., 2009]. Alternatively, it is possible that the dif-
ference in reaction time is due to increased processing

time required by individuals with MS to perform the
appropriate sensorimotor transformations, as these fiber
tracts may be damaged [Bonzano et al., 2009; Bonfiglio
et al., 2006]. This may be the best explanation, as there
does not appear to be a difference in the latency of the
pre-movement beta ERD, indicating the delayed reaction
time is occurring prior to the formulation and execution of
the motor plan. Finally, although the beta ERD appears
similar, the motor plan is likely corrupt since the over-
shoot is substantially greater, indicating heightened errors
in the motor output. This increase in the amount of over-
shoot may also indicate deficits in the ability to properly
estimate the amount of force required to reach the target,
further suggesting that the internal model may be corrupt
in individuals with MS. Again, this overall pattern of find-
ings suggests that future work is needed to identify the
precise relationship between motor planning and beta
ERD activity in MS.

Lastly, we found correlations between the strength of
the PMBR and the time to successfully match the target,
time to initially reach the target, and rate of force develop-
ment. These correlations suggest that a stronger PMBR is
partially related to improved performance on the goal-
directed knee force task. Moreover, these correlations
imply that the strength of the PMBR is related to the cer-
tainty of the internal model. Specifically, time to match the
target may indicate the integrity of the internal model by
representing a measure of the ongoing comparisons that
occur between the internal model and the current motor
outcome [Kording et al., 2004; Shadmer, 2004; Wolpert,
2007]. Likewise, we speculate that the time to initially
reach the target and the rate of force development differ-
ence might represent a delay in the sensorimotor transfor-
mation, which could impact the ability to maintain and
update the internal model. An alternative view is that our
results reflect differences in the movement kinematics
between individuals with MS and healthy individuals.
Prior work in healthy adults has shown that the strength
of the PMBR increases with higher force output and a
greater rate of force development [Fry et al., 2016]. Thus,
the differences we observed in the PMBR, as well as the
correlations we found, may be due to the reduced rate of
force development in the individuals with MS. However,
such differences in the rate of force development could be
due to an inability to properly update the internal model
in the group with MS, which may impair their ability to
increase the rate of force development.

CONCLUSIONS

Our results show that individuals with MS have impair-
ments in the precision of the lower extremity force pro-
duction, as well as reduced cortical oscillatory activity
following movement termination. Since a stronger PMBR
has been previously linked to improved certainty of the
internal model, we speculate that the internal model is
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faulty in individuals with MS. Potentially, the internal
model may become corrupt over time due to the demye-
lination in the cortical and spinal tracts that are necessary
for relaying sensory feedback and properly updating the
internal model. We suggest that degradation in the PBMR
deserves further attention because it may result in a novel
biomarker that can be used to assess the efficacy of the
current treatment protocols that are being used in MS.
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