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Abstract: The human brain continuously processes massive amounts of rich sensory information. To
better understand such highly complex brain processes, modern neuroimaging studies are increasingly
utilizing experimental setups that better mimic daily-life situations. A new exploratory data-analysis
approach, functional segmentation inter-subject correlation analysis (FuSeISC), was proposed to facili-
tate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The
method provides a new type of functional segmentation of brain areas, not only characterizing areas
that display similar processing across subjects but also areas in which processing across subjects is
highly variable. FuSeISC was tested using fMRI data sets collected during traditional block-design
stimuli (37 subjects) as well as naturalistic auditory narratives (19 subjects). The method identified spa-
tially local and/or bilaterally symmetric clusters in several cortical areas, many of which are known to
be processing the types of stimuli used in the experiments. The method is not only useful for spatial
exploration of large fMRI data sets obtained using naturalistic stimuli, but also has other potential
applications, such as generation of a functional brain atlases including both lower- and higher-order
processing areas. Finally, as a part of FuSeISC, a criterion-based sparsification of the shared nearest-
neighbor graph was proposed for detecting clusters in noisy data. In the tests with synthetic data, this
technique was superior to well-known clustering methods, such as Ward’s method, affinity propaga-
tion, and K-means11. Hum Brain Mapp 38:2643–2665, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Traditionally, neuroimaging studies have utilized highly
controlled and simplified experimental setups to study
human brain function. While these studies have been, and
continue to be, extremely informative, the applied simpli-
fied stimuli do not resemble situations of daily life, where
the brain continuously receives massive amounts of rich
sensory information. In recent years, attempts have been
made to conduct more naturalistic experiments that better
mimic daily life and thus should help to understand com-
plex brain processes.

While the amount of complex neuroimaging data sets
collected in naturalistic experiments is increasing, a major
bottleneck remains to be the lack of proper analysis meth-
ods. So far, one of the most promising approaches to ana-
lyze such complex functional magnetic resonance imaging
(fMRI) data sets is inter-subject correlation (ISC) analysis
[Hasson et al., 2004], applied to fMRI data sets collected
using naturalistic stimuli, such as movies/video [Golland
et al., 2007; Hasson et al., 2004; Nummenmaa et al., 2012;
Reason et al., 2016] and music [Abrams et al., 2013; Trost
et al., 2015]. ISC-based analysis is conceptually simple,
involving voxel-wise computations of correlation coeffi-
cients between time series of all subjects. Once the correla-
tion coefficients have been computed across all participants
exposed to the identical time-varying stimulus sequence,
the subject-pair-wise correlation coefficients for each voxel
can be averaged and subsequently thresholded to obtain
brain maps indicating which regions exhibit considerable
ISC during the stimulation [Kauppi et al., 2010b; Wilson
et al., 2008 ]. A major strength of the ISC-based analysis is
that it can detect activated brain areas without modeling the
expected hemodynamic responses [Pajula et al., 2012].

Despite its benefits, the existing ISC-based analysis has
limitations. For example, it typically provides voxel-wise
information about the extent of the ISCs during the whole
fMRI time series of interest. For longer time series, ISC can
be computed in several shorter time windows [see, e.g.,
Nummenmaa et al. [2012]), but there exists no standard
procedure how to integrate ISC information across the
time windows.

In any case, integrating ISC information across voxels
and time frames of interest may provide new insights into
functional architecture of the human brain. More specifi-
cally, each voxel can be characterized by a pattern of ISC
features, describing how extensively a voxel is co-activated
during different stimuli of interest. For instance, out of
five different video/audio clips, a voxel may not show
any ISC during two clips but may exhibit very high ISC
during one clip and moderate ISC during the remaining
two clips. It is plausible to assume that some voxels share
a highly similar pattern of ISC features whereas some oth-
er voxels do not, meaning that voxels can be organized
into distinct clusters on the basis of these features. Thus,
to better understand the functional organization of the
human brain during processing of complex stimuli, we

propose formation of subject-pair-wise averaged ISC fea-
tures from specific time series of interest, and clustering
them across the brain.

Another limitation of the conventional ISC-based map-
ping is that it assumes similar brain mechanisms across
subjects.1 It is, however, well known that individuals can
process identical sensory information differently, especial-
ly in higher-order brain areas that are strongly involved in
situations of daily life [Hasson et al., 2010]. Therefore, a
conventional ISC approach based on the averaging of cor-
relation coefficients across all pairs of subjects may find
high ISC values in sensory projection areas but may
completely lose ISC in higher-order brain areas due to
high inter-subject variability [Kauppi et al., 2010a]. Conse-
quently, averaging across subjects abolishes signs of active
processing in such important brain areas.

To better understand the functions of different brain
areas, we incorporated into our analysis subject-pair-wise
ISC variability in addition to traditional averaging of ISC
features. It is likely that brain areas of high average ISC
together with relatively low ISC variability mostly reflect
sensory processing that is expected to be most coherent
across subjects. Areas with higher ISC variability may also
reveal meaningful activations but with higher inter-indi-
vidual differences. Note that, in contrast to our interpreta-
tion, inter-subject variability of signal strengths is in
neuroimaging data traditionally considered as noise, only.
However, recent studies show that inter-individual vari-
ability provides meaningful information that can elucidate
complex brain processes and brain development [Boldt
et al., 2014; Gopal et al., 2016; Mueller et al., 2012; Zilles
and Amunts, 2013].

We call our entire method, which combines ISC-based
feature extraction and clustering, functional segmentation
ISC analysis (FuSeISC). The features are extracted from
multiple subjects and multiple fMRI time series of interest.
The fMRI time series can be selected either from separate
experiments, separate runs within the same experiment, or
from selected time intervals of a longer fMRI experiment
(for e.g., corresponding to the scenes of a movie). Due to
both local and distributed brain processes, it is likely that
some of the clusters found in the “ISC feature space” are
spatially local whereas others are more widely spread.
Therefore, we do not apply to the segmentation any ana-
tomical constraints. The FuSeISC method described in this
article won the Study Forrest Real Life Cognition Chal-
lenge2 [Hanke et al., 2014] where the goal was to introduce
novel analysis methods for complex fMRI data sets
acquired under naturalistic stimulation. Here, we present
the details of the algorithm and validate the technique

1This assumption is also made in model-based brain-mapping meth-
ods, such as those based on a general linear model [GLM; Friston
et al. (1994)].
2http://studyforrest.org/pages/challenge.html,http://studyforres-
t.org/contest_fuseisc.html
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more thoroughly with different data sets. FuSeISC has
been integrated to the ISC toolbox [Kauppi et al., 2014]
and is freely available at https://www.nitrc.org/projects/
isc-toolbox/.

We have previously presented clustering of ISC matrices
[Kauppi et al., 2010a] to analyze how subject-pair-wise
ISCs are distributed across brain areas during a complex
stimulus time course. FuSeISC notably extends this
approach by capturing spatiotemporal variation in ISCs as
it utilizes a number of shorter time series instead of a sin-
gle time course. Another major difference is that in
FuSeISC, we cluster features describing the summary sta-
tistics (mean, variability) of the ISC matrices instead of the
entire matrices. This procedure is important because the
number of subject-pair-wise ISCs (dimensionality)
increases rapidly together with the number of time series
and subjects. In FuSeISC, we also replace a random initial-
ization approach used in Kauppi et al. [2010a] with a new
algorithm which provides more reliable initial estimates of
cluster centroids. Finally, we replace a K-means algorithm
used in Kauppi et al. [2010a] with model-based clustering
which allows finding clusters with more complex covari-
ance structures.

MATERIALS

ICBM Functional Reference Battery Data

The fMRI data collected during Functional Reference
Battery (FRB) tasks developed by the International Consor-
tium for Human Brain Mapping (ICBM) [Mazziotta et al.,
2001] were used for the evaluation of the method and for
the construction of the simulated data set described in the
next subsection. The block-design FRB tasks are a set of
behavioral tasks designed to produce reliable across-
subjects functional landmarks in brain-imaging data, and
the data sets as such are ideal for the validation of func-
tional segmentation methods. We have previously used
the same data for other experiments. For details of the
data and experiments, see Pajula et al. [2012] and Pajula
and Tohka [2014], but, for convenience, we provide a short
description here.

The FRB fMRI data were obtained from the ICBM data-
base in the Image Data Archive of the Laboratory of
Neuro Imaging. The ICBM project (Principal Investigator
John Mazziotta, M.D., University of California, Los
Angeles) is supported by the National Institute of Biomed-
ical Imaging and BioEngineering. ICBM is the result of
efforts of co-investigators from UCLA, Montreal Neurolog-
ical Institute, University of Texas at San Antonio, and the
Institute of Medicine, J€ulich/Heinrich Heine University,
D€usseldorf, Germany.

The data set used earlier by Pajula et al. [2012] included
fMRIs of 41 right-handed subjects whose fMRI had been
measured during five FRB tasks: (1) auditory naming
(AN) task where the subject silently named objects that

were verbally described; (2) external ordering (EO) task
where the subject, after a delay period (and thus relying
on working memory), kept track of the abstract designs on
the screen; (3) hand imitation (HA) task where the subject
was instructed to imitate the presented hand configuration
with his right hand; (4) oculomotor (OM) task where the
subject made saccades to target locations; and (5) verb
generation (VG) task where the subject generated a verb
that corresponded to an object presented on the screen.
For detailed definitions of the five FRB tasks, see the FRB
software package3 and Pajula et al. [2012]. Pajula et al.
[2012] discarded four subjects during the pre-screening
phase because of poor data quality in at least one task in
the battery. Thus, the final data set consisted of measure-
ments from 37 healthy right-handed subjects (19 men and
18 women; mean age 28.2 years, range 20–36).

In addition to the original ICBM data set, we also inves-
tigated the reproducibility of the FuSeISC results with two
ICBM data sets consisting of different subjects. For this
purpose, we selected altogether 74 subjects from the ICBM
database by widening the original age range of the sub-
jects (the ages of the subjects in this new data set were
between 21 and 55 years). The data set was then split into
two comparable sets both consisting of 37 subjects. Fur-
thermore, we investigated the effect of the number of sub-
jects on the results by forming four additional data sets
from the whole 74 subject set: An age-matched pair of
data sets with 25 subjects and another age-matched pair of
data sets with 15 subjects. Table I lists the details of the
data sets.

The functional fMRI data were collected with a 3 T Sie-
mens Allegra FMRI scanner and the anatomical T1 weight-
ed MRI data with a 1.5 T Siemens Sonata scanner. The
TR/TE times for the functional data were 4 s/32 ms, flip
angle 908, pixel spacing 2 mm and slice thickness 2 mm.
There were 12 blocks of 7 volumes per task (6 “off-on”

TABLE I. Description of ICBM data sets used to com-

pare FuSeISC clustering with different sets of subjects

Data set Age range Mean age # Male # Female

ICBM37ORIG 20–36 28.2 19 18
ICBM37#1 21–55 37.6 19 18
ICBM37#2 21–54 37.4 20 17
ICBM25#1 21–54 37.2 13 12
ICBM25#2 21–55 38.3 13 12
ICBM15#1 21–53 35.9 8 7
ICBM15#2 21–53 36.9 8 7

Data sets were balanced to have close to equal number of male
and female subjects as well as similar age range and mean age. A
single subject appeared only in one of the two data sets (#1 or #2).
First row (ICBM37ORIG) is the data set from Pajula et al. [2012].

3http://www.loni.usc.edu/ICBM/Downloads/Downloads_FRB.
shtml.
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blocks) and 3 volumes at the beginning of the run to wait
for magnetization stabilization, which were removed dur-
ing the preprocessing. The total lengths of the time series
in the analysis were 84 volumes (with the total duration of
5 min 36 s). The acquisition parameters for the anatomical
T1 data were 1.1 s/4.38 ms, 158, 1 mm, and 1 mm, corre-
spondingly. Preprocessing was performed as described in
Pajula et al. [2012] by a standard FSL preprocessing pipe-
line including Gaussian 5-mm full width at half maximum
(FWHM) spatial filtering.

Simulated Data

We generated synthetic fMRI data sets based on the
ICBM data described above. Similarly to the experimental
ICBM data, the simulated data consisted of five FRB tasks
(AN, EO, HA, OM, and VG) from 37 subjects. The purpose
of simulated data was to validate the functional segmenta-
tion method quantitatively when the true functional seg-
mentation is fully known.

In the simulated data sets and for each task separately,
every voxel was defined either as “activated” or “non-
activated.” Thus, any voxel was characterized by a 5-
element binary vector creating 25532 distinct functional
segments. Voxels were selected as “activated” according to
the binarized statistical maps of the GLM analysis per-
formed for the empirical ICBM data sets in Pajula et al.
[2012] (thresholded at voxel-wise false discovery rate
(FDR) corrected threshold q 5 0.001). A simulated hemody-
namic signal was included in the time series of the activat-
ed voxels; the signal was identical to the one used as a
model in the GLM analysis of the data [see Pajula et al.,
2012], that is, a boxcar convolved with a canonical hemo-
dynamic response function (HRF). These signals were then
corrupted by pink 1/f noise which was generated accord-
ing to Smith [2012]. Signal-to-noise-ratio (SNR) was 0.02,
which was quantified on the basis of the boxcar function
before the convolution with the canonical HRF. All brain
areas outside the activated regions contained only noise.

The generation procedure was identical for every 37
simulated data sets and FRB tasks. We ignored anatomical
and effect size variations between the subjects. Moreover,
since the original empirical data sets were registered to
the MNI-152 coordinate space, we did not perform regis-
tration or motion correction as preprocessing. The prepro-
cessing only included Gaussian 5-mm FWHM spatial
filtering.

StudyForrest Data

To demonstrate the performance of the FuSeISC method
with naturalistic stimulation, we analyzed fMRI data sets
of 19 subjects provided by the organization committee of
the StudyForrest project and data challenge. The details of
the experiment, data collection and preprocessing are pro-
vided by Hanke et al. [2014]. In brief, participants listened

to a German audio-description (produced by Bayrischer
Rundfunk, 2009) of the movie “Forrest Gump” (directed
by R. Zemeckis, Paramount Pictures, 1994) as broadcast as
an additional audio track for visually impaired listeners
on Swiss public television.

The auditory content was largely identical to the dubbed
German sound track of the movie, including the original
dialogues and environmental sounds, but added by inter-
spersed narrations by a male speaker who described the
visual contents of the scenes. As detailed by Hanke et al.
[2014], the participants listened to the movie sounds using
custom-built in-ear headphones designed to maximize
comfort during the scanning. T2-weighted echo-planar
images [gradient-echo, 2-s TR, 22-ms echo time, 0.78-ms
echo spacing, generalized autocalibrating partially parallel
acquisition (GRAPPA)] were acquired during stimulation
using a whole-body 7 T Siemens MAGNETOM scanner.
Altogether 36 axial slices (thickness 1.4 mm, 1.4 mm 3

1.4 mm in-plane resolution, 224-mm field-of-view,
anterior-to-posterior phase encoding direction) with 10%
interslice gap were recorded in ascending order. Slices
were oriented to include the ventral portions of frontal
and occipital cortex while minimizing the intersection with
the eyeballs. Note that the brain coverage of the scans was
limited due to the high scan resolution [Hanke et al.,
2014].

The entire data set consisted of 8 runs (about 15 min
each) for each subject from which we selected sound seg-
ments for our analysis. We selected five attractive sound
segments, because we noted that they had created more
buzz in Internet movie forums than the other scenes of the
movie. We ranked the attractiveness of the clips based on
an Internet survey of the corresponding video clips (that
the subjects did not see) on online video services such as
YouTube and movie-discussion forums. Table II lists the
time points used to create the five clips. The exact data set
for the analysis was extracted from the original prepro-
cessed linear anatomical alignment set of the StudyForrest
data. In addition to preprocessing performed by the pro-
viders of StudyForrest data [Hanke et al., 2014], we includ-
ed Gaussian spatial filtering with the isotropic 3-mm
FWHM kernel.

Resting-State fMRI Data

In addition to stimulus-related fMRI data, we applied
the FuSeISC method to resting-state fMRI (rfMRI) data of
38 randomly selected, unrelated subjects from the Human
Connectome Project WU-Minn HCP Data—900 1 7 T data
set [Essen et al., 2012]. The data set included 17 males and
21 females with ages between 22 and 35 years. The data
were pre-processed [Glasser et al., 2013] and co-registered
by the Human Connectome Project [Marcus et al., 2011]
non-linearly to a common MNI-152 space. For the data-
acquisition protocol, see Essen et al. [2012]. The first
resting-state session (REST1) with the left-to-right scanning
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protocol (LR) was divided into 5 clips with 140 time points
each. The total length of the session was 1,200 time points.
The first 10 time points as well as 10 time points between
each clip were discarded. FuSeISC was then run for these
five rfMRI clips.

METHODS

The FuSeISC method consists of two main steps:

1. Feature extraction (Section “Feature Extraction”):
Given M fMRI time series of N subjects, 2M ISC-
based features are extracted for each voxel, as illus-
trated in Figure 1.

2. Clustering (Section “Robust Algorithm for Functional
Segmentation”): Feature vectors of the voxels are
clustered to form the functional segmentation of the
brain.

These steps, together with the performance-evaluation
metrics, will be described next.

Feature Extraction

Functional segmentation has been typically performed
individually for each subject, based on the individual
fMRI time series, and the individual clustering results
have been combined in a subsequent stage to form group-
level cluster maps [see, e.g., Van den Heuvel et al., 2008].
We propose a different approach in which information is
directly integrated across subjects by computing subject-
pair-wise ISCs from multiple temporally distinct time
series and extracting features from them. Two ISC fea-
tures—the mean and the variability of pair-wise correla-
tions—are extracted from the selected time series. They
provide complementary information about processing in
different brain regions.

Features were extracted separately for each voxel of the
brain using the ISC toolbox [Kauppi et al., 2014], as
described in Figure 1. For each of M time series, we com-
puted correlation coefficients between the time series of all

subject pairs, leading to N 3 N ISC matrix for each time
series, where N is the number of subjects. For instance, the
fMRI data sets of the Forrest study were divided into
M 5 5 distinct time series, corresponding to the five scenes
of interest (see Section “StudyForrest Data” on how the
most interesting scenes were selected). The ISC features
were computed based on the ISC matrices. First, the
means of subject-pair-wise correlation coefficients, that is,
the mean ISC features, were computed for each time series
m and for each voxel (a voxel index is omitted for clarity):

�rðmÞ5 1

NðN21Þ=2

XN

i51

XN21

j52;j>i

rijðmÞ; (1)

for m51; 2; . . . ;M. Here, �rðmÞ denotes a group-level ISC in
a given voxel for time series m and rijðmÞ is the correlation
coefficient between mth fMRI time-courses of subjects i
and j. Note that because riiðmÞ51 and rijðmÞ5rjiðmÞ, it is
sufficient to compute correlation coefficients across NðN21Þ=
2 subject pairs (instead of N2 pairs) [Kauppi et al., 2014].

We computed ISC variability features using a leave-one-
subject-out Jackknife procedure, similar to that applied by
Pajula and Tohka [2014]. More specifically, we first com-
puted the mean ISC values so that each subject was left
out from the original sample one at a time. This procedure
corresponds to the computation of the N mean ISC values,
called pseudovalues, for i 5 1, 2, . . ., N, so that ith row and
ith column in the ISC matrix are left out one at a time. The
Jackknife standard-error estimate was then computed as
standard deviation of the pseudovalues multiplied byffiffiffiffiffiffiffiffiffiffiffi

N21
p

. With simple algebraic manipulation, it can be
shown that this procedure corresponds to computing

r̂JðmÞ5
2

ðN22Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N21

N

XN

i51

ð�riðmÞ2�rðmÞÞ2
vuut ; (2)

where �riðmÞ5 1
N21

X
j6¼i

rijðmÞ: The Jackknife technique was
preferred over the bootstrap due to a heavier computation-
al burden associated with the bootstrap. Finally, the mean
and variability features were combined into the feature
vector

TABLE II. Time points (in fMRI volumes) of the audio clips used in the analysis of StudyForrest data

Clip Run Start Stop Length Description

Clip 0 1 1 50 50 Feather flies and actors are described
Clip 1 2 1 50 50 Scene with “Run, Forrest, Run” cry
Clip 2 2 432 441 55 Scene where Bubba and Forrest discuss about

shrimps and how to cook them3 1 45

Clip 3 6 158 404 247 Forrest runs across the USA from coast to coast
Clip 4 7 46 107 62 Next to the Jenny’s bed, Forrest tells about his

adventures, and at the end of the scene Jenny dies

Clip 2 has data from two acquisition sessions.
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f5½�rð1Þ; r̂Jð1Þ; . . . ;�rðMÞ; r̂JðMÞ�T:

After feature extraction, we have one instance of the fea-
ture vector f for each voxel. The supporting idea in the
above feature-extraction scheme is that voxels showing
similar mean and variability statistics in ISCs for each time
series of interest belong to the same functional segment.
This way, the brain is divided into different functional
regions on the basis of ISC features. Because the time
series of interest have different characteristics in ISCs, it is
likely that clustering reveals multiple brain areas, each
constructed on the basis of a specific pattern of ISC mean
and variability features. The number of time features (twice

the number of time series M) should be much smaller than
the number of voxels. No assumptions are made about the
relationship between the number of subjects and the num-
ber of time series (i.e., N>M or M � N). However, the more
subjects we have, the less noisy are the features.

Robust Algorithm for Functional Segmentation

Gaussian mixture model

After the feature extraction, we learned a Gaussian mix-
ture model (GMM) to cluster the ISC features. GMM pro-
vides a principled way of performing the functional

Figure 1.

Illustration of the feature extraction in FuSeISC for one arbi-

trary voxel located at coordinate (x,y,z). At first, M ISC matrices

are independently computed based on the fMRI time series of N

subjects. In our study, the total number of time series was

M 5 5, corresponding to the total number of tasks (ICBM data)

or movie clips (StudyForrest data) of interest. From each N 3

N ISC matrix, mean and variability are extracted using the

Jackknife procedure. These two features are stacked into a sin-

gle feature vector fxyz, whose dimension is 2M. This procedure

is repeated for each brain voxel to obtain altogether 228,483

and 449,612 feature vectors for cluster analysis, corresponding

to the ICBM and StudyForrest data, respectively. [Color figure

can be viewed at wileyonlinelibrary.com]
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segmentation under the assumption that the ISC features
form clusters which follow a Gaussian distribution. Impor-
tantly, we did not impose any spatial constraints on our
model, meaning that functional segments need not be spa-
tially local but can consist of several spatially disjoint
“subclusters.” The model is given by [McLachlan and
Peel, 2000]:

p fjhð Þ5
XC

i51

w ið Þg fjl ið Þ;R ið Þ
� �

; (3)

where C is the total number of clusters, f 2 R2M feature
vector described in the previous section, h denotes all
the parameters of the model, w ið Þ 2 ½0; 1�;

X
i
w ið Þ51 are

mixture weight parameters, and g fjl ið Þ;R ið Þ� �
are multivari-

ate Gaussian component densities with the mean l ið Þ and

the covariance R ið Þ. Because a multivariate Gaussian distri-
bution can be fully described by its mean and covariance
matrix, the unknown parameters of the GMM are

h5 w ið Þ; l ið Þ;R ið Þ� �
, for i51; 2; . . . ;C. The elements of l ið Þ

2 R2M are given by l ið Þ
j and the elements of R ið Þ 2 R2M32M

are given by r ið Þ
jl . Note that the mean vector of each cluster

l ið Þ characterizes the cluster in terms of the original mean
ISC and variability ISC features. We estimated the maxi-
mum likelihood solutions for these parameters using the
expectation maximization (EM) algorithm [McLachlan and
Peel, 2000; Xu and Jordan, 1996] implemented in the Statis-
tics Toolbox of the Matlab.

Finding Initial Model

A major difficulty with the GMM-based clustering is
that the quality of the clustering is highly dependent on a
selected initial model [Figueiredo and Jain, 2002; Fraley
and Raftery, 2002]: if the mean vectors of the Gaussian
components are not initially near the true cluster mean
values, the EM algorithm converges toward a suboptimal
solution and easily misses interesting clusters in the data.4

Another problem is that the total number of clusters C in
the GMM is hard to determine because well-known mod-
el-selection criteria, such as the Bayesian information crite-
rion (BIC), tend to overestimate the total number of
clusters in complex fMRI data sets [Thirion et al., 2014].

To overcome these problems, we propose restricting a
set of initial candidate models a priori to meaningful ones
based on local structures in the data. Besides accuracy,
prerequisites for the algorithm are computational and
memory efficiency, because we run segmentation across
all the brain voxels (the number of brain voxels was
228,483 for the ICBM data and 449,612 for the StudyForrest

data). Appendix A.1 presents a detailed mathematical
description of the algorithm, and a summary is given
below:

� Compute a k-nearest-neighbor (k-NN) list for each
data point.
� Compute a weighted shared nearest-neighbor (SNN)

graph [Jarvis and Patrick, 1973] of the data based on
the k-NN list. In the SNN graph, two data points are
connected only if they belong to each others’ nearest-
neighbor lists.
� From this graph, extract a high number of subgraphs

by sparsification.
� Compute mean vectors of the connected components

in each subgraph to obtain multiple sets of GMM
mean-vector candidates.
� Choose a best set of initial mean vectors according to

a minimum distance rule.

The method was validated against state-of-the-art-
algorithms, such as Ward’s method [Ward, 1963], K-means
[MacQueen, 1967], K-means11 [Arthur and Vassilvitskii,
2007], and Affinity propagation [Frey and Dueck, 2007].
The validation results are presented in Supporting Infor-
mation (Section 3).

The proposed method depends on a single user parame-
ter: a neighborhood size k. This parameter describes how
many neighboring feature vectors (voxels) are used to
form the SNN graphs.5 A choice of k affects the total num-
ber of clusters indirectly: Smaller values of k lead to large
number of small clusters and thus can describe fine details
of the original data. However, too detailed segmentation is
difficult to grasp from the visualizations. Larger values of
k lead to a lower number of clusters but to greater loss of
the details of the data. Thus, a choice of k is a compromise
between fine-graininess and interpretability of the find-
ings. In this sense, k is not an ad hoc parameter but rather
determines granularity level of the analysis.

We selected k as follows: First, we run FuSeISC for sev-
eral values of k. Then, we plotted the total number clusters
as a function of k and selected a value from the region
where the number of clusters remained relatively constant
(see Section 4 in Supporting Information for validity of
this approach using synthetic data). To confirm that the
selected k value was appropriate, we also computed the
similarity using the adjusted rand index (ARI) [Hubert
and Arabie, 1985] between all FuSeISC solutions con-
structed from different values of k (see Section 2 in Sup-
porting Information for details of the ARI). In the
constructed “stability matrix,” we looked for a stable
region of high ARI values, because in this region the

4This difficulty follows from the non-convexity of the maximum like-
lihood cost function to be minimized and every local optimization
algorithm (including gradient methods) have this problem.

5It is important to note that the connected components of the SNN
graph are found in a feature space and not in a spatial domain and this
way a single cluster may consist of multiple spatially connected com-
ponents (subclusters).
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segmentation results were similar irrespective of the choice
of k. Finally, we picked k from the region which showed sta-
bility in terms of both the total number of clusters and ARI.

Postprocessing

Large brain regions are not expected to be activated by
the stimuli, which complicates the interpretation of the
clustering results. An easy way to simplify the interpreta-
tion is to a priori discard voxels from the expected noise
areas and run the FuSeISC only across voxels of interest.6

This approach is also computationally much faster than
the full-brain analysis. However, in this study we found it
useful to evaluate the segmentation results across the
whole brain for several reasons. First, the whole-brain seg-
mentation serves as a validation tool for FuSeISC to detect
large noise regions as separate clusters as well as to avoid
mixing these areas with the activated cortical areas. Sec-
ond, the distinction between “interesting” and “non-
interesting” brain areas is not obvious: Although clusters
located in the cerebral white-matter likely reflect noise,
some interesting clusters may partially extend to these
regions. Third, a whole-brain analysis tells whether our
method can deal with large data in a feasible time (the
StudyForrest data consisted of as many as 449,612 data
points).

Because a whole-brain analysis leads to segmentation of
both noise- and stimulus-related regions, we designed a
postprocessing scheme to separate expected noise clusters
from the clusters of interest. At first, we constructed a
mask consisting of cerebral white-matter, brainstem, and
ventricles, and counted how many voxels fell within this
mask for each cluster. Then we sorted the clusters accord-
ing to these counts and discarded clusters with highest
counts from the rest of the analysis as noise. The exact
number of discarded clusters was determined based on
visual inspection of the spatial distributions of the clusters
so that the clusters mainly distributed close or inside the
noise mask were discarded. In the Results section, we con-
centrate on analyzing clusters of interest. The noise clus-
ters are also briefly discussed and are displayed as
Supporting Information (Section 6).

We additionally discarded clusters reflecting border arti-
facts resulting from slightly different anatomical registra-
tion across the time series. These clusters were easily
detected, because the mean ISC for at least one of the time
series in these clusters was exactly zero.

Code Availability

FuSeISC has been integrated to the ISC toolbox [Kauppi
et al., 2014] and is freely available at https://www.nitrc.
org/projects/isc-toolbox/.

RESULTS

Comparison Between Conventional ISC and

FuSeISC Maps

It is insightful to compare FuSeISC maps with
“conventional” univariate ISC maps. For this purpose, we
computed conventional ISC maps across each five clip of
interest for the StudyForrest data using the ISC toolbox
[Kauppi et al., 2014]. Thresholds for statistical significance
were determined using a resampling procedure imple-
mented in the toolbox. The thresholds were multiple com-
parison corrected across the voxels using the FDR
(q< 0.001; the standard setting of the ISC toolbox).

Figure 2A shows three axial slices of the ISC map across
Clip0. The colormaps denote ISCs averaged across all
subject-pair-wise computations. The ISC is highest in the
auditory cortex, which is expected because the stimuli
were auditory. Interestingly, however, also frontal cortices
show statistically significant ISC.

Figure 2B superimposes the ISCs for all five clips. (Red
color denotes statistically significant ISC during Clip0,
green during Clip1, and so on; when several clips elicited
significant ISC in the same voxel, the color code refers to
the clip with the highest ISC.) All clips revealed statistical-
ly significant ISC in the auditory cortex, with right-
hemisphere dominance, but the spatial location of ISCs
also varied depending on the clip. For instance, Clip0
showed ISC in frontal regions whereas Clip2 showed ISCs
in the posterior visual cortex.

Figure 2C shows a FuSeISC map of the same data using
a neighborhood-size parameter k 5 230 after postprocess-
ing (see Section “Selection of Final Segmentations” on how
we selected neighborhood sizes for the StudyForrest and
ICBM data). Whereas conventional ISC mapping simply
tells which voxels show statistically significant mean ISC
across subject pairs for different clips, FuSeISC divides the
brain into functional clusters formed on the basis of both
mean and variability features of the subject-pair-wise ISCs
extracted for each clip. Each cluster is shown in different
color, and the names of the brain regions corresponding to
the center of mass of the clusters are listed next to the col-
orbar. The names of the largest and the second largest sub-
clusters are provided.7 For a more comprehensive listing
of brain regions for each cluster, see Supporting Informa-
tion (Section 1, Table S3).

FuSeISC provided physiologically feasible functional
division, with clusters in auditory and visual cortices.

6This option is available in the ISC toolbox.

7Because spatial constraints are not used in FuSeISC, each found
cluster in a feature space can consist of more than one spatially dis-
joint subclusters. The name of the second largest subcluster is
reported only when the actual cluster consists of at least two spatially
disjoint subclusters whose sizes are greater than 100 voxels. More-
over, if the center of mass is located in white-matter or non-specified
brain area, the largest cortical brain region intersecting with the clus-
ter is reported instead of the location of the center of mass.
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Many of the clusters were spatially local in one hemi-
sphere and/or symmetric between the hemispheres,
strongly suggesting that they reveal plausible brain proc-
essing instead of noise. Interestingly, FuSeISC revealed

brain areas that remained undetected by the conventional
ISC. For instance, some of the frontal regions covered by
the FuSeISC map were not covered by the ISC maps of the
individual clips in Figure 2B. Thus FuSeISC seemed to be

Figure 2.

Comparison between conventional ISC and FuSeISC results for

the StudyForrest data: (A) ISC map for Clip0, (B) Integrated ISC

map of the five clips (when several clips resulted in statistically

significant ISC in the same voxel, the voxel is color-coded

according to the strongest ISC), and (C) FuSeISC map of the

five clips. The axial slices are presented in millimeters in the

MNI coordinates. The ISC maps were FDR corrected at

q< 0.001 across all the voxels. FuSeISC does not require thresh-

old selection for ISC statistic, but clusters located dominantly

over cerebral white-matter, brainstem, or ventricle areas were

discarded. Note how FuSeISC found spatially meaningful seg-

mentation and revealed more brain areas than conventional uni-

variate ISC mapping. [Color figure can be viewed at

wileyonlinelibrary.com]
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more sensitive than the conventional ISC mapping for
detecting activated brain areas.

Segmentation of StudyForrest Data

To gain a better insight into the FuSeISC results, we
divided the found clusters into two different spatial maps
according to their relative ISC variability (i.e., ISC variabil-
ity with respect to the ISC mean). The purpose of this divi-
sion was to (1) highlight how low/high variability
information is distributed across the brain, and (2) simply
reduce the amount of information shown in a single brain
image to make visual inspection of the results easier. We
used the relative variability instead of the plain variability
because the ISC variability was observed to increase with
the mean, making the ranking of the clusters based on
plain variability less interesting. The scatter plots of the
mean and variability features are available in Figure S8
(Section 7 in Supporting Information), confirming that the
ISC variability increases with the mean. Increasing
response variability together with a response mean has
been previously reported in both animal and human brain
signals [Tanskanen et al., 2007; Tolhurst et al., 1981]. How-
ever, the increased variability of the ISC with increasing
mean cannot be explained by general properties of the cor-
relation coefficient because the variance of correlation coef-
ficient decreases with increasing correlation [Bowley,
1928]. This issue therefore deserves more thorough investi-
gation in the future.

Clusters with low relative variability are expected to be
found in early sensory areas where the processing is most
coherent across subjects. Instead, clusters with high rela-
tive ISC variability are expected to be found both in the
less coherent sensory areas and in higher-order brain areas
that are involved in stimulus-related processing in a
subject-dependent manner. The relative variability was
computed as a fraction of the GMM mean vector elements
for each cluster i as follows:

V ið Þ5

X
jv
jl ið Þ

jv
j

X
jm
jl ið Þ

jm
j
; (4)

where jm are the indexes of the ISC mean and jv are the
indexes of the ISC variability features in the model.

Figure 3A shows spatial maps of the clusters with low
relative ISC variability. These clusters were predominantly
located in temporal lobes, especially covering the supra-
temporal auditory cortex. The supratemporal cluster was
separated from the larger perisylvian cluster, as well as
from a cluster in the temporoparietal junction. Figure 3B
shows clusters with high relative ISC variability. Most of
the these clusters were located in frontal and occipital
regions. The complete 3D spatial maps of clustering results
are available in the NeuroVault service [Gorgolewski
et al., 2015] at http://www.neurovault.org/collections//
PXNGFJTL/.

In addition to spatial information, FuSeISC provides a
characteristic pattern of ISC features (mean and variability)
for each cluster, showing how the different stimulus
sequences have contributed to each cluster. Figure 4 shows
these “building blocks,” extracted from the estimated
model of the StudyForrest data. Figure 4A,B corresponds
to the clusters of lowest and highest ISC variability (see
Fig. 3), respectively. The contributions of the five audio
clips on each cluster are coded in grayscale. For instance,
temporal-lobe clusters showed highest ISCs during Clips
0–3 (see the first and the second bars of the mean ISC in
Fig. 4A).

Segmentation of ICBM Data

Figure 5 shows spatial maps for the ICBM data
(ICBM37ORIG). Similar to the StudyForrest data, clusters
with low and high relative ISC variability are visualized
separately. Clusters with low ISC variability were mainly
located in the occipital lobes (see Fig. 5A), with segmenta-
tion of the visual cortices into multiple areas. This division
of brain areas resembles results of independent component
analysis (ICA) of fMRI data obtained during natural view-
ing [Pamilo et al., 2012], with different segments for foveal
and peripheral vision, for example.

Clusters with highest relative ISC variability were dis-
persed across many regions of the cortex (see Fig. 5B). For
instance, separate clusters covered the intraparietal sulcus
bilaterally, extrastriate body area, and parahippocampal
space area. Interestingly, the segmentation also seemed to
delineate nodes of the “default-mode network” in the pos-
terior parietal cortex and medial prefrontal cortex).

Figure 6 shows the contributions of the five tasks on the
ICBM clusters. Inspection of both the bar diagrams and
the spatial locations of the clusters support the physiologi-
cal relevance of the obtained functional segmentation. For
instance, clusters #1 and #2 in the visual cortices showed
high mean ISC during external ordering (EO), hand imita-
tion (HA), oculomotor (OM), and verb generation (VG)
tasks. This result is unsurprising because these tasks were
based on visual stimuli. In contrast, the large cluster #11
in the temporal lobe showed high mean ISC during the
auditory naming (AN) task. Also this is physiologically
plausible, because AN was the only task in which the
stimuli were presented auditorily. Moreover, a cluster
exhibiting high mean ISC during the hand imitation task
was located around the sensorimotor strip (cluster #14).

Selection of Final Segmentations

Here we describe how we selected k to obtain the final
FuSeISC maps shown in the previous section. First, we ran
FuSeISC for several values of k and plotted the total num-
ber of clusters for each result. Then, we found the range of
stable values of k leading to a constant number of clusters.
Figure 7A shows the total number of clusters found for
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real ICBM and StudyForrest data sets as a function of a
neighborhood size k. Interestingly, the curves were highly
similar to each other. With small k-values, the number of
clusters was high but the number decreased rapidly as k

became larger. When k � 230, the number of clusters in
the ICBM data stabilized around 20. For the StudyForrest
data, the number of clusters in a stable region was approx-
imately the same.

Figure 3.

Functional segmentation of the StudyForrest data: (A) clusters with lowest ISC variability, and

(B) clusters with highest ISC variability relative to the mean. The axial slices are presented and

labeled with millimeters in the MNI coordinates. For the abbreviations of the brain region names

and the spatial coordinates of the cluster centers, see Supporting Information (Section 1, Tables

S1 and S2). [Color figure can be viewed at wileyonlinelibrary.com]
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In addition, we computed ARI between results obtained
for different values of k. In the resulting stability matrix, a
high ARI value indicates that the segmentation result is
stable, that is, similar for two different choices of k. Figure
7B,C shows the ARI stability matrices for the StudyForrest
data and ICBM data, respectively. For both data sets, clus-
tering solutions started to stabilize when k was relatively
large (red color in the stability matrix indicates high simi-
larity between the results computed for different values of
k). The ARI values of the StudyForrest data were slightly
lower than those of the ICBM data, which is expected
because the spatial resolution (and the total number of
voxels) in the StudyForrest data was notably higher.

Based on the above findings, we selected one of the sta-
ble solutions from both data sets for closer inspection
(k 5 250 for the ICBM data and k 5 230 for the StudyForr-
est data). In these solutions, the exact number of clusters
was 19 for the ICBM data and 21 for the StudyForrest
data. After postprocessing described in the Methods sec-
tion, the total number of clusters was 14 for the ICBM
data and 13 for the StudyForrest data.

Simulated ICBM data

To further validate our approach, we analyzed the
simulated ICBM data and compared the results with
the ground truth. Figure 8A presents the performance
of the functional segmentation for the simulated ICBM
data against the ground truth as a function of the
neighborhood size k. For a wide range of parameters,
ARI values resulted in “moderate agreement” (ARI
between 0.4 and 0.6) between the ground truth and the
estimated cluster labeling computed across the 72,577
voxels that were activated in the ground truth for at
least one task. However, to make the clustering task
realistic, FuSeISC was run across the entire brain
involving 449,612 voxels.

Figure 8B shows the total number of clusters as a func-
tion of k. Clearly, the curve shows a region of constant
number of clusters (20) when 200 � k � 250. This result
corresponded well with the real-data results (see Fig. 7B),
where the stable regions also consisted of about 20
clusters.

Figure 4.

“Building blocks” of the clusters found in the StudyForrest data:

(A) ISC features of clusters with lowest variability, and (B) ISC

features of clusters with highest variability. Note that the clus-

ters are ordered according to the total (relative) variability

across the clips, meaning that the heights of the variability bars

are in the increasing order. The feature values shown in the bars

correspond to the distribution (mean) parameters of the GMM.

The grayscale corresponds to audio clips of interest, and the

color code corresponds to clusters shown in Figure 3. See Table

S1 in Supporting Information for the abbreviations of the brain

region names. [Color figure can be viewed at wileyonlinelibrary.

com]
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Figure 5.

Functional segmentation of the ICBM data: (A) clusters with lowest ISC variability, and (B) clus-

ters with highest ISC variability relative to the mean. The axial slices are presented and labeled

with millimeters in the MNI coordinates. For the abbreviations of the brain region names and

the spatial coordinates of the cluster centers, see Supporting Information (Section 1, Tables S1

and S3). [Color figure can be viewed at wileyonlinelibrary.com]
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The ARI stability matrix of the solutions in Figure 8C
shows the similarity between segmentation results com-
puted for different values of k. Clearly, segmentation
results were stable within the aforementioned constant
region, since the ARI values were high.

Figure 8D shows a spatial organization of the clusters
for one stable result (k 5 225) and one axial slice
(z 5 6.0 mm in MNI). The ground-truth segmentation (left)
and the estimated segmentation (right) are shown side by
side to allow comparison. Based on visual inspection, the
estimated segmentation resembles the true segmentation
in most regions very well.

Results for ICBM data sets composed of different

subjects

We also run FuSeISC for the two ICBM data sets consist-
ing of different subjects (ICBM37#1 and ICBM37#2) and
compared the obtained segmentations. Figure 9 shows the
spatial maps of both segmentations side-by-side; we show

postprocessed segmentations, where white-matter and CSF
clusters are eliminated, to simplify comparison. The corre-
sponding raw segmentation results are available in Figure
S9 (Section 8 in Supporting Information). To compare clus-
ters between the data sets, we computed the Dice index
[Dice, 1945] values between all the clusters in the two data
sets (see Section 2 in Supporting Information for details of
the Dice index) and then used a Munkres assignment algo-
rithm [Munkres, 1957] to match the clusters with each oth-
er. The Dice index values between the clusters are shown
next to a color bar (“NaN” means that the corresponding
cluster is present only in the leftmost data set). In many
brain areas, the segmentation was visually very similar
across the two data sets. The Dice index values between
the clusters varied between 0.2 and 0.8. Using the same
categorization for the Dice index as in Pajula et al. [2012],
this result indicates slight to substantial agreement
between individual clusters. The ARI value computed
across the whole brain (228,483 voxels) between the two
segmentations was 0.30.

Figure 6.

“Building blocks” of the clusters found in the ICBM data: (A)

ISC features of clusters with lowest variability, and (B) ISC fea-

tures of clusters with highest variability. Note that the clusters

are ordered according to the total (relative) variability across the

tasks, meaning that the heights of the variability bars are in the

increasing order. The feature values shown in the bars

correspond to the distribution (mean) parameters of the GMM.

The grayscale corresponds to tasks of interest, and the color

code corresponds to clusters shown in Figure 5. See Table S1 in

Supporting Information for the abbreviations of the brain region

names. [Color figure can be viewed at wileyonlinelibrary.com]
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Table III shows how the number of clusters in the
FuSeISC results depends on the number of subjects used
in the analysis. For both simulated and real ICBM data
sets, the number of clusters increased together with the
number of subjects. This result is plausible because the
complexity of the data increases together with the number
of subjects. For a fixed number of subjects, the number of
clusters was quite similar across all three data sets. Slight-
ly fewer clusters were found for the simulated data, as can
be expected because we did not include ISC variability
which is present in the real data. Table III also shows that
the ARI values between the data sets containing different
numbers of subjects varied between 0.27 and 0.52. For
more detailed comparison between the clustering results
with different number of subjects, see the spatial maps
and cluster-wise similarities for the real ICBM data#2 in
Figures S10–S12 (see Section 8 in Supporting Information).

Comparison between ICBM and resting-state data

To validate that spatial structures found by FuSeISC
result from stimulus-related brain activity, we also run
FuSeISC with rfMRI data and compared the obtained

segmentation with the ICBM data. Figure 10 shows seg-
mentation results of both rfMRI (A) and the ICBM data
(B). Here, we did not discard white-matter/CSF clusters as
postprocessing to allow comparison of the segmentations
across the whole brain. The segmentation results of the
rfMRI data were very noisy whereas the segmentations
of the ICBM data consisted of spatially connected and/
or symmetric segments. ARI value between the ICBM
and rfMRI data sets was 0.0, indicating disagreement
between the segmentation results. Lack of spatial struc-
ture in the rfMRI suggests that connected/symmetric
clusters found in the ICBM and StudyForrest data sets
reflect similar stimulus-related brain activity across sub-
jects rather than within-subject correlations which are
present in the fMRI data even in the absence of external
stimuli.

DISCUSSION

Functional Feasibility of the Segmentation

The examination of the analysis results for the real fMRI
data results in a couple of observations. Functional

Figure 7.

The effect of neighborhood size for the clustering results of the fMRI data: (A) Total number of

clusters of the ICBM and StudyForrest data, (B) ARI stability matrix of the StudyForrest data, and

(C) ARI stability matrix of the ICBM data. [Color figure can be viewed at wileyonlinelibrary.com]
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segmentations of both StudyForrest and ICBM data give
an impression of a physiologically feasible division,
with clusters in auditory, visual, and frontal cortices.
Many of the clusters were symmetric between the
hemispheres. Segmentations also seemed to delineate
parts of the resting-state network. Although this net-
work is considered to be highly “intrinsic” [Golland
et al., 2007], it can be expected to change its state
time-locked to the task demands and thereby show syn-
chrony across subjects.

In FuSeISC, each cluster is characterized by its ISC
mean and variability (bar plots in Figs. 4 and 6). In the
ICBM data, the mean ISC patterns reflected well the
expected brain areas involved in the tasks. Moreover, rela-
tive ISC variability of the clusters reflected, to at least
some extent, the level of processing hierarchy in the brain.
For instance in the StudyForrest data, clusters with high
mean ISC but relatively low ISC variability were found in
temporal lobes, where the majority of low-level auditory
processing takes place during auditory stimuli. In contrast,
clusters with higher relative ISC variability were found in
higher-order brain areas, such as in the prefrontal areas
and in the frontal poles. Based on visual inspection, the
clusters were spatially relatively compact and/or bilateral-
ly symmetric, indicating that also clusters with high ISC

variability reflect real brain processing.8 This result is in
line with recent studies indicating that the across-
individuals variability in the functional brain areas and
their connectivity carries meaningful information [Boldt
et al., 2014; Gopal et al., 2016; Mueller et al., 2012; Smith
et al., 2014; Wang and Liu, 2014; Zilles and Amunts,
2013].

The clusters for the 5-task ICBM data set covered most
of the convexial and mesial cortices, thereby clearly
extending the typical ISC maps that tend to concentrate on
early sensory processing areas where the inter-subject cor-
relations of fMRI time series are strongest because the acti-
vations are driven by the low-level sensory features of the
stimuli [Kauppi et al., 2010a]. These findings are in line
with group-ICA results of fMRI obtained during natural
viewing: the reconstruction of individual time courses
shows considerably more inter-individual variability at,
for example, parieto-occipital sulcus than at early visual
cortices [Malinen et al., 2007]. The 5-task ICBM data set

Figure 8.

Results of the FuSeISC for the simulated ICBM data: (A) clustering quality, (B) total number of

clusters, (C) stability of the results, and (D) an example slice showing spatial organization of the

clusters (both ground truth and estimated clusters are shown). [Color figure can be viewed at

wileyonlinelibrary.com]

8However, because of the higher spatial resolution of the fMRI
recordings and sharper smoothing kernel (with smaller FWHM)
during the analysis, some of the clusters were spatially more frag-
mented in StudyForrest than ICBM data.

r Kauppi et al. r

r 2658 r

http://wileyonlinelibrary.com


used in this work has been analyzed previously task-by-
task for comparing the GLM and the conventional ISC
[Pajula et al., 2012] for the purpose of validation of the ISC

method. The analysis demonstrated that the active areas
detected by the ISC (with no knowledge of the reference
time course for the stimuli) and GLM (with a reference
time course) were highly overlapping. In this work, all the
tasks were analyzed jointly and one may thus ask whether
the results would differ from just a combination of task-
wise analysis. The visually most apparent difference was
that the FuSeISC allowed the segmentation of visual cortex
into multiple areas, as described in Results section above,
whereas in the conventional ISC analysis all tasks includ-
ing visual input (verb generation, oculomotor, hand imita-
tion, and external ordering) activated a large part of the
visual cortex, with minor differences between the tasks.

Inter-subject variability can arise from several sources,
one of them being between-subjects anatomical misalign-
ment. To circumvent such challenges, between-subject
alignment methods based on functional responses have
been recently proposed (see Dubois and Adolphs [2016]
for a review). In particular, fMRI during movie viewing
has been found efficient in achieving correspondence via
either maximizing inter-subject correlation [Sabuncu et al.,
2010] or deriving a common representational space
between subjects [Guntupalli et al., 2016; Haxby et al.,
2011]. These methods effectively reduce inter-subject vari-
ability in the data, but they may also mix spatial

TABLE III. Effect of subject set size for the number of

clusters found and ARI

Number of clusters sim data#1 data#2

ICBM15 9 14 12
ICBM25 16 15 18
ICBM37 19 23 22

ARI between data sets sim data#1 data#2

ICBM37 vs. ICBM25 0.52 0.31 0.34*
ICBM37 vs. ICBM15 0.30 0.27 0.31*
ICBM25 vs. ICBM15 0.35 0.37 0.30*

Results for both simulated (sim) and real ICBM data sets (data#1
and data#2) are presented. ARI values for the real data sets were
computed across the whole brain (228,483 voxels), and ARI values
for the simulated data were computed across the activated brain
areas (72,577 voxels). The neighborhood size used in the analysis
was k 5 225 according to the previous simulation results. Spatial
maps for more detailed comparison are available for the results
marked with asterisks (Figs. S10–S12, see Section 8 in Supporting
Information).

Figure 9.

Functional segmentation result (k 5 250) of (A) ICBM data set

with 37 subjects, and (B) ICBM data set with another 37 sub-

jects. The cortical segmentation in the two data sets is relatively

similar. Clusters in the two data sets are matched using the

Munkres assignment algorithm. Similarity between the clusters

according to the Dice index is shown next to the color bar,

“NaN” meaning that the corresponding cluster is present only

in the leftmost data set. Postprocessing was used to emphasize

similarities and differences between the results in the cortical

areas. The corresponding raw segmentation results are provided

in Figure S9 (Section 8 in Supporting Information). [Color figure

can be viewed at wileyonlinelibrary.com]
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misalignment and intrinsic functional variability [Dubois
and Adolphs, 2016], and they are costly in terms of scan-
ning time. However, in future, functional segmentation
methods might be developed to separate different types of
between-subject variability.

Methodological Considerations

Many cluster analysis techniques have been previously
proposed for the functional segmentation of the human
brain on the basis of fMRI data [Bellec et al., 2010; Blu-
mensath et al., 2013; Craddock et al., 2012; Eickhoff et al.,
2016; Goutte et al., 1999; Maggioni et al., 2014; Van den
Heuvel et al., 2008], but they have certain limitations in
the analysis of complex group-fMRI data collected under
diverse stimulation. Our method was particularly
designed to address some of the key problems. For
instance, conventional functional segmentation methods
construct group-level segmentations by averaging results
across individuals, ignoring inherent variability of brain
functions across them. Importantly, FuSeISC does not clus-
ter time series of the subjects themselves, but it computes
and utilizes statistical information of the ISC features in
clustering and this way naturally accounts both for

similarity and variability in hemodynamic responses
across subjects.

Previously, a clustering framework based on a two-layer
generative model was introduced to account for inter-
subject variability [Lashkari et al., 2012; Thirion et al.,
2014]. Unlike our cluster model built on the ISC features,
that model utilizes information from the experimental set-
up. Wang et al. [2015] constructed functional segmenta-
tions separately for individuals using an iterative
algorithm starting from the solution of the population
atlas. While this approach takes into account individual
differences, visual inspection of individual brain maps is a
tedious task. One benefit of FuSeISC is that it integrates
data across all subjects and time series of interest into a
single brain map and this way summarizes heterogeneous
data into a meaningful amount of information for visual
inspection.

Many existing functional segmentation methods con-
strain segmentation into spatially local neighborhoods
[see, e.g., Blumensath et al., 2013; Craddock et al., 2012].
FuSeISC does not assume that the clusters are spatially
connected, but voxels are clustered without information
about their spatial locations. This approach is plausible
from neuroscientific perspective, as it allows to detect spa-
tially distributed clusters as well as clusters with strikingly

Figure 10.

Functional segmentation result (k 5 250) of (A) resting-state

data, and (B) ICBM data. The segments of the resting-state are

grainy whereas the segments of the ICBM data are spatially con-

nected/symmetric. Clusters in the two data sets are matched

using the Munkres assignment algorithm. Similarity between the

clusters according to the Dice index is shown next to the color

bar, “NaN” meaning that the corresponding cluster is present

only in the leftmost data set. [Color figure can be viewed at

wileyonlinelibrary.com]
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different sizes. Moreover, since spatial information is not
used in the clustering process itself, visual inspection of
the spatial locations of the clusters as well as spatial com-
pactness of the clusters serves as a useful validation of the
clustering outcome. The spatially compact clusters in our
analyses indicate that the obtained segmentations reflect
inherent structures of the fMRI data sets and not noise.

FuSeISC contains a user-definable parameter k which
controls the coarseness of segmentation. Technically, k is
used to decide the number of neighbors in k-NN lists and
the subsequent optimally sparsified SNN graph. The
graph, in turn, was used as a basis to initialize the GMM
to improve the estimation accuracy. This way, k is only
indirectly related the number of clusters that the clustering
algorithm produces. Based on our simulations with syn-
thetic Gaussian data, the value of k can be approximately
interpreted as the number of voxels that each cluster
should minimally contain (see Section 4 in Supporting
Information). However, due to the complexity of real fMRI
data, we proposed a systematic way to choose k based on
the stability analysis of the number of clusters and similar-
ity of the segmentation solutions (see Figs. 7 and 8B,C).
For the tested data sets, the number of clusters stabilized
close to 20 (irrespective of the data set), which is in line
with Wang et al. [2015]. On the other hand, it is possible
that the number of found clusters varies notably between
some data sets and the number of time series chosen, as
the choice of optimal k depends on the intrinsic properties
(size, shape, density and overlap of the clusters) of the
data. In the future, we aim to study FuSeISC with a higher
number of data sets and a different number of time series.

Smaller k values would result in more functional seg-
ments as illustrated in Figure 7A. Thus, for more detailed
parcellations, a smaller k could be used. The smaller k val-
ues can be useful also to investigate some dedicated region
of interest, either defined based on neuroanatomy or on a
more coarse functional segmentation.

Due to the complex structure of the fMRI data, it is diffi-
cult to build an appropriate functional segmentation mod-
el in a general case. To alleviate the particular problems
associated with the learning of the cluster model and
selection of the total number of clusters, we proposed a
new method based on SNN graph construction to initialize
the GMM (see Appendix A.1). The method was successful-
ly validated against the well-known methods K-means
[MacQueen, 1967], K-means11 [Arthur and Vassilvitskii,
2007], Farthest first traversal algorithm [Gonzalez, 1985;
Hochbaum and Shmoys, 1985], Ward’s minimum variance
method [Ward, 1963], and Affinity propagation [Frey and
Dueck, 2007] as well as its sparse version using simulated
data sets containing Gaussian clusters and outliers (see
Section 3 in Supporting Information). These techniques
were selected as they have been previously reported as
useful in the initialization of the GMM, see for instance
[Bl€omer and Bujna, 2013; Dasgupta and Schulman, 2000;
Dueck, 2009; Fraley and Raftery, 2002]. Moreover, all these

methods can be conveniently controlled with a single user
parameter, making them well-comparable against the pro-
posed method. Although derived from a different point of
view, we found very close correspondence in the cluster-
ing quality between our method and the affinity propaga-
tion algorithm. This finding was surprising and deserves
further investigation. In any case, the benefit of our meth-
od over affinity propagation and Ward’s minimum vari-
ance method is that the full distance matrix needs not to
be saved in the memory (even when spatial constraints are
not used), allowing a large-scale segmentation across the
whole brain without using spatial constraints.

FuSeISC is applicable for the analysis of large whole-
brain multi-subject fMRI data sets as we have demonstrat-
ed in this article. With a basic desktop computer, the com-
putation of the segmentation for one choice of k is feasible
within 0.5–3 hours. However, we recommend optimizing
the choice of k by running the FuSeISC segmentation for
several values of k, possibly in parallel. When discarding a
priori the voxels of the white-matter areas, brainstem and
ventricles, computation time drops considerably. In this
case, it is possible to evaluate several k values within few
hours without parallel processing.

The feature extraction step (involving computation of
voxel-wise ISC matrices between each subject and estima-
tion of the Jackknife ISC mean and variability estimates) is
straightforward to parallelize for each time series. Note
that when ISCs are computed between subjects using the
ISC toolbox, there is no need to estimate threshold values
for the ISC statistic using a block-bootstrap test, which is
the computationally heaviest step in the conventional ISC
analysis. We have added more details about computational
demands of the initialization algorithm in the Appendix
(see last section: Computational considerations).

Applications

In addition to being a tool for the spatial exploration of
large fMRI data sets obtained using naturalistic stimula-
tion (such as movies), FuSeISC has other potential applica-
tions. For example, it could be used to generate a
functional atlas, either for a certain region of interest or for
the whole brain, based on task-related fMRI.

This approach would be rather different than construct-
ing atlases based on resting-state fMRI (see Craddock
et al. [2012] and references therein) as, for example, fMRI-
based functional connectivity patterns markedly depend
on the brain state [Geerligs et al., 2015]. As can be seen in
Figures 3 and 5, to achieve a resolution level of the cur-
rently commonly used resting-state fMRI atlases, a whole-
brain atlas would require larger and more diverse data
sets than the ones applied in this work. However, com-
bined with a high-resolution fMRI of naturalistic experi-
ments, our approach represents a novel line for future
research. In principle, FuSeISC is not sensitive to the type
of stimulus presentation, meaning that block-design,
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event-related, and naturalistic experiments could be com-
bined together (at least when fMRI of the same set of sub-
jects is acquired using the same scanner), partly
facilitating atlas construction. Future research should show
to what extent data combination is practically feasible.

As demonstrated in Figures 4 and 6, FuSeISC also pro-
vides specific information about the ISC statistics of the
time series of interest for each cluster, which can be used
to trace clusters back to stimulus features. This is poten-
tially useful if, for example, the multiple time series that
form the input to FuSeISC are recorded during different
scenes of a movie. Rich annotations of the stimulus
sequence can then be used to relate clusters to different
characteristics of the stimulus, providing an additional
vehicle to interpret the FuSeISC parcellation.

FuSeISC also allows for reverse analysis, that is, going
back from the found clusters to the original ISC correlation
matrices. The structures of the correlation matrices provide
more details how the brains of different subjects have
processed the same stimuli. For instance, high ISC variabil-
ity may reflect subgroups of subjects who have dissimilar
processing. Associating behavioral or other non-brain data
with these subgroups or correlation matrices themselves
(using, e.g., the Mantel test; see Salmi et al. [2013];
J€a€askel€ainen et al. [2016]) could provide further insights
into brain functions of different individuals.

Although FuSeISC is geared toward brain-imaging stud-
ies applying naturalistic stimulation, it can be equally well
applied to traditional fMRI studies where the stimuli are
strictly controlled. In the latter type of experiments, the
results have been similar with ISC and standard GLM
analyses [Pajula and Tohka, 2014; Pajula et al., 2012]. How-
ever, it should be noted that the ISC method requires that
the subjects received identical stimuli and therefore,
FuSeISC is not useful in segmenting resting-state fMRI
data that can be analyzed for example by using group-ICA
[Beckmann et al., 2005; Kiviniemi et al., 2009].

CONCLUSIONS

We have proposed a new data-driven method, function-
al brain segmentation using inter-subject correlation,
FuSeISC, to analyze fMRI data sets collected from a group
of subjects who experience a variety of stimuli. The meth-
od segregates brain areas based on the ISC information
without explicit knowledge of the stimuli. This way,
FuSeISC clusters brain areas directly on the basis of a sin-
gle data set formed from a group of subjects. Each cluster
is characterized by its spatial location as well as by its spe-
cific ISC mean and variability. These properties make
FuSeISC rather different from conventional functional seg-
mentation algorithms and ISC analysis methods designed
for fMRI data. The method is not only useful for spatial
exploration of large fMRI data sets obtained using natural-
istic stimuli, but has also other potential applications such

as generation of a functional brain atlases including both
lower- and higher-order processing areas.

APPENDIX A

CONSTRUCTION OF INITIAL GAUSSIAN

MIXTURE MODEL

APPENDIX A.1: GENERATION OF CANDIDATE
MODELS

Here we describe a novel technique for restricting a set
of initial Gaussian mixture model (GMM) candidates a pri-
ori. To find good candidate models, we capture intrinsic
structure of the data by shared nearest-neighbor (SNN)
graphs [Jarvis and Patrick, 1973] (also called mutual
nearest-neighbor graphs). In the SNN graph, two data
points are connected only if they belong to each other’s k-
nearest-neighbor sets. More formally, let us denote the set
of L data points in a d-dimensional feature space as
D5 x1; x2; . . . ; xLf g � Rd, and let the set of the k-nearest
neighbors9 of an arbitrary data point xm be Nm. In the
SNN graph G D;Eð Þ, the vertex set D contains all the data
points and the edge set E is given as follows [Jarvis and
Patrick, 1973]:

E5 xm; xnð Þjxm 2 Nn�xn 2 Nmf g: (A.1)

Furthermore, we weight every edge in E of the SNN graph
by counting the total number of intersecting data points of
the two nearest-neighbor sets:

w xm; xnð Þ5jNn \Nmj: (A.2)

Note that by using this weighting scheme, the similarity
between two connected data points does not depend on
their absolute distance but the similarity between data
points is determined by the similarity of the k-nearest-
neighbor sets of these data points. This desirable property
allows detection of clusters with varying densities even in
a high-dimensional feature space [Ert€oz et al., 2003; Houle
et al., 2010; Tan et al., 2014]. We also compute a degree (or
“SNN density”) for each data point xm as the sum of the
weights of edges connecting xm and its nearest neighbors:

deg xmð Þ5
X

xn2Nm

w xm; xnð Þ: (A.3)

Next, we form multiple candidate (sub)graphs through
sparsification of the weighted SNN graph. More specifi-
cally, to form a single candidate, we remove all the edges
associated with data points xm whose degree values are
below a selected threshold Tj. Several candidates are
formed using multiple thresholds Tj, for j51; 2; . . . ; q.10

Thus, a final set of candidate graphs is:

9A point is not its own neighbor, that is, xm=2Nm.
10A most systematic approach is to construct as many candidates as
there are distinct degree values. Note that degree values are integers
and the maximum possible value is k k21ð Þ. Therefore, the number of
distinct candidate graphs is q � k k21ð Þ.
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AG5 G1 D;E1ð Þ;G2 D;E2ð Þ; . . . ;Gq D;Eq

� �� �
;

where the edge sets of the candidate graphs are:

Ej5 xm; xnð Þ 2 Ejdeg xmð Þ; deg xnð Þ � Tj

� �
; (A.4)

for j51; 2; . . . ; q. Finally, we locate the centers of the con-
nected components in each candidate graph:

lij5f Pij

� �
; (A.5)

for i51; 2; . . . ; hj. In this expression, lij denotes the center
of the ith connected component in the jth graph Gj, the set
Pij contains all the data points associated with that compo-
nent, and hj is the total number of connected components
in that graph. The function f �ð Þ defines a center of a con-
nected component in a meaningful way. Our default
choice for f �ð Þ is the mean of the data points of the Pij.

APPENDIX A.2: CHOICE OF INITIAL GMM

Given the candidate sets C1; C2; . . . ;Cq of the mean vec-
tors, the next task is to choose one set Cj5fl1j;l2j; . . . ;lhjj

g
that represents all clusters in data. Different criteria can be
used for this purpose, including well-known Bayesian
information criterion (BIC) [Schwarz, 1978] or simple mini-
mum sum-of-squared error (SSE) criterion (minimum dis-
tance rule). In our tests with synthetic noisy fMRI data, we
found slightly more stable clustering results with the SSE
than BIC (see Section 5 in Supporting Information) and
therefore we used SSE as the criterion in this article.11

After selecting the best candidate set of mean vectors,
we used the minimum distance rule to assign all the data
points to the clusters. Mixture weights were initialized by
computing fractions of the data points within the clusters
and covariance matrices were estimated from the data
within the clusters. The obtained mean vectors, mixing
weights, and covariance matrices formed our initial GMM.

APPENDIX A.3: COMPUTATIONAL
CONSIDERATIONS

The construction of the k-NN graph in our initialization
algorithm requires computation of L2 distances, where L is
the number of data points. Memory requirement of the k-
NN graph is O(Lk), which is not a problem since k� L in
practice. The computation time of the initialization algo-
rithm is also dependent on the number of sparsification
thresholds evaluated, which in turn depends on k and the
properties of data. We have noted that for large data sets
(which is the case with the fMRI data), the evaluation of
all sparsification thresholds is computationally very heavy.
Therefore, we use the following heuristic to analyze fMRI
data: At first, we evaluate the SSE for every kth

sparsification threshold. After this, we pick the best two
SSE values, and evaluate all unique sparsification thresh-
old values between the two thresholds to improve the
SSE. To further save computation time, computationally
most demanding steps (construction of the k-NN graph,
selection of the best sparsified SNN graph) of our initiali-
zation algorithm are written in C language.
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