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Abstract: Temporal and spatial filtering of fMRI data is often used to improve statistical power. However,
conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure
in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may
increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that
fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method
based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts
the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity
patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands.
Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data
dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replace-
ment to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline.

Contract grant sponsor: National Institutes of Health (to A.Z.S.);
Contract grant number: P30 NS098577; Contract grant sponsor:
University of Rome Foro Italico (to to S.P.); Contract grant num-
ber: RIC112014; Contract grant sponsor: NSF (to A.N.); Contract
grant number: CCF-0963742; Contract grant sponsor: Paola dei
Mansi Fellowship (to F.S.).

Francesca Strappini and Elad Gilboa contributed equally to this
work.
Correction added on 12 December 2016 after first online
publication.

*Correspondence to: Francesca Strappini, Neurobiology
Department, Weizmann Institute of Science, Herzl St 234,
7610001 Rehovot, Israel. E-mail: francescastrappini@gmail.com

Received for publication 22 March 2016; Revised 21 October 2016;
Accepted 1 November 2016.

DOI: 10.1002/hbm.23464
Published online 10 December 2016 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 38:1438–1459 (2017) r

VC 2016 Wiley Periodicals, Inc.



We present simulated and experimental results that show the increased sensitivity and specificity compared
to conventional smoothing strategies. Hum Brain Mapp 38:1438–1459, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The high spatial resolution of functional magnetic reso-
nance imaging (fMRI) allows studying activity patterns on
a millimeter scale. However, fMRI data is corrupted by
structured and unstructured noise from multiple sources,
which degrades the sensitivity of statistical tests. Accord-
ingly, fMRI preprocessing commonly includes spatial
smoothing to improve the signal-to-noise ratio (SNR) of
the data. Spatial smoothing involves applying a low-pass
spatial filter to remove high spatial frequency components.
This approach is based on the assumption, formalized in
the matched filter theorem, that neural responses are
intrinsically smooth [Calhoun et al., 2001; Malonek et al.,
1997]. Under this assumption, spatial smoothing allows for
optimal detection of neural signals embedded in white
noise [Hartvig, 2000]. Moreover, because of imperfect spa-
tial registration, spatial filtering may increase the SNR in
studies that combine data across individuals. Spatial
smoothing also is a crucial step in using Gaussian random
field theory to assess the statistical significance of observed
responses [Worsley et al., 1992]. However, a major
disadvantage of spatial smoothing is unavoidable inexact
correspondence between the filter specification and the
activation extent, with consequent loss of spatial resolu-
tion. This approach inherently carries tradeoff between
sensitivity versus spatial specificity [Bernal-Rusiel et al.,
2010; Friston et al., 1996; Kamitani and Sawahata, 2010;
Kruggel et al., 1999; Op de Beeck, 2010; Worsley et al.,
1996]. In the context of fMRI, sensitivity is defined as
the ability to detect neural responses across different
experimental conditions. Specificity is the ability to
accurately identify the response locus, that is, to exclude
inactive regions. Under-smoothing retains fine response
details (high specificity) but retains noise (low sensitivity).
Over-smoothing reduces noise (high sensitivity) but blurs
the fine response details (low specificity). It is important to
recognize that sensitivity and specificity are distinct met-
rics; hence it is theoretically, possible to simultaneously
optimize both.

Conventional smoothing is implemented by computing,
at each voxel, a locally weighted average, where the
weights decrease with distance. The weight-distance
function commonly is modeled as a fixed Gaussian kernel,
typically having a full width at half maximum (FWHM) of
3–10 mm [Lazar, 2008; Penny and Trujillo-Barreto, 2007].
Gaussian kernel smoothing is simple and computational
efficient. However, the disadvantage of fixed-width spatial

smoothing is inability to accommodate variable granularity
of activation profiles (i.e., changes in the smoothness of the
neural signal) or level of voxel noise. Thus, fixed-width spa-
tial smoothing necessarily involves a tradeoff between
increased sensitivity and spatial specificity [Brezger et al.,
2007; Smith and Fahrmeir, 2007; Tabelow et al., 2006; Yue
et al., 2010].

Several methods have been suggested to improve the
sensitivity/specificity tradeoff using more complex
adaptive smoothing methods [Lindquist and Wager, 2008;
Lindquist et al., 2006; Poline and Mazoyer, 1994; Shafie
et al., 2003, Van De Ville et al., 2006, Worsley et al., 1996].
All these methods adaptively select an informative input
(informative neighbors) to improve accuracy. Some
methods adopt a statistical approach, adapting the local
smoothing level according to the degree of uncertainty in
the data, thereby accounting for spatially varying noise.
Other methods extend the general linear model (GLM) by
the addition of smoothness priors on the regression
parameters [Bowman et al., 2008; G€ossl et al., 2001; Harri-
son et al., 2007; Penny and Trujillo-Barreto, 2007; Penny
et al., 2005; Yue et al., 2010]. These strategies represent an
advance over traditional fixed-width smoothing but are
not drop-in preprocessing solutions as they necessitate
task-specific knowledge. Furthermore, these methods often
depend on difficult modeling choices such as knowing the
functional shape of a canonical neural response or the
structure and priors of a Bayesian model. Another draw-
back of these statistical methods is that they often result in
complicated posterior distributions that require approxi-
mation techniques such as Markov-Chain Monte-Carlo
(MCMC), variational Bayes inference, and so forth.

Here, we propose to use of Gaussian process (GP)
regression-based methods for a drop-in replacement to
conventional preprocessing spatial smoothing and tempo-
ral filtering methods. GP regression is a nonparametric
Bayesian method that has received much attention in the
machine learning literature [Rasmussen and Williams,
2006]. The GP method is straightforward and theoretically
well grounded. In the fMRI context, GP adaptively
smooths fMRI data by the mutual learning of the local
spatiotemporal characteristics of neural responses and the
noise level on a per voxel basis. GP uses this information
to vary the degree of smoothing at each voxel.

Although, conceptually attractive, GP use in fMRI data
analysis heretofore has been limited by burdensome scal-
ing properties. Naively solving GP inference is limited to
datasets with only a few thousand data points [Rasmussen
and Williams, 2006]. In a standard fMRI experiment, the
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number of data points (voxels 3 volumes) can easily reach
hundreds of thousands, if not millions, rendering GP analy-
sis impractical. Recent advances in GP methodology have
enabled a substantial acceleration of GP computations in
application to data possessing a grid data structure [Gilboa,
2013]. This condition applies very naturally to fMRI data,
which lie on a four dimensional grid (three spatial dimen-
sions 3 time). Recent extensions include the ability to pro-
cess incomplete grid data, to account for heteroscedastic
noise [Gilboa et al., 2015], and to utilize expressive kernels
[Wilson et al., 2014]. These developments make GP, for the
first time, an attractive spatiotemporal model for single sub-
ject fMRI data analysis. Here, we demonstrate the efficiency
of GP regression using simulated as well as real data. We
compare adaptive GP smoothing to conventional volume-
based smoothing using two performance metrics, sensitivity
and specificity, in conditions of low and high noise. Finally,
we present a comparison between GP smoothing, volume
and surface-based smoothing on real retinotopic data. We
demonstrate that GP analysis increases the extent over
which polar angle and field sign maps are reliable. We also
show that GP smoothing preserves more information in
fMRI responses, thereby improving the identification of dis-
tinct stimuli.

MATERIALS AND METHODS

In this section, we provide a short introduction to GP
regression and its use in fMRI denoising. We first present
the naive GP implementation followed by our extensions
that enable application to fMRI data.

GP Regression

In GP regression, a prior distribution over continuous
functions is modeled as a GP [Rasmussen and Williams,
2006]. In the context of fMRI, the continuous functions rep-
resent the spatiotemporal BOLD response with an input
space X 5 R5 5 (x,y,z,t,r), where x,y,z are the spatial coordi-
nates and t is the temporal index and r is the run index,
and a scalar output f (X) 5 R which in fMRI corresponds to
the BOLD response.

The assumption that the data come from a GP distribu-
tion means that, for any finite set of voxels, x1; . . . ; xN 2 X,
their associated BOLD response outputs will be distributed
according to a multivariate Gaussian density pðf1ðx1Þ; . . . ;
fNðxNÞÞ5NðmN;KNÞ, where mN5mðx1; . . . ; xNÞ is a mean
vector and KN5kðxi; xj; uÞi;j is the associated covariance
matrix. Since it is always possible to zero-center a dataset,
the common practice in GP is to remove the sample mean
and, without loss of generality, set the mean function
mN5mðx1; . . . ; xNÞ5 0. Hence, the multivariate distribution
can be entirely represented using the covariance function
KN5kðxi; xj; uÞi;j. The covariance function defines the near-
ness or similarity between data points [Rasmussen and
Williams, 2006]. Similarity is often function of distance,

which decreases as the distance increases. Intuitively, this
means that nearby voxels are more likely to be correlated,
both in space and time. The choice of covariance function
determines the smoothness degree and structure of GP
inference. Not every function is a valid covariance func-
tion: A valid covariance function must meet strict condi-
tions. In particular, for every sample of data points, it
must produce a semipositive definite covariance matrix.

The literature offers several possibilities corresponding to
different prior assumptions about the data [see Rasmussen
and Williams, 2006 for complete details]. By far, the most
commonly used families of covariance functions are the
squared exponential family, Mat�ern family, rational qua-
dratic family, and so forth. The main choice when using GP
is which family of covariance functions kðxi; xj; uÞi;j to use.
This choice is important since each family of covariance
functions allows for different smoothness properties and,
consequently, a different posterior distribution. Once the
family of covariance functions kðxi; xj; uÞi;j is chosen, an opti-
mization method is used to fit its free parameters h to the
fMRI data. Solving this problem with naive GP is straight-
forward. The following section illustrates this principle with
fMRI data.

Naive GP

Assume we have N voxels x1; . . . ; xN 2 X, where each
voxel is a vector of the 3D spatial location, aggregated
over time and runs xi5ðx; y; z; t; rÞ. Assuming we chose to
use the kðxi; xj; uÞi;j covariance function. Then, for any pair
of voxels, the xi; xj the value of the covariance function k
ðxi; xj; uÞi;j will be a function of h. By aggregating all the
covariance function values to a matrix, where the index i
corresponds to row, and the index j corresponds to col-
umn, we can construct the covariance matrix KN5k
ðxi; xj; uÞi;j which is of size N 3 N. Since the underlying
assumption of GP is that the data come from a multivari-
ate Gaussian distribution, we can use the simple form of
the conditional multivariate Gaussian distribution to com-
pute the inference. Namely, given a multivariate Gaussian
distribution (using standard notation in GP literature)
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If the values of f2 in Eq. (1) represent the observed noisy
BOLD response and f1 are the unknown smooth response,
for statistical inference, we need to compute the conditional
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Equation (2) represents the inference of values on f2 given
the values of f1, while Eq. (3) represents the inference

r Strappini et al. r

r 1440 r



uncertainty [Rasmussen and Williams, 2006]. Hence, using
the GP notations introduced above, to find the smoothed
value of a single point

mi5l xið Þ5KiN KN1DNð Þ21f ; (4)

where the observed neural response vector f 5 f x1ð Þ;ð
f x2ð Þ; . . . ; f xNð ÞÞ, and the vector KiN5 k xi;; x1; u

� �
; k xi;ð

�
x2; uÞ; . . . ; k xi; xN; uð ÞÞ. The covariance matrix is defined as
KN5kðxi; xj; uÞi;j, and DN is a diagonal noise matrix with
the variance of the observation noise s2nj for each voxel xj,
which is assumed to be Gaussian.

Note that if the covariance function parameters h and
the voxel noise levels DN are known, solving Eq. (4)
involves straightforward linear algebra operations. To
solve the model selection problem, which corresponds to
finding the optimal values for the h parameters of the
covariance matrix (commonly referred to as the hyperpara-
meters) it is common to optimize the log marginal likeli-
hood Z(h) with respect to h [see Rasmussen and Williams,
2006 for thorough citations]:

u�5arg max ulog Z uð Þ
5arg max u 0:5 fT KN1DNð Þ21f1log jKN1DNj1Nlog 2pð Þ

� �� �
(5)

Equation (5) is composed of two main components. The
fT KN1DNð Þ21f term is a data-fit component, which
increases in value as as the GP model better fits the data.
The log jKN1DNj term is a complexity penalty which
increases in value as the GP model becomes simpler.

Equation (5) represents a tradeoff between underfitting
and overfitting the model.

The voxel noise level often is unknown; hence, the s2
nj val-

ues must also be optimized in Eq. (5). Although, GP is a
powerful and straightforward inference method, application
to fMRI formerly was impractical because of runtime and
memory demands. Naively solving GP requires operations

such as KN1DNð Þ21 and log jKN1DNj which necessitate

O N3
� �

runtime operations and O N2
� �

storage. This means

that naive GP is restricted to problems of only a few thou-
sand data points. Additional complications with naive GP
include that the choice of appropriate covariance matrix is
difficult, the noise level of each voxel is unknown, and
stationarity must be assumed. Next, we describe our novel
approach for utilizing GP for smoothing fMRI data, which
overcomes the naive GP complexities and requires less
restrictive assumptions.

GP Methods for fMRI Data

Our GP-based method for fMRI analysis is composed of
two independent procedures that can serve as drop-in
replacements for temporal and spatial smoothing in a stan-
dard fMRI pipeline. These procedures are drift removal
and adaptive smoothing (Fig. 1).

In GP-based Temporal Drift Removal, GP is applied to
model the temporal drift over each run (Fig. 1, Step 1: drift
removal). Temporal drift is modeled over the entire brain
independently at each voxel and run. The raw fMRI data
then can be decomposed into the noisy time course, which

Figure 1.

Methodological sketch of GP-based adaptive smoothing. GP-

based processing is composed of two steps: drift removal and

statistical smoothing. Unlike classical preprocessing methods, the

GP smoother uses a model-based statistical approach that jointly

learns the smoothing filter and adapts the smoothing level with

respect to the local voxel noise. After denoising, the fMRI data

can be input to further statistical modeling (such as a GLM) or

used directly for testing (e.g., with multivariate analysis). [Color

figure can be viewed at wileyonlinelibrary.com]
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contains the neural response (noisy tc), and the temporal
drift time course which can be discarded. After removal of
the modeled temporal drift, the multiple runs are reas-
sembled into a single 5D data structure, indexed by dimen-
sions: spatial (x, y, z), temporal, and run. Figure 3 presents
temporal drifts captured with GP on real fMRI data, show-
ing a 1=f characteristic.

The next step is the GP-based adaptive smoothing,
where a locally stationary GP is used to adaptively smooth
the drift-removed fMRI data (Fig. 1, Step 2: adaptive
smoothing). The GP procedure models the data using a
multidimensional kernel composed of one-dimensional
kernels for each dimension (see Model Selection for further
details). The method jointly learns the kernels parameters
(hyperparameters) and the per voxel noise levels. Figure 1,
Step 2, shows the adaptive nature of the method, where
the same GP smoother was used to denoise the five noisy
time courses. For each time course, the level of smoothing
depends on the estimated noise level. The results of
GP smoothing are shown as the smooth tc box; the noise
components are shown at the bottom.

The input is multiple runs of 5D fMRI data following
slice timing correction and compensation for head motion.
Jointly analyzing over the 5D data structure confers three
benefits. First, GP learns the neural response and noise
characteristics simultaneously across space, time and run.
Second, it avoids edge effects in the temporal dimension
that would result if the runs were concatenated. Finally, in
cases where all the runs use the same task paradigm, GP
can capture responses that manifest similarly across runs.
We emphasize that the GP method is flexible; the user can
specifically avoid smoothing over a particular dimension,
for example, run, as appropriate (see Discussion for
further details).

However, to use GP with fMRI data, it is necessary to
deal with the following limitation of naive GP:

Tractability

To utilize GP methodology with fMRI data, the first step
is to reduce the O(N3) computational complexity. We
achieve this by using a recent advance which take advan-
tage of the inherit Kronecker product structure of covari-
ance matrices that result when the input data lie on a
multidimensional grid. Gilboa et al. [2015] shows how the
Kronecker product structure can reduce the runtime and
memory demands to O N3

� �
and further extend the meth-

od to include the ability to process incomplete grid data,
to account for heteroscedastic noise. As mentioned previ-
ously, the condition for grid input data fits well with fMRI
data, where each voxel can be indexed by its three spatial
dimensions 3 time 3 run.

Model selection

Next, we reduce model selection complexity by defining
a separable covariance function in each dimension to be

learned from the data. In the three spatial dimensions, we
model the correlation function as squared exponential (SE)
[Rasmussen and Williams, 2006], which is a standard and
commonly used correlation function and closely relates to
the commonly used Gaussian convolution kernel. The SE
function is an unnormalized Gaussian has two free parame-
ters (hyperparameters): the length scale (which corresponds
to the fixed-width length of the Gaussian convolution ker-
nel) determines the distance of the local interactions, and the
output variance, which determines the strength of these
local interactions.

To model temporal correlation, we use the spectral
mixture product (SMP) kernel. The spectral mixture (SM)
kernel was first introduced in Wilson et al. [2014] as

kSM s5x2x’ð Þ5
XA

a51

w2
aexp f22p2s2r2

agcos 2pslað Þ (6)

where fla;r
2
a ;w

2
ag

A
a51 are the hyperparameters spectral

mixture kernel. This was later extended to multidimen-
sional input in Wilson et al. [2014], where a product is cal-
culated over the individual SM kernels of each dimension

kSMP sjuð Þ5
YP

p51

kSM spjup

� �
: (7)

Equation (7) represents a product of kernels, introduced in
Rasmussen and Williams [2006]. It simply means is that
we multiply the dimensions of the multidimensional ker-
nel together. This is common practice for extending a one-
dimensional kernel to higher dimensions.

The expressivity of the SMP kernel allows it to learn
from the data the complex temporal processes that depend
on the experimental design and vary across the brain. To
model the correlation between runs, we again use the SE
kernel. The SE kernel was chosen again for its simplicity,
since there is prior reason to assume a complicated corre-
lation structure between runs. The noise at each voxel is
modeled as Gaussian white noise [Wink and Roerdink,
2006].

Local stationarity

Another problem with the commonly used covariance
function is the implicit assumption of spatial stationarity.
Although, it is possible to assume stationarity and use our
GP method over the entire brain, a better assumption is of
local stationarity, meaning that local fMRI responses have
common characteristics, which is what distinguishes them
from uncorrelated noise. To take advantage of this
assumption, we parcellate the fMRI data in each run to 5
3 5 equally sized nonoverlapping spatial blocks (the tem-
poral and run dimensions are not parcellated) and 4 3 4
blocks in the cross sections of the first blocks. This results
in spatially overlapping parcellated spatial blocks of data
where we perform GP analysis and denoising separately.
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The strength of this parcellation technique is simplicity
and the avoidance of strong assumptions. With GP, there
are no artifacts near the borders of each block, which com-
monly appear with other filtering methods. Prior to addi-
tional analyses (such as GLM), the denoised blocks are
joined together, averaging overlapping areas. Additional
details are given in the methodological details section.
Averaging of voxels from overlapping blocks is a common
unbiased method for combining estimated quantities.

GP on Simulated and Real Data

Simulated data

We use simulated signals to demonstrate the adaptive
ability of GP regression with respect to both the response
pattern and the local noise level. Although, improvement
in simulated data does not guarantee improvements in a
real complex neural signal, it does allow for a methodolog-
ical way to compare the results of the smoothers with
respects to the two dominant properties of the data: the
local noise level and signal pattern complexity. It is easy
to show that, even under these simple conditions, the GP
smoother achieves both high SNR and high fidelity as
compared to conventional smoothers.

For simplicity, we consider a single spatial dimension
corresponding to 30 neighboring voxels. To generate the
simulated patterns we randomly sampled time courses
with different frequency components. The complexity of
the rugged time courses that results from multiple high
frequency signals makes it much harder for the smoothing
filters to separate signal from noise. To model additive
noise, we generated white Gaussian noise using low vari-
ance r2 5 1/20 and high variance r2 5 1/4 in proportion to
the maximum signal value. The simulations were run 20
times. Two performance metrics were evaluated. Sensitivi-
ty was computed as the signal to signal-plus-noise ratio
(SSNR).

SSNR 5
f 2

f 21s2
n

(8)

where f represents the uncorrupted signal, (which is
known, since it is simulated) and s represents the noise
energy used to corrupt the signal. SSNR is equivalent to
the more commonly used SNR (ratio between the uncor-
rupted signal variance and the noise variance). Because it
is normalized, SSNR allows for easier comparison between
the different activity patterns. SSNR is simply a measure
of signal to noise ratio normalized to lie between 0 and 1.
This is beneficial when comparing between graphs since
all the figures use the same axis limits. There is a one- to-
one and onto relationship between SSNR and SNR, mean-
ing that they convey the same information. The relation-
ship is SNR 5 SSNR/(1-SSNR) or SSNR 5 SNR/(SNR 1 1).

SSNR was calculated by running the smoother on the
signal and noise separately and then calculating the ratio.

Specificity was evaluated using the fidelity metric, com-
puted as the Pearson correlation between the true response
profile (prior to the addition of noise) and the result after
smoothing. An ideal smoother would reduce the noise
without corrupting the signal. Thus, an ideal smoother
would yield SSNR 5 1 and fidelity 5 1.

Real data: Stimuli and experimental setup

The presently analyzed fMRI data were acquired during
the course of an experiment primarily designed to mea-
sure the effect of gaze direction on retinotopic responses
and are fully stated in [Strappini et al., 2015]. Data were
acquired in six healthy adults with normal or corrected-to-
normal visual acuity (mean age 27 years, range 26–31, 1
female), and with no past history of psychiatric or neuro-
logical disease. All subjects had extensive experience in
psychophysical and fMRI experiments and were paid for
their participation. We mapped responses to polar angle
(measured from the contralateral horizontal meridian
around the center of gaze) and eccentricity (distance from
the center-of-gaze) using standard phase encoded retino-
topic stimuli [Sereno et al., 1995]. The stimuli were pre-
sented using a wide-field display [Pitzalis et al., 2006] and
consisted of high contrast light/dark colored checks flick-
ering in counter phase at 8 Hz in either a counter-
clockwise rotating wedge or a ring configuration (polar
angle and eccentricity mapping, respectively) extending
up to 100 degrees of visual angle. The eccentricity ring
expanded linearly with a uniform velocity of 1 degree/s.
The average luminance of the stimuli was 105 cd/m2. The
duration of one complete polar angle or eccentricity cycle
was 64 s; 8 cycles were presented during each fMRI run.
During retinotopic mapping, subjects were required to
maintain fixation on a central cross. Each stimulus 240
type was repeated over multiple (typically 4) fMRI runs.

Imaging Parameters

The fMRI experiments were conducted at the Santa
Lucia Foundation (Rome, Italy) using a 3T Allegra scanner
(Siemens Medical Systems, Erlangen, Germany). Single
shot echo-planar imaging (EPI) images were acquired with
interleaved slice ordering using a standard transmit-
receive birdcage head coil. For the wide-field retinotopic
mapping, 30 slices (2.5 mm thick, no gap, in-plane resolu-
tion 3 3 3 mm) were acquired perpendicular to the calcar-
ine sulcus. Each participant underwent four consecutive
scans (two polar angle and two eccentricity). To increase
the signal to noise ratio, data were averaged over two
scans for each stimulus type (eccentricity and polar angle).
These wide-field retinotopic data were used for the field
sign mapping results displayed in Figure 7.

Additionally, 4 fMRI runs of polar angle data were
acquired with thicker slices (3.5 mm) oriented approximately
parallel to the anterior–posterior commissural plane. These
data were used for multivoxel pattern analysis (MVPA) and
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also for polar angle analysis (results shown in Fig. 6). All runs
included 256 single-shot EPI volumes [repetition time (TR),
2,000 ms; echo time (TE) 30 ms, flip angle 708, 64 3 64 matrix;
bandwidth 2,298 Hz/pixel; FOV 192 3 192 mm]. Overall,
8 fMRI runs were obtained in each of the six subjects (4 runs
of retinotopy plus 4 runs polar angle) over two separate days.

The cortical surface of each subject was reconstructed from
three structural scans consisting in sagittally acquired T1-
weighted (MPRAGE, Magnetization Prepared Rapid Gradi-
ent Echo) sequence, TI 5 910 ms, TE 5 4.38 ms, flip angle 5 88,
256 3 256 3 176 matrix, 1 mm cubic voxels, bandwidth 5 130
Hz/pixel). Three long MPRAGE scans were used for the
reconstruction of the surface and one short MPRAGE scan
was used for the registration of the functional data. At the
end of each session, an MPRAGE alignment scan was
acquired parallel to the plane of the functional scans. The
alignment scan was used to establish an initial registration of
the functional data with the brain surface. Additional affine
transformations that included a small amount of shear were
then applied to the functional scans using blink comparison
with the structural images to achieve an exact overlay of the
functional data onto each cortical surface.

Data Analyses

Anatomical image processing

FreeSurfer was used to reconstruct the cortical surface
[Dale et al., 1999; Fischl, 2012] for purposes of visualization
only. (No surface analysis was done with GP.) Briefly, the
three high-resolution structural images obtained from each
subject were manually registered and averaged. The skull
was stripped off by expanding a stiff deformable template
out to the dura, the gray/white matter boundary was estimat-
ed with a region-growing method, and the result was tessel-
lated to generate a surface that was refined against the MRI
data with a deformable template algorithm. By choosing a
surface near the gray/white matter border (rather than near
the pial surface, where the macrovascular artifact is maximal),
we were able to assign activations more accurately to the
correct bank of a sulcus. The surface was then unfolded by
reducing curvature while minimizing distortion in all other
local metric properties. Each hemisphere was then completely
flattened using five relaxation cuts: one cut along the calcar-
ine fissure, three equally spaced radial cuts on the medial sur-
face, and one sagittal cut around the temporal lobe.

GP processing

First, GP regression was used to preprocess the phase-
encoded BOLD fMRI retinotopy dataset as described in
details below. Then, we analyzed these processed data
using both a MVPA and a standard fast fourier transform
(FFT) analysis typically used with retinotopic mapping.
Data were also smoothed in the volume and in the surface
for comparison with GP regression.

First step: Drift removal. Unlike simulated data, real
fMRI data is corrupted by low temporal frequency artifact
(drift) that can account for a significant fraction of
observed signal variance, depending on locus. Hence,
removal of this artifact is a crucial first step. However,
accurate modeling of the drift is challenging owing to its
complex behavior and heterogeneity. Parametric methods,
such as the GLM, cannot reliably separate drift from signal
because of uncertain model specification. As a nonpara-
metric Bayesian regression framework, GP allows for great
flexibility in modeling the drift. GP modeling learns the
drift structure from the fMRI data at each voxel.

Second step: GP adaptive smoothing. Following drift
removal, GP is used again to learn the structures of the
signal and the noise at each voxel. To make GP regression
feasible in the context of fMRI, it is necessary to divide the
analysis into spatially overlapping blocks (see Methods
section).

Volume and surface-based smoothing

For the volume-based smoothing, we applied to polar
angle and eccentricity data, before Fourier analysis, a 3D
Gaussian kernel of 3 mm FWHM using an in-house code.

For the surface-based smoothing we applied to polar
angle and field sign data, after Fourier analysis, a various
amount of smoothing, (from 3.20 up to 5.90 mm FWHM),
by averaging the values of adjacent vertices, with an itera-
tive algorithm implemented in UCSD/UCL FreeSurfer
[Hagler et al., 2006]. It has been shown, that this method is
computationally more simple and efficient than the itera-
tive smoothing based on diffusion model [Hagler et al.,
2006].

Fourier analysis of retinotopic signals

To further assess the power of the GP regression, retino-
topic responses were also analyzed using UCSD/UCL
FreeSurfer [Dale et al., 1999] based on standard procedures
described in detail in many previous publications [e.g.,
Pitzalis et al., 2006, 2010, 2013; Strappini et al., 2015]. The
first (premagnetization steady-state) 4 volumes were dis-
carded. Motion correction and cross-scan alignment were
performed using AFNI (Analysis of Functional NeuroI-
mages) 3dvolreg (3T data). Phase-encoded retinotopic data
were analyzed by voxelwise Fourier transforming the fMRI
time series (after removing constant and linear terms).

Statistical significance of BOLD signal modulations at
the stimulus frequency (eight cycles per scan) was com-
puted as the squared Fourier amplitude divided by the
summed mean squared amplitude (power) at all other fre-
quencies, which includes noise. Since this analysis does
not take into account fMRI time series autocorrelation
[Zarahn et al., 1997], these P-values are properly regarded
as descriptive. The second harmonic of the stimulus fre-
quency and very low frequencies (1 and 2 cycles per scan,
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residual motion artifacts) were ignored. Response phase at
the stimulus frequency was used to map retinotopic coor-
dinates (polar angle or eccentricity). In these maps, hue
represents phase and saturation represents a sigmoid func-
tion of the response amplitude. The sigmoid function was
arranged so that visibly saturated colors begin to emerge
from the gray background at a threshold of P< 1022.
Computed significance at the most activated cortical sur-
face loci ranged from P< 1025 to 10210. Boundaries of reti-
notopic cortical areas were defined on the cortical surface
for each individual on the basis of phase-encoded wide
field retinotopy [DeYoe et al., 1994, 1996; Engel et al., 1997;
Sereno et al., 1995] and subsequent calculation of visual
field sign, which provides an objective means of drawing
borders between areas based on the angle between the
gradients (directions of fastest rate of change) in the polar
angle and eccentricity with respect to the cortical surface
[Sereno et al., 1994, 1995]. Each field sign map used here
was based on at least four scans (two scans for polar angle
and two scans for eccentricity). Details concerning proce-
dures used to define retinotopic regions of interest are giv-
en in [Strappini et al., 2015]

Multivoxel pattern analysis

We trained a linear discriminant analysis (LDA) classifi-
er to discriminate between two wedge stimuli presented at
two different polar angles within the right upper quadrant
(illustrated at the bottom of Fig. 5a). Each wedge was rep-
resented as the activity profile captured at the peak of its
response. The classification was performed with both a
searchlight and regions-of-interest (ROIs) approach [Krie-
geskorte et al., 2006]. For the searchlight analysis a sphere,
12 mm of diameter centered on each voxel, performed the
local classification that yielded an accuracy value for each
voxel. Classifier performance was evaluated using data
processed with drift removal (“drift removal only”), after
GP processing, and data smoothed using a fixed 3D 3 mm
FWHM Gaussian kernel. For the ROIs analysis we used
multivoxel datasets extracted from retinotopically orga-
nized parts of visual cortex, as defined by the visual field
map (see section above). The classification was performed
on all the voxels contained in the region and yielded one
accuracy value for each region. Classifier performance was
evaluated using data processed with drift removal (“drift
removal only”) and after GP processing. The LDA experi-
ment was organized as a leave-one-out cross-validation
design with 11 fMRI runs used for training and one run
used for testing. GP processing was applied independently
to each fMRI run.

RESULTS

GP on Simulated Data

Figure 2 shows a comparison, using simulated data, of
adaptive smoothing using GP versus fixed-width Gaussian

smoothing. The critical parameters are the smoothness of
the underlying response pattern and the noise level. Rela-
tively smooth versus finely structured (“rugged”) response
profiles (i.e., the true simulated signal labeled “True”) are
modeled, respectively, on the left and right of the figure
(blue traces at the top of Fig. 2). Simulations with low ver-
sus high additive noise are shown in the lower portion of
the figure. The black circles correspond to the observed
data (True signal corrupted by noise).

Inspection of the SSNR box plots of the simulated
results in the low noise condition (both for the smooth
and ragged patterns) shows that all the smoothing meth-
ods improve the SSNR, meaning that the smoothed pattern
is closer to the true pattern. Comparison of the 3 mm
fixed-width smoother to the 6 mm provides a good repre-
sentation of the tradeoff between using a tight smoothing
kernel, which allows for better representation of the fine
details, and a wide smoothing kernel, which further
reduces the effect of the high frequency noise.

This tradeoff can be observed by inspection of the
results of the 6 mm fixed-width smoother, where improve-
ment in the SSNR metric results in corruption of signal
fidelity. Another major disadvantage of fixed-width
smoothers is their inability to adapt to the noise levels. In
contrast, when the noise level is low, GP uses a weak
smoother to avoid corrupting the signal. If the noise level
is high, GP uses a strong smoother to reduce the noise. If
the response pattern is smooth, GP increases the width of
the local smoothing kernel. If the response pattern is finely
structured, GP decreases the width of the local smoothing
kernel. In summary, the simulated data demonstrate the
efficiency of GP regression in terms of its adaptation to the
original response pattern and the local noise level. Hence,
GP is able to achieve both high SNR and high fidelity.

GP on Real fMRI Data

Here, we assessed the power of GP smoothing to pre-
serve information in fMRI responses reflecting the identity
of distinct stimuli. The goal of the following sections is to
show that, by performing adaptive GP smoothing on
phase-encoded BOLD fMRI retinotopic data (described in
Methods section), it is possible to improve the results of
both common multivariate and FFT analyses.

First step: drift removal

Figure 3a illustrates GP learned drifts (after mean signal
removal) at nine neighboring voxels from one representa-
tive rotating wedge fMRI run. Inspection of these results
reveals the high-intensity, nonlinear nature of the drift
components. The effect of drift can best be observed in the
temporal frequency domain. Figure 3b shows the spectra
at a single voxel of the raw data, learned drift, and the
data after drift removal. High amplitudes of low frequen-
cies in the raw fMRI data (blue) correspond to the drift
components. GP models and remove the drift (green)
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while preserving high frequency components (red), for
example, the 1/64 Hz component corresponding to the
period of the rotating wedge. The raw data spectrum
shows no clear separation between the drift artifact and
the neural response frequency component. The drift
learned by GP had spectral components extending well
into the signal frequency band. Thus, a fixed high pass fil-
ter would not remove all of the drift as presently
modeled.

Drift artifact is notable for its spatial heterogeneity. Fig-
ure 3c shows a map of the standard deviation of the drift
component. Voxels showing the greatest quantity of drift
appear mostly at the edge of the brain, suggesting that
this artifact arises either in the CSF or in meningeal blood
vessels. The spectral content of learned drift appears to be

stable across fMRI runs. Spectra representing a single
voxel over four runs are shown in Figure 3d.

Second step: GP adaptive smoothing

Learned correlations for each of the data dimensions are
shown in Figure 4a. Three interesting observations follow.
First, the learned spatial correlations (in the x, y, and z direc-
tions) were characterized by a FWHM of 5–9 mm. This range
is consistent with previous estimations (3–10 mm FWHM) of
fMRI response point-spread functions [Lazar, 2008]. Second,
the expressive SMP kernel learned meaningful correlation
functions that varied throughout the brain. This result is
consistent with the understanding that different regions
have a different response to the stimuli. Finally, GP modeled

Figure 2.

Smoothing comparison of simulated data. The figure shows

results for combinations of two conditions—original smoothness

level of the true data (first row) and the amount of added white

noise (second and third row). For each of the two true patterns,

we simulated multiple noisy observations. We compared the GP

smoothing results to 3 mm and 6 mm FWHM Gaussian

smoothers, and to the unsmoothed data (Observed). On the

right of each of the plots, we added summary statistics for each

smoother. The metrics used are signal to signal plus noise

(SSNR) and fidelity (see text for further details). [Color figure

can be viewed at wileyonlinelibrary.com]
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practically no smoothing over the run dimension. The lack
of smoothing across runs suggests that the fMRI response
meaningfully varied over time. Potential neural or physio-
logical factors that account for this result include fatigue and
habituation [Arieli et al., 1996].

Figure 4 illustrates the main idea underlying local noise-
dependent spatial smoothing. Stated simply: leave alone
voxels with low noise and strongly smooth voxels with high
noise. The learned noise at each voxel is shown in Figure 4b
for a subset of voxels (subset indicated by the inset in panel
a). The initial noise estimate at each voxel was computed as
the variance of the residuals after removing the mean
response (sample mean over all the data inside the region).
As can be seen in Figure 4b, the learned noise frequently
was lower than the initial estimate. This important result
reflects the fact that the initial estimate fails to take into

account spatial dependencies of the response, leading to
overestimation of the noise. Figure 4c,d, illustrate the time
courses corresponding to the voxels shown in Figure 4b,
before (after drift removal only) and after applying GP. Each
plot represents the mean response averaged across eight
stimulus cycles. Time courses corresponding to four runs
are superimposed and color-coded in red, green, blue, and
cyan. The mean across the four runs is shown as a thicker
blue line. The gray envelope about the mean shows the stan-
dard deviation across the 32 cycles (8 cycle/run 3 4 runs).
As is evident in panels c and d, the effect of GP smoothing
varied significantly across voxels. Voxels with low signal
and low noise (blue outline) as well as voxels with high sig-
nal and low noise (yellow outline) were minimally changed
by GP smoothing. Conversely, voxels with high noise (red
outline) were substantially changed by GP smoothing.

Figure 3.

This figure illustrates ultra-low temporal frequency noise (drift).

(a) Shows the GP learned drifts (after mean removal) from nine

neighboring voxels. (b) Illustrates the spectral contents of a sin-

gle voxel’s raw data, learned drift, and the data after drift

removal. (c) Shows the standard deviation of the drift in each

voxel across a slice of brain. (d) Shows the spectral components

of the learned drift for the same voxel over four different runs.

[Color figure can be viewed at wileyonlinelibrary.com]

r Adaptive Smoothing Based on Gaussian Processes Regression r

r 1447 r

http://wileyonlinelibrary.com


Multivoxel-Pattern Analysis

We start by examining the results of the searchlight
method [Kriegeskorte et al., 2006], which assesses the abili-
ty of local multivoxel regions to discriminate between
stimuli (see Methods section). Figure 5a illustrates the clas-
sification accuracies observed in four axial slices. Compari-
son of the of the searchlight results obtained with the
unsmoothed data to the results obtained using GP process-
ing shows that GP processing improved classification
accuracy while preserving the topography of regions with

high classification accuracy. These regions correspond to
the several distinct, multiple representation of the upper
visual field [Sereno et al., 1995]. In comparison, smoothing
using a 3D 3 mm FWHM Gaussian kernel blurred the
topography of high-accuracy regions (third row of Fig. 5a).
Such loss of spatial specificity is a recognized feature of
standard smoothing methods [Fransson et al., 2002; Kami-
tani and Sawahata, 2010; Lazar, 2008].

For a more detailed comparison, we show, in Figure 5b,
the accuracy probability distribution of the voxels in several
retinotopically organized regions. Specifically, we

Figure 4.

Results of the GP statistical smoother for real fMRI data. (a) Shows

the learned correlations for the five dimensions. The figure also

shows a 2D representation of the block of image data that was used

in the analysis (the block is actually 3D). (b) Shows the learned noise

for each voxel in the block. The gray shaded background of each plot

corresponds to the anatomical T1-weighted gray scale from a. (c)

Shows the per-trial representation of each voxel. The trial mean is

shown in bold blue and the gray envelope shows the trial-to-trial vari-

ance. Fig. 4) shows for the same data as in (c) after GP smoothing.

The colored outlines represent three cases: voxels with high signal

and low noise (yellow), voxels with low signal and low noise (blue),

and voxels with high noise (red).). [Color figure can be viewed at

wileyonlinelibrary.com]
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considered in the left and right hemisphere three ventral
areas representing the upper visual field (V1 ventral, V2
ventral and VP) and three dorsal areas representing the
lower visual field (V1 dorsal, V2 dorsal and V3). The ana-
tomical position of these 12 regions is shown in the bottom
inset of Figure 5b. The ventral regions located in the left
contralateral hemisphere are expected to best differentiate
between the two right upper wedges. For each region, we
plotted the accuracy distribution (over voxels) for the
searchlight using the drift removal only (red), and the GP
smoothed data (blue). Note that, as expected, we found the
highest (around 100%) searchlight accuracies of both drift
removal only and GP smoothed data in the ventral areas of
the left hemisphere (second column). Moreover, comparing
pre- and post-GP data in the other areas, Figure 5b shows
that, while searchlight accuracies of drift removal only data
were proximal to 50% (chance level), the GP smoothed data

were shifted toward higher values, indicating enhanced
preservation of information reflecting the identity of the
stimuli.

Retinotopic Mapping

Retinotopic mapping is commonly used to define the
boundaries of early visual areas (e.g., V1, V2, V3, V3A,
VP, V4v) [McKeefry et al.,1997; Sereno et al., 1995; Tootell
and Hadjikhani, 2001; Tootell et al., 1995, 1997; Watson
et al., 1993]. Although, surface-based smoothing of retino-
topic data is usually applied to retinotopic maps for a bet-
ter visualization and intersubject registration, volume-
based smoothing is avoided to preserve specificity of fMRI
responses, on which retinotopic mapping critically
depends. In fact, it has been shown that surface smoothing
is a powerful tool to increase the SNR of BOLD signal

Figure 5.

Comparison of searchlight results for smoothed and

unsmoothed data. (a) Shows classification accuracy results of

four axial brain slices. The classification was performed between

two wedge stimuli presented at two different polar angles within

the right upper quadrant shown in the bottom left. The top row

results are for data after drift removal only (no smoothing), the

middle and bottom rows show results for GP and 3 mm FWHM

(3 3 3 3 3 mm Gaussian smoother in volume space) smoothed

data, respectively. (b) shows the accuracy distributions for 12

retinotopic dorsal and ventral early visual areas. Pink and blue

labels refer to data after drift removal only (no smoothing) and

post GP smoothing, respectively. Purple label refers to the

overlap zone between the two conditions. The corresponding

anatomical locations of these visual areas on an inflated recon-

struction of the left (LH) and right (RH) hemisphere of one par-

ticipant are shown in the bottom right. The cortical surface was

defined at the gray–white matter border and was inflated to

reveal regions within the sulci (concavities, dark gray) as well as

on the gyri (convexities, light gray). [Color figure can be viewed

at wileyonlinelibrary.com]
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while preserving the topological distribution of the activa-
tion [Andrade et al., 2001; Hagler et al., 2006]. This proper-
ty depends on the spatial correlation structure that is
based on geodesic rather than Euclidean distances [Chung
et al., 2005]. Here, we show that GP smoothing, in combi-
nation with surface smoothing, enhances the signal to
noise ratio of retinotopic maps while preserving response
specificity.

To examine whether increasing the amount of surface
smoothing might improve retinotopic results, we first var-
ied the level of iterative smoothing on the surface (Fig. 6).
This procedure was aimed to choosing the best 2D surface
smoothing value to apply to additional maps. In the left
panel (blue box) of Figure 6, an inflated and flattened rep-
resentation of the left hemisphere (LH) of a representative
subject indicates the position of the posterior end of the
intraparietal sulcus (pIPs,), the posterior occipital sulcus
(POs), the calcarine sulcus, the fusiform gyrus, and the
superior temporal sulcus (STSs). The red box, superim-
posed on the inflated and flattened brain, shows which
portion of the surface is shown in the other panels and in
Figures 7–9. Each map shows a color plot of the response
of one participant to the rotating wedge stimulus (polar
angle), displayed on flat close-ups. Color hue indicates
response phase, which is proportional to the polar angle
of the local visual field representation. Only voxels with a
response significance exceeding a threshold of P< 0.001
are color-coded. Polar angle retinotopic maps were
obtained with five different levels of iterative surface
smoothing [Hagler et al., 2006] that is, no smoothing (first
raw, right panel), 10 steps 3.20 mm FWHM surface
smoothing (second raw, left panel), 20 steps 4.49 mm
FWHM surface smoothing (second raw, right panel), 30
steps 5.36 mm FWHM surface smoothing (third raw, left
panel), 50 steps 6.99 mm FWHM surface smoothing (third
raw, right panel). In particular, we focused our observa-
tions on two regions shown in the close-ups (white boxes),
that is, left intraparietal sulcus (IPS0/IPS1, in correspon-
dence of area V7) and left V8/VO1 (located on the collat-
eral sulcus). Since both regions represent the entire
contralateral hemifield (upper-horizontal meridian-lower),
the phase transition across neighboring voxels is more
subtle and susceptible to distortion. Thus, these two
regions are suitable for testing smoothing-related reduc-
tion and/or distortion in map specificity. We observed a
substantial decrease in the extent of the maps, in both V7
(IPS0/IPS1) and V8/VO1, with increasing levels of spatial
smoothing. Previous fMRI studies found several retino-
topic maps of the contralateral visual hemifield along the
intraparietal sulcus (IPS) starting from V7 (also called
IPS0), to IPS1, IPS2, IPS3, and IPS4 [Schluppeck et al.,
2005; Sereno et al., 2001; Silver; Swisher et al., 2007]. Note
that only the unsmoothed condition and the first level of
tested smoothing (10 steps) show evidence of retinotopy in
the IPS0/IPS1 close-up. These retinotopic signals are not
robust enough to show the multiple phase reversals cited

in previous studies [Schluppeck et al., 2005; Sereno et al.,
2001; Silver et al., 2005; Swisher et al., 2007]. Overall, a visual
inspection of maps reveals that about 3 mm ffi 10 steps of
iterative surface smoothing represents a good tradeoff
between sensitivity and specificity. This value corresponds
to the default surface smoothing value implemented in Free-
Surfer [e.g., Hagler et al., 2006]. Consequently, we applied
this amount of surface smoothing to all the maps shown in
the following figures.

Next, we compared polar angle maps obtained by 2D
surface smoothing (at the best-selected smoothing value)
and GP smoothing. Figure 7 shows the retinotopic maps
obtained with 3.20 mm FWHM (10 steps) 2D kernel sur-
face smoothing (first row) and GP smoothing (second
row). Retinotopy of polar angle representation are ren-
dered on flattened, and inflated reconstructions of the left
(LH) and right (RH) hemisphere of one participant. Only
voxels with a response significance exceeding a threshold
of P< 0.001 are color-coded. As in Figures 5 and 7 illus-
trates that GP smoothing improved the extent of voxels
exhibiting significant retinotopy. The improvement of the
GP smoothing is particularly evident in those regions
shown in the four close-ups, that is, left and right IPS0/
IPS1 (located on the posterior intraparietal sulcus), left
V8/VO1 (located on the collateral sulcus), right LOC/LO2
(located on the lateral occipital region). GP-smoothing
yielded more complete retinotopic maps as compared to
surface smoothing. Indeed, in all these four regions, the
retinotopic maps were more robust and more extended,
revealing also the presence of additional visual field repre-
sentations. Note that polar angle data shown in Figures
6–8 were acquired using a wide-field setup (able to stimu-
late the entire visual field up to 110 degrees in total visual
extent) a methodological refinement to reveal retinotopic
maps in higher order visual areas with large receptive
fields [e.g., Pitzalis et al., 2006, see also Discussion]. In the
first panel (surface smoothing), the fMRI signal in some
higher order areas (indicated by the close-ups) is absent or
weak. It is impressive how the GP smoothing (second
panel) reveals retinotopic maps signal in these regions. For
example, visual area V7, located in the pIPS, is known to
contain a complete representation of the contralateral
hemifield [e.g., Press et al., 2001] which is revealed only
by GP processing (second panel), while the first panel
(drift removal only 2D Surface smoothing) shows an
incomplete retinotopic map in this region, specifically,
only the representation of the upper (red) visual field (as
already shown in Fig. 6). Note how in the IPS0/IPS1 close-
up (GP smoothing, bottom row) it is now visible the phase
transition of the phase-encoded signal indicating the pres-
ence of multiple maps anterior to V7/IPS0 as found in
previous studies [Schluppeck et al., 2005; Sereno et al.,
2001; Silver et al., 2005; Swisher et al., 2007].

A similarly impressive result was found in area V8/VO1
[e.g., Brewer et al., 2005; Hadjikhani et al., 1998] located in
the fusiform close-up. This ventral area represents the entire
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Figure 6.

Iterative surface smoothing of polar angle data. In the first raw

left panel, an inflated and flattened representation of the left

hemisphere (LH) of a representative subject indicating the posi-

tion of the posterior end of the intraparietal sulcus (pIPs,), the

posterior occipital sulcus (POs), the calcarine sulcus, the fusi-

form gyrus, and the superior temporal sulcus (STSs). The red

box superimposed to the inflated and flattened brain shows

which portion of the surface was shown in the other panels and

in Figures 7–9. Polar angle retinotopic maps were obtained with

five different levels of iterative surface smoothing [Hagler et al.,

2006], that is, unsmoothed with trend removal only (first raw

right panel), 10 smoothing steps (second raw left panel), 20

smoothing steps (second raw right panel), 30 smoothing steps

(third raw left panel), 50 smooothing steps (third raw right pan-

el). Color hue indicates the response phase, which is propor-

tional to the polar angle of the local field representation. Red,

blue, and green areas represent preference for upper, middle,

and lower parts of the contralateral visual field, respectively. On

the flat maps, white lines indicate borders betwee the reinotopic

visual areas (i.e., vertical and horizontal meridians). The same

significance threshold was used for all maps. RVF, Right visual

field; LVF, Left visual field. [Color figure can be viewed at

wileyonlinelibrary.com]
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contralateral hemifield with the typical dorsally located low-
er visual field representation [green; Hadjikhani et al., 1998]
visible only in the GP panel. Note how the green (lower) and
the blue (horizontal meridian) phases in the left hemisphere
are completely canceled out using the surface smoothing
only shown on the top row (and in Fig. 6).

Next, we compared two possible combined smoothing sol-
utions. Specifically, we combined the 2D surface smoothing
(at the best selected value, step 10) with either the traditional
volumetric smoothing or the proposed GP smoothing. The
rationale of this approach was to compare a well-established
method in brain mapping studies using surface-based statis-
tics (i.e., surface smoothing combined with volumetric
smoothing) with an alternative method (i.e., surface smooth-
ing combined with an adaptive smoothing method based on

GPs regression). Figure 8 shows the polar angle maps
obtained combining the surface smoothing with GP smooth-
ing (first row), and standard 3 mm FWHM Gaussian smooth-
ing performed in the volume space (second row). GP-
smoothing yielded more complete retinotopic maps as com-
pared to the 3 mm FWHM smoother. Moreover, the two
methods produced quite different topological distribution of
response phase. For example, in V8/VO1 with 3 mm FWHM
smoothing, the upper representation of the visual field spread
over the area that represents the middle and lower portions
of the visual field. For ease of comparison, we traced a yellow
border around the polar angle maps obtained combing the
surface smoothing with GP (Fig. 8, top row) and replicated
these yellow contours on the polar angle maps shown in the
other figures (6–8). Results provided evidence in favor of the

Figure 7.

Surface smoothing versus GP smoothing. Retinotopy of polar

angle representation on flattened, and inflated reconstructions

of the left (LH) and right (RH) hemisphere of one participant.

Polar angle retinototopic maps were obtained with two prepro-

cessing variations: iterative surface smoothing 3.20 mm FWHM

(first raw) and GP processing (second raw). Color hue indicates

the response phase, which is proportional to the polar angle of

the local field representation. Red, blue, and green areas repre-

sent preference for upper, middle, and lower parts of the con-

tralateral visual field, respectively. On the flat maps, white lines

indicate borders betwee the reinotopic visual areas (i.e., vertical

and horizontal meridians). The same significance threshold was

used for all maps. RVF, Right visual field; LVF, Left visual field.

[Color figure can be viewed at wileyonlinelibrary.com]
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best preservation of the BOLD signal topography provided
by the GP method combined with surface smoothing. More-
over, these results show that the proposed GP smoothing
method, in combination with the 2D surface smoothing,
might represent a viable preprocessing strategy for single
subjects fMRI experiments.

Figure 9 shows visual field sign maps (yellow, mirror
image of visual field; blue, non mirror image of visual
field) calculated from the maps of polar angle and eccen-
tricity from the same subject shown in Figs. 6–8 [Sereno
et al., 1995]. Cortical surface representations are as in Fig.

6. Improved field sign mapping afforded by GP smoothing
is particularly evident in two close-ups, that is, in left V8/
VO1 and in right V6 and V6Av, two medial retinotopic
dorsal areas located on the parietooccipital sulcus (Pos)
recently revealed by Pitzalis et al. [2006, 2013]. GP process-
ing expanded the extent of the field sign maps. This
expansion is evident comparing the field sign maps
obtained by 2D surface smoothing only (top) vs. two pos-
sible combined smoothing solutions, that is 2D surface
smoothing with either the proposed GP smoothing (mid-
dle) or the traditional volumetric 3D smoothing (bottom).

Figure 8.

GP smoothing 1 2D smoothing versus 3D smoothing 1 2D

smoothing. Retinotopy of polar angle representation on flat-

tened, and inflated reconstructions of the left (LH) and right

(RH) hemisphere of one participant. Polar angle retinototopic

maps were obtained with two preprocessing variations: GP

processing combined with iterative surface smoothing 3.20 mm

FWHM (first raw) and 3D smoothing 3 mm FWHM combined

with iterative surface smoothing 3.20 mm FWHM (second raw).

Color hue indicates the response phase, which is proportional

to the polar angle of the local field representation. Red, blue,

and green areas represent preference for upper, middle, and

lower parts of the contralateral visual field, respectively. On the

flat maps, white lines indicate borders between the reinotopic

visual areas (i.e., vertical and horizontal meridians). The same

significance threshold was used for all maps. RVF, Right visual

field; LVF, Left visual field. [Color figure can be viewed at

wileyonlinelibrary.com]
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Particularly impressive are the field sign maps in the higher
order visual areas V6 and V6Av (Figure 9, right hemi-
sphere). Note, in the first row, absent field sign assignments
(yellow/blue tiles). Note also, in the bottom row, inaccurate
field sign assignments, where both V6 and V6Av are yel-
low. Only the combined 2D surface smoothing with GP
smoothing (middle) revealed the correct field signs in V6
and V6Av, as determined by Pitzalis et al. [2006, 2013]. As
well, only the GP smoothing maps (combined with 2D

smoothing) revealed the typical ‘blue bridge’ that separates
V6 from the V3, as documented in Pitzalis et al. [2006,
2013]. At the same time, the field sign maps obtained using
the GP smoothing (combined with surface smoothing) gen-
erally agree, suggesting that GP processing did not distort
the retinotopic information. In contrast, the field sign maps
obtained using the 3mm FWHM smoothing (in combination
with 2D surface smoothing, lower panel) led to the compu-
tation of distorted results.

Figure 9.

Maps of retinotopic field sign in occipital areas. Analysis of retino-

topic data (polar angle and eccentricity) by visual field sign (mirror-

image versus nonmirror-image visual field representation) [Sereno

et al., 1995]. Mirror-image areas (yellow; e.g., V1), and nonmirror-

image areas (blue; e.g., V2) are shown in the left (LH) and (RH)

inflated and flattened hemispheres of one participant. This figure

shows field sign maps obtained using different smoothing: 2D sur-

face smoothing only (top), 2D surface smoothing combined with

GP smoothing (middle), 2D surface smoothing combined with the

traditional volumetric 3D smoothing (bottom). The same signifi-

cance threshold was used for all maps. Other labels as in Figure 6.

[Color figure can be viewed at wileyonlinelibrary.com]
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DISCUSSION

In all scientific fields, observed data are subject to contami-
nation by artifacts. In fMRI, structured and unstructured
noise from multiple sources may decrease the sensitivity of
statistical tests. In the context of task-fMRI, intrinsic neural
activity may be greatest source of correlated noise [Purdon
and Weisskoff, 1998]. Techniques for suppression of correlat-
ed noise include GLM denoise [Kay et al., 2013], and selective
removal of artifactual spatial independent components [Jen-
kinson et al., 2012; Mckeown et al., 2003; Robinson and
Sch€opf, 2013]. See Power et al. [2014, methods section] for a
comprehensive review of resting state noise sources. Howev-
er, it must be mentioned that sensitivity and specificity, as
well as geometric distortion, have been improved also
through recent developments in MR systems, pulse sequen-
ces, reconstruction methods to minimize geometric distortion
and the use of prior anatomical knowledge to specify models
for fMRI time series [Ben-Eliezer et al., 2012; Kiebel et al.,
2000; Polimeni et al., 2010; Todd et al., 2016; Zeng and Consta-
ble, 2002; Zaitsev et al., 2004].

Uncorrelated (thermal) noise is generated primarily by
scanner electronics and is present inversely in proportion
to acquisition voxel volume [Triantafyllou et al., 2005].
Historically, the principal strategy for suppression of
uncorrelated noise has been spatial smoothing. The charac-
teristic spatial scale of BOLD neural responses typically is
broader than fMRI voxels. Therefore, spatial smoothing
improves the signal to noise ratio (SNR) of fMRI according
the matched filter principle. Conventional smoothing is
implemented by computing, at each voxel, a locally
weighted average, where the weights decrease with dis-
tance. The weight-distance function commonly is modeled
as a fixed 3D Gaussian kernel, typically having a full
width at half maximum (FWHM) of 3–10 mm [Lazar,
2008; Penny and Trujillo-Barreto, 2007]. However, fMRI
responses characteristically extend over the cortical surface
on a cm scale while remaining largely confined to the
uppermost layers [Harel et al., 2006]. This response geome-
try is not well matched to 3D smoothing. It has been shown
that improved S/N can be obtained by geodesic smoothing
(i.e., smoothing tangential to the cortical surface) [Andrade
et al., 2001; Anticevic et al., 2008; Chung et al., 2005]. How-
ever, even geodesic smoothing, which provides better spe-
cificity than volume-based smoothing [Hagler et al., 2006; Jo
et al., 2007], if it is of fixed width, does not optimally
accommodate arbitrary response topographies or take into
account wide variability in extent of fMRI responses over
the cortical surface. Hence, fixed-width spatial smoothing
(either 3D or geodesic) cannot achieve locally optimal filter
matching everywhere. Therefore, the tradeoff between noise
suppression and spatial specificity can be optimized only
globally [Brezger et al., 2007; Smith and Fahrmeir, 2007;
Tabelow et al., 2006; Yue et al., 2010].

Adaptive smoothing strategies overcome this limitation
by adjusting the blurring kernel according to the estimat-
ed local S/N ratio [Lindquist and Wager, 2008; Lindquist

et al., 2006; Poline and Tabelow, 1994; Shafie et al., 2003;
Van De Ville et al., 2006; Worsley et al., 1996]. Here, we
demonstrate a particular strategy for adaptive smoothing
based on GP regression. The core idea behind GP is esti-
mating the magnitude of local uncorrelated noise and
then adapting the level of smoothing on a per voxel
basis.

The GP method is highly data-driven, which reduces
vulnerability to prior, sometimes arbitrary, assumptions
[Lazar, 2008]. For example, it does not requires specifica-
tion of the experimental design (e.g., a design matrix) or
complex model design that is common in other methods
that account for the whole inference process [Bowman
et al., 2008; Harrison et al., 2007; Penny and Trujillo-
Barreto, 2007; Yue et al., 2010].

These simplifications represent advantages for the prac-
titioner. Our methods may be used as a black-box drop-in
replacement for conventional preprocessing steps.

Our method is composed of two preprocessing steps.
First, infra-slow signal drifts are removed, followed by
locally adaptive spatial smoothing. Here, we demonstrate
the advantages of our GP-based method using both simu-
lations (Fig. 2) and experimental results (Figs. 4–9). The
drift removal stage often is more dominant since the noise
energy is at a much higher scale and appears to be a high-
ly effective means of eliminating punctuate sources of arti-
fact, possibly generated by pulsating blood vessels (Fig. 3).
Improvements at each step should be compared separately
to conventional denoising methods. This is a subject of
future research.

GP and Retinotopic Maps

Here, we applied the GP-based smoothing also on real
data. Retinotopic phase-encoded data are not “standard”
event-related or block-design. The main difference is in
the meaning and the importance of the spatial specificity
in retinotopy. Briefly, “retinotopic mapping” is a proce-
dure for mapping the visual world onto the surface of the
human brain [e.g., DeYoe et al., 1996; McKeefry and Zeki,
1997; Sereno and Tootell, 2005; Sereno et al., 1995; Tootell
and Hadjikhani, 2001; Tootell et al., 1997; Watson et al.,
1993]. Phase-encoded retinotopy involves moving a pat-
terned stimulus slowly through the field of view of the
subject. Because different parts of the visual field are stim-
ulated at different times, the timing of the response
recorded at a given locus in the gray matter indicates the
field location represented by neurons in that region. We
apply a FFT at the single voxel level to extract the phase
and the amplitude at the stimulus frequency. The phase
indicates which part of the visual field is represented at
each voxel. We expect to find a systematically progression
of the phase (latency) as we move from one voxel to the
next. Using this method, we know that location is mapped
onto the cortex in an orderly manner, with characteristic
reversals at boundaries between visual areas. This
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technique allows the visual cortex to be mapped with a
precision unmatched elsewhere in the human brain, com-
parable to that achievable in animals using invasive tech-
niques. Thus, retinotopy critically depends on the
specificity of fMRI responses. In contrast, in block design
paradigms, the expectation is to find a large group of acti-
vated voxel with the same phase and, hence, less depen-
dence on spatial specificity. This is why spatial smoothing
of retinotopy data generally is avoided and why standard,
fixed-width spatial smoothing is a poor preprocessing
choice. Here, we show that GP, being a “Smart” Smoother,
preserves high the spatial specificity of retinotopic fMRI
signals, unlike conventional smoothing.

The GP method is able also to increase the signal specific-
ity in higher visual areas, such as parietal regions located
along the dorso-lateral intraparietal sulcus (IPs) and the
medial parieto-occipital sulcus (POs). GP revealed some reti-
notopic areas that were totally missed with other data analy-
sis techniques (e.g., V6 and V6A, [Pitzalis et al., 2006, 2013,
2015; Tosoni et al., 2014, see results section]. Retinotopic
mapping in higher order visual areas (i.e., parietal, tempo-
ral, and frontal) has historically been challenging. Indeed,
the precision of the retinotopic mapping falls rapidly
beyond the third and fourth visual complexes [e.g., for
review, see Sereno, 1998; Sereno and Tootell, 2005], partly
because of deterioration of the orderliness of the representa-
tion of space and partly because neurons become increasing-
ly less responsive to simple patterns. For these reasons,
standard retinotopic mapping stimuli, which requires no
peripheral attention, have proved less useful in higher visu-
al areas. However, Sereno and coworkers further showed
how topography can be demonstrated beyond the conven-
tional occipital areas by manipulating the subjects’ attention
and the visual stimuli features [Hagler and Sereno, 2006;
Saygin and Sereno, 2008; Sereno and Huang, 2006]. Notwith-
standing the use of such methodological refinements, retino-
topic mapping of higher areas is still a hard task, requires
expert subjects and repeated acquisition scans. A notably
implication of the GP method is its capacity to increase the
signal specificity in the retinotopic maps of higher visual
areas, such as the parietal regions located along the dorso-
lateral intraparietal sulcus and medial parieto-occipital sul-
cus. In this respect, the GP can be considered another meth-
odological refinement that, routinely combined with the
other aforementioned methods, like surface-based smooth-
ing, could increase the resolution power of the retinotopic
mapping in higher order visual areas.

Finally, this method presents high localization accuracy in
single subject activation maps. This development has impor-
tant implications. GP regression could represent an impor-
tant pre-processing step for “decoding” fMRI approaches,
that is, those approaches attempting to determine “how
much can be learned about the world . . . by observing
activity” [Naselaris et al., 2011]. Moreover, the single subject
approach is important not only to take into account the indi-
vidual differences (extremely important in vision mapping

given that visual areas are like finger prints, different from
one subject to the next) but also in clinical diagnosis or in
presurgical functional evaluation where no multi-session or
multisubject data exist.

CONCLUSIONS

GP smoothing offers a powerful, yet easy-to-use, adaptive
smoothing tool. GP regression represent a theoretically rig-
orous framework in which the smoothing filter structure is
learned from the data. GP smoothing allows jointly model-
ing over space and time, thereby better utilizing spatiotem-
poral dependence. We show that GP smoothing preserves
more information in fMRI responses concerning the identity
of stimuli and expands the extent of voxels showing signifi-
cant retinotopy while conserving spatial specificity. Improv-
ing the signal to noise ratio of fMRI data theoretically
permits shorter scanning times, more comprehensive experi-
mental designs, less need for expert knowledge and manual
adjustment of parameters, and acquisitions with higher spa-
tial and temporal resolution. Finally, our GP methods can be
used as a black-box drop-in preprocessing tool for single
subject fMRI experiments: it is compatible with and can be
combined with other denoising techniques and surface-
smoothing. Although, it is beyond the scope of this work,
future considerations include comparing our approach with
other multiresolution approaches such as the SPM toolboxes
[Penny and Trujillo-Barreto, 2007; Penny et al., 2005], ICA
[Hu et al., 2005], and other resampling techniques such as
Bullmore et al., [2001]. The GP code is available at https://
github.com/ejg20/fmri_gp.
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