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Abstract: Drawing from a common lexicon of semantic units, humans fashion narratives whose mean-
ing transcends that of their individual utterances. However, while brain regions that represent lower-
level semantic units, such as words and sentences, have been identified, questions remain about the
neural representation of narrative comprehension, which involves inferring cumulative meaning. To
address these questions, we exposed English, Mandarin, and Farsi native speakers to native language
translations of the same stories during fMRI scanning. Using a new technique in natural language
processing, we calculated the distributed representations of these stories (capturing the meaning of the
stories in high-dimensional semantic space), and demonstrate that using these representations we can
identify the specific story a participant was reading from the neural data. Notably, this was possible
even when the distributed representations were calculated using stories in a different language than
the participant was reading. Our results reveal that identification relied on a collection of brain regions
most prominently located in the default mode network. These results demonstrate that neuro-semantic
encoding of narratives happens at levels higher than individual semantic units and that this encoding
is systematic across both individuals and languages. Hum Brain Mapp 38:6096–6106, 2017. VC 2017 Wiley

Periodicals, Inc.
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INTRODUCTION

One of the defining characteristics of human language is
its capacity for semantic extensibility. Drawing from a
common lexicon of morphemes and words, humans gener-
ate and comprehend sophisticated, higher-level utterances
that transcend the sum of their individual units. This is
perhaps best exemplified in stories, in which sequences of
events invite inferences about the intentions and motiva-
tions of characters, about cause and effect, and about
theme and message. The kind of meaning that emerges
over time as one listens to a story is not easily captured by
analysis at the word level alone. Further, a necessary
condition for generating higher-level semantic constructs
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is that speakers of the same language infer similar mean-
ings from expressions of both lower and higher level
semantic units. For example, it can be assumed that when
speakers of the same language listen to stories, the per-
ceived meanings of these stories have much in common.
Does this imply that individuals’ brain activity shows sys-
tematic patterns related to the meaning of the stories? If
so, can these neural representations of meaning be associ-
ated post-hoc with particular stories? Also, when a story is
translated from one language to another, the particulars of
sounds and words are left behind, but a core of semantic
content survives the translation. Does it then follow that
the neural representations related to this semantic content
are also comparable across the brains of speakers of differ-
ent languages?

Understanding how conceptual knowledge is repre-
sented and organized in the human brain is one of the
central problems of cognitive science and many studies
have aimed at exploring and understanding the neural
representations of concepts [Damasio et al., 2004]. Relying
on multiple approaches and methods, this body of work
has identified a collection of separable brain regions, con-
stituting a large network, within which different concep-
tual categories and the corresponding words are
represented [e.g., Binder et al., 2009; Damasio et al., 2004;
Grabowski et al., 2001; Tranel et al., 1997]. More recently a
word-level semantic map has been proposed [Huth et al.,
2016].

In this work, our aim is to move beyond word-level
semantics to investigate neuro-semantic representations at
the story-level across three different languages. Specifi-
cally, we set out to determine if there are systematic pat-
terns in the neuro-semantic representations of stories
beyond those corresponding to word-level stimuli. Our
aim is motivated by the long-standing understanding that
discourse representations are different from the sum of all
of their lexical or clausal parts. Most psycholinguistic
models of discourse processing are concerned with the
construction and representation of structures such as prop-
ositions and arguments [Kintsch, 1974], and situation mod-
els [Kintsch, 1988] that are, of course, derived from
specific words and sentences, but are more abstract.
Indeed, many interesting effects of discourse representa-
tions can be demonstrated by comparing the comprehen-
sion of the same sentence under conditions that differ in
the plausibility of the most common interpretation of the
sentence in isolation [Sanford and Garrod, 1998] or, con-
versely, comprehension of the same passage [Johnson-
Laird, 1983] under conditions that differ in the availability
of a situation model to begin with. Hence, we aim to lever-
age recent advances in natural language processing for
representing aggregate meaning in high-dimensional
semantic space to decode neural activations (i.e., map back
to the semantic space) during story reading. This will
allow us to investigate the networks involved in represent-
ing higher-level semantics, and to explore whether

activation patterns related to higher-level meaning are
common across people and languages.

One approach that has been proven to be fruitful in
exploring neuro-semantic representations is to investigate
the relationship between various co-occurrence patterns of
words within large textual corpora, and to relate these pat-
terns to neural activity recorded during exposure to those
words. Examining the representations of concrete nouns,
Mitchell et al. [2008] proposed a computational model that
predicts voxel activation using a weighted sum of various
semantic features of nouns, calculated based on word co-
occurrence in a large English corpus. Using fMRI data
from 9 participants who viewed 60 word-picture pairs,
they demonstrated that their model captures aspects of
neuro-semantic representations of these concepts; it could
correctly predict which word/picture participants were
viewing with a higher-than-chance accuracy. The most
predictive voxels were distributed around the cerebral cor-
tex, and included sensory regions in the temporal and
occipital lobes, motor related regions in the frontal and
parietal lobes, and other regions of the orbitofrontal and
inferior frontal cortices.

Other researchers have proposed different representa-
tional [Fyshe et al., 2014; Yogatama et al., 2014], computa-
tional [Huth et al., 2012; Just et al., 2010; Shinkareva et al.,
2011], and methodological [Guimaraes et al., 2007; Sudre
et al., 2012] modifications to the general Mitchell et al.
(2008) approach in order to better capture and explore the
neural architectures involved in representing concrete
nouns. Notably, Huth et al. (2016) use word-embeddings,
a quantitative representation of meaning calculated based
on co-occurrence patterns of 985 common English words,
along with a generative model of areas covering the cor-
tex, to create a detailed semantic-map reported to be con-
sistent across individuals. Generally, in word-level
analysis applied in the above approaches, each word is
treated as an isolated symbol, independent of any relation
to context or to the overall meaning that the story conveys.
Therefore, even though these approaches have been very
useful in mapping the meaning of individual words, they
do not reveal how the higher-level meaning that emerges
through the course of a story is represented.

Discourse has typically been operationalized for fMRI
analysis by reference to theory-dependent identification of
key discourse features [Whitney et al., 2009], general linear
model [Yarkoni et al., 2008] or cross-correlation [Ames
et al., 2015; Lerner et al., 2011] analyses comparing texts
differing in coherence. More recently researchers have
started to investigate the neural architectures involved in
the semantic representation of sentences and story seg-
ments. Wehbe et al. (2014) present a dynamic model for
studying how different regions of the brain encode various
types of information while reading a story. Passages from
a Harry Potter story were presented to 9 participants
using Rapid Serial Visual Presentation (each word pre-
sented for 0.5 s). The story segments (16 words) were then

r Decoding the Neural Representation r

r 6097 r



represented using a combination of various syntactic fea-
tures, semantic features of individual words, and low-level
features such as number of letters, and used in a predic-
tive model that was able to predict which one of the two
novel passages was being read. They showed that different
aspects of story processing were encoded in different brain
networks. For example, activity in temporo-parietal
regions in both hemispheres was related to processing sen-
tence length and complexity, while semantic classification
was most accurate in voxels from the middle and superior
temporal gyri and the left inferior frontal gyrus. In gen-
eral, brain regions on the lateral surfaces of both hemi-
spheres in the temporal, occipital, and parietal regions
appear to have been most predictive of linguistic content
in the stories.

While previous methodologies have found semantic rep-
resentations to be widely distributed throughout the brain,
there now seems to be growing evidence for a special
involvement of the default mode network (DMN) in repre-
sentation of high-level meaning and language comprehen-
sion. The DMN was originally identified as a “resting
state” network that shows high baseline activity when
people are asked to rest without engaging in any specific
externally-focused task [Raichle and Snyder, 2007; Raichle,
2015]. This bilateral network includes midline cortical
structures (medial prefrontal cortex, precuneus, and poste-
rior parietal cortex) as well as lateral structures (inferior
parietal lobe and anterior temporal lobes). Activity in these
nodes is highly correlated during resting fMRI [Buckner
et al., 2008] and has been thought to reflect such cognitive
processes as mind-wandering [Smallwood and Schooler,
2015], thinking about one’s self [Qin and Northoff, 2011],
remembering the past and imagining the future [Østby
et al., 2012], and in general to support stimulus-
independent thought [Smallwood et al., 2013].

Yet, the specific function of this network is not well
understood. A growing body of work has implicated the
DMN in more active forms of cognition [Spreng, 2012], and
specifically in semantic processing [Binder et al., 2009]. A
series of studies have shown that the DMN seems to be
involved in representing the global meaning of passages,
rather than meaning at the word or sentence-level [Ferstl
et al., 2008; Lerner et al., 2011]. Further, the activity in the
DMN is consistent when a story is presented in different
modalities (spoken vs. written), or in different languages
(Russian vs. English to native speakers of these languages),
indicating highly abstracted representations of the stimuli in
this network [Chen et al., 2017; Honey et al., 2012; Regev
et al., 2013; Zadbood et al., 2016]. The word-level semantic
map produced by Huth et al. [2016] also demonstrates sig-
nificant overlap with the DMN. More recently, Simony et al.
[2016] show that the DMN reconfigures consistently across
subjects when processing narrative stimuli. Also, a recent
study demonstrates that patterns of activity in the DMN
when people are describing a narrative are highly consistent
across individuals and specific to events in the narrative

[Chen et al., 2017]. Our own recent finding shows that activ-
ity in some DMN nodes increases throughout the course of
a story, and is greatest when reading stories containing
strong moral values [Kaplan et al., 2016].

Parallel to this line of work, multi-voxel pattern analysis
(MVPA) has also been used to explore common represen-
tations across languages by predicting the neural response
to a noun in speakers of one language, based on the
noun’s neural representation in speakers of a different lan-
guage [Buchweitz et al., 2012; Correia et al., 2014; Yang
et al., 2017; Zinszer et al., 2015]. Supporting evidence from
lesion studies, Correia et al. [2014] find the left anterior
temporal lobe to be an area with high predictive accuracy
independent of language. The ATL is part of the DMN,
confirming this region as part of a network in which the
abstract representations of words are coded.

In this paper, we use story-level embeddings to examine
the neuro-semantic representations of stories in people from
three different linguistic-cultural backgrounds, across their
three native languages. We demonstrate that story-level rep-
resentations can capture story content across languages, and
can be used to localize the neuro-semantic content of stories
to specific regions of the brain. We mapped the brain
regions in which language-independent semantic story con-
tent was detected, revealing a set of regions in the DMN that
have been implicated in the generation of rich internal expe-
riences. While previous work has demonstrated that the
DMN responds to abstract meaning of stories, we show that
the patterns of activation in the DMN correspond to the
unique encoding of the meaning of narratives, and that
these patterns can be used to decode the meaning of narra-
tives across three different languages.

METHOD

Stimuli

For our stimuli, we used real-world personal narratives
written by people describing their experiences. In order to
find such narratives, we started with a corpus of over 20 mil-
lion weblog story posts that were compiled from Spinn3r.com
[Sagae et al., 2013]. Next, the corpus was queried on different
topics (e.g., telling a lie, getting a divorce) via a text retrieval
system (Apache Lucene). Forty stories were chosen and each
was condensed to a paragraph of 145–155 words. Profes-
sional translators were used to translate these English stories
into Mandarin Chinese and Farsi. Lastly, these translations
were back-translated by native speakers into English, and the
back-translated versions were checked for any inconsistencies
with the original stories. Any minor inconsistencies were
resolved by the translators.

Distributed Representation of Stories

Distributed word representations refer to n-dimensional
numeric vector representations that capture some semantic
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and syntactic aspects of words. Prior to the recent wide-
spread upsurge of deep neural networks, methods such as
Latent Semantic Analysis [Deerwester et al., 1990] and
Latent Dirichlet Analysis [LDA; Blei et al., 2003] were
used to build such distributed word representation.

In recent years, neural network approaches for language
processing have gained considerable attention. One nota-
ble example is the word2vec [Mikolov et al., 2013] method
which generates distributed word vectors from a text cor-
pus. It efficiently trains a model that predicts a word con-
ditioned on its surrounding context (e.g., the five words
before and after the target word) by maximizing vector
similarity of words that appear together and minimizing
the similarity of words that do not.

Moving beyond representations at the word level, sev-
eral related methods have been proposed for distributed
representation of higher-level textual units (i.e., sentences,
paragraphs, or documents). Paragraph vector [Le and
Mikolov, 2014] is a technique that simultaneously learns
vector representations for words and texts, and captures
different aspects of the semantics of the text in the training
process.

In this work, we used a version of paragraph vector
derived from word2vec called doc2vec [Le and Mikolov,
2014]. At a high level, doc2vec uses a technique called the
Distributed Memory Model which aims to maximize the
probability of a word wi, given the paragraph Di that the
word is drawn from and the words adjacent to it (i.e., its
context) wi2j; . . . ;wi21;wi11; . . . ;wi1j. This is treated as a
multi-class classification problem, and paragraphs and
context words are represented as n-dimensional vectors.
During training, these vectors are optimized via stochastic
gradient descent with backpropogation [Rumelhart et al.,
1986] to maximize the probability of the target word. That
is, at each iteration of gradient descent, a context for a
given target word is sampled from a random paragraph.
Then the representation of this paragraph Di and the
representations of the context words are used to predict
the target word. The gradient from this prediction is then
used to update the paragraph vector Di and context
vectors.

An important component of this model is the paragraph
matrix D, which both provides context for the interpreta-
tion of individual words, and merges the semantics at the
lexical level. The columns of matrix D contain “paragraph
vectors” that are each optimized to represent a paragraph
or other units of higher level text drawn from the training
corpus. These paragraph vectors are learned via a sliding
window function that predicts each word in the para-
graph, given the paragraph vector and vectors represent-
ing the words contained in the sliding window.
Importantly, paragraph vectors are constant across win-
dows sampled from the same paragraph; thus, they can be
thought of as representing the component of the para-
graph that transcends and unifies each of the windows
sampled from the paragraph. Accordingly, doc2vec

represents paragraphs as unique higher-level units and
not simply as aggregations of individual words. The rela-
tionship between paragraph vectors and the contexts con-
tained in a paragraph can also be understood as
hierarchical, such that words and contexts are nested in
paragraphs. From this view, a portion of the variance asso-
ciated with words can be attributed to their immediate
context (e.g., local semantic and syntactic phenomena), but
an additional portion of this variance is explained by the
paragraph from which the word is drawn. Accordingly,
doc2vec’s paragraph vectors represent the component of a
paragraph that cannot be reduced to word-level semantics,
they represent the higher-level meaning expressed by the
paragraph—or, as in our case, narrative.

We would like to emphasize that our goal in this paper
is not to compare the performance of doc2vec against any
other NLP technique (namely word2vec), but to show that
aggregate story-level representations of text can be used to
successfully decode narrative-processing fMRI data. Spe-
cifically, one could use word2vec, or any other distributed
representation at the word-level, to construct story-level
representations by aggregating (or concatenating) individ-
ual word-level vectors [Garten et al., 2015]. However,
given that doc2vec does not process individual words in
isolation but takes context into account, it has been shown
that it captures the overall meaning of larger pieces of text
significantly better than other related techniques [Dai
et al., 2015; Lau and Baldwin, 2016; Le and Mikolov, 2014].
These findings motivated the use of doc2vec over aggre-
gated word2vec vectors. We also performed a series of
behavioral experiments demonstrating the effectiveness of
doc2vec compared to word-level operations in capturing
the overall gist of stories (see Supporting Information). We
further compared the performance of two different word-
level representations of the stories to the doc2vec represen-
tations in our whole-brain analysis, and show that doc2vec
representations outperformed the other methods (see Sup-
porting Information). Further, doc2vec is only one method
for modeling narrative-level semantics, and other techni-
ques for capturing sentence-level and/or document-level
semantics have recently been proposed [e.g., Conneau
et al., 2017; Ma et al., 2015; Palangi et al., 2016]. To reiter-
ate, our goal is to demonstrate the effectiveness of aggre-
gate story-level representations, rather than representation
of words in isolation as it has been done before [e.g., Huth
et al., 2016; Mitchell et al., 2008], in decoding fMRI data,
and using these representations to further advance our
understanding of neuro-semantic encoding at the narra-
tives level.

All model training was performed using the doc2vec c
library, now available through gensim [�Rehů�rek and Sojka,
2010] in python.1 To train the paragraph vector model for

1Detailed instruction on how to use the doc2vec framework in
python is available at https://radimrehurek.com/gensim/models/
doc2vec.html
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English stories, we used an English corpus of weblogs of
personal stories [�2 billion words; See Gordon and Swan-
son, 2009, for more details about how this corpus was
compiled]. Similarly, Chinese story vectors were built
using a Chinese blog corpus of personal stories [�2 billion
words; Gordon et al., 2013]. A similar process was applied
to the Farsi stories with a minor difference on the type of
corpora used for training. Since Farsi blog posts are mostly
written in informal Farsi, and the stories we used are in
formal Farsi, we used a combination of Farsi news corpora
[AleAhmad et al., 2009] along with a large weblog corpus
(�2 billion words) of personal stories to have a better rep-
resentation of stories in formal Farsi. Model training took
between 20–24 hours for each language. After completion
of the training process, each language model was then
used to represent each of the stories as a 100-dimensional
vector. This resulted in 40 story-vectors per language.

Participants

Ninety-five healthy participants with no history of psy-
chological or neurological disorders were recruited from
the University of Southern California community and the
surrounding Los Angeles Area. We recruited participants
from three groups: Americans, Chinese, and Iranians. All
American participants were born in the United States and
were native English speakers who grew up in exclusively
English-speaking households. All Chinese and Iranian par-
ticipants were born and raised in their native country, and
had been in the United States for fewer than five years.
Chinese and Iranian participants were all fluent in English
in addition to their native languages.

One American participant, two Chinese participants, and
two Iranian participants were excluded either for excessive
motion or for not completing the scans. This left 30 Ameri-
can participants (mean age: 23.83 6 0.92, 15 male), 30 Chi-
nese participants (mean age: 23.47 6 0.39, 16 male), and 30
Iranian participants (mean age: 26.66 6 0.60, 16 male). Sub-
jects were paid [dollar]20 per hour for their participation
and gave informed consent approved by the Institutional
Review Board of the University of Southern California.

fMRI Experiment

Participants read study instructions in their native lan-
guage. If they had any questions about the study, they
had the opportunity to ask them before entering the fMRI
scanner. For each participant there were five story-reading
scans (556 s), one resting state scan not presented here,
and one additional task run not presented here. During
the story scans, each story was preceded by a context slide
(2s) identifying the protagonist of the story (e.g., American
Mother). Following a 1.5 s delay, the story was presented
over the course of 3 slides of text, each displayed for 12 s.
After a variable delay (1.25–4.75s) a question appeared
asking the participant a question about the values of the

protagonist. In this paper we only report analysis of the
36-second story reading period.

fMRI Parameters

Imaging was performed using a 3T Siemens MAGNE-
TON Trio System with a 12-channel matrix head coil at
the Dana and David Dornsife Neuroscience Institute at the
University of Southern California. Functional images were
acquired using a gradient-echo, echo-planar, T2*-weighted
pulse sequence (TR 5 2000 msec, one shot per repetition,
TE 5 25 msec, flip angle 5 90

�
, 64 x 64 matrix). 40 slices

covering the entire brain were acquired with a voxel reso-
lution of 3.0 3 3.0 3 3.0 mm. Functional data were contin-
uously acquired for each run, with a short break between
runs. A T1-weighted high-resolution (1 3 1 3 1 mm)
image was acquired using a three-dimensional magnetiza-
tion-prepared rapid acquisition gradient (MPRAGE)
sequence (TR 5 2530 msec, TE 5 3.09 msec, flip angle 5 10

�
,

256 3 256 matrix). Two hundred and eight coronal slices
covering the entire brain were acquired. Total scan time
for each participant was approximately 80 minutes.

fMRI Data Preprocessing

Univariate data analysis was performed with FSL
(FMRIB’s Software Library http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/). Data were preprocessed using standard steps:
motion correction (Jenkinson et al., 2002), 8mm FWHM spa-
tial smoothing, highpass temporal filtering using Gaussian-
weighted least-squares straight line fitting with a sigma of
60s (corresponding to a period of 120 s) and slice timing cor-
rection. Data were also corrected for magnetic field inhomo-
geneities using field maps acquired for each subject.

Data were then analyzed using the General Linear
Model. Each component of the task (context, the combined
three screens of the story, and the question) was modeled
by convolving the task design with a double-gamma
hemodynamic response function. The model for each func-
tional scan included one regressor for all of the context
periods, one regressor for all of the question periods, and
a set of regressors for each 12-second story period in the
scan. Also included in the model were the temporal deriv-
ative of each story regressor, and six motion correction
parameters. This analysis resulted in a statistical map of
standardized z scores for each story for each participant,
representing the brain activity for that story relative to
resting baseline. A contrast of interest for each story com-
bined across the 3 story slides to yield a single z-map rep-
resenting the average activity for the entire story. These
storywise z-maps formed the input to our classifier.

To register the data to a common space for cross-
subjects analysis, we used FSL’s FLIRT tool in two stages
[Jenkinson et al., 2002; Jenkinson and Smith, 2001]. First,
functional images from each participant were aligned with
their own T1-weighted MPRAGE using a 6 degrees of
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freedom rigid-body warp. Next, the MPRAGE was regis-
tered to the standard 2mm MNI atlas with a 12 degrees of
freedom affine transformation, and then this transforma-
tion was refined using FNIRT nonlinear registration
[Andersson et al., 2010].

Analysis

As discussed earlier, 90 participants (30 from each cul-
ture) were scanned while reading 40 different stories. The
fMRI data were preprocessed and the z-score activation
map for each story was converted to a vector of 212,018
dimensions (voxels) for each participant-story pair, result-
ing in a matrix of 40*212,018 for each participant. Next, as
discussed previously, the text of each of the 40 stories was
converted to a 100 dimensional semantic vector using the
word2vec method described earlier, resulting in a matrix
of dimension 40*100 for each language.

Searchlight-based multi-voxel pattern analysis was per-
formed in order to investigate specific brain networks that
encode neuro-semantic representations of stories. Specifi-
cally, a ridge regression model was fitted on the neural
activity recorded in a sphere (of four-voxel radius), succes-
sively centered around every voxel for each story (as pre-
dictor variables), with its accompanied 100 dimensional
semantic representation of that story (as observation varia-
bles). The fitted model was evaluated using k-fold cross-
validation: the ridge regression model was trained on
every possible pair of 38 stories and tested on the two

remaining stories, resulting in
40

2

 !
analyses per voxel.

In each fold, using the trained model on the 38 stories, the
story vectors were predicted for the two left-out stories,
StoryA and StoryB. A similar approach to Mitchell et al. [2008]
was then used to evaluate the predictions: if the predicted
vectors were more similar (as assessed by cosine similarity) to
the vectors of their target stories, as compared to the vectors
of their non-target stories, then the classification was counted
as correct. More formally, this can be described as:

cos ðpredictedA

�������!
; actualA
�����!Þ1cos ðpredictedB

�������!
; actualB
����!Þ

> cos ðpredictedA

�������!
; actualB
����!Þ1cos ðpredictedB

�������!
; actualA
�����!Þ (1)

The accuracy of the classification for the voxel was then
averaged over the 780 folds. For each participant, this
analysis was then repeated at all the voxels in the brain,
resulting in 780 (cross-validation) * 212,018 (voxels) * 90
(participants) classifications. For the inter-language analy-
ses, the fMRI vectors of one cultural group were modeled
with story vectors generated from a different language.
To be more specific, we used the American subjects’
fMRI data, which were recorded while reading stories in
English, to map to Farsi and Mandarin story vectors; the
Iranian subjects’ fMRI data, recorded while reading stories
in Farsi, to map to English and Mandarin story vectors;

and the Chinese subjects’ fMRI data, recorded while read-
ing stories in Mandarin, to map to English and Farsi story
vectors. The inter-language analysis added a factor of
three to the number of analyses, resulting in total of
44,650,990,800 classifications. The analysis was imple-
mented using the scikit—learn library in python [Pedregosa
et al., 2011], and was ran on 30 Google Computing Engine
machines,2 each with four CPUs and 26GB of RAM, and it
took about six weeks to complete.

The result of this analysis is a map of story-prediction
accuracy. In other words, the above method scores each
voxel neighborhood based on how accurately it can predict
the story vectors. To assess the statistical significance of
these accuracy values, non-parametric one-sample t-tests
were performed with the FSL Randomise program [Winkler
et al., 2014]. FSL’s Randomise algorithm works as follows.
For a given classification, the accuracy maps from 30 partici-
pants were concatenated and expressed as 30 positive or
negative values indicating above- or below-chance decoding
accuracy, respectively. Under the null hypothesis, positive
and negative signs are equally likely to occur and may be
randomly flipped with no effect on their distribution. Ran-
dom sign-flipping occurs for the set of 30 values at each
voxel, followed by the calculation of a t-statistic. We per-
formed 5mm HWHM spatial smoothing of the variance
(over subjects), a commonly included step for increasing
study power. This is performed for all voxels in the map,
creating a permuted t-map. The t-map then undergoes
threshold-free cluster enhancement (TFCE), a procedure
that further improves power by taking into account the
underlying extent of spatial support. TFCE enhances values
within cluster-like structures, while preserving voxel-level
inference [Smith and Nichols, 2009]. The TFCE map ulti-
mately contributes a single value, its maximum, to an empir-
ical null distribution of maximum TFCE values. This
distribution was populated by repeating the permutation
procedure 5000 times. The preceding steps were all imple-
mented in a relatively standard one-line command to FSL
Randomise (see Supporting Information). The value at the
95th percentile of the distribution was used to threshold the
original, unpermuted data, thereby controlling the family-
wise error rate at the 0.05 level. To facilitate comparison
across different classification types, we conservatively
restricted visualization to the set of voxels that survived
thresholding across all of the classification types. For exam-
ple, we created a unified intra-language decoding map,
selecting only voxels present in all three of the English, Chi-
nese, and Farsi classification maps.

RESULTS

The searchlight analyses yielded maps of brain regions
that contained information regarding the content of stories.

2https://cloud.google.com/compute/
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Decoding of stories presented in the participants’ native
language was successful in a set of spatially-defined brain
regions (Fig. 1). Maps for all three within-language classifi-
cations were similar (for individual intra-language classifi-
cation maps see Supporting Information Fig. S3). The most
prominent cluster was in the bilateral posteromedial corti-
ces, including the precuneus and posterior cingulate. Also
on the medial surface was a bilateral cluster including the
paracingulate gyrus, superior frontal gyrus and frontal
pole. On the lateral surfaces, the junction of the temporo-
parieto-occipital lobes was implicated, specifically, a clus-
ter centered on the angular gyrus bilaterally and extending
into the posterior supramarginal gyrus bilaterally and
superior lateral occipital cortex. Rostrally, somewhat later-
alized to the right but also present on the left, were the
superior frontal sulcus and middle frontal gyrus.

The brain activations of participants that were evoked by
native-language stories were also successfully decoded
using the representations of the same stories, translated into
different, unfamiliar languages. We mapped this semantic
information to a similar set of regions as found for native-
language story decoding, namely the cortical midline struc-
tures and fronto-parietal regions (Fig. 2) (for individual

inter-language maps see Supporting Information Fig. S4,
and for the overlaying inter-language and intra-language
maps see Supporting Information Fig. S5). It should be
noted that the inter-language story vectors are not linearly
correlated (r2

Mandarin2Farsi50:0008; r2
Mandarin2English50:0003;

r2
English2Farsi50:0183), while there is much higher correlation

between the story vectors in the same language (average
r250:308).

Across all combinations of cultural backgrounds and
story languages, the overall accuracies of each searchlight
map were broadly similar (Table I). The mean accuracies
of significant voxels in each map were generally above
0.55 and the maximum accuracies on each map were all
above 0.6 (For whole-brain analysis accuracies, please see
Supporting Information Figs. S1 and S2).

DISCUSSION

In this study, we investigated neural representations
that transcend narratives’ language-specific words and
syntactic features, and the degree to which these represen-
tations are systematic across people. Using distributed rep-
resentations of narrative texts, we were able to decode

Figure 1.

Intra-language searchlight maps. Colored voxels indicate regions

in which English, Farsi, and Chinese stories, presented to partici-

pants in their native languages, were all successfully decoded.

The most prominent cluster was found in the posteromedial

cortices, bilaterally. Other clusters on the medial surface

included the superior frontal gyrus, paracingulate gyrus, and

frontal pole. On the lateral surface, a prominent cluster was

centered on the angular gyrus. [Color figure can be viewed at

wileyonlinelibrary.com]

r Dehghani et al. r

r 6102 r

http://wileyonlinelibrary.com


neural activity corresponding to the reading of particular
stories irrespective of the language being used to convey
the story. Within- and between-language narrative decod-
ing highlighted similar patterns of neural activity, with the
highest classification performance in the DMN. We saw
above-chance classification accuracy in all of the major
nodes of the DMN, including the posterior medial cortices,

the medial prefrontal cortex, and the lateral parietal cortex
(See Supporting Information Fig. S6 for relationship
between story classification accuracy and the DMN).

The spatial distribution of classification performance
implicates the DMN in these high-level semantic represen-
tations. One of the distinguishing features of narrative
comprehension is that it requires the integration of

Figure 2.

Inter-language searchlight maps. Colored voxels indicate regions in which story representations,

which were generated from stories in a language unfamiliar to the participant, were successfully

decoded in English, Farsi, and Chinese speakers. A similar set of regions were found as for intra-

language decoding, including the cortical midline structures and fronto-parietal regions. [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE I. Decoding accuracy of story vector models for three languages, based on the fMRI activations of three cul-

tural groups

Culture Story language
Mean accuracy of
Significant Voxels

Maximum accuracy among
Searchlight Spheres

Coordinates of center voxel of
Maximum Searchlight Sphere

Americans English 0.566 0.622 48, 40, 50
Farsi 0.575 0.624 48, 39, 50
Mandarin 0.579 0.637 44, 40, 54

Iranians English 0.565 0.623 68, 26, 47
Farsi 0.549 0.605 48, 33, 48
Mandarin 0.553 0.607 67, 26, 47

Chinese English 0.562 0.622 71, 29, 51
Farsi 0.55 0.608 70, 26, 55
Mandarin 0.552 0.611 67, 22, 53

Coordinates are in X,Y,Z MNI space.
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information over time. To grasp the meaning of a story we
must continually stitch together individual words, link
events with their causes, and remember what came before
to build a holistic understanding. While some aspects of
semantic integration appear to happen very quickly
[Christiansen and Chater, 2016; Hagoort et al., 2004], there
is evidence that the DMN is involved in a process that
unfolds over longer time scales [Hasson et al., 2015; Honey
et al., 2016; Lerner et al., 2011]. The relatively slow fluctua-
tions found in the DMN [Zou et al., 2008] may therefore
relate to a semantic integration process that extends over
long time windows such as those required to understand
a story. This is consistent with fMRI data showing that
shared stimulus-locked activity in the DMN increases as
longer segments of a story remain intact [Lerner et al.,
2011; Simony et al., 2016], and with evidence that there are
shared patterns of activity in the DMN across participants
when describing scenes from an audiovisual story [Chen
et al., 2017]. The DMN has a profile of anatomical and
functional connectivity [Heuvel and van den Sporns, 2013]
that situates it to participate in the process of abstracting
across information from a diversity of neural systems, and
it may function as a very high-level convergence and
divergence zone [Fernandino et al., 2015; Kaplan et al.,
2016]. In this hierarchical model of neural architecture, the
DMN can be activated by, and in turn is able to reactivate,
multiple lower-level brain systems that represent informa-
tion in more explicit, mapped formats [Meyer and Dama-
sio, 2009]. Such properties may be instrumental to the
DMN’s apparent role in constructing meaning that tran-
scends the specifics of the language in which information
is presented.

While previous work has investigated cross-linguistic
decoding, it has focused on translating semantic represen-
tations of individual words [Buchweitz et al., 2012;
Correia et al., 2014, 2015; Zinszer et al., 2016] rather than
higher-level semantic constructs. Most recently, Zinszer
et al. [2016] showed that neuro-semantic representations of
words are preserved across both individuals and lan-
guages by translating English words into their Chinese
counterparts using brain activation of independent groups
of native English and Chinese speakers. Notably, other
work has examined modal [Regev et al., 2013; Wilson
et al., 2008] and linguistic [Honey et al., 2012] representa-
tional invariance in narrative processing, however these
studies have not investigated whether neural representa-
tions of story-level features can be decoded. Thus, while
Honey et al. [2012] found that a set of regions showed
similar activation patterns among both English and
Russian-speaking participants who listened to time-
matched recordings of the same narrative, the invariance
of story-level representations has not previously been
addressed.

Accordingly, while this research collectively makes a
strong case for the cross-linguistic invariance of word-level
semantic representation and suggests that invariance

might exist for higher-level narrative constructs, the fidel-
ity with which this higher-level representational invariance
holds for higher-level semantic constructs has been less
certain. In contrast, by recording participant responses to
multiple narratives, we were able to explore not only
cross-linguistic invariance, but also test whether fMRI data
during story reading contained sufficient information for
identifying which narrative the activity corresponded to.
Once we learned the relationship between the neural maps
and the story representations, we were able to predict the
representation of the left-out stories based just on fMRI
activity data. Our inter-language results do not appear to
be easily explained by relationships between the story vec-
tors across languages, given that vectors for a given story
were not correlated with each other across languages.
Even though the inter-language vectors are very likely cor-
related in a higher order, given that we are using linear
regression, the higher order correlations cannot be picked
up by our model. Therefore, our inter-language decoding
results cannot be due to the fact that the story vectors
across the different languages are highly similar, but that
there is considerable overlap in the neuro-semantic repre-
sentation of the stories across the languages.

To our knowledge, this research is the first to demon-
strate within and cross-linguistic neural decoding of entire
narrative sequences. By conducting cross-language decod-
ing, we were able to functionally control for low-level, lan-
guage-specific semantic constructs. If the accuracies of the
within-language story predictions were contingent on the
variation of specific lexical or syntactic features captured
in the story representations, a substantial drop in accuracy
should have been observed in the cross-language predic-
tions. However, the accuracies of the within- and between-
language predictions were comparable, which indicates
that these predictions exploited systematic encodings of
story-level elements that transcended the idiosyncratic
lexical and syntactic features of individual languages.

Overall, our research is an attempt to demonstrate that
abstracted beyond the level of independent concepts and
language units, the brain seems to systematically encode
high-level narrative elements. Further, despite the remark-
able variety of human language, the combination of a
shared cognitive architecture and overlapping socio-
cultural experiences produces a remarkable cross-language
consistency not only in the words and concepts that we
use, but also in the narratives that we construct. Our
results indicate that this similarity is echoed in the neuro-
semantic representation of narrative-level information.
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