
“Can Touch This”: Cross-Modal Shape
Categorization Performance Is Associated with
Microstructural Characteristics of White Matter

Association Pathways

Haemy Lee Masson,1 Christian Wallraven,1* and Laurent Petit2

1Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713, Korea
2Groupe d’Imagerie Neurofonctionnelle, Institut Des Maladies Neurod�eg�en�eratives - UMR

5293, CNRS, CEA University of Bordeaux, Bordeaux, France

r r

Abstract: Previous studies on visuo-haptic shape processing provide evidence that visually learned shape
information can transfer to the haptic domain. In particular, recent neuroimaging studies have shown
that visually learned novel objects that were haptically tested recruited parts of the ventral pathway from
early visual cortex to the temporal lobe. Interestingly, in such tasks considerable individual variation in
cross-modal transfer performance was observed. Here, we investigate whether this individual variation
may be reflected in microstructural characteristics of white-matter (WM) pathways. We first trained par-
ticipants on a fine-grained categorization task of novel shapes in the visual domain, followed by a haptic
categorization test. We then correlated visual training-performance and haptic test-performance, as well
as performance on a symbol-coding task requiring visuo-motor dexterity with microstructural properties
of WM bundles potentially involved in visuo-haptic processing (the inferior longitudinal fasciculus [ILF],
the fronto-temporal part of the superior longitudinal fasciculus [SLFft] and the vertical occipital fasciculus
[VOF]). Behavioral results showed that haptic categorization performance was good on average but
exhibited large inter-individual variability. Haptic performance also was correlated with performance in
the symbol-coding task. WM analyses showed that fast visual learners exhibited higher fractional anisot-
ropy (FA) in left SLFft and left VOF. Importantly, haptic test-performance (and symbol-coding perfor-
mance) correlated with FA in ILF and with axial diffusivity in SLFft. These findings provide clear
evidence that individual variation in visuo-haptic performance can be linked to microstructural character-
istics of WM pathways. Hum Brain Mapp 38:842–854, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Imagine that you want to find an object (such as your
keys) in the depths of your pocket or handbag—in order
to solve this task, visual information will need to activate
or prime touch information so that you can locate the
object without visual input. Previous studies have, indeed,
shown that information travels fairly easily between vision
and touch [Lacey et al., 2009; Newell et al., 2001; Norman
et al., 2004; Wallraven et al., 2014]—one potential reason
for this may be that object representations may be multi-
sensory in nature being activated by visual or tactile input
[Lacey et al., 2009]. Further support for shared object rep-
resentations comes from a series of recent studies showing
that both vision and touch are able to reconstruct highly
abstract shape spaces of novel objects [Cooke et al., 2007;
Gaißert et al., 2010; Gaißert and Wallraven, 2012; Gaißert
et al., 2011].

The similarity between vision and touch also extends to
categorization tasks with novel objects [Wallraven et al.,
2014] and to real-world natural objects [Gaißert and Wall-
raven, 2012]. In a recent study, we have shown that metric
shape information trained in one modality (either vision
or touch) symmetrically transfers to the other, untrained
modality using a novel shape categorization task [Wall-
raven et al., 2014]. While these results—and those from
other studies—speak strongly in favor of shared represen-
tations between vision and touch, one aspect that has so
far not been studied in detail is the individual variability
in this task. Indeed, in the study by Wallraven et al.
[2014], all participants showed proper training effects—the
magnitude of these effects, however, differed from partici-
pant to participant and with that also participants’ perfor-
mance and ability to transfer information from vision to
touch (and vice versa). In other words, there are people
who are naturally better at cross-modal information trans-
fer than others. The goal of this article is to provide more
data on this phenomenon from a behavioral side, but
more importantly to provide evidence of neuroanatomical

correlates for these performance differences.
When looking into neural correlates of multisensory

processing of vision and touch, several functional neuro-
imaging studies have resulted in evidence for shared mul-
tisensory representations in the human brain. These
studies have identified potential substrates of such repre-
sentations in the lateral occipital cortex (LOC) and the
intraparietal sulcus (IPS) [Amedi et al., 2001; Lacey et al.,
2009].

Furthermore, it was found that haptic shape processing
was not solely limited to LOC. Our previous study provid-
ed evidence that haptic shape selectivity for novel objects
could be observed along the ventral pathway (from early
visual cortex to the temporal lobe), when participants had
been exposed to these objects in the visual domain before.
Hence, the entire ventral stream provided a highly accu-
rate and veridical reconstruction of object shapes of both

visual and haptic shape information [Lee Masson et al.,
2015].

While these previous studies show a tight link between
vision and touch and have identified functional correlates
of multisensory processing, so far nothing is known about
how performance in vision and touch is associated with
WM, structural properties in the brain.

Diffusion-weighted MR imaging (dMRI) followed by dif-
fusion tensor analysis investigates microstructural white-
matter properties by tracking the diffusivity of water mole-
cules in the brain tissue [Le Bihan et al., 2001]. In particular,
the diffusion tensor that fits with the dMRI measurements
encodes the direction of axonal fibers and hence can be used
as an indirect measure of neural connectivity in WM. The
tensor contains intra-voxel structural information, embod-
ied in the shape of the diffusion ellipsoid (three eigenvectors
and three eigenvalues) with which scalar values such as
fractional anisotropy (FA), axial diffusivity (AD) or radial
diffusivity (RD) are calculated. Among these scalar values,
the largest eigenvalue parallel to the axon is referred as AD,
while the mean of two eigenvalues perpendicular to the
axon is called RD. Generally, AD reflects axonal morpholog-
ical changes, while RD is related to the degree of myelina-
tion of the axon [Song et al., 2005]. The FA value is more
widely used as an indication of WM integrity, representing
the degree of the diffusion anisotropy (FA 5 0 represents
isotropic diffusion and FA 5 1 represents fully-directed,
anisotropic diffusion) of the fiber [Horsfield and Jones, 2002;
Song et al., 2005; Werring et al., 2000]. Since FA is character-
ized by the variance among the three eigenvalues, high FA
values may reflect either high AD, low RD or both [Pierpaoli
and Basser, 1996], showing that the three microstructural
measures are related. In addition, several factors can influ-
ence these parameters, such that direct inferences about
microstructural properties should be treated with caution
[Beaulieu, 2002; Beaulieu and Allen, 1994]—such factors
include changes in myelination [Bosch et al., 2012], axon
density, axonal membrane integrity, axon diameter [Bara-
zany et al., 2009] and intra-voxel coherence of fiber orienta-
tion [Jeurissen et al., 2013; Pierpaoli et al., 2001]. In the
context of the present study, our interest lies in the body of
evidence that shows that these three types of scalar values
characterizing microstructural properties are able to reflect
various cognitive function and training effects.

Although no previous study has so far investigated
which WM tracks are involved in visual or haptic shape
information in particular, several previous experiments
have implicated correlations of microstructural properties
with various perceptual and cognitive functions along
major WM tracks. As an example, performance in face and
scene perception was shown to correlate with the FA value
in the inferior longitudinal fasciculus (ILF—the ventral
stream), suggesting that the ILF can be considered as a
higher-order, visual associative WM track [Tavor et al.,
2014]. In addition, several clinical studies have investigat-
ed associations between perceptual impairments and WM

r White Matter Correlates of Cross-Modal Shape Categorization r

r 843 r



structural characteristics and also implicated ILF in deficits
in visual processing: for example, children with visual
object recognition impairment showed decreased FA in the
ILF [Ortibus et al., 2012], deterioration of the left ILF
increased visual memory dysfunction [Shinoura et al.,
2007], intraoperative direct electro-stimulation of the ILF
in a visual agnostic patient conversely resulted in im-
provements of visual object recognition performance
[Coello et al., 2013] and a reduced number of fibers in ILF
in a prosopagnosic patient went along with behavioral def-
icits in face processing [Grossi et al., 2014].

Given that several studies suggest that perceptual per-
formance in several visual tasks may be reflected in WM
properties, in the present study, our goal was to investi-
gate whether this would also hold for a cross-modal task
in which information from the visual modality would
need to be transferred to the touch modality. For this, we
first determined behavioral cross-modal performance in a
shape categorization task modeled after Wallraven et al.
[2014]. In this task, participants first learned how to cate-
gorize a set of novel shapes in the visual domain. After
successful learning, they were then tested about their cate-
gorization knowledge in the haptic domain (i.e., by touch-
ing the objects)—a task that required successful cross-
modal transfer of shape information from vision to touch.
The resulting cross-modal categorization performance was
then correlated with the aforementioned WM measures
that reflected the microstructural characteristics of the
major WM tracks in the brain. Given the previously men-
tioned WM studies and functional imaging results that
implicated areas of multisensory processing in both ven-
tral and dorsal streams, our investigation focused on the
occipito-temporal (ILF) projection as the ventral shape
processing WM pathway, as well as the SLFft as a WM
pathway linking frontal and temporal cortices while tra-
versing the parietal lobe. Lastly, we also included the
ventral-occipital fasciculus (VOF) in our investigation as

this WM track links the ventral and dorsal pathways in the
occipital lobe as recently rediscovered [Yeatman et al., 2014].
Specifically, we hypothesized that microstructural character-
istics (mainly as measured by FA) in the ILF as the main
WM track involved in shape processing may be able to
reflect also cross-modal shape categorization performance.

MATERIALS AND METHODS

Participants

Thirty-eight right-handed healthy adults (age 18–33;
mean age 5 23.8; standard deviation 5 3.2; 19 women)
without history of neurological disease or any visual, hap-
tic or other perceptual deficits were recruited in this study.
However, due to excessive movement artifacts during
dMRI acquisition, one participant was excluded from the
analysis. All participants were provided with informed
written consent, and the experiment received prior
approval by the Korea University Institutional Review
Board (1040548-KU-IRB-14-133-A-1).

Stimuli and Presentation

Since the behavioral task was based on categorization,
we first defined a one-dimensional, continuous stimulus
space that participants learned to carve into two catego-
ries. The stimuli consisted of eight objects for visual train-
ing and seven objects for haptic testing with an additional
two objects defining two exemplars (A and B) as reference
prototypes for each category (Fig. 1, [Wallraven et al.,
2014]). Stimuli between training and testing did not over-
lap, allowing us measure the generalization performance
instead of pure memorization of learned shape. Objects
were printed out as tangible objects (average measure-
ments: 7 3 7 3 7cm, average weight: 97.88 g) using a 3D
printer (Zprinter650, 3DSystems).

Figure 1.

Reference objects A and B denote the representative objects of

each of the two categories. The remaining objects were then

vertex-morphed linearly from A to B. The number below each

object specifies the percentage of B (e.g., object 6 means that

this object contains 94% of A and 6% of B). The objects in the

upper row were used as stimuli for the visual training, whereas

the stimuli in the lower row were used for haptic testing. Note

that test objects were never shown during the training session.

[Color figure can be viewed at wileyonlinelibrary.com]
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During the experiment, the novel objects were presented
in the middle of a table at which the participant and the
experimenter were seated facing each other. For the visual
training, participants were able to see the objects (visual
angle: �10 degrees) at the same distance at which they
were touched later. Objects were presented at random
angles during both visual and haptic tasks. For the haptic
experiment, a black curtain located in the middle of the
table blocked the visual input, while the objects could be
explored using the right hand of the participants (domi-
nant hand) through the curtain. Participants were blind-
folded during the haptic experiment.

Behavioral Experiments

The main experiment task consisted of a cross-modal
object categorization task. Participants had to learn to form
two categories in the one-dimensional shape space shown
in Figure 1 based on visual training and were then tested
on their category knowledge in a haptic testing task. Again,
we were interested to see how well participants were able
to transfer knowledge from vision to touch, and important-
ly how much this transfer varied across participants.

The categorization experiments of visual training started
by presenting two reference objects from either category A
or B (Fig. 2). Participants were asked to use these referen-
ces for the later categorization judgments. Each visual ref-
erence object was presented for 6 s. This was followed by
presentation of all eight training objects (see Fig. 1, upper
row) in random order. Presentation time for the objects
was 3 s for this visual training part. After the presentation
ended, participants were asked to verbally state whether
the object belongs to either category “A” or “B” (by

referencing them in memory to the previously seen proto-
type objects). Feedback on the correctness of the response
was given verbally by the experimenter immediately after
the participant responded. Presentation of the two reference
objects and the eight training objects constituted one block
(2 reference objects 1 8 objects to be categorized 5 10 objects
per block). This visual training part ended once participants
reached the predefined training criterion of correct answers
for all training objects for two consecutive blocks (i.e., 16
objects). If participants were not able to reach this criterion
after 20 blocks, training also stopped since we assumed that
further training was not able to improve performance.

After the visual training, a short break was given, fol-
lowed by the haptic test. The haptic test followed the exact
same protocol as the visual training, except that partici-
pants were not able to see the objects and that no feedback
was given. Again, at the start of each test block, each of
the two reference objects was presented haptically for 10 s.
Following this, participants had to categorize the seven
objects from the test set (Fig. 1, bottom row) presented in
random order. Each object was presented for 6 s to give
participants ample time to explore the object haptically.
The haptic testing finished after 10 blocks (i.e., 70 test
objects).

Finally, all participants performed a “coding task,” one
of the sub-tests of the Korean Wechsler Adult Intelligence
Scale—Fourth Edition (KWAIS-IV, [Wechsler, 2008]). This
task required them to draw a symbol corresponding (Fig.
3) to a set of digits as quickly and as accurately as possi-
ble. The task started with a brief explanation and several
practice trials, followed by the actual task right after (Fig.
3). The number of correctly written symbols in the blanks
that could be filled within a period of 2 min was counted

Figure 2.

Structure of the experiments. Every block started with present-

ing the two reference objects one after the other (each refer-

ence was presented for 6 s in the visual training block and for

10 s in the haptic testing block). This was followed by a ran-

domized presentation of the morphed objects (visual objects

were presented for 3 s while haptic objects were presented for

6 s). For each object, participants had to report either category

A or B as a response. During (visual) training, feedback was pro-

vided after the response. During (haptic) testing no feedback

was given. [Color figure can be viewed at wileyonlinelibrary.

com]
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to measure performance. According to the KWAIS manual,
this task is designed to test visuo-motor control as well as
visual imagery. In addition, the coding task has been
shown to reflect general information processing capacity
[Royer, 1971] as well as visual processing time, psychomo-
tor speed, visuo-motor coordination and short-term visual
memory [Crowe et al., 1999]. Accordingly, we chose this
task as a supportive test for comparison, assuming that
our categorization entailed both motor coordination
(exploring the shape) as well as potential visual imagery
(see discussion by [Lacey et al., 2010] on the use of visual
imagery during haptic object processing).

MRI Acquisition

MRI data were acquired a few weeks before the behav-
ioral experiments on a SIEMENS Trio 3T scanner (Siemens
Medical Systems, Erlangen, Germany) with a 32-channel
SENSE head-coil (Brain-imaging-center, Korea University,
Seoul, South Korea). Structural MRI images of all partici-
pants were collected using a T1-weighted sagittal high-
resolution MPRAGE-sequence (repeat time (TR)52250 ms,
echo time (TE)53.65 ms, flip angle (FA)598, voxel size 5

1 3 1 3 1 mm, 192 axial slices). Whole brain diffusion-
weighted volumes were acquired using a diffusion-
weighted spin-echo echo-planar-imaging (DWI-EPI) pulse
sequence [(TR)56400 ms, echo time (TE)584 ms,
b 5 1000 s/mm2, with 64 diffusion gradient orientations in
addition to one non-weighted b0 image, 52 slices, voxel
size 5 2.2 3 2.2 3 2 mm].

Image Processing

Before the processing, all images were visually inspected
for artifacts or corruption possibly induced by head move-
ment during the scanning. The data of one participant had
to be removed due to excessive head motion artifacts so
that further analysis of diffusion and behavioral data were
made for a total of 37 participants. Diffusion-weighted
data were analyzed within the framework for tractography

recently described by Girard et al. [2014] that will be brief-
ly described below [Girard et al., 2014]. Preprocessing of
the diffusion data used a combination of tools from the
FMRIB software library (FSL [Jenkinson et al., 2012],
MRtrix [Tournier et al., 2012], www.nitrc.org/projects/
mrtrix) and Dipy ([Garyfallidis et al., 2014], http://nipy.
org/dipy) software packages. If not otherwise specified,
all methods were used with default parameters.

First, diffusion datasets were corrected for movement
and eddy-current distortions using FSL, and the original
gradient table was rotated accordingly [Leemans and
Jones, 2009]. Even though the eddy-current correction
aligns all volumes in the reference space (given by the
non-weighted b0 image), the log-files from the process
were further analyzed to obtain the three translations and
three rotations of each participant to be used as nuisance
covariates for later analysis ([Yendiki et al., 2014], see sta-
tistical analysis part). Next, skull-removal was done using
FSL/BET to improve co-registration, followed by upsam-
pling the data to 1mm-isotropic resolution. All diffusion
data were denoised by automatically estimating the stan-
dard deviation of the noise, followed by nonlocal means
filtering using standard denoising methods from Dipy.
Lastly, fitting the standard diffusion tensor model using
Dipy yielded the microstructural characteristics such as
FA, radial diffusivity (RD) and AD that were later used
for investigating characteristics of WM tracks. Indepen-
dently, using the thresholded FA value (FA> 0.7), the sin-
gle fiber response function was estimated as the input of a
spherical deconvolution with spherical harmonic order
8 to yield the fibers orientation distribution function
(fODF) at every voxel [Descoteaux et al., 2009]. Finally,
each individual whole-brain tractogram was computed
using a streamline deterministic tractography method on
the field of fODF with multiple seeds (20 seeds/voxel) and
default parameters (step size 0.2 mm, min/max streamline
length 20/250, see details in Girard et al. [2014]). Note that
all processing for each participant took place in their own
diffusion space obtained by registering the T1 image to
each diffusion space a combination of linear (FLIRT) and
nonlinear transformation (ANTs [Avants et al., 2011]).

Tracts of Interest Extraction

The tracts of interest were visualized and extracted
using TrackVis [Wang et al., 2007; Zhang et al., 2010] and
White Matter Query Language (WMQL) [Wassermann
et al., 2013]. We used the JHU-DTI-MNI atlas [Oishi et al.,
2009] as a region-of-interest template after its deformation
in individual native spaces using the FLIRT and ANTS
transformations. Streamlines belonging to the ILF and the
SLFft were extracted following their multiple region-of-
interest definitions [Wang et al., 2007; Zhang et al., 2010].
Streamlines depicting the VOF were extracted following its
anatomical definition given in Yeatman et al. [2014]. Final-
ly, the streamlines extracted for each tract of interest were

Figure 3.

Structure of the coding task. Stimuli consisted of an array of

digit-symbol pairs (nine simple shapes each paired with a single

digit, one through nine). Stimuli were shown all the time above

the blanks, which participants were required to correctly fill in

within two minutes. A short practice session was provided, fol-

lowed by the real task according to the experimental specifica-

tions in the KWAIS-IV manual.

r Masson et al. r

r 846 r

http://www.nitrc.org/projects/mrtrix
http://www.nitrc.org/projects/mrtrix
http://nipy.org/dipy
http://nipy.org/dipy


used as a mask to compute the diffusion microstructural
metrics (mean FA, mean RD and mean AD) using the sta-
tistics tool in TrackVis.

Analysis

Analysis of behavioral experiments

We first determined the average number of blocks par-
ticipants needed for reaching criterion. Importantly, as a
measurement of cross-modal performance, haptic accuracy
was calculated for each participant by determining the cor-
rect answers for the two categories in the test block (note
that this includes data from only 63 trials out of 70, since
the middle object (object “50,” see Fig. 1) belongs to both
category A or B in our design).

The performance in the coding task was measured by
counting the number of correctly written symbols achieved
within two minutes, followed by transforming the raw
score to an age-scaled score using the KWAIS-IV manual.

Statistical analysis

Task performance measures (number of visual training
blocks, haptic accuracy achieved in the testing and perfor-
mance in the coding task) were first checked for normality
using the Shapiro–Wilk test. Next, performance measures
were correlated with all three WM microstructure metrics
(mean FA, mean RD and mean AD) of the three tracts of
interest in both left and right hemispheres using partial
correlation analysis.

Individual age, total intracranial volume (TIV) and
motion index were included as nuisance variables in the
partial correlation to control for possible confounds. TIV
was calculated using the SPM voxel-based morphometry
(VBM8) toolbox. For the motion index, we followed Yen-
diki et al. [2014], calculating the volume-by-volume trans-
lations and rotations from the affine pre-processing step
(for this, the translations and rotations were first de-
trended by subtracting the median and normalized by the
inter-quartile range, [Yendiki et al., 2014]). Since several
tracts of interest were tested, significance of correlations of
the partial correlation test was assessed using Bonferroni-
corrected thresholds. In order to better characterize the
three scalar values measuring the WM microstructural
characteristics (i.e., FA, AD and RD) and their association
with cross-modal categorization performance, we also con-
ducted a correlation analysis of the three WM measures to
check for interdependencies.

Finally, to supplement our analysis of the partial correla-
tion, we additionally selected the 10 best- and the 10
weakest-performing participants so as to yield a high and
a low performer group (HG and LG). We then conducted
independent two-sample t-tests to examine potential
microstructural differences for the same measures and
WM tracks between these two groups.

All statistical analyses were performed using MATLAB
(R2013a, The Mathworks, Natick, MA) built-in functions
and JMP software (SAS, Cary, version 9.0). When calculated
correlations reach statistical significance, the results are giv-
en both as r and r2 (i.e., proportion of variance explained)
and can be cautiously interpreted according to Cohen’s
recommendations on effect size [Cohen, 1992] with small
effect sizes for 0.1< jrj< 0.3, medium effect sizes for 0.3 <5

jrj< 0.5 and large effect sizes for jrj >50.5.

RESULTS

Visual Training

Participants on average needed 10.4 (SD 5 5.3) blocks to
finish the visual training—this is consistent with the data
from Wallraven et al. [2014, not reported] in which partici-
pants needed 8.5 blocks (SD 5 5.9). Only 3 out of 37 partic-
ipants were not able to finish within 20 blocks—during the
final blocks, however, performance for these participants
hovered around 92%, showing that they made only one or
two errors during last two blocks (16 objects). We assume
therefore that also these participants acquired knowledge
about the categories. Results below are hence reported for
all 37 participants. Since the distribution had a marked
asymmetry, the Shapiro–Wilk test rejected the null-
hypothesis of a normal distribution (W 5 0.93, P 5 0.02).

Haptic Categorization Task

Average haptic accuracy was 80.5% (SD 5 12.4%) -
again, this average performance is consistent with a re-
analysis from data of Wallraven et al. [2014, not reported]
in which participants achieved 84.5% (SD 5 12.9%). Addi-
tionally, accuracy scores were normally distributed
(W 5 0.94, P> 0.05). Importantly for our study, however,
the results show that there is considerable individual vari-
ability in haptic performance after visual training (range
51. 7–98.3%, SD 5 12.4%). Thus, effects of visual training
seemed to be different across participants when transfer-
ring information from vision to touch. The full histogram
for all 37 participants is shown in Figure 4. The number of
visual blocks that was needed to achieve criterion did not
correlate with haptic accuracy (r 5 0.01, P 5 0.96), sugges-
ting that fast visual learners were not necessarily better at
haptic recognition.

Coding Task

We found a mean age-scaled score of 10.5 (SD 5 2.7, on
a scale of 1–19). The average value was close to the age-
scaled norm value of 10 and the scores conformed to a
normal distribution (W 5 0.96, P> 0.05). The range of
scores was from 4 to 18, indicating considerable individual
variance also for this task. Correlations of coding task per-
formance did not reach significance with number of
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training blocks needed (r 5 20.26, P 5 0.11) but did so
with haptic categorization accuracy (r 5 0.40, P 5 0.02;
r2 5 0.16) with medium effect size.

Task Performance Correlation with

Microstructural Metrics of the Tracts of Interest

The bilateral IFL, SLFft and VOF were extracted in all
subjects. Figure 5 shows an example of left ILF, SLFft and
VOF extracted in a representative subject. Table I shows
the average values for the FA, AD and RD measures for
each left and right tracts of interest.

To test whether individual variability in the perfor-
mance measures correlated with the variability in the
microstructural measures of the bilateral ILF, SLFft and
VOF, we performed correlations between each tract of
interest measures and either the number of training blocks
or the haptic accuracy or the coding performance. We first
observed that mean FA of left VOF and left SLFft were cor-
related negatively with the number of training blocks
(VOF, r 5 20.41, r2 5 0.17; SLFft, r 5 20.45, r2 5 0.20), dem-
onstrating that fast visual learners showed a higher of FA
value in left VOF and left SLFft (Fig. 6A). Accuracy in the
haptic object shape categorization task was significantly
correlated negatively with the mean FA of left ILF
(r 5 20.42, r2 5 0.18) and positively with the mean AD of
left SLFft (r 5 0.42, r2 5 0.18) (Fig. 6B). The age-scaled score
in the coding task showed similar trends to that of haptic
accuracy (Fig. 6C): coding task performance was correlated
negatively with mean FA of bilateral ILF (left r 5 20.52,
r2 5 0.27; right r 5 20.44, r2 5 0.19) and positively with
mean AD of bilateral SLFft (left r 5 0.42, r2 5 0.17; right
r 5 0.41, r2 5 0.17). No other significant correlations were
found with the performance measures. Overall, following

Figure 4.

Histogram of accuracy in the haptic task for all 37 participants

sorted from low to high performance, showing clear individual

variance.

Figure 5.

Example of left ILF, SLFft and VOF extracted in a representative

subject. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Mean and standard deviation of the mean FA,

AD and RD values extracted for the tracts of interest

(N 537)

FA AD RD

ILF_L 0.38 6 0.02 0.0011 6 0.00004 0.00060 6 0.00002
ILF_R 0.37 6 0.03 0.0011 6 0.00004 0.00061 6 0.00003
SLFft _L 0.41 6 0.02 0.0011 6 0.00003 0.00058 6 0.00002
SLFft _R 0.39 6 0.02 0.0011 6 0.00003 0.00057 6 0.00002
VOF_L 0.32 6 0.02 0.0010 6 0.00004 0.00062 6 0.00002
VOF_R 0.34 6 0.02 0.0011 6 0.00003 0.00063 6 0.00002
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Figure 6.

Scatter plots for the significant correlations between performance measures and the WM micro-

structural metrics of the tracts of interest. [Color figure can be viewed at wileyonlinelibrary.

com]
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Cohen’s recommendations the effect sizes of correlations
were medium with correlation of coding performance with
FA in left ILF passing just above the large effect size
threshold. Table II shows all correlations between micro-
structural and performance measures.

To increase the contrast in our analysis, we next selected
the 10 best-perfoming (HG, haptic accuracy> 89%) and the
10 weakest-performing (LG, haptic accuracy< 74%) partici-
pants from our sample. Independent two-sample t-tests
were used to compare the two groups in terms of their
microstructural characteristics for left ILF and left SLFft. In
line with previous results, we found lower FA in left ILF
(t(18)5-2.3, P 5 0.03) for HG (M 5 0.37, SD 5 0.02) com-
pared to LG (M 5 0.39, SD 5 0.02). Additionally, AD in the
left SLFft was higher (t(18)52.6, P 5 0.02) for HG (M 5

0.0011088, SD 5 3.125e-05) compared to LG (M5 0.0010851,
SD 5 2.017e-05). No other results were significant.

Taken together, our results show that lower FA in left
ILF as well as higher AD in left SLFft are associated with
visuo-haptic performance.

Correlation within the Microstructural

Metrics of the Tracts of Interest

Given that previous results have shown that the three
microstructural measures are related [Pierpaoli and Basser,
1996], we also provide intermeasure correlations to more
fully characterize our results. As expected, we found sig-
nificant correlations for all tracks of interest-specifically,

high FA was associated with both high AD and low RD in
ILF, VOF and SLFft (see Table III).

DISCUSSION

Our behavioral results confirm those of previous studies
[Cooke et al., 2007; Gaißert et al., 2010; Gaißert and Wall-
raven, 2012; Gaißert et al., 2011; Wallraven et al., 2014],
showing that visually- trained object shape knowledge
clearly transfers to the haptic domain. Indeed, all partici-
pants showed above-chance performance in the haptic
test.

More importantly for the goal of the present study, con-
siderable individual variability was observed in the cross-
modal transfer performance. We next explored the poten-
tial correlates of this variation in cross-modal performance
for several WM microstructural characteristics along the
major WM tracks known to be involved in either visual or
visuo-motor processing. We hypothesized that the compo-
sition of the fibers system of the relevant WM tracks may
reflect this variation of perceptual ability, which would
then allow us to delineate multisensory shape processing
WM pathways in the human brain. Using a robust
diffusion-weighted tractography pipeline to extract tracts
of interest, our results indeed showed correlations of
cross-modal performance measures with mean FA of the
ILF and with mean AD of the SLFft.

A correlation between a metric derived from the
diffusion-weighted signal and a behavioral measure is con-
sidered as a useful outcome if such a correlation is robust
and reliable [Jones et al., 2013] and is corrected for poten-
tial nuisance covariates (in our case, participants’ age,
motion and brain size). Diffusion-weighted scalar mea-
sures (FA, RD, AD) are generally interpreted as measures
of the integrity of the WM microstructure. Therefore, any
change or difference in these measures may indicate a
damage of the WM microstructure. Within a healthy
group, however, better performance is unlikely to be asso-
ciated with structural damage, decline or degeneration.
Variability in diffusion-weighted scalar values in correla-
tion with behavioral measures may be attributed to—

TABLE II. Correlation values for each tract of interest

and measured using partial Pearson correlation analysis

Training block Haptic accuracy Coding

FA 0.066 20.419* 20.522*
ILF_L AD 0.223 20.404 20.257

RD 0.130 0.174 0.361
FA 20.024 20.216 20.438*

ILF_R AD 0.075 20.273 20.375
RD 0.128 0.008 0.233
FA 20.451* 0.171 0.258

SLFft_L AD 20.257 0.421* 0.415*
RD 0.308 0.044 20.066
FA 20.279 0.191 0.323

SLFft _R AD 20.105 0.213 0.408*
RD 0.242 20.046 20.048
FA 20.413* 0.171 20.088

VOF_L AD 20.202 0.227 0.271
RD 0.222 0.017 0.353
FA 20.216 0.208 20.101

VOF_R AD 20.214 0.116 0.060
RD 0.120 20.130 0.202

Tests were corrected for multiple comparisons using Bonferroni
correction.
* signifies P-value below 0.05 after the correction.

TABLE III. Correlation values among the

microstructural measures of the tract of interest using

partial Pearson correlation analysis

AD RD

ILF_L FA 0.58* 20.67*
SLFft_L FA 0.4 20.83*
VOF_L FA 0.47* 20.58*
ILF_R FA 0.62* 20.77*
SLFft_R FA 0.56* 20.62*
VOF_R FA 0.46* 20.72*

Tests were corrected for multiple comparisons using Bonferroni
correction (* signifies P-value below 0.05 after the correction).
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among others—differences in axonal density, axonal cali-
ber, degree of myelination, as well as changes in some
aspect of connectivity without being able to pinpoint the
exact cause [Jones et al., 2013]. Whether positive or nega-
tive, the correlations with behavioral measures that we
observed can be interpreted as reflecting a difference in
the anatomical complexity of the tracts of interest. Note
also that for each tract of interest, the more FA increases,
the more AD increased and RD decreased (Table III). In
line with the pioneering study of [Pierpaoli and Basser,
1996], our result confirms the interdependency of these
mathematically-related measurements of WM microstruc-
ture in healthy subjects. We also note that within the con-
straints of our sample size, effect sizes of the correlations
with white-matter characteristics were medium to large,
testifying to the relative robustness of our results.

Specifically, we first observed that the visual training
correlated negatively with the mean FA values of left VOF
and left SLFft. In other words, the less number of training
blocks required for the participants to learn the shape of
the object, that is, the fast visual learners, the highest
mean FA values with both left VOF and SLFft. In the case
of VOF, previous studies showed that dorsal and ventral
visual pathways in the occipital lobe communicate through
the VOF [Takemura et al., 2015; Yeatman et al., 2014],
which may facilitate the visual training performance in
our study. In the case of SLFft, while most of studies pro-
vided evidence that SLFft is relevant for visuo-spatial
attention, Mayer and Vuong demonstrated that FA values
of voxels within the SLFft (in their case, between posterior
parietal and inferior frontal lobe obtained by functionally
defined ROIs) were correlated with reaction time of the
performance during the feature-attention task, extending
the role of SLFft from spatial attention to feature attention
in object processing [Mayer and Vuong, 2014]. However,
in their study, right SLFft was associated with attentional
processes of the object feature, while our results implicated
left SLFft. We conjecture that the discrepancy occurred due
to different characteristics of the task between the studies.
For example, while the study of Mayer and Vuong
required an attentional shift between different features of
the object properties such as shape, motion and color, our
task required a one-dimensional focus on shape itself.
However, further studies should be conducted to investi-
gate how hemispheric lateralization affects visual object
shape training in both VOF and SLFft.

We also observed a negative correlation between the
haptic shape categorization performance and the mean FA
value in left ILF and positive correlation with mean AD
value in left SLFft, meaning that better performance went
along with a lower mean FA value in ILF and a higher
mean AD value in SLFft in the left hemisphere. So far,
investigations of relevant WM tracts related to haptic object
shape processing have not been yet conducted.

Regarding the ILF, previous diffusion-related studies
have shown that the ILF microstructure is associated with

performance in visual object, face and scene recognition
[Gomez et al., 2015; Ortibus et al., 2012; Tavor et al., 2014].
Our results provide evidence that the mean FA of the left
ILF is associated with haptic shape categorization perfor-
mance based on prior visual training and hence with
cross-modal transfer of haptic information. More interest-
ingly, the involvement of the left ILF is strongly consistent
with our previous multivoxel pattern analysis study show-
ing that haptic shape processing with visual prior expo-
sure recruited a large part of the left ventral stream from
early visual cortex to the temporal lobe to convey fine
details of object shape information and suggesting domi-
nant hand-based processing of haptic information [Lee
Masson et al., 2015]. Hence, individual variation of haptic
shape processing acquired from vision may in part be due
to differences in microstructural characteristics of the ILF.
Similar negative correlation was also found in a previous
study that revealed associations between better face and
scene recognition ability and a lower FA value in ILF
[Tavor et al., 2014]. This later explained that the lower FA
value could be due either to larger axon diameters or to
increases in local connectivity in the presence of large
crossing fibers within the voxel. In their study, lower FA
went along with higher values in RD, suggesting that low-
er FA may signify larger axon diameters, inducing better
performance. However, we did not observed any signifi-
cant correlations between the mean RD of ILF and haptic
categorization task performance even though low FA was
associated with both low AD and high RD.; following this,
we conjecture that the present negative correlation of FA
with cross-modal transfer performance may be due to WM
bundle complexity resulting from a larger number of
crossing fibers in the ILF. Since FA encodes the directional
preference within a voxel, a large number of crossing
fibers within a voxel may actually result in lower FA [Pier-
paoli et al., 2001].

We also found that SLFft correlates with haptic shape
categorization performance. Previous studies have shown
this tract to carry information related to a variety of cogni-
tive functions, including higher-level visual processing
such as visuo-spatial attention: impairment of visuo-spatial
processing in older adults group without dementia, for
example, correlated with changes in microstructural char-
acteristics in SLFft [Kantarci et al., 2011]. Similarly, using
functional data from a pantomime and motor imitation
task, Vry et al., provided evidence that SLFft performs
direct sensory-motor interaction [Vry et al., 2015]. In the
context of the present study, SLFft may be relevant to hap-
tic processing since our task requires hand movements to
explore the objects, hence requiring the use of an adequate
exploration strategy to properly extract shape properties.
Indeed, we find that the mean AD of the left SLFft exhibits
a positive correlation with haptic performance.

Overall, our results show that cross-modal categoriza-
tion is reflected in white-matter characteristics. Although
this may reflect more general patterns of haptic and cross-
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modal expertise in our participants, several previous stud-
ies have provided evidence that short-term training also
may be able to influence microstructural characteristics.
This has been observed after visuo-motor training (jug-
gling) in the parieto-occipital sulcus [Scholz et al., 2009],
after memory training in tracks from frontal lobe to other
region [Engvig et al., 2012], after meditation training in
tracks from the anterior cingulate cortex to other regions
[Tang et al., 2012], and following a visuo-auditory working
memory training in SLF, ILF and the corpus callosum [Sal-
minen et al., 2016]. Since our imaging data was gathered
before the behavioral data, however, the resulting correla-
tions cannot be directly traced to such factors. The degree
to which the short-term visual training may also affect the
present cross-modal results remains an open question that
could be addressed using additional postexperiment scans.

The present study solely investigated the performance
with the dominant hand (right hand), which may explain
why our findings of ILF and SLFft solely lie in the left
hemisphere (see Lee Masson et al. [2015] for functional
data on hemispheric contra-lateralization for haptic shape
processing). Based on the results of a previous study that
uncovered a direct, causal relationship between the motor
cortex in the contralateral hemisphere and the dexterity of
the hands [Boggio et al., 2006], we conjecture that perfor-
mance with a nondominant hand (i.e., the left hand)
would be associated with similar white matter tracks locat-
ed in the contralateral right hemisphere. However, cross-
modal performance itself may less effective due to rela-
tively decreased dexterity of the nondominant hand com-
pare to the dominant one [ €Ozcan et al., 2004]. It would be
interesting to conduct further experiments in which shape
transfer is tested with the non-dominant hand to investi-
gate the lateralization of our findings.

In addition to the main haptic categorization task, we
also measured individual performance on a coding task
from the Korean version of the Wechsler intelligence scale
(KWAIS-IV). Since this task requires visuo-motor dexterity
and fast processing speed, resemblances between this task
and the main cross-modal experimental task may exist.
Indeed, the two tasks correlate behaviorally, meaning that
participants who were better at coding also exhibited bet-
ter performance in haptic categorization. Another link
between the two tasks is that participants in the haptic
testing may have retrieved object knowledge via visual
imagery [Lacey et al., 2010] and then connected this to
motor components related to exploration strategies [Leder-
man and Klatzky, 1987]. In particular, since our experi-
mental design provided visual training prior to the actual
haptic task, one may assume this visual component to be
strongly involved—additional support for this hypothesis
comes from our previous fMRI study in which we found
that participants who had learned about novel objects
visually activated a larger part of the visual, ventral
stream than those who had learned about the objects hap-
tically first [Lee Masson et al., 2015]. Accordingly, we also

observed that FA of the bilateral ILF was negatively asso-
ciated with performance in the coding task, showing that
our results are consistent within ILF regardless of the type
of the task, as long as the task requires the visual imagery
component. A previous study also showed involvement of
ILF in several visuo-motor tasks (such as a grooved peg-
board task, a letter cancelation task and a digit-symbol
coding task) within various age groups, claiming that age-
related disruption of the ILF predicted performance [Voi-
neskos et al., 2012]. In addition, performance in a similar
coding task implicated SLFft in a recent investigation com-
paring a patient group with autism spectrum disorder and
a healthy control group, also finding that the higher AD
value in the SLFft reflected better task performance [Lazar
et al., 2014]. Our results confirm this relationship between
AD of bilateral SLFft and visuo-motor performance using
the large variability observed in the coding task.

We also investigated VOF as a candidate WM bundle
reflecting visuo-haptic performance. However, we did not
find any association between haptic performance and WM
properties of VOF. Although it has been claimed that VOF
might be responsible for cross talk between ventral and
dorsal parts of occipital lobe [Yeatman et al., 2014], we
conjecture that for our task occipito-parietal connections
would provide a better link between motor/sensory input
and visual processing, instead of the occipito-occipital con-
nections served by the VOF.

Given that previous studies have illustrated haptic explo-
ration strategies as specialized patterns of exploratory pro-
cedures [Lederman and Klatzky, 1987, 2009], the haptic
accuracy measure used in the present study may also to
some degree reflect participants’ ability to use and develop
proper motor strategies (such as enclosure and contour fol-
lowing) to efficiently explore the objects’ shape. In a similar
vein, our correlations in SLFft with haptic performance may
reflect motor fluency, given the previous findings on motor
deficits reflected in left SLFft [Langevin et al., 2014].
Although the behavioral results of the related coding task
only weakly correlate with haptic accuracy, additional mea-
sures of motor fluency and, more importantly, a full analysis
of the exploratory movements of the participants during the
task, will be necessary to determine the degree to which
such motor/haptic processes contribute to task performance
in addition to visual imagery processes.

Lastly, although the present study presents the first data
on anatomical correlates of cross-modal task performance,
further conditions, such as haptic-to-vision transfer and
within-modal conditions are yet to be investigated in more
detail. Based on our previous imaging study [Lee Masson
et al., 2015] in which we found largely symmetric results
for vision-to-haptic and haptic-to-vision shape processing
conditions [see also Wallraven et al., 2014 for matching
behavioral results], we conjecture that ILF correlates will
also be found for haptic-to-vision transfer, which would
provide further evidence for its role as a cross-modal
shape processing pathway.
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CONCLUSION

The current findings demonstrate for the first time that
individual performance differences in a visuo-haptic cross-
modal shape categorization task are reflected in micro-
structural properties of white matter bundles ILF (a ven-
tral white matter pathway) and SLFft (a dorsal white
matter pathway), suggesting their importance as multisen-
sory pathways. The present results are highly consistent
with our previous functional imaging study in which we
found that regions along ILF encoded detailed haptic
shape knowledge after participants had received prior
visual exposure to the objects. Both of our findings togeth-
er may point to the involvement of visual imagery in hap-
tic shape processing, which warrants further studies.
Furthermore, we also found similarities between haptic
performance and digit coding task performance with ILF
and SLFft involved in predicting performance in a digit
coding task—again, the vivid recall of the visually learned
symbols together with coupled planned hand movements
may explain these findings. To fully understand and
explain the whether ILF and SLFft reflect visual imagery
processes, further unimodal and haptic-visual cross-modal
conditions will need to be investigated in future studies.
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