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Abstract: Cortical hubs play a fundamental role in the functional architecture of brain connectivity at
rest. However, the anatomical scaffold underlying their centrality is still under debate. Certainly, the
brain function and anatomy are significantly entwined through synaptogenesis and pruning mecha-
nisms that continuously reshape structural and functional connections. Thus, if hubs are expected to
exhibit a large number of direct anatomical connections with the rest of the brain, such a dense wiring
is extremely inefficient in energetic terms. In this work, we investigate these aspects on fMRI and DTI
data from a set of know resting-state networks, starting from the hypothesis that to promote integra-
tion, functional, and anatomical connections link different areas at different scales or hierarchies. Thus,
we focused on the role of functional hubs in this hierarchical organization of functional and anatomical
architectures. We found that these regions, from a structural point of view, are first linked to each
other and successively to the rest of the brain. Thus, functionally central nodes seem to show few
strong anatomical connections. These findings suggest an efficient strategy of the investigated cortical
hubs in exploiting few direct anatomical connections to link functional hubs among each other that
eventually reach the rest of the considered nodes through local indirect tracts. Hum Brain Mapp
38:5141–5160, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Spontaneous brain activity at rest observed with func-
tional magnetic resonance imaging (fMRI) is spatially and
temporally structured in cortical networks (so-called
resting-state networks, RSN) closely resembling sets of
regions that are collectively activated during tasks [Biswal
et al., 1997]. The topology and temporal dynamics revealed
by different imaging modalities, for example, fMRI, EEG,
and MEG, suggested that these systems are not segregated
but interact to allow an efficient integration at rest. Specifi-
cally, the topology of functional interaction in the brain
shows that some RSN areas, namely cortical hubs, are
highly connected and play a central role in the
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coordination of the communication across the brain by
serving as way stations for network traffic [Hagmann
et al., 2008; Shirer et al., 2012]. Several structural and func-
tional hub locations have been reported [Bullmore and
Sporns, 2012; Hagmann et al., 2008; Power et al., 2013] typ-
ically located in medial posterior cingulate cortex (pCC)
and lateral (angular gyrus) parietal regions of the default
mode network (DMN), and in anterior cingulate and ante-
rior insula, part of the cingulo-opercular, and lateral fron-
tal and parietal cortex, part of the fronto-parietal control
networks [Buckner et al., 2009; Cole et al., 2010; de Pas-
quale et al., 2012, 2013; Tomasi and Volkow, 2011). In line
with these results, other imaging modalities such as MEG
identified a set of regions belonging to the DMN as highly
central followed by nodes from the dorsal attention (DAN)
and somato-sensory (SMN) networks [de Pasquale et al.,
2012, 2016].

Therefore, anatomical, functional, and electrophysiologi-
cal data indicate that while some networks play a central
role in cross-network interaction others remain more seg-
regated over time [Betti et al., 2013; Buckner et al., 2009;
de Pasquale et al., 2010, 2012, 2013; Marzetti et al., 2013].
This has suggested a number of different hypotheses
regarding spatio-temporal architectures affording network
interactions including small-world models [Achard and
Bullmore, 2007], network cores [Bassett et al., 2013; Shana-
han, 2012], and dynamic core network [de Pasquale et al.,
2016]. Among these models, [van den Heuvel and Sporns,
2013a] proposed a structural architecture where a “rich
club” organization among brain hubs is observed. This is
characterized by a tendency for high-degree nodes to be
more densely connected among themselves than nodes of
a lower degree. In particular, bilateral frontoparietal
regions, including the precuneus and superior frontal and
parietal cortex, and important subcortical regions includ-
ing the hippocampus, thalamus, and putamen were found
to be densely interconnected, together forming this rich
club.

However, the anatomical scaffold of the complex func-
tional architecture is still under debate. On the one hand,
the structural connectivity (SC) relates to the biological
infrastructure for neuronal signaling [van den Heuvel and
Sporns, 2013b], and thus any functional connection is
expected to be realized through signal traffic spreading on
structural paths. This is supported by a large set of stud-
ies, see for example [Skudlarski et al., 2008] where a linear
relationship is reported between SC and functional connec-
tivity (FC). On the other hand, caution must be taken since
these two measures are intrinsically different. FC, espe-
cially when estimated via cross-correlation, reflects a statis-
tically undirected association which is prone to transitivity
(it can be realized through direct and indirect anatomical
connections) leading to a propensity for “over-connection”
and high clustering [Zalesky et al., 2012]. Instead, SC
mainly reflects direct anatomical connections (even when
estimated via probabilistic fiber tracking approaches) and

in the presence of complex fiber branching and splitting it
penalizes small fibers or complex geometries [Nucifora
et al., 2007]. This discrepancy between FC and SC is sup-
ported by some studies where, although some predictive
value of SC on FC has been reported [Hagmann et al.,
2008], the amount of FC variance accounted for by SC
appears limited [Messe et al., 2014]. This suggests a com-
plex relationship between these two measures [Honey
et al., 2009; Ton et al., 2014; van den Heuvel and Sporns,
2013b]. Furthermore, such relationship is certainly not
static, that is, SC has been shown to be continuously
shaped over time (see, e.g., Olesen et al. [2003] and in Lis-
ton et al. [2006]). As a matter of fact, the developing
human brain undergoes a sequence of events involving, at
the macroscopic level, both the cortical thickness and gray
matter density leading to a continuous network rewiring
[Khundrakpam et al., 2016].

In this work, we investigated this complex relationship
between FC and SC in a selected set of functional nodes
related to nine RSNs consistently reported in the literature.
Our hypothesis is that this set of RSNs behaves as an inte-
grated system, extending [Tononi et al., 1998], where func-
tional and anatomical connections link different areas at
different scales. We adopted a multiscale community
detection and hierarchical clustering (both driven by func-
tional and anatomical DTI data). Then, we compared the
patterns of growth of functional and anatomical clusters
obtained at the different scales and hierarchies. Eventually,
we related these results to the functional centrality, esti-
mated in terms of betweenness centrality, of the investi-
gated nodes. We found that these regions, from a
structural point of view, are first linked to each other and
successively to the rest of the brain. Furthermore, we
obtained that the functional centrality of the investigated
nodes, although is observed on a limited set of regions, is
inversely related to the number of strong anatomical con-
nections. This seems to suggest that the functional central-
ity of the considered nodes is realized through few
specific structural connections.

MATERIALS AND METHODS

Experimental Setup

Twenty healthy subjects (9 women and 11 men; mean
age 6 standard deviation: 30 6 10 years; same sample as in
de Pasquale et al. [2013] provided informed written con-
sent and participated in this study, which was approved
by the local ethics committee. The study comprised four
consecutive resting state sessions. Subjects were told to
stay still and relaxed and no particular instructions were
given to attend or fixate. The fMRI data were acquired on
a 3 T Allegra scanner (Siemens Medical Solutions,
Erlangen, Germany) with a maximum gradient strength of
40 mT/m, using a standard quadrature birdcage head coil
for both RF transmission and reception. The adopted
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sequence was a gradient echo-EPI, with 38 axial slices
with a voxel size of 3 3 3 3 3.75 mm3 (matrix size 64 3

64; FOV 192 3 192 mm2; TR 5 2470 ms) in ascending
order. Each resting-state session consisted of 200 volumes.

Diffusion-weighted volumes were acquired using spin-
echo echo-planar imaging (echo time/repetition time 5 89/
8500 ms, bandwidth 5 2126 Hz/voxel; matrix size 128 3

128; 80 axial slices, voxel size 1.8 3 1.8 3 1.8 mm3) with
30 isotropically distributed orientations for the diffusion-
sensitizing gradients at a b value of 1000 s mm2 and six
b 5 0 images. Two consecutive DTI runs were acquired for
each subject.

Additionally, whole-brain T1-weighted images were
acquired in the sagittal plane using a modified driven
equilibrium Fourier transform sequence [Deichmann et al.,
2004] (echo time/repetition time 5 2.4/7.92 ms, flip angle
158, voxel size 1 3 1 3 1 mm3).

fMRI Preprocessing

Our preprocessing pipeline consists of several steps per-
formed using a combination of tools from the FMRIB’s Soft-
ware Library (FSL; http://www.fmrib.ox.ac.uk/fsl) and the
physiologic estimation by temporal independent component
analysis (PESTICA) software [Beall, 2010]. The data are ini-
tially motion corrected using the FSL–MCFLIRT tool [Jen-
kinson et al., 2002] and physiological respiration and cardiac
artifacts were removed by means of PESTICA (see de Pas-
quale et al. [2013] for a detailed description). Eventually, a
mean-based intensity normalization of all volumes; high-
pass temporal filtering; Gaussian low-pass temporal filter-
ing (FWHM sigma 5 2.8); coregistration to the MNI152 stan-
dard space (FSL–FNIRT tool) was performed.

Estimation of Functional Connectivity

The analysis on the functional architecture was based on
60 3 60 functional connectivity matrices obtained from a
set of nodes previously reported (see Figure 1A; Baldas-
sarre et al. [2012], de Pasquale et al. [2013], Dosenbach
et al. [2007], Hacker et al. [2013], He et al. [2007] for com-
plete list of abbreviations and labels for the considered
nodes). We restricted our approach on a specific set of
nodes since our aim here is to investigate the anatomical
architecture of functional nodes belonging to nine RSNs:
the dorsal and ventral attention network (DAN and VAN),
the default mode network (DMN), the visual network
(VIS), the language network (LAN), the somatosensory
network (SMN), the auditory network (AUD), the execu-
tive control network (CON) and fronto-parietal network
(FPN) (see Baldassarre et al. [2012], de Pasquale et al.
[2013], Dosenbach et al. [2007], Hacker et al. [2013], He
et al. [2007] for the MNI coordinates of involved areas).
This choice allows us to compare these results with previ-
ously published wok on the same sample of subjects [de
Pasquale et al., 2013] and by using electrophysiological

techniques on a subset of the same nodes [de Pasquale
et al., 2012, 2016].

Of note, although these regions were assumed to form the
above RSNs in our subjects, this assumption was then con-
firmed during the clustering procedure where these systems
emerged without any prior information on the node label-
ing. We note that, albeit the number of considered nodes is
limited, these provide a good coverage of the cortex. More-
over, the limited set considered reduces the computational
burden of the DTI probabilistic fiber tracking.

Figure 1.

Analysis pipelines. (A) The location of the adopted 60 nodes

covering 9 typical resting-state networks: dorsal (DAN red) and

ventral (VAN brown) attention, default mode (DMN white),

visual (VIS green), somatosensory (SMN yellow), language (LAN

pale blue), auditory (AUD blue), control (CON orange), and

fronto-parietal (FPN pink) networks. (B) A scheme of the analy-

sis pipeline is described in detail in Materials and Methods.

[Color figure can be viewed at wileyonlinelibrary.com]
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The final connectivity matrices were obtained from
single-run cross-correlation matrices after Fisher-
transformation as described in de Pasquale et al. [2013]. To
identify significant connections and account for the multiple
corrections, we adopted a false discovery rate (FDR)
approach with alpha 5 0.05. Then, the 60 3 60 matrices were
extracted at the subject level and averaged across runs.
Finally, we averaged the obtained matrices across subjects
to obtain a single functional matrix (FC) reflecting the signif-
icant connections more reproducible at the group level.

Correlation-based approaches were demonstrated to pro-
vide reliable estimates of functional connectivity [Smith
et al., 2011]. However, as the “full” Pearson correlation is
unable to discriminate direct versus undirect connections,
the partial correlation has been proposed in the literature
[Smith et al., 2011]. This measure is the linear correlation
between every pair of ROIs when all the contributions from
the remaining pairs have been regressed out [Marrelec et al.,
2006]. To compare the “full” versus the “partial” correlation,
we report in Supporting Information, Figure S1 the average
connectivity matrix unthresholded obtained with these two
measures. As it can be noted in Supporting Information, Fig-
ure S1A, where the two matrices are compared at the same
scale, in our case the partial correlation seems to remove too
much structure in the connectivity architecture and no sig-
nificant connections “survive.” We lose both internal and
across network connections shown by the “full” correlation
measure. To rule out the hypothesis that these connections
are not removed but only characterized by a lower intensity,
in Supporting Information, Figure S1B, we report the partial
correlation results at a lower scale. Only few internal con-
nections within the default mode and the visual networks
are obtained. This is probably due to the fact that the num-
ber of connections involved with the regression is too large
to warrant reliability of the results, see Verma [2013]. This
occurs when the number of comparisons is fairly larger than
the number of points used to estimate the partial correlation,
even in case regularization strategies are applied. In our
case, we have 1770 comparisons estimated from 200 points
probably yielding unreliable results. This has been observed
previously (see for example, Liang et al. [2016] and Ryali
et al. [2012]). Please note that when the directionality of the
functional connectivity needs to be addressed other possible
measures of directed interaction are the Granger causality
and transfer entropy [Seth et al., 2015].

Eventually, to evaluate the centrality of the considered
nodes we adopted the weighted betweenness centrality (BC)
estimated at the group level. This measure reports the frac-
tion of all shortest paths in the network passing through a
given node. Thus, nodes with high values of BC participate
in a large number of shortest paths [Brandes, 2001].

Estimation of Anatomical Connectivity

To compare DTI and fMRI, we estimated probabilistic
tracts from the same set of nodes from the 9 RSNs

described above. In particular, for the DTI analysis, we
adopted as regions of interest 10 mm spheres [Stanley
et al., 2013] centered in the MNI coordinates reported in
previous works [Baldassarre et al., 2012; de Pasquale et al.,
2012, 2013, 2016; Dosenbach et al., 2007; Hacker et al.,
2013; He et al., 2007].

Diffusion-weighted images were analyzed by the FMRIB
Software Library: FMRIB’s Diffusion Toolbox [Behrens
et al., 2003, 2007]. The acquired data were corrected for
the effects of eddy-current-induced distortion and subject
motion. To register RSN nodes to native diffusion space,
we adopted the FDT registration to transform the MNI
space into the subject DTI space by means of T1 images as
an intermediate step. Probabilistic tractography was car-
ried out by using bedpostX/probtrackX [Behrens et al.,
2007]. Bedpostx uses Monte Carlo Markov chain sampling
to estimate the diffusion parameters at each voxel. Proba-
bilistic diffusion tractography was carried out by adopting
10,000 streamline samples in each seed voxel to create a
connectivity distribution to each of RSN nodes (other
probtrackX2 parameters: defaults settings). We chose to
increase the default number of streamline samples, typi-
cally 5,000, to increase the density of our final matrices.
The connectivity between nodes was defined as the num-
ber of streamlines (averaged across all voxels within the
above spherical ROIs) reaching one ROI when another one
was seeded and vice-versa. Thus, a set of 60 3 60 connec-
tivity matrices were obtained for each subject and each dif-
fusion run (2 runs per subjects). Finally, to use the
connectivity matrix as input for the subsequent commu-
nity detection and clustering procedure, this was symme-
trized by computing the average between the original
matrix and its transpose.

A final remark must be made on the meaning of the
adopted measures. When we consider the probability of
anatomical connections estimated via a probabilistic fiber
tracking, it must be stressed that this measure—due to the
nature of DTI and tracking algorithms involved, given two
brain nodes—will reflect the probability of a direct connec-
tion between them, typically represented by a large fiber.
This will penalize small fibers or complex indirect connec-
tions when these will be located close to a large direct
fiber. Thus, in what follows we will adopt the notation of
direct anatomical connectivity (DAC) to stress that we are
showing a subset of possible anatomical connections con-
sisting of direct tracts likely due to large fibers.

Comparison of Functional Versus Anatomical

Connectivity

To test the hypothesis that different regions in the inves-
tigated RSNs are connected (both functionally and anatom-
ically) at different level of integration, we proceeded as
follows. We characterized the progression of the architec-
tures resulting at different scales, that is, intensity of con-
nectivity by means of hierarchical clustering or multiscale
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community detection. This progression is particularly
important for the brain hubs to understand how their cen-
trality is realized to ensure an efficient communication
across all brain components. If our hypothesis is correct,
we expect to see a progression of the functional clusters
from a complete segregation at the node level to the emer-
gence of the typical topography of RSNs to finally observe
some across network integration. On the other hand, if
this hypothesis is not valid, that is, this interaction is not
occurring in a multiscale fashion, then in our clustering
we will only observe the network topographies occurring
at one single fixed scale with no other interesting struc-
tures emerging at any other (coarser or finer) scale.

To this aim, we developed the analysis pipeline schema-
tized in Figure 1B. First, we analyzed the similarity
between FC and DAC at the subject level (Fig. 1B, step 1).
Then, we averaged the FC and DAC matrices across sub-
jects (Fig. 1B, step 2). At this stage, the DTI data were
thresholded to maintain in the average <DAC> the same
density observed at the subject level (average density
across subjects 5 0.42). Eventually, we assessed the similar-
ity of <DAC> and <FC> at the group level (Fig. 1B, step
3). Both steps 1 and 3 employed the Mantel Test which is
a statistical procedure developed to assess the significance
of correlation between two distance matrices [Sokal and
Rohlf, 1995]. To study the architecture of <DAC> and
<FC> we collated the progression of the obtained commu-
nities and clusters by means of a multiscale community
detection algorithm [Blondel et al., 2008] and an hierarchi-
cal clustering procedure (Fig. 1B, step 4). The multiscale
community detection is based on an algorithm which pro-
vides the optimal subdivision of the network into nonover-
lapping groups of nodes by maximizing the number of
within-group edges, and minimizing the number of
between-group edges. It is a multi-iterative generalization
of the Louvain community detection algorithm (see Blon-
del et al. [2008] and Ronhovde and Nussinov [2009] for
details). The detection depends only on one parameter,
namely c, which controls the size of the communities, that
is, the larger is c the smaller is the size of the expected
clusters. The value c 5 0 corresponds to one cluster while
the value c 5 1 provides the classical Louvain Modularity
detection. In our approach, we explored the multiscale
communities with c 5 0, 0.01, . . ., 2. In the results, we will
show only the values of c leading to significant changes in
the obtained communities.

As far as it regards the hierarchical clustering, we
adopted the shortest distance linkage criterion [Anderberg,
1973]. The functional distance was defined as the inverse
of the absolute value of FC described above. For the ana-
tomical distance, we adopted the inverse of the probability
defined as the fraction of estimated tracts connecting each
pair of nodes.

Now, to investigate the role played by the different
nodes in this multilevel interaction and in particular to dif-
ferentiate nodes that during the hierarchical clustering

remain largely segregated from those which are soon
assigned to a cluster, we introduced the measure of Clus-
tering Rate (CR) (Fig. 1B, step 5). For every node, this is
defined as the size of the clusters where a node is assigned
during the clustering steps divided by the number of hier-
archical thresholds considered (or c values). The idea
behind this measure is to capture the tendency of each
node to be grouped to the other considered nodes, that is,
if a node is assigned soon in the hierarchical tree to a clus-
ter then its CR will be high. On the other hand, if a node
remains segregated during the clustering and only
grouped at the end, the CR will be very low. To clarify, let
us consider a toy example. If a node n1 is assigned to a
cluster (size s) at the first scale (or hierarchy), its cluster
size will be s at the beginning. Then, based on how the
clustering works the node will stay in the first cluster
whose size can only increase. Let us suppose that the clus-
ter remains of size s until the end of clustering. Then, the
CR of n1 will be s. Now, let us consider a second node n2

which remains isolated until the last nth step where it is
grouped to a cluster of size s. In this case its CR will be n-
times lower than before, namely s/n, thus reflecting a
lower tendency to be grouped. Now, to better elucidate
the significance of this measure, we performed a simula-
tion to test CR on different scenarios of interaction. This
simulation is reported in the Supporting Information, Fig-
ures S1 and S2. Based on the proposed scenarios, CR
seems to capture well the properties of peripheral and
connector hubs. However, it must be acknowledged that
the reported scenarios represent only a few examples of
the possible architecture of interactions and additional
simulations where communication delays, nonlinear inter-
actions, or increasing amounts of non-Gaussian noise
should be considered to deeply investigate the role of CR.
These properties are typically modeled in theoretical
works on dynamical systems, for example, Kuramoto
models, see for example, Schmidt et al. [2015].

Eventually, we investigated the relationship between the
nodal centrality, quantified by means of the Betweenness
Centrality (BC, see Sporns [2011]) and the CR obtained
from the functional and anatomical dendrograms/multi-
scale communities (Fig. 1, step 6). This step is based on
the correlation between these measures.

RESULTS

To compare the direct anatomical connectivity (DAC,
see Materials and Methods) and FC over the selected RSN
nodes, in Figure 2A, we report their similarity subject by
subject [Sokal and Rohlf, 1995). We find a generally weak
correlation between these measures across subjects ranging
in the interval [0.03 0.15] (average correlation of 0.09
(dashed red line)) and the Mantel test revealed that 100%
of subjects showed a statistically significant (all P <0.05)
dissimilarity between FC and DAC (solid black bars). It
must be stressed that these values relate to the specific set
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of nodes considered in this study. Thus, a comparison
with other reported values on such similarity must be
made with caution. If such a low agreement is obtained
when averaged across the considered RSNs, a different
scenario is obtained when these RSNs are investigated
separately (Fig. 2B). First, it can be noted that each RSN
shows a quite similar pattern of similarity FC–DAC across
subjects, thus suggesting a consistent behavior in the sam-
ple. Second, the Mantel test revealed that networks such
as LAN and VAN are characterized by a statistically
higher FC–DAC similarity across subjects (Fig. 2B asterisk
marks, P< 0.05). As matter of fact, this similarity in the

language network (LAN) resulted significant in 100% of
subjects followed by the ventral attention network (VAN)
with 75%, compared to the somatosensory network (SMN)
with 25% and dorsal attention network (DAN) with 15%
of subjects. Thus, when averaged across subjects, we
observed a large gap between LAN and VAN and the
other networks (black bars in Fig. 2B). Interestingly, these
networks are typically reported as segregated networks
acting as local systems, see for example de Pasquale et al.
[2010, 2012, 2013, 2016] while the default mode network
(DMN), fronto-parietal (FPN), executive control CON, and
SMN have been reported as acting as a functional core of

Figure 2.

Similarity between functional and anatomical connectivity. (A)

The comparison between the overall direct anatomical connec-

tivity (DAC) and functional connectivity (FC) patterns computed

subject by subject by means of the Mantel test revealed a poor

agreement between them. (B) Comparison DAC versus FC net-

work by network. Each RSN shows a consistent pattern of

similarity FC–DAC across subjects (asterisks correspond to

P< 0.05 with Mantel test). When averaged across subjects, the

similarity FC–DAC is network specific (black bars): central net-

works such as DMN, FPN, and SMN show a lower resemblance

between DAC and FC. [Color figure can be viewed at wileyonli-

nelibrary.com]
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integration in the brain, see for example, Spreng et al.
[2013]. Thus, these results suggest that central RSNs
exhibit higher dissimilarity between functional and struc-
tural architecture than local RSNs. To validate these
results, in Supporting Information, Figure S4A, we report
the same analyses applied on a second DTI and resting-
state session. It can be noted that both the Mantel test at
the subject level and the average similarity network by
network produced very similar results to those of Figure
2. To validate these results, we also computed reliability
estimates based on a test–retest approach between the con-
nectomes computed from the two acquired DTI and rest-
ing state sessions. To this aim, we adopted the intraclass
correlation coefficient (ICC) as in Braun et al. [2011]. For
the DTI connectomes, we obtained ICC 5 0.93 with [0.925
0.938] as confidence intervals. As far as it regards the func-
tional connectomes, we obtained ICC 5 0.869 with [0.8609
0.8769] as confidence intervals. These results are encourag-
ing showing an excellent reliability across sessions in the
final connectivity matrices. This is important because these
matrices represent the starting point of the subsequent
analyses.

To further investigate the relationship between DAC
and FC we studied the hierarchical progression of the
structural and functional interactions. First, we applied a
multiscale community detection on <FC> (Materials and
Methods) [Ronhovde and Nussinov, 2009). The results are
reported in Figure 3A where we show the first five com-
munities obtained at different scales, namely from c 5 0.88
(the first two communities obtained after c 5 0) with c
varying of 0.01 (please note that in Fig. 3A only values of
c leading to significant changes in the communities are
reported). The progression shows that from an initial sce-
nario in which the functional nodes are all separated
(c 5 1.18) we observe the emergence of the typical well
known RSNs (c 5 1.07): the DMN (white), the SMN (cyan),
and VIS (red) and parts of the DAN (gold) and CON (yel-
low) [Hacker et al., 2013]. As a reference, the typical
topography of the considered networks is reported in Fig-
ure 1A. Of note, although these regions were a priori
assumed to form the selected RSNs in our subjects [Hacker
et al., 2013], these systems emerged automatically, without
any prior information on the node labeling. This validates
our grouping procedures. At subsequent scales, we
observe a progressive integration of the DMN with the
other systems (red clusters at c 5 1.03; 0.99) until the final
result (c 5 0.88) where DMN and SMN are grouped
together (cyan). At the next scale, all nodes are grouped in
one single community (not reported). Now, to validate
this progression and to observe how the different nodes
tend to be clustered together, we applied the hierarchical
clustering on the same data. The obtained dendrogram is
reported in Figure 3B where only clusters obtained at hier-
archies leading to significant differences in the progression
are shown. It can be noted a clear trend in the hierarchical
clustering in line with the previous results. In particular,

as in Figure 3A, we started with initial nonstructured clus-
tering at the lowest level, that is, nodes from RSNs are
separated (Fig. 3C). Then we observe the emergence of
larger subnetworks (Fig. 3D) consisting of parts of VIS
(red), bilateral components of SMN (cyan) (including the
supplementary motor area (SMA), L/R central sulcus
(CS)), and parts of the DMN (L/R mPFC andL/R angular
gyrus (AG), white). At the higher hierarchy (Fig. 3E), we
observe the emergence of the typical topographies of the
considered networks: DMN(white), SMN (cyan), VIS (red),
LAN (yellow) parts of the DAN (gold), and VAN (green).
Then, we note a progression towards the integration
where DMN (white), SMN (cyan) and VIS (red) are still
identifiable (Fig. 3F). Finally, we observe the integration
between DMN and SMN (Fig. 3G) now grouped in the
same cluster (cyan). Notably, this integration observed at
step ** (dashed box in Fig. 3) nicely links to two main
large interacting systems reported in de Pasquale et al.
[2013].

To quantify the agreement between the multiscale com-
munity detection and hierarchical clusters, we computed
the Rand index at every step of the procedures [Rand,
1971]. We report the values obtained when the networks
emerged (dashed box, case *, c 5 1.07 and step E,
Rand 5 0.87) and when the integration among DMN and
SMN is observed (dashed box, case **, c 5 0.88 step G,
Rand 5 0.91). As these two steps are the most interesting
in our interpretation, we report these values in Figure 3.
As far as it regards the other steps, when paired as shown
in Figure 3, the minimum agreement obtained between the
two clustering approaches was Rand 5 0.73. This shows
that for the cases * and ** the agreement is very high and
in general the two procedures produced consistent results
in all steps. This is encouraging as the two procedures are
independent.

Now, we describe clustering progressions obtained from
the anatomical data. In Figure 4A, we report the anatomi-
cal multiscale communities obtained by <DAC>. As in
Figure 3, we sampled c every 0.01 starting from 0 (not
reported). In this case, the progression of the communities
indicates that from a scenario where the nodes are mixed
across the considered networks (c 5 0.61), we soon observe
(c 5 0.54) a strong backbone of interaction between nodes
from the DMN (pCC), SMN (SMA), FPN (mCing), and
CON (RpreSMA and dACCmsFC) (red). At subsequent
scales (c 5 0.1, 0.08), this backbone loses the FPN node
mCing but the strong link among the other nodes is main-
tained (red) even when only three communities are identi-
fied in the brain. Interestingly, these nodes remain more
isolated from the rest of the brain until the final scale
(c 5 0.05) when they are grouped into a larger community
(red). This behavior is also evident from the hierarchical
dendrogram displayed in Figure 4B where the previous
nodes are soon clustered together (red). As before, at an
initial hierarchical level no complete RSNs could be
retrieved, but only subnetworks (Fig. 4C). By increasing
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Figure 3.

Multiscale functional architecture. (A) We report the first five

communities obtained by the community detection from

g 5 0.88 (the first two communities obtained after g 5 0) with

g varying of 0.01 (only values of g leading to a significant

changes in the communities are reported). From an initial sce-

nario in which the functional nodes are separated (g 5 1.18), we

observe the emergence of the typical well known RSNs at a

lower g: the DMN (white), the SMN (cyan), and VIS (red) and

parts of the DAN (gold) and CON (yellow) (Fig. 1A). At subse-

quent scales, we observe a progressive integration of the DMN

with the other systems (red clusters at g 5 1.03; 0.99) until the

final result (g 5 0.88) where DMN and SMN are grouped

together (cyan). At the next scale, all nodes are grouped in one

single community (not reported). (B) Dendrogram from the

hierarchical clustering. It can be noted a clear trend in the hier-

archical clustering in line with the previous results. (C) An initial

nonstructured clustering at the lowest level is observed, that is,

nodes from RSNs are isolated (only clusters obtained at

hierarchies leading to significant differences in the progression

are reported). (D) The emergence of larger subnetworks con-

sisting of parts of VIS (red), bilateral components of SMN (cyan)

(including the supplementary motor area (SMA), L/R central sul-

cus (CS)) and parts of the DMN (L/R mPFC andL/R angular

gyrus (AG), white) is shown. (E) At the higher hierarchy, we

report the emergence of the typical topographies of the consid-

ered networks: DMN (white), SMN (cyan), VIS (red), LAN (yel-

low) parts of the DAN (gold) and VAN (green). (F) It can be

noted a progression toward the integration where DMN

(white), SMN (cyan) and VIS (red) are still identifiable. (G) The

integration between DMN and SMN now grouped in the same

cluster (cyan) is evident. The Rand index is reported when the

networks emerged (dashed box, case *, g 5 1.07 and step E,

Rand 5 0.87) and when the integration among DMN and SMN is

observed (dashed box, case **, g 5 0.88 step G, Rand 5 0.91).

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 4.

Multiscale anatomical architecture. (A) The multiscale communi-

ties obtained by <DAC>. As in Figure 3, we sampled g every

0.01 starting from 0 (not reported). In this case the progression

of the communities indicates that from a scenario where the

nodes are mixed across the considered networks (g 5 0.61), we

soon observe (g 5 0.54) a strong backbone of interaction

between pCC (DMN), SMA (SMN), mCing (FPN), dACCmsFC,

and RpreSMA (CON) (red). At subsequent scales (g 5 0.1,

0.08), this backbone loses the node from the FPN but it is main-

tained (red) even when only three communities are identified in

the brain. Interestingly these nodes remain more isolated from

the rest of the brain until the final scale (g 5 0.05) when they

are grouped into a larger community (red). (B) Hierarchical den-

drogram. Functional hubs such as pCC and SMA are soon linked

together (red) through other nodes from central networks such

as FPN and CON. (C) At an initial hierarchical level, no

complete RSNs could be retrieved, but only subnetworks. (D)

By increasing the threshold, we observe a clustering in which

nodes anatomically close to each are linked together. At this

hierarchy, consistently to what observed before, a cluster com-

prising the same nodes as above from DMN, SMN, FPN, and

CON emerges (red). (E) These nodes remain strongly con-

nected and separated from the rest of the brain at the subse-

quent hierarchies. (F) An additional node from the DMN,

namely, L/R mPFC joins this anatomical backbone (red). Notably,

at this level, many other nodes even anatomically farther apart

than these nodes are linked together. (G) Eventually, these

nodes are linked to a larger community (red). Nodes belonging

to important central networks are first anatomically linked to

each other and only at the highest threshold are finally clustered

together with the rest of the brain. [Color figure can be viewed

at wileyonlinelibrary.com]
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the threshold, we observe a clustering in which nodes ana-
tomically close to each are linked together in the right and
left hemispheres, likely by direct connections (Fig. 4D). At
this hierarchy, consistently to what observed with the mul-
tiscale community detection, a cluster comprising the same
nodes as above from DMN, SMN, FPN, and CON emerges
(red). These nodes remain strongly connected and sepa-
rated from the rest of the brain in the subsequent hierar-
chies (Fig. 4E,F). In particular, in Figure 4F, additional
nodes from DMN (L/R mPFC) join this anatomical back-
bone (red). Notably, at this level many other nodes even
anatomically farther apart than these nodes are linked
together. Eventually, these nodes are linked to a larger
community (red; Fig. 4G). This is in line with the results
in Figure 4A and it shows that these nodes that belong to
important central networks are first anatomically linked to
each other and only at the highest threshold are finally
clustered together with the rest of the brain.

Notably, while the multiscale community detection is a
complete automatic approach which depends only on the
parameter c, the hierarchical clustering is typically less
robust as it depends on several parameters among which
the linkage criterion. Therefore, it is important to show
that the results obtained with this technique are robust
with respect to the choice of the linkage criterion. To this
aim, we report in Supporting Information, Figure S5, the
results found with different linkage criteria. It can be
noted that in all the considered cases we obtained that the
same set of nodes are always linked together at the first
dendrogram leaf. Furthermore, we also checked the stabil-
ity of the hierarchical clustering on the second DTI session
acquired. The obtained dendrogram is reported in Sup-
porting Information, Figure S4B. It can be noted that the
structure of the dendrograms reported in Figure 4 and
Supporting Information, Figure S4 is extremely similar.

To summarize, these results show that FC and DAC
lead to different hierarchical architectures over the consid-
ered nodes: the FC hierarchical tree is dense, that is, all
nodes are quickly connected with similar branching dis-
tances while the DAC hierarchical tree is more sparse; that
is, many leaves are connected quickly and few leaves
showed much higher branching distances. Now, to charac-
terize more accurately such hierarchical architecture, we
computed the clustering rate (CR) of very node (see Mate-
rials and Methods for details). In Figure 5, we report the
scatterplot of the functional versus the anatomical CR for
the considered nodes (DMN-red; DAN-green, VAN-pink,
SMN-black, VIS-blue, LAN-orange, AUD-cyan, CON-
brown, and FPN-grey) along with their centroids (circles).
To quantitatively identify nodes with anatomical CR statis-
tically lower than the rest of the sample, we first com-
puted the 5th percentile of the distribution for the obtained
CR values (Fig. 5 - black dashed line). Values below this
percentile are statistically smaller than the rest of the sam-
ple at a significance level 5 0.05. Then, to rule out the
hypothesis that the obtained values might be influenced

by the limited sample size, we also performed a bootstrap
procedure. This provided us the 5th percentile based on
1000 samples (Fig. 5 - red dashed line). In Figure 5A,B, we
report the results obtained with the multiscale community
detection and hierarchical clustering, respectively. Interest-
ingly, the common nodes that both approaches revealed as
significantly different from the rest of the sample (lower
than the 5% percentile) are pCC, LmPFC, and SMA. While
in both approaches these nodes show a low anatomical
CR, the multiscale detection shows that pCC and LmPFC
have high functional CR compared to the rest of the sam-
ple. This is in agreement with their reported centrality; see
the simulation reported in Supporting Information, Figures
S2C and S3A. Thus, these nodes are strongly functionally
connected but such functional coupling is likely realized
through a small number of direct anatomical connections.
Other nodes show a high functional CR, see for example
the visual nodes in Figure 5A without a corresponding
low anatomical CR. This is an important control that sug-
gests that for local networks, the supposed inverse rela-
tionship between functional and anatomical connections is
not observed.

We note that the functional CR obtained with the two
clustering procedures have some differences, for example,
the multiscale community detection highlights high values
for the DMN while the hierarchical clustering finds high
values for the SMN. These differences might be due to the
high density of functional connections that might lead dur-
ing the clustering to slight different clusters. However, the
Rand index (the minimum obtained is 0.71) when all steps
are considered, shows that the two procedures are quite
consistent.

The results in Figures 4 and 5 suggest that the centrality
of pCC and SMA, typically reported as functional hubs
[de Pasquale et al., 2012, 2013, 2016] is realized through a
specific anatomical backbone connecting these nodes
which is shown in Figure 6, where we report the estimated
fiber tracts, averaged across subjects, starting from pCC (in
red) and SMA (green) overlaid on the T1 MNI template.
The emerging anatomical architecture consists of two main
anatomical tracts: one mainly anterior–posterior in the
direction pCC–mPFC with some lateral branches and one
ventro-dorsal linking SMA to the internal capsule and the
cortical–spinal tract. This tract has been widely reported in
the literature, see for example Greicius et al. [2009] and
van den Heuvel et al. [2008]. Based on these observations,
the centrality of these two nodes seems to be inversely
related to the magnitude of their direct anatomical tracts.
To investigate if these observations generalize to the other
functional nodes considered in this study, we computed
the correlation between the functional and anatomical CRs
and the node functional centrality quantified through the
weighted betweenness centrality (BC) of the considered
nodes (see Materials and Methods for details; de Pasquale
et al. [2016] and Sporns [2011]). In Figure 7A, we report
the ranked BC where it can be noted that mCing scores
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the highest centrality followed by pCC and SMA. Interest-
ingly, these nodes were involved in the anatomical back-
bone observed in Figure 4. This extends what we found in
de Pasquale et al. [2013]: not only pCC and SMA show a
high number of links (high degree) with the rest of the

brain but also most these links act as bridges (high BC) in
the communication with the rest of the brain.

Now, to investigate the relationship between the ana-
tomical CR and BC, we computed the correlation between
these two variables for the first ten most central nodes

Figure 5.

The anatomical versus functional rate of clustering (CR). Scatter-

plot of the functional versus anatomical CR obtained with multi-

scale community detection (A) and hierarchical (B) clustering for

all nodes of the considered RSNs (DMN-red; DAN-green, VAN-

pink, SMN-black, VIS-blue, LAN-orange, auditory-cyan, control-

brown, and fronto-parietal-grey) along with their centroids

(circles). The 5% percentile of the CR distribution (black dashed

lined) and the bootstrapped 5% percentile (red dashed line) for

the CR values are reported. Interestingly, both approaches

revealed that only pCC, LmPFC, and SMA show statistically

lower anatomical CR from the rest of the sample. [Color figure

can be viewed at wileyonlinelibrary.com]
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(Fig.7B). The significance of the obtained results is
addressed by computing the P value of the correlation
coefficient by using the Fisher transformation and thus the
asymptotic normality assumption. As the sample size is
limited, for each estimated correlation value we also
addressed its statistical significance by estimating boot-
strap confidence intervals (1000 samples) and permutation
tests. These results are shown in Figure 7. We considered
as significant only correlation values passing all the three
considered criteria (see the reported values in Fig. 7B–D).
We obtained that these two measures are strongly anticor-
related both with hierarchical clustering (r 5 20.83) and
multiscale detection (r 5 20.67). Thus, strong functional
hubs seem to be characterized by a low anatomical CR.
When the same analysis is extended on the whole sample
of nodes (Fig. 7C), we obtained that this relationship is
still statistically valid although at a lower strength
(r 5 20.37, with hierarchical clustering and r 5 20.31 with
multiscale detection). This is reasonable taking into
account that in this analysis we also included nodes scor-
ing a very low BC. Eventually, as a control we tested the
relationship between BC and the Functional CR (Fig. 7D).
Interestingly, no significant correlation between these mea-
sures was obtained in this case. In particular, while the
multi scale detection shows a nonsignificant correlation
between these two measures, the hierarchical clustering

reports a positive correlation between these measures
(r 5 0.33). However, as the bootstrap confidence interval
for this value identified a very small correlation value as
still significant (r 5 0.06 as 5% percentile), we cannot con-
sider this estimate as significant. On the whole, sample BC
and functional CR are not linearly related. These results
suggest that what we observed for pCC and SMA seems
to generalize to the other considered nodes: the higher the
functional centrality of a node, the lower is the number of
its direct anatomical connections. In general, the consid-
ered functional hubs tend to connect toward the end of
both the anatomical hierarchical tree and multiscale
detection.

DISCUSSION

Summary

In this work, we assumed a set of well-known RSNs to
behave as an integrated network [Tononi et al., 1998],
where functional and anatomical connections link different
regions hierarchically. We explored and compared such
functional and anatomical hierarchical architectures in a
specific set of nodes previously reported as belonging to
nine main RSNs. Three main findings are presented in this
work. First, we show, in general a consistent low similarity

Figure 6.

The anatomical backbone pCC-SMA. Estimated fiber tracts starting from pCC (in red) and SMA

(green) and their overlap (yellow). The anatomical architecture emerging from these results is

that of two main anatomical tracts: one mainly anterior–posterior in the direction pCC–mPFC

with some lateral branches and one ventral–dorsal linking SMA to the internal capsule and the

cortical–spinal tract. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 7.

Functional centrality and anatomical CR are inversely related.

(A) Ranked betweenness centrality of the considered nodes.

pCC and SMA, after mCing (FPN), are the two most central

hubs. In the next analyses, to address the statistical significance

of the results, we reported in the plots the correlation values

and their P values, the obtained bootstrap confidence intervals

and the results from the permutation tests. (B) BC and anatomi-

cal CR for the first 10 most central nodes are strongly anticor-

related (r 5 20.83) with hierarchical clustering (left) and

(r 5 20.67) with the multiscale community detection (right)).

(C) The same analysis extended on the whole sample of nodes

still shows an inverse relationship, although with a lower

strength (r 5 20.37) with hierarchical clustering (left) and

(r 5 20.31) with multiscale detection (right)). (D) No significant

linear relationship between BC and the functional CR was

obtained, see the bootstrap confidence intervals with hierarchi-

cal clustering (left) and with multiscale detection (right)). On the

whole sample, BC and functional CR are not linearly related.



between anatomical and functional connectivity across
subjects. The degree of similarity between anatomical and
functional connectivity differed among the considered net-
works. In particular, we observed that networks typically
reported as highly central, that is, networks more involved
with the across-network integration, such as the DMN,
FPN, and SMN [de Pasquale et al., 2012, 2013, 2016], show
an agreement between functional and anatomical connec-
tivity lower than more segregated networks such as VAN
and LAN. Second, the hierarchical architectures driven by
the functional and anatomical data are very different. The
functional architecture shows all nodes soon clustered
together with hubs in DMN, FPN and SMN being
involved from the early stages. Conversely, the anatomical
clustering shows that these hubs, at the highest stage, are
first connected to each other and then to the rest of the
brain. Third, the centrality of the considered nodes is anti-
correlated with the anatomical CR, that is, the more central
is a node the slower it will cluster with other nodes
through direct anatomical connections. This suggests dif-
ferent levels of anatomical integration of cortical hubs.
They first exploit few strong and direct anatomical connec-
tions, often involving other central areas (see DMN and
FPN regions). Then, with a lower strength they are ana-
tomically linked with the other regions in the brain. This
seems to represent an efficient strategy of integration
where long-range connections are first ensured through
few direct tracts and then by many local links.

The Anatomical Backbone of Functional Hubs

In general, anatomical connections represent the biologi-
cal infrastructure for neuronal communication [van den
Heuvel and Sporns, 2013b]. This might suggest a simple
relationship between anatomical and functional connec-
tions, see for example Skudlarski et al. [2008], reporting on
a linear relationship between them and [Hagmann et al.,
2008], showing evidence of a predictive value of the anat-
omy on the function. However, to compare these quanti-
ties, one must be aware of their different intrinsic nature
and the methodological limitations involved with their
estimation. Functional connectivity in fact, especially when
estimated via cross-correlation, reflects a statistically undi-
rected association between node pairs showing a strong
coupling in their BOLD time series. Such association is
prone to transitivity and it can be realized through direct
and indirect anatomical connections. This might lead to a
propensity for “overconnection” and high clustering, see
for example, van den Heuvel and Sporns [2013b]. On the
other hand, structural connectivity obtained through prob-
abilistic fiber tracking, provides the probability of two
nodes being connected based on the number of tracts
between them. Tracts passing through regions character-
ized by many small fibers branching and splitting might
result, although to lesser extent than with deterministic
approaches, penalized [Nucifora et al., 2007]. For this

reason, a direct comparison between these two measures
must be cautious. As matter of fact, the functional connec-
tivity implies the anatomical connectivity, but the former
cannot distinguish between direct (potentially monosynap-
tic) and indirect (potentially multisynaptic) tracts [Greicius
et al., 2009]. Thus, indirect connections and interregional
distance might account for some of the variance in func-
tional connectivity that cannot be explained by structural
connectivity [Honey et al., 2009]. In this complex scenario,
it has been shown that the enhanced intrinsic excitability
and synaptic efficacy might lead to increased FC even
when the structural connectivity is diminished as it can be
seen in pathological conditions such as epilepsy [Bai et al.,
2011].

Our results show a low agreement between these two
measures (Fig. 2) that is supported by the literature. As a
matter of fact, it has been reported that the DAC alone
accounts for only 15% of FC variance and that indirect
connections play a strong role in shaping FC and the topo-
graphic organization of brain RSNs [Messe et al., 2014].
This supports the notion that network configurations often
diverge from the underlying anatomical substrate [Honey
et al., 2009; Misic et al., 2016; Ton et al., 2014; van den
Heuvel and Sporns, 2013b]. When we investigated these
aspects network by network, we obtained that VAN and
LAN which are local systems [de Pasquale et al., 2010,
2012, 2013, 2016] with a peripheral FC likely realized by
direct anatomical tracts exhibit a good agreement between
FC and DAC. Conversely, for DMN, FPN, and SMN that
play a central role in the RSN integration, we obtained a
lower agreement between these measures (Fig. 2B). This
supports the notion of a strong synchronization within
regions belonging to highly central systems: one special-
ized for offline internal mentation (DMN), one for online
sensory-motor functions (SMN), and one acting as a flexi-
ble hub of cognitive control (FPN), see for example [Zanto
and Gazzaley, 2013]. The integration between these sys-
tems is fundamental in the brain due to the role played by
the involved networks. On one hand, the DMN has been
shown to be preferentially active when individuals are
engaged in offline, internally focused tasks, such as epi-
sodic memory retrieval, imagination of future events, and
perspective taking [Buckner et al., 2008; Sestieri et al.,
2011]. On the other hand, the mixed motor-sensory net-
work showing connectivity with the SMA appears to serve
opposite functions, allowing the online exchange of infor-
mation with the environment, both in terms of processing
multiple sensory stimuli and programming/executing
behavioral responses. Finally, the FPN has been reported
as a control-type network characterized by the ability to
adapt to a wide variety of tasks by initiating and modulat-
ing cognitive control abilities [Zanto and Gazzaley, 2013].
Evidence of a continuous interaction between hubs comes
also from electrophysiological in terms of a dynamic corti-
cal core of interaction in the brain [de Pasquale et al.,
2016]. In this study, a dynamic interchange of cortical
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hubs ensuring an overall communication in the brain was
reported.

We believe that the discrepancy that we found in this
work between the sparse-anatomical and dense-functional
structure (see below) might support this functional effi-
ciency. In fact, the integration is a complex mechanism
composed of several levels of interactions occurring at dis-
tinct coupling strengths (see for example, de Pasquale
et al. [2013]). Thus, to unravel this progression, we applied
a multiscale community detection and hierarchical cluster-
ing on FC and DAC. We observed again important differ-
ences between the anatomical and functional results. Both
the functional clustering and multiscale detection revealed
a progression in which nodes are first clustered in the
known RSNs and then converge to two macrosystems
comprising DMN and SMN (Fig. 3). In this progression,
functional hubs such as pCC and SMA are grouped to
other nodes quickly, that is, at a low hierarchy (or scale).
The progression obtained with the anatomical clustering
seems opposite, that is, the functional hubs are linked late
in the hierarchy to the rest of the brain. When this occurs,
they are first linked together through nodes from FPN and
CON, and then to the remaining nodes (Fig. 4). To quan-
tify this observation, we computed the measure of rate of
clustering (CR, described in Materials and Methods) which
revealed that these functional hubs show a high functional
CR and low anatomical CR, which is statistically lower
than in the rest of the sample (Fig. 5). This suggests that
their strong functional centrality is realized by few direct
anatomical connections and possibly multiple indirect ana-
tomical connections. There is no direct mapping of func-
tional connections into anatomy but instead few specific
connections allowing an efficient functional coupling. In
particular, the axis consisting of the anterior posterior fas-
ciculate represents a strong anatomical backbone between
pCC and SMA (Fig. 6). This result is in line with previous
studies where tracts between the PCC and the medial pre-
frontal have been demonstrated [Parvizi et al., 2006]. This
axis pCC–SMA is also in agreement with what reported in
van Oort et al. [2014] and Greicius et al. [2009], where
they demonstrated that pCC/RSC (retrospenial cortex)
exhibits direct projections with both mPFC and the medial
temporal lobe corresponding to different entry points in
the rostral and caudal part of pCC. Interestingly, in line
with our results, in this work the authors were not able to
find projections of pCC to L/R AG and only 17% of the
subjects showed fibers connecting MTL to L/R AG. Thus,
as in our study, within DMN, pCC remained apparently
disconnected from L/R AG. Naturally, pCC is not really
disconnected from L/R AG and we argue that this might
be due to the difficulty of resolving crossing fibers in trac-
tography analyses [Mori and Zhang, 2006]. As a matter of
fact, such laterally running fibers might be extremely diffi-
cult to trace through the larger perpendicularly oriented
fibers such as the anterior–posterior longitudinal fasciculus
and the superior–inferior oriented corona radiata. This is

further confirmed by additional DTI studies that identified
the tract pCC–mPFC but failed to identify the lateral pro-
jections pCC–L/R AG [van den Heuvel et al., 2008, 2009).

These observations on pCC and SMA seem to extend to
other nodes in our sample, that is, when we compared the
functional centrality of all considered nodes and their ana-
tomical CR. We obtained that in the first 10 most central
functional hubs, identified by the betweenness centrality,
these two measures are significantly anticorrelated with both
multiscale detection and hierarchical clustering methods
(r 5 20.75 on average, see Fig. 7B) and this trend remains, at
a lower strength (r 5 20.34 on average, see Fig. 7C), also
when considering all the nodes. This confirms that the more
central is a node, the lower is the number of direct anatomi-
cal connections is involved with. As a control, no significant
linear relationship was obtained between the centrality and
the functional CR (Fig. 7D). This can be due to the fact that
the functional centrality of a node is probably obtained indis-
tinctly through both many and few specific connections.

These observations can be related to the rich club model
reported in van den Heuvel and Sporns [2013a]. In the
rich club model, it is observed that nodes showing a high
degree (k) tends to be directly linked to each other. Thus,
“rich” members join a “rich” club. Our findings share
some common aspects with this model although with
some important differences. First, the nodes involved with
the rich club overlap nicely with the nodes that we find,
for example, the DMN regions among which pCC. Fur-
thermore, the idea that these hubs are strongly linked is in
line with what we found. Nevertheless, a fundamental dif-
ference is highlighted with our approach. In van den Heu-
vel and Sporns [2013a], the rich club property is found for
a given k. This corresponds in our approach to consider a
given threshold of interaction and then to include only
nodes showing at least k connections. In this way, we
would lose the information on the progression of the inter-
action occurring at different scales. Such progression
shows that the considered functional hubs link to each
other at a relatively low k, that is, when they show few
anatomical connections. At that scale, they are not particu-
larly “rich” in anatomical connections. Then, when we
consider higher scales in the progression, toward the end
of the dendrogram in Figure 4, we observe their final inte-
gration with the rest of the brain. At this stage, they
become finally very “rich” in anatomical connections.
Thus, we seem to disentangle, across different scales, the
interaction among hubs, and their property of being cen-
tral. This is the main difference with the work of van den
Heuvel and Sporns [2013a] where these two characteristics
are observed “simultaneously,” that is, when they have
many connections are directly linked to each other. Here,
instead by looking at the progression of interactions we
separated the link across hubs, occurring when these have
very few and strong connections (low k) with the final
integration with the rest of the brain characterized by
many weaker connections (high k).
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We speculate that the observed strong anticorrelation
between functional centrality and anatomical CR suggests
that the functional connectivity somehow shapes the anat-
omy by selecting, among all the available ones, few spe-
cific anatomical highways. This pruning of anatomical
connections likely favors those ones linking functional
cores such as pCC and SMA (Figs. 4 and 6). In general,
this might represent an efficient strategy to reach all nodes
in the brain: few direct anatomical links connect functional
cores which then distribute locally the information by
means of small and intricate tracts. This interpretation is
supported by the fact that connections are energetically
expensive to both maintain and use [Attwell and Laughlin,
2001; Bassett et al., 2010; Chen et al., 2006], thus favoring
short and sparse over long and dense links. However, few
long connections might be allowed to transmit information
between distant regions more efficiently, as is needed dur-
ing task performance [Hermundstad et al., 2013]. This
architecture might represent the anatomical substrate of a
distributed neural system as a basis for a “global work-
space,” a core system in which segregated functional com-
munities interact [Dehaene et al., 1998; Dehaene and
Naccache, 2001]. This efficient anatomical architecture
might be explained by known and reported mechanisms
observed in the course of development and evolution
where the modulation of synaptic activity induces long-
term structural modifications to neural morphology
[Sporns et al., 2000].

We hypothesize that in this complex scenario, an impor-
tant role is played by the dynamics of functional connec-
tivity recently observed in fMRI and other
electrophysiological techniques [de Pasquale et al., 2012;
Hutchison et al., 2013]. As matter of fact, the nonstationar-
ity of FC might impact Hebbian fire-wire mechanisms
[Caporale and Dan, 2008; Lowel and Singer, 1992]. Func-
tional hubs are continuously exchanging information to
ensure an efficient communication within the brain. On
the other hand, connections with local (noncentral) nodes
are more nonstationary, that is, hubs continuously connect
and disconnect from peripheral nodes. For this reason,
being the within-hubs connections more used over time
than the rest, it is conceivable that this continuous recruit-
ment might lead to shaping strong direct fibers between
these regions of the brain. On the other hand, for the more
fluctuating connections the instability does not allow to
build such strong anatomical connections. Such instability
may allow the brain to be versatile and to quickly reorga-
nize to the environment demands. These observations
could be interpreted in the light of the recent results of Gu
et al. [2015] reporting that functional hubs provide a struc-
tural substrate for the movement of the brain between cog-
nitive processes. Their results show that hub nodes in the
brain tend to have high average controllability, indicating
that they are critical for moving the brain into many easily
reachable states, thereby facilitating a great diversity of
functional dynamics. We acknowledge that in this work,

the nonstationarity of functional connections was not
investigated directly and thus these considerations are
speculative. However, to address the impact of the dynam-
ics on the connectivity will represent a future development
of this work. We elaborate more on this aspect in the next
section.

LIMITATIONS OF THE PROPOSED APPROACH

In this work, we assumed some prior information about
the formation of 9 RSNs and the centrality of functional
nodes such as the pCC and SMA. The adopted parcella-
tion, although coarser than other reported schemes, still
covers the same networks typically reported in the resting-
state literature and thus our results can be compared with
previous work. These assumptions are based on a previ-
ous work, where in the same sample of subjects, we iden-
tified two main functional cores centered on pCC and
SMA which linked to two main large systems: one consis-
tent with the default mode network (DMN) gradually con-
necting to visual regions and the other centered on motor
regions gradually connecting to more sensory-specific por-
tions of cortex [de Pasquale et al., 2013]. In this work, the
centrality of these nodes, which in de Pasquale et al.
[2013] was obtained in terms of amount of links (degree
based measure), was confirmed in terms of betweenness
centrality (Fig. 7A). As matter of fact pCC and SMA
scored the second and third positions in ranked BC sug-
gesting that these nodes are not only characterized by a
high number of functional links (high degree), but these
links behave as functional bridges between distinct func-
tional modules. This aspect is particularly important as it
has been reported that degree based measures of centrality
may be prone to an inflation effect due to the an increased
community size, see Power et al. [2011, 2013]. Only a local
integration role was assigned to the DMN and SMN in
these works. However, as our definition of centrality is
based on BC, this measure is less sensitive to such infla-
tion effects and thus our results are in line with the several
structural and functional hub locations reported, see Bull-
more and Sporns [2012] and Hagmann et al. [2008] typi-
cally located in medial (pCC) and lateral (angular gyrus)
parietal regions of the default mode network, and in ante-
rior cingulate and anterior insula, part of the cingulo-
opercular (CO), and lateral frontal and parietal cortex, part
of the fronto-parietal control networks [Buckner et al.,
2009; de Pasquale et al., 2012, 2013; Cole et al., 2010; Tom-
asi and Volkow, 2011].

However, it must be acknowledged that the adopted
number of nodes limits the generalizability of our results.
We stress that, based on the limited number of nodes con-
sidered, we cannot draw general conclusions on the whole
brain but we limit to state our findings on the selected set
of functional nodes and networks. We acknowledge that
the number of nodes is still far from hundreds, as for
example in Power et al. [2011], but the aim of the work is
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to investigate these aspects on networks more consistently
reported in the fMRI literature. It is not unusual in the lit-
erature, when considering the functional labeling of nodes,
to include few tens of centroids of the obtained networks,
see for example, Yeo et al. [2011], where a stability analy-
ses on the clustering of thousands of nodes provides 7 (or
17 at finer scale) functional systems. Our selection highly
relates to these systems and many other centroids pub-
lished consistently in the literature from different imaging
modalities works [Baldassarre et al., 2012; de Pasquale
et al., 2012, 2013, 2016; Dosenbach et al., 2007; Hacker
et al., 2013; He et al., 2007). Furthermore, please note that
dense parcellation schemes will include many neighboring
voxels that we expect certainly to inflate degree-based
measures of centrality but not the betweenness centrality
that we adopted in this work.

A further limitation of our approach regards the com-
parison of anatomical and functional connectivity without
the adoption of intermediate generative models. As a mat-
ter of fact the adoption of a generative model and dynam-
ics could be used to investigate these aspects, such as
Messe et al. [2014] and Sporns et al. [2000]. However, to
reduce the complexity of the dynamic systems involved,
strong assumptions on the adopted parameters are
required and this might oversimplify the mechanism
investigated. For this reason, some literature (see for exam-
ple, Betzel et al. [2014], Greicius et al. [2009], Hermundstad
et al. [2013], Horn et al. [2014], Khalsa et al. [2014], van
den Heuvel et al. [2008, 2009], van Oort et al. [2014], Wang
et al. [2013], and Xue et al. [2015]) address these issues
without the adoption of a generative model.

Furthermore, the temporal dynamics of brain activity
might strongly influence the relationship between func-
tional and anatomical connectivity. It must be noted
though that fMRI signals—due to the inevitable hemody-
namic filtering—cannot be related to the dynamics of brain
activity that occurs a time scale much higher than the final
fMRI frequency content. In fact, when these aspects are
investigated with electrophysiological techniques, as in our
prior MEG work, the evidence is that at a fast scale these
fluctuations arise in the order of hundreds of milliseconds
[Baker et al., 2014] and at low temporal scales (MEG–BLP
for example) these occur in the order of few seconds
[Brookes et al., 2014; de Pasquale et al., 2012]. Interest-
ingly, functional hubs observed when the temporal
dynamics is taken into account, such as PCC nicely agree
with the ones observed in electrophysiological works and
in a new fMRI approach to reveal transient functional
modes [Smith et al., 2012]. In this last work, it has been
shown how the centrality of PCC observed using station-
ary approaches can be interpreted as the results of the
average of different fast dynamic transitions. Similarly, in
this paper we focused on the stationary connectivity
observed with fMRI, interpreting our findings as the aver-
age result of fast dynamic fluctuations more robustly
occurring over time.

Eventually, an emerging literature proposes unified
approaches for characterizing multiscale brain networks
where functional, anatomical and in general multimodal
data can be integrated, see for example [Betzel and Bassett,
2016] for a recent review. Our proposed approach and the
obtained findings could be, as a future development,
included in this unified framework of analyses.

In terms of validating previous assumptions on the cen-
trality of the adopted nodes, the results reported in Figure
3 show that some of the assumed hubs could be actually
obtained from the different hierarchical scales. In fact,
although no prior information was input to the clustering,
Figure 3 shows that the progression of the obtained clus-
ters, in both the hierarchical clustering and multiscale
detection (Fig. 3A,E), shows at an intermediate stage the
formation of some of the initially assumed RSNs. More-
over, at the higher threshold, corresponding to a high level
of integration, these RSNs collapse in one network involv-
ing DMN and SMN. Such topography—together with the
hubness patterns—validates the evidence of two macrosys-
tems linked through pCC and SMA reported in de Pas-
quale et al. [2013]. This model is in agreement with a vast
fMRI literature where these cortical functional hubs serve
as way stations for network integration, although different
approaches for the analysis of the fMRI spontaneous activ-
ity were applied. Interestingly, the same nodes were found
to be hubs also by methods analyzing the rhythmical
ongoing activity [Bullmore and Sporns, 2012; Buckner
et al., 2009; Cole et al., 2010; de Pasquale et al., 2012, 2013,
2016; Hagmann et al., 2008; Shirer et al., 2012; Tomasi and
Volkow, 2011; Zalesky et al., 2014].
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