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Abstract: Network analysis is increasingly advancing the field of neuroimaging. Neural networks are
generally constructed from pairwise interactions with an assumption of linear relations between them.
Here, a high-order statistical framework to calculate directed functional connectivity among multiple
regions, using wavelet analysis and spectral coherence has been presented. The mathematical expres-
sion for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (non-
linear), or disconnected network. Phase delays between regions were used to obtain network’s temporal
hierarchy and directionality. The validity of the mathematical derivation along with the effects of
coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto
model. The simulations demonstrated correct directionality for a large range of coupling strength and
low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to
resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor
system and default mode network (DMN). It was shown that the ventral visual system was predomi-
nantly composed of linear networks while the motor system and the DMN were composed of combined
(nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor sys-
tem exhibits center $ out hierarchy and the DMN has dorsal $ ventral and anterior $ posterior organi-
zations. The analysis can be applied in different disciplines such as seismology, or economy and in a
variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open
new horizons in brain research. Hum Brain Mapp 38:1374–1386, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Networks and connectivity have been proven essential
to understand brain organization and function [Park and
Friston, 2013]. MRI data is used to construct structural
(anatomical links), functional and effective connectivity
[Friston, 2011]. The characterization of network connectivi-
ty is usually addressed in terms of the distinction between
functional and effective connectivity. Functional connectiv-
ity refers to statistical dependencies amongst measured
time-series, while effective connectivity rests on an explicit
model of how those dependencies were caused (e.g.,
dynamic causal modeling [Friston et al., 2003] and
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structural equation modeling [McIntosh and Gonzalez-
Lima, 1994]). Within the functional connectivity, there is a
key distinction between directed and undirected functional
connectivity. Simple measures such as correlation and
coherence return undirected measures of statistical cou-
pling, while procedures that appeal to temporal prece-
dence afford inferences about directed functional
connectivity [Friston et al., 2013]. These include Granger
causality [Granger, 1969], transfer entropy, and the proce-
dure introduced here that is based upon significant phase
delays. Our approach is directed by virtue of characteriz-
ing statistical dependencies over time in terms of wavelet
decompositions and systematic differences in phase rela-
tionships. Furthermore, we transcend the normal (linear)
characterization of dependencies to consider high order
moments. This allows us to construct measures of func-
tional connectivity among more than two nodes and
assign an ordinal or hierarchical ranking to the implicit
functional connectivity architecture.

Since BOLD fMRI time-series are generally ergodic (in a
weak sense), time frequency analyses and spectral coher-
ence are appropriate ways to summarize functional con-
nectivity in a compact and efficient fashion. A pair of
time-series is considered coherent if they have a constant
relative phase for a given time and frequency windows.
Here we show that by using wavelet analysis and calculat-
ing connectivity according to spectral coherences, we can
construct networks of multiple time-series (each corre-
sponds to a different region) and provide their directed
functional information. For a given frequency window, the
network’s coherence is defined by phase-relations of all
time-series in the network, namely, a combined coherence.
This is in contrast to networks defined by all possible pair-
wise coherences among network time-series, namely, a lin-

ear coherence. Clearly, given the endogenous variability in
the hemodynamic response function (above and beyond
neuronal latencies) the assumption that the hemodynamic
lag faithfully reproduces temporal precedence at the

Figure 1.

Wavelet time-frequency contour plots of two cortical regions

and the functional connectivity (FC) between them for a single

subject. (A) Amplitude wavelet presentation of left precentral

gyrus. (B) Amplitude wavelet presentation of right precentral

gyrus. (C) Time-frequency plot of the amplitude values of FC

[Eq. (4)] describing the coherence between A and B. (D) Time-

frequency plot of the phase values of the FC in C. (E) Real (in

white) and imaginary (in red) components of the FC averged

over time with the y-axis indicating the intensity [Eq. (5)]. The

complex FC value averged over time and frequency was

(0.93,0.0) and the Pearson’s correlation coefficient was 0.90.

[Color figure can be viewed at wileyonlinelibrary.com]
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neuronal level is tenuous. However, we will make this

simplifying assumption to demonstrate the potential use-

fulness of our measures. Crucially, the analysis described

below can be applied to electrophysiological and other

imaging modalities that are not confounded by variable

hemodynamic delays. Consequently, assuming that time-

lags of BOLD signals correspond to latencies of informa-

tion flow, BOLD signal phases are used to infer the tempo-

ral hierarchy with no need for other assumptions. Directed

hierarchy (corresponding to directed functional connectivi-

ty) is obtained here by assuming a simple relation (e.g.,

region A, out of the four, precedes region B), with no need

for further statistical models. The mathematical formalism

for 4-region coherence is described and verified by com-

puter simulations including its dependency on coupling

strength and noise level. The method’s validity is demon-

strated on resting-state functional MRI data of 40 young

healthy subjects to characterize the ventral visual system,

motor system and default mode network (DMN). We

aimed to test whether these systems are composed of linear

or combined networks, and whether their temporal hierar-

chy is well-defined. The ventral visual system was selected

as a test system since its hierarchy is well known, the

motor system was selected to test how recurrent connec-

tivity (i.e., the coexistence of bottom-up and top-down

connections) affects the hierarchical architecture, and the

DMN was selected as its hierarchy is not known.

MATHEMATICAL DESCRIPTION

The mathematical description below refers to resting-
state functional MRI but it can be modified to fit other
coupled time-series data in varies disciplines such as seis-
mology, or economy. In neuroscience, it can be used with
stimulus-driven fMRI, electrophysiology, magnetoencepha-
lography (MEG), or electroencephalogram (EEG).

The BOLD Signal

Resting-state fMRI BOLD signal S sð Þ; can be written as a
linear combination of weighted wavelet functions whose
time-frequency (time-scale) span the relevant frequency
range that is defined by the repetition time (TR), number
of time points (N), and filter used:

S sð Þ5
X

x

X
t

hS;wx;ti � wx;t sð Þ5
X

x

X
t

Wx;t � wx;t sð Þ (1)

where<> is the inner product and Wx;t is the wavelet
coefficient of wx;t-the wavelet orthonormal basis:

wx;t sð Þ5 a2x
2w a2xs2tbð Þ (2)

where a> 1, b> 0, x denotes the frequency (with 1
TR�N the

lowest frequency and the highest frequency defined by the
band-pass filter) and t the time (shift).

The complex wavelet coefficients can be written in terms
of their amplitude and phase:

Wx;t5AMP x; tð Þ � exp i# x; tð Þð Þ (3)

where “i” is the imaginary unit.
Figure 1A and 1B show time-frequency maps (spectro-

grams) of AMP x; tð Þ for the BOLD signals of two cortical
regions for a single subject, while their phases (not shown)
fluctuate sharply along time.

Pairwise Functional Connectivity

Functional connectivity (FC) between regions “j1” and
“j2” can be defined by their coherence. Figure 1C presents
the FC between two cortical regions whose coherences are
at the lowest frequency band, as opposed to coherences
between two subcortical regions which are at higher fre-
quencies (Supporting Information Figure 1).

Mathematically, pairwise FC equals:

FCj1 ;j2 x; tð Þ5ðWj1
x;tÞ � ðW

j2
x;tÞ

*
5AMPj1ðx; tÞAMPj2ðx; tÞ

� exp ½i ð#j1 x; tð Þ2#j2 x; tð ÞÞ� � A
j1;j2
x;t � exp iuj1 ;j2

x;t

� � (4)

where * denotes complex conjugate and AMPjðx; tÞ and #j

x; tð Þ are the amplitudes and phases, respectively, of the
BOLD signal wavelet coefficients in Eq. (3). Note that Eq. (4)
is similar to the previously defined cross-wavelet transform
[Chang and Glover, 2010] and to the wavelet transform
coherence [Torrence and Webster, 1999]. Using Fourier
basis-set and assuming stationary signals, FC was earlier
defined by us in a similar way [Goelman et al., Submitted].

Since resting-state data is not time-locked to any particu-
lar event, averaging over time is usually performed at the
last stage resulting with FC that is frequency dependent:

FCj1 ;j2ðxÞ5
X

t

ðW j1
x;tÞ � ðW

j2

x;tÞ
*P

x

P
t jW

j1
x;tj � jW

j2
x;tj

( )

� Aj1 ;j2
x � exp iuj1;j2

x

� � (5)

To obtain a single (complex) FC value, averaging over fre-
quency can also be done, yielding a FC value which is
similar to our previous definition using Fourier space anal-
ysis [Goelman et al., Submitted], and whose real part cor-
responds to the Pearson’s correlation coefficient:

FCj1 ;j2 5
X

x

X
t

ðW j1

x;tÞ � ðW
j2
x;tÞ
�P

x

P
t jW

j1
x;tj � jW

j2
x;tj

( )

� Aj1 ;j2 � exp iuj1;j2
� � (6)

Note that no assumptions of stationary of the BOLD sig-
nals or linearity were used to obtain Eqs. (4)–(6). To ensure
the numeric of the wavelet decomposition render the real
part in Eq. (6) the homologue of Pearson’s correlation

r Goelman and Dan r

r 1376 r



coefficient, we calculated the FC values of Eq. (6) and
Pearson’s correlation coefficients for all pairs of Automat-
ed Anatomical Labeling (AAL) [Tzourio-Mazoyer et al.,
2002] cerebral regions, for all 40 subjects 116�115

2 � 40 pairs
� �

.
The correlation between the real part of the FC values and
Pearson’s correlation coefficients across all pairs was
0.9577 (P value practically zero). On average, the values
obtained by Eq. (6) were higher than Pearson’s correlation
coefficients by 27%.

4-Region Functional Connectivity

Since Eq. (3) for the BOLD signal and Eq. (4) for pair-
wise FC have the same form, W

j1
x;t in Eq. (4) can be

replaced by the FC of two regions [e.g., ðWj1
x;tÞ � ðW

j2
x;tÞ
��

and W
j2

x;t in Eq. (4) by the FC of two other regions [e.g.,
ðWj3

x;tÞ � ðW
j4
x;tÞ
�� and thus to obtain FC of 4 regions (hereaf-

ter “4-region-FC”). There are three independent ways to do
these insertions:

FC1
j1;j2;j3;j4ðx; tÞ5ðW

j1
x;tÞ � ðW

j2
x;tÞ
� � W

j3
x;t

� �
� ðWj4

x;tÞ
�

5
Y4

j51

AMP
j
x;t � exp i #

j1
x;t2#

j2
x;t1#

j3
x;t2#

j4
x;t

� �h in o
5
Y4

j51

AMP
j
x;t�eiua

FC2
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j1
x;tÞ � ðW

j2
x;tÞ � ðW
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x;tÞ
� � ðWj4

x;tÞ
�

5
Y4

j51
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j
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x;t1#

j2
x;t2#

j3
x;t2#

j4
x;t

� �h in o
5
Y4

j51
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j
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FC3
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x;tÞ � ðW

j2
x;tÞ
� � ðWj3

x;tÞ
� � ðWj4

x;tÞ

5
Y4

j51
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j
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�
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(7)

The complete expression for 4-region-FC is obtained by
their multiplication:

FCj1;j2;j3;j4 x; tð Þ5FC1
j1;j2;j3;j4 x; tð Þ � FC2

j1;j2;j3;j4 x; tð Þ

� FC3
j1;j2;j3;j4 x; tð Þ5

Y4

j51

AMP
j
x;t � exp iua

x;t

� �
� exp iub

x;t

� �

� exp iuc
x;t

� �
5

jWj1
x;tj � jW

j2
x;tj � jW

j3
x;tj � jW

j14
x;tjP

x

P
t jW

j1
x;tj � jW

j2
x;tj � jW

j3
x;tj � jW

j4
x;tj

� exp iua
x;t

� �
� exp iub

x;t

� �
� exp iuc

x;t

� �
(8)

with

AMP
j
x;t5





 W
j
x;t

� �



P
x

P
t jW

j1
x;tj � jW

j2
x;tj � jW

j3
x;tj � jW

j4
x;tj

(9)

with “j” stands for j1-j4 and

uðx; tÞa5tan21 fimaginary½ðWj1
x;tÞ � ðW

j2
x;tÞ
� � W

j3
x;t

� �

�ðWj4
x;tÞ
��; real½ððWj1

x;tÞ � ðW
j2
x;tÞ
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� �
� ðWj4

x;tÞ
��g
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x;tÞ � ðW
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x;tÞ � ðW

j3
x;tÞ
�

�ðWj4
x;tÞ
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x;tÞ � ðW
j2
x;tÞ � ðW

j3
x;tÞ
� � ðWj4

x;tÞ
��g

uðx; tÞc5tan21 fimaginary½ðWj1
x;tÞ � ðW

j2
x;tÞ
� � ðWj3

x;tÞ
�

�ðWj4
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x;tÞ � ðW
j2
x;tÞ
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x;tÞ
� � ðWj4

x;tÞ�g

(10)

Supporting Information Figure 2 shows an example of 4-
region-FC for four subcortical regions that exhibit FC at an
intermediate frequency range.

Analytical expressions for FC between more than 4
regions along these lines are in principle possible for net-
works of 2n regions (n> 2). Note that averaging across
time and frequency can simplify the 4-region-FC as was
done for pairwise FC [Eqs. (5) and (6)].

Using the Phase to Obtain Directionality

The phase differences between coupled time-series func-
tions correspond to the time-latency between them. For
pairwise FC, we expect to obtain the same FC value
regardless of the order of BOLD signals (which region is
defined as “j1” and “j2”) in Eq. (4). However, interchang-
ing the order results with the complex conjugate of Eq. (4):

FCj1;j2 x; tð Þ5FCj2 ;j1ðx; tÞ
�

or,

uj1;j2

x;t 52uj2 ;j1
x;t

which indicates that the phase in pairwise FC calculation
cannot be used to infer temporal hierarchy and that both
the FC and its complex conjugate have to be included in
the phase calculations. For the 4-region-FC calculation of
Eqs. (7,8), the three independent phase expressions of Eq.
(10) enable to obtain the phases of three BOLD signals
(any three) as a function of the forth:

#j2 x; tð Þ5#j1 x; tð Þ7 uðx; tÞa1uðx; tÞc

2

#j3 x; tð Þ5#j1 x; tð Þ7 uðx; tÞb1uðx; tÞc

2

#j4 x; tð Þ5#j1 x; tð Þ7 uðx; tÞa1uðx; tÞb

2

(11)

where the minus sign [7 in Eq. (11)] results from the deri-
vation of Eqs. (7,8) while the plus sign results from the
derivation of the complex conjugate of Eqs. (7,8). Note that
uðx; tÞa, uðx; tÞb, and uðx; tÞc are defined in Eqs. (7,8)

by the regions’ phases (#j1 x; tð Þ; #j2 x; tð Þ; #j3 x; tð ÞÞ and, in
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Eq. (10) by the wavelet coefficients. Crucially, Eq. (11) can
be used to obtain the temporal hierarchy of the network.
To obtain the directed hierarchy (i.e., whether information
flows from j1 ! j2 ! j3 ! j4 or j1  j2  j3  j4), an
assumption is required. It is sufficient to assume a single
relation such as #j1 < #j2 to obtain the unique phase
expressions for the entire network and thus its directed
hierarchy, i.e., directed functional connectivity.

Linear, Combined, and Disconnected Networks

A network composed of four regions can be constructed
by Eq. (8) (“4-region-FC”) or by using the six possible pair-
wise coherences calculated in Eq. (4) (“joint-pairwise-
coherences”). The phases for a 4-region-FC network are giv-
en by Eq. (11). The phases for a network calculated from
six pairwise coherences are:

#2ðx; t1Þ � #1ðx; t1Þ6rðx; t1Þa
#3 x; t2ð Þ � #1 x; t2ð Þ6rðx; t2Þb
#4ðx; t3Þ � #1ðx; t3Þ6rðx; t3Þc
#2ðx; t4Þ � #3ðx; t4Þ6rðx; t4Þd
#2ðx; t5Þ � #4ðx; t5Þ6rðx; t5Þe
#3ðx; t6Þ � #4ðx; t6Þ6rðx; t6Þf

(12)

where tn is a time period for which the phase difference
between the pairs of BOLD signals is constant for a given
frequency and rðx; tn) is the phase difference during that
time. If both analyses (4-region-FC and joint-pairwise-coher-
ences) result with a significant FC, it implies that Eqs. (11)
and (12) are equal. This means that t15t25t35t45t55t6

and for example rðx; t1Þa5
u x;tð Þa1u x;tð Þc

2 ; or equivalently
that Eq. (12) holds for all times, that is, a dynamically sta-
ble network. Such a network is referred hereafter as a line-
ar network. If only the FC obtained by the 4-region-FC
calculation is significant, the phase-relations given in Eqs.
(7,8) must hold but Eq. (12) is not satisfied. This type of a
network is referred hereafter as a combined network. If
only the joint-pairwise-coherences result with a significant
FC [Eq. (12)], it implies that significant coherences between
different pairs of regions occur at different times, sugges-
ting that the entire network does not work together or that
the regions are functionally connected through higher
coherences between a higher (>4) number of regions. Such
network is referred hereafter as a disconnected network.
Note that this definition differs from the definition used in
graph theory for fragmentation.

COMPUTER SIMULATIONS

Computer simulations were used to test the validity of
the 4-region-FC mathematical expression and to test its
dependency on coupling strength and noise. The Kura-
moto model was used to simulate a coupled oscillator

system with varying coupling strength and noise. This
model was chosen since it is well studied and has been
extensively used including in the field of neuroscience and
specifically in resting-state FC MRI [Cabral et al., 2011].
Denoting by un tð Þ the phase of time-series n at time t, the
coupled oscillators obey the following dynamical equation:

dun

dt
5xn1k

X4

j51

sin uj tð Þ2un t2snj

� �
1en tð Þ

� �
(13)

where k is the global coupling strength; xn is the nth oscil-
lator frequency, en tð Þ is the noise and snj is a delay matrix.
The delay matrix defines the phases of the time-series
functions which can be interpreted as distances [Cabral
et al., 2011] or conduction delays. Four coupled time-series
functions expressed as sin unð Þ; were derived using the
Kuramoto model. These functions were used to generate
4-region-FC networks by Eqs. (7,8) and then to calculate
their phases using Eq. (11). We tested whether these calcu-
lated phases equal the predefined phases (snj) as a function
of the global coupling strength and the noise level.

EXPERIMENTAL METHODS

Computer Simulations

The fourth-order Runge–Kutta method was used to
simulate Eq. (13). The symmetric delay matrix had the
following prechosen phase relations: #j2 2#j1 50:3 rad; #j3 2

#j1 50:8 rad; and #j4 2#j1 51:05 rad. These phases were cho-
sen arbitrarily with the exception that they are similar to
the delays found in resting-state MRI data. The frequen-
cies xnð Þ were derived from a Gaussian distribution cen-
tered at 0.02 Hz with a width of 0.01 Hz. This center
frequency was chosen because it is in the range of the
dominant frequencies in resting-state functional MRI data.
The global coupling strength was varied from 0.5 to 14.
The lower range is the critical coupling strength [Balm-
forth and Sassi, 2000], while the upper corresponds to the
value where the analysis fails. Noise was added for each
time step, as a random variable with zero mean and a nor-
mal distribution of b2=Dt with Dt the time steps [Tesche

and Clake, 1977]. The noise range was 0�
ffiffiffiffi
b2

Dt

q
� 0:22, suf-

ficiently wide considering the basis frequency of 0.02 Hz.
The initial phases were randomized around the unit circle.
6,000 time-steps were used with a time-increment of 0.1
seconds. For each value of the coupling strength and the
noise, the simulations were repeated 100 times. Each simu-
lation resulted with four coupled time-series functions.
Wavelet analysis of these functions was carried out, the 4-
region-FC networks were obtained [Eqs. (7,8)] and their
phases were calculated [Eq. (11)]. The means and standard
errors of the phases were calculated and presented in the
figures. In addition, wavelet analysis of these functions
was used to calculate the phase-differences between pair-

wise coherences (#j2 2#j1 ; #j3 2#j1 ; #j4 2#j1Þ using Eq. (4),
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to compare to the results of the 4-region-FC analysis. To
minimize transient effects, averaging in wavelet space was
performed only on points 2,000–4,000 (20–40 seconds) and
all wavelet frequencies were averaged together. The simula-
tions were performed using custom-developed IDL soft-
ware. The Runge–Kutta algorithm was translated to IDL
from FORTRAN using the code given in Daniels thesis
[Daniels, 2005].

Subjects

We investigated 42 healthy control young subjects (20
women, age: 24.14 6 2.67 years). Subjects were recruited
among students at the Hebrew University of Jerusalem.
Before inclusion, all subjects were clinically interviewed
using the Structured Clinical Interview for DSM-V (SCID-
5) to exclude past or present psychiatric or neurological
disorders. One male subject was excluded due to family
history of schizophrenia and another male subject was
excluded due to anxiety during the MRI scan, which
yielded a final sample of 40 subjects (20 women, age:
24.15 6 2.74 years). The study was approved by the Hadas-
sah Hebrew University Medical Center Ethics Committee.
All participants provided written informed consent prior
to inclusion in the study in compliance with the Declara-
tion of Helsinki.

MRI Data Acquisition

Magnetic resonance images were acquired with a 3T Sie-
mens MR scanner at the Neuroimaging Unit of the
Edmond and Lily Safra Center for Brain Sciences of the
Hebrew University with a 20-channel head coil. Each par-
ticipant underwent 10-minute resting-state functional MRI
during which they were instructed to fixate on a visual
crosshair, remain still and awake. Immediately after the
scan, each participant confirmed not falling asleep. Func-
tional images were acquired using T2*-weighted gradient-
echo echo-planar imaging (GE-EPI) sequence with TR 5 2
sec, TE 5 30 ms, image matrix 5 64 3 64, field of view-
5 192 3 192 mm, flip angle 5 908, resolution 5 3 3 3 3

3 mm, interslice gap 5 0.45 mm. Each brain volume com-
prised 30 axial slices, and each functional run contained
300 image volumes. High resolution anatomical images
were acquired using a sagittal T1-weighted magnetization-
prepared rapid acquisition gradient echo (MP-RAGE)
sequence with TR 5 2,300 ms, TE 5 2.98 ms, inversion
time 5 900 ms, flip angle 5 98, resolution 5 1 3 1 3 1 mm.
The T1-weighted images were acquired for coregistration
and normalization of the functional images.

Functional MRI Data Preprocessing and

Functional Connectivity Analysis

Standard initial preprocessing of functional MRI data
was done using Statistical Parametric Mapping (SPM8,

Wellcome Trust Centre for Neuroimaging, London, United
Kingdom, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8). First, functional images were spatially realigned
using a least squares approach and a six parameter (rigid
body) spatial transformation. Subsequently, functional
images were coregistered to high resolution T1 anatomical
images, normalized to Montreal Neurological Institute
(MNI) space and resampled at an isotropic voxel size of
2 mm. The normalized images were smoothed with an iso-
tropic 8 mm full-width-at-half-maximum Gaussian kernel.
Motion parameter estimates were carefully checked for
each individual separately. Subjects were excluded if head
motion reached voxel size in any direction. Average maxi-
mal displacement for subjects was less than 1 mm. Further
preprocessed was done using CONN toolbox [Whitfield-
Gabrieli and Nieto-Castanon, 2012]. Confounds were
removed by regression, including motion parameters and
the first principal component of CSF and white matter sig-
nals. Regression-out of confounds was done to minimize
effects of potential physiological and non-neuronal signals
such as cardiac and respiratory signals, without the risk of
artificially introducing anticorrelations into the functional
connectivity estimates [Bianciardi et al., 2011; Chai et al.,
2011; Fox et al., 2009; Murphy et al., 2009; Weissenbacher
et al., 2009]. In the next steps, linear detrending, despiking,
and band-pass filtering (0.01–0.2 Hz) were applied. A wid-
er frequency filter than commonly used was intentionally
chosen to test the contribution of higher frequency bands.

Connectivity Analysis

All further calculations were performed with IDL ver-
sion 8.2.0 (Exelis Visual Information Solutions, Inc.) using
custom-developed software. The complex Morlet wavelet
functions were chosen for wavelet analysis since they have
been shown to provide a good trade-off between time and
frequency localization [Muller et al., 2004]. We used 3 for
the smallest scale, 2 for the time resolution and 25 scales
to cover our entire frequency window. Wavelet software
was provided by C. Torrence and G. Compo available at:
http://paos.colorado.edu/research/wavelets [Torrence
and Compo, 1998]. The 25 frequency scales were further
averaged into 5 frequency scales: 0.02–0.03 Hz; 0.03–0.044
Hz; 0.047–0.067 Hz; 0.074–0.1 Hz; and 0.1–0.16 Hz.

Selection of Brain Regions

Seed analysis was carried out using the AAL regions.
For Brodmann areas analysis, masks of Brodmann areas
obtained from the Talairach Daemon atlas were used [Lan-
caster et al., 2000]. To compare our 4-region-FC analysis to
the effective connectivity study of Wu et al. [2014], spheri-
cal regions of interest (ROIs) centered at the coordinates
given by Wu et al. were created using the WFU PickAtlas
toolbox [Maldjian et al., 2003, 2004].
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Statistics

The statistical analysis was done on the amplitude of the
wavelet values [amplitude of Eq. (8-9)]. On these values,
one sample t-tests were used with a statistical significance
threshold of uncorrected voxel-level P< 0.01 and a cluster-
level threshold of 200 voxels. The cluster size was chosen to
set the threshold at P< 0.05, FDR corrected for multiple
comparisons. Phases were presented by their group average
values on voxels with significant amplitudes.

RESULTS

Computer Simulations

Coupled oscillators produced by the Kuramoto model
were used to calculate 4-region-FC networks, their phases
and the phase-differences between their pairwise coher-
ences. The means (over 100 simulation runs) and the stan-
dard error (SE) of #j2 2#j1 and #j3 2#j1 as a function of the
coupling strength and the noise level are shown in Support-
ing Information Figure 3 (A and B for the 4-region-FC and
C and D for the pairwise coherences). Results for #j4 2#j1

were similar (not shown). Correct phases were obtained for
the 4-region-FC calculations for coupling strengths 0:5 � k
� 9:5 for the model without noise and for coupling
strengths 0:5 � k � 8 when noise was added to the model.
The main effect of noise in the 4-region-FC calculations was
to reduce the phases by about a fixed value across these
coupling strengths. Correct phases were obtained for the
pairwise calculations for coupling strengths 0:5 � k � 8 for
the Kuramoto model with and without noise. The compari-
son of phase fluctuations between 4-region-FC and pairwise
calculations for coupling strengths between 0.5 and 8,
shows that the 4-region-FC analysis is less sensitive to
Gaussian noise for the higher noise levels (Supporting
Information Figure 4).

Functional Connectivity

Results are presented for the first two wavelet scales
(scale 1: 0.02–0.03 Hz and scale 2: 0.03–0.044 Hz) since
results for the higher scales were mostly insignificant. The
ventral visual system, motor system and default mode net-
work (DMN) were studied. Each system was tested whether
it is composed of linear, combined or disconnected quadratic
networks and its temporal hierarchy was determined. Using
Eq. (7,8), 4-region-FC networks were calculated by means of
3-seed-Statistical Parametric Maps (hereafter “3-seed-SPM”).
3-seed-SPMs are seed-like SPMs but instead of using a single
seed, three seeds are used and 4-region-FC networks are cal-
culated to construct the 3-seed-SPM. For the 4-region-FCs cal-
culations, we used the three time-series functions of the
three seeds and a time-series function of a voxel, for all vox-
els in the brain. In this way, N 4-region-FC networks were
used to construct a 3-seed-SPM with N the number of voxels.
Note that significant clusters in the 3-seed-SPMs were

defined by the amplitudes (see methods) while means to
define significance for the phases will be developed in the
future. In addition to the 3-seed-SPMs, Eq. (5) was used to
calculate for each of these seeds seed-SPMs that correspond
to the amplitude values of the pairwise coherences between
the time-series of the seed and each voxel in the brain. Joint-
seed-SPM was calculated by taking the mean t-value for
each voxel across the seed-SPMs of the three seeds. To deter-
mine if a system is made of linear, combined, or disconnected
quadratic networks, the 3-seed-SPM was compared with the
joint-seed-SPM. For simplicity, comparison was made by
counting the shared and unshared significant voxels
between the two SPMs. Phases were obtained by Eq. (11)
for each subject and their group mean is presented on sig-
nificant voxels defined in the amplitude 3-seed-SPMs.

The ventral visual system

The ventral visual system is used here as a test system to
examine the temporal hierarchy obtained by the new 4-
region-FC analysis, since its hierarchy is relatively well estab-
lished. The organization of the primate ventral visual system
is known to have a sequential order of the visual cortical
areas from the visual sensory periphery (the primary visual
area or calcarine sulcus) to “higher-level” areas involved in
abstract aspects of vision [Felleman and Van Essen, 1991].
To examine the temporal hierarchy of the ventral visual sys-
tem, we constructed 4-region-FC networks for each subject
using the following Brodmann areas (BA): BA17 (primary
visual cortex), BA18 (secondary visual cortex), BA37 (fusi-
form gyrus), and BA21 (middle temporal gyrus). Neural
information is expected to flow sequentially from BA17 to
BA21 through BA18 and BA37 [Felleman and Van Essen,
1991]. Assuming that time-lags of the BOLD signals corre-
spond to the latencies of information flow, we expected the
phases to be ordered as: #BA17 < #BA18 < #BA37 < #BA21. Cal-
culations are presented for wavelet scale 1, with similar
results obtained for scale 2. Using Eq. (11), the following
phases were obtained (mean 6 SE): ua520:23 6 0.16 radi-
ans; ub520:50 6 0:28 radians; uc510:17 6 0:14 radians.
Assuming that all phases are smaller than 2p, Eq. (11) gives:
#BA185#BA1710:03 60:11ð Þ radians; #BA375#BA1710:16
60:16ð Þ radians, and #BA215#BA1710:37 60:16ð Þ radians

which correspond to time latencies of 0.19 seconds from
BA17 to BA18, 0.83 seconds from BA18 to BA37, and 1.33
seconds from BA37 to BA21. These results fit the known
temporal organization of the ventral visual system [Felle-
man and Van Essen, 1991].

Second, 3-seed-SPMs, seed-SPMs, and joint-seed-SPMs
were calculated to identify functional networks of the ven-
tral visual system in the entire brain and to test its lineari-
ty and temporal hierarchy. The following seeds were used:
left calcarine sulcus, left cuneus and left fusiform gyrus.
Supporting Information Figure 5 shows seed-SPMs for
scales 1 and 2 for these three seeds. Substantial overlap is
shown between connectivity volumes in these seed-SPMs.
Figure 2 shows the amplitude 3-seeds-SPM and joint-seed-
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SPM for wavelet scale 1 with similar results shown for
scale 2 (Supporting Information Figure 6). The amplitude
3-seed-SPM and the joint-seed-SPM are similar to each other
with larger connectivity volumes found in the 3-seed-SPMs
particularly in the occipital and cerebellar regions. For
scale 1, the 3-seed-SPM resulted with 26,482 significant
voxels and the joint-seed-SPM with 18,930 significant vox-
els, 98% of them common to both analyses. For scale 2, the
3-seed-SPM resulted with 24,607 significant voxels and the
joint-seed-SPM with 14,978 significant voxels, 97% of them

common to both analyses. These numbers and the visual
inspection of the SPMs suggest that the majority of the
quadratic networks of the ventral visual system are linear.
Note that both analyses identified the sensorimotor cortex
to be functionally connected to the ventral visual system.

Figure 3 presents the phase 3-seed-SPM for wavelet scale
1 and Supporting Information Figure 7 for wavelet scale 2,
using the phase of the calcarine sulcus as a reference.
Mean group phases are shown for clusters with significant
amplitudes. Under the assumption of #calcarine < #cuneus

Figure 2.

Amplitude 3-seed-SPM versus joint-seed-SPM of the ventral visual

system for wavelet scale 1 (0.02–0.03 Hz). SPMs were con-

structed from the following seeds: left calcarine sulcus, left

cuneus, and left fusiform gyrus. T-values with P< 0.05, FDR clus-

ter corrected are projected on 3D surface brain templates in

MNI space and indicated by the color bar. (A) Amplitude 3-

seed-SPM, (B) joint-seed-SPM. Note the high similarity between

the amplitude 3-seed-SPM and the joint-seed-SPM. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 3.

Phase 3-seed-SPM of the ventral visual system for wavelet scale 1

(0.02–0.03 Hz). SPMs were constructed from the following

seeds: left calcarine sulcus, left cuneus and left fusiform gyrus.

The phases were calculated with respect to the phase of the left

calcarine sulcus and are shown for clusters with significant

amplitude (Fig. 2A). (A) The phases in radians are projected on

3D surface brain templates in MNI space and indicated by the

color bar. (B) Zoom into nine axial MRI slices covering most of

the ventral visual system. MNI z coordinate is indicated for each

slice. [Color figure can be viewed at wileyonlinelibrary.com]
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and that the time-lags of the BOLD signals correspond to
the latencies of information flow, the directed hierarchy
was obtained for all significant clusters in the brain. As
seen, the ventral visual system exhibits a temporal hierar-
chy generally in line with its known organization.

The motor system

Functional networks of the motor system were identified
by using the following seeds: the left precentral gyrus, left
supplementary motor area (SMA) and left thalamus.

Supporting Information Figure 8 presents seed-SPMs for
these seeds for wavelet scales 1 and 2. Figure 4 presents
the amplitude 3-seed-SPM and the joint-seed-SPM for wave-
let scale 1, and Supporting Information Figure 9 shows the
amplitude 3-seed-SPMs and joint-seed-SPM for scale 2. In
all scales, the 3-seed-SPMs and the joint-seed-SPMs were
markedly different: in scale 1, the 3-seed-SPM resulted
with 7,080 significant voxels while the joint-seed-SPM
resulted with 321 significant voxels, 31% of them common
to both analyses. In scale 2, the 3-seed-SPM resulted with
3,909 significant voxels while the joint-seed-SPM resulted

Figure 4.

Amplitude 3-seed-SPM versus joint-seed-SPM of the motor system

for wavelet scale 1 (0.02–0.03 Hz). SPMs were constructed from

the following seeds: left precentral gyrus, left supplementary

motor area and left thalamus. T-values with P< 0.05, FDR cluster

corrected are projected on 3D surface brain templates in MNI

space and indicated by the color bar. (A) Amplitude 3-seed-SPM,

(B) joint-seed-SPM. Note the marked differences between the

amplitude 3-seed-SPM and the joint-seed-SPM. [Color figure can

be viewed at wileyonlinelibrary.com]

Figure 5.

Phase 3-seed-SPM of the motor system for wavelet scale 1 (0.02–

0.03 Hz). SPMs were constructed from: left precentral gyrus, left

supplementary motor area and left thalamus seeds. Phases were

calculated with respect to the phase of the left thalamus and are

shown for clusters with significant amplitude. (A) The phases in

radians are projected on 3D surface brain templates in MNI space

and indicated by the color bar. The arrows indicate the suggested

center-out temporal organization. (B) Zoom into nine axial MRI

slices at the level of the thalamus with finer color scale for the

phase. MNI z coordinate is indicated for each slice. [Color figure

can be viewed at wileyonlinelibrary.com]
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with 3,563 significant voxels, only 14% of them common to
both analyses. The 3-seed-SPMs included large portions of
the precentral gyrus, postcentral gyrus, SMA, thalamus,
posterior putamen (in scale 2) and dorsal/posterior insula
(scale 2) in both hemispheres. The joint-seed-SPMs included
smaller parts of the precentral gyrus, postcentral gyrus,
thalamus and insula (scale 1) and pre- and post-central
regions in both hemispheres in scale 2. The low number of
voxels that were significant in both the 3-seed-SPM and the
joint-seed-SPM, suggests that only few networks in the
motor system are linear. This can be anticipated also by
the inspection of the seed-SPMs that show minimum over-
lap between cortical and thalamic seeds, suggesting that
coherences between subcortical and cortical regions were
only possible through nonlinear phase-relations. Conse-
quently, we suggest that the motor system, as defined by
our seeds, is mainly composed of combined quadratic net-
works. Of additional interest are regions such as the right
somatosensory cortex that were significant only by the
joint-seed-SPM. Such regions are categorized as belonging
to disconnected networks, and could be interpreted as
regions connected with the seeds but by higher (>4) order
coherences. For example, they could belong to a multiple
region network that includes: left thalamus $ left SMA $
left M1 $ right M1 $ right S1.

Figure 5 and Supporting Information Figure 10 show
the phase 3-seed-SPMs for wavelet scales 1 and 2 with the
phase of the thalamus as a reference. Figure 5B demon-
strates the sensitivity of the analysis: by zooming into the
thalamus and presenting the phases with finer color bar,
we show that the analysis discriminates between different
thalamic nuclei, each with a different phase, as expected
by the anatomy [Wu et al., 2014]. Since both bottom-up
and top-down connections are expected in the motor sys-
tem, a phase relation for all 4-region-FC networks in the

motor system cannot be assumed and the system’s direct-
ed hierarchy cannot be obtained. However, the undirected
hierarchy can easily be observed and is of center $ out
(i.e., sub-cortex$cortex) organization: thalamus–SMA–pri-
mary motor cortex–sensory motor cortex.

In order to test if the phases are related to the physical
distances between brain regions, Supporting Information
Table 1 presents the phases (relative to the left thalamus)
and the Euclidean distances (calculated between the thala-
mus and regions’ centers) for several AAL regions of the
motor system. Each region was the 4th region in a 4-region-

FC network that included the left thalamus, left SMA and
left precentral gyrus. Pearson’s correlation (r) between
Euclidean distances and phases was 0.79 (P< 0.003), with
r 5 0.77 for the left hemisphere and r 5 0.88 for the right
hemisphere. The table (and Fig. 5 and Supporting Informa-
tion Figure 10) show that the phases are positively related
to distances, which strengthen the interpretation of the
phases as a measure of the time of information flow.

The default mode network (DMN)

Functional networks of the DMN in the entire brain
were identified by using the following seeds: the left medi-
al orbitofrontal cortex, left angular gyrus and left posterior
cingulate gyrus. Figure 6 presents amplitude 3-seed-SPM

and joint-seed-SPM for wavelet scale 1 and Supporting
Information Figure 11 presents them for scale 2. Support-
ing Information Figure 12 shows seed-SPMs of these seeds.
The seed-SPMs show minimum overlap suggesting sub-
stantial differences between the 3-seed-SPMs and joint-seed-
SPMs. Indeed, for scale 1, the number of significant voxels
in the 3-seed-SPM was 23,306 while it was 3,509 in the
joint-seed-SPM, all of them common to both analyses. In

Figure 6.

Amplitude 3-seed-SPM versus amplitude joint-seed-SPM of the

default mode network for wavelet scale 1 (0.02–0.03 Hz). SPMs

were constructed from the following seeds: left medial orbito-

frontal cortex, left angular gyrus and left posterior cingulate

gyrus. T-values with P< 0.05, FDR cluster corrected are

projected on 3D surface brain templates in MNI space and indi-

cated by the color bar. (A) Amplitude 3-seed-SPM, (B) joint-seed-

SPM. Note the marked differences between the amplitude 3-

seed-SPM and the joint-seed-SPM. [Color figure can be viewed at

wileyonlinelibrary.com]
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scale 2, the 3-seed-SPM resulted with 18,812 significant
voxels while the joint-seed-SPM resulted with 1,123 signifi-
cant voxels, all of them common to both analyses. This
implies that the majority of the quadratic networks of the
DMN are combined networks.

Figure 7 shows phase 3-seed-SPMs for scale 1 with the
phase of the left medial orbitofrontal cortex as a reference
and Supporting Information Figure 13 shows it for scale 2
for two different choices of a reference. The temporal hier-
archy, shown in Figure 7 and Supporting Information Fig-
ure 13, suggests an organization along the dorsal $ ventral
and the anterior $ posterior axes (with the latter separated
for frontal and posterior cortices). This may propose two
or three parallel paths of information flow.

The temporal hierarchy of the DMN was validated by
comparing it to the results of a recent study which has used
effective connectivity calculated by Bayesian network analy-
sis [Wu et al., 2014]. In this study, Bayesian network analysis
for the DMN was conducted on resting-state data of 14 sub-
jects and effective connectivity was calculated between ROIs
selected by independent component analysis (ICA). Here,
we conducted 4-region-FC calculations for the same ROIs (of
the left hemisphere) as in the referred study: posterior cingu-
late cortex (PCC), medial prefrontal cortex (MPFC), hippo-
campus (HC), inferior parietal cortex (IPC) and inferior
temporal cortex (ITC). Each of these ROIs was the 4th region
in a 4-region-FC network were the other three regions were
the left medial orbitofrontal cortex, left angular gyrus and
left posterior cingulate gyrus. The phase of the PCC was
used as a reference, along with the assumption of #PCC

> #MPFC based on the finding of the referred study. We

obtained the following phase differences (mean 6

SE): #MPFC5#PCC20:24 60:08ð Þ; #IPC5#PCC10:02 60:08ð Þ;
#ITC5#PCC20:30 60:12ð Þ; #HC5#PCC20:18 60:2ð Þ. All func-
tional connections between ROIs, defined by their amplitude,
were highly significant (t> 10). The phase relations suggest
the following temporal hierarchy: ITC ! MPFC ! HC !
PCC ! IPC which fits the findings for five (out of six) effec-
tive connections found by the Bayesian network analysis
[Wu et al., 2014].

DISCUSSION

Analyzing the brain as a set of large-scale complex net-
works emerges as a promising strategy to understand
brain function in health and disease. However, networks
are commonly constructed from undirected pairwise statis-
tical inferences, which limit their interpretation. In con-
trast, the 4-region-FC analysis developed here provides the
directed functional connectivity between four time-series
by means of their nonlinear coherences. This analysis is
partially related to the field of four-wave interaction, tris-
pectrum, and/or tricoherence. In these definitions, higher-
order spectra are obtained by Fourier transforms of
higher-order cumulants such that the trispectrum is the
Fourier transforms of the fourth cumulants and tricoher-
ence is a measure of the degree of cubic phase coupling.
Our analysis is different in that it uses wavelet space and
particularly since it uses an inherent symmetry of the
wavelet representation which enables to obtain the exact
expression for the interaction between four time-series.

Figure 7.

Phase 3-seed-SPM of the default mode network (DMN) for

wavelet scale 1 (0.02–0.03 Hz). SPMs were constructed from:

left medial orbitofrontal cortex, left angular gyrus and left poste-

rior cingulate gyrus seeds. Phases were calculated with respect

to the phase of the left medial orbitofrontal cortex and are

shown for clusters with significant amplitude. (A) The phases in

radians are projected on 3D brain templates in MNI space and

indicated by the color bar. The arrows indicate the suggested

temporal organizations, with D-V: dorsal-ventral and P-A:

posterior-anterior. (B) Zoom into nine axial MRI slices covering

most of the DMN. MNI z coordinate is indicated for each slice.

[Color figure can be viewed at wileyonlinelibrary.com]
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Specifically, the same mathematical expression of a single
time-series and of a pairwise coherence enables to obtain
an analytical expression for the coherence of four time-
series. In virtue of using the products of four wavelet coef-
ficients, we are implicitly modeling the fourth order statis-
tics of functional connectivity or statistical dependency
between four time-series functions. This sort of characteri-
zation enables us to break the symmetries inherent in line-
ar systems analyses (e.g., coherence) and takes us into the
realm of nonlinear coupling.

The 4-region-FC analysis enables to categorize each quar-
tet of regions as a linear, combined, or disconnected network.
This further allows to classify a whole system (e.g., visual
or motor) in terms of the congruence or incongruence of
explicit three-way measures of functional connectivity (i.e.,
3-seed-SPM) and the conjunction of three one-way mea-
sures (i.e., joint-seed-SPM). Clearly, this comparison is
somewhat anecdotal (based on visual inspection and sim-
ple comparison). In principle, it should be possible to test
for significant departures from a linear architecture by
testing for significant differences between 3-seed-SPM mea-
sures and joint-seed-SPM measures formerly. We will pur-
sue this in future work.

Previous computer simulation studies have suggested
that the phase-lag of pairwise coherences can predict
directionality only for a limited range of the coupling
strength between the time-series functions [Hillebrand
et al., 2016; Stam and van Straaten, 2012]. To examine how
our new analysis depends on the coupling strength and
noise, computer simulations were performed using the
Kuramoto model. We first demonstrated that the phases of
a 4-region-FC network infer directionality correctly for
global coupling strength comparable to the range found in
pairwise coherence simulations. It is hard to relate the val-
ue of the coupling strength to any biophysical parameter,
thus it remains unclear whether the range of the global
coupling strength (in 4-region-FC and pairwise coherences
analyses) is biological reasonable. However, our experi-
mental results suggest that the coupling between BOLD
brain signals, in healthy young subjects, is within the
range that gives phases that are related to neuronal infor-
mation flow. Specifically: (i) the agreement between the
temporal hierarchy found by the 4-region-FC analysis and
the ventral visual system’s known organization; (ii) the
high correlation between the phases and Euclidean distan-
ces in the motor system and (iii) the similar directionality
found by the 4-region-FC analysis and a previous study
applying Bayesian network analysis in the DMN. Second,
we note that the phase fluctuations for phases obtained by
the 4-region-FC analysis were lower than the fluctuations
of pairwise coherences. Since 4-region-FC analysis is a high
order statistic which is less sensitive to Gaussian noise,
lower fluctuations are expected. It suggests that the fluctu-
ations observed for example in the visual system (section
“The ventral visual system”), are mainly due to individual
differences. Consequently, this suggests the possibility of
using the new analysis in a single subject.

It must be noted that the categorization of systems (e.g.,
visual or motor) as mainly composed of linear or combined
networks depend on the choice of seeds. To categorize a
system fully, a more systematic study of the effect of the
choice of seeds is needed and will be done in future work.
In here, we only aimed to demonstrate the strength, validi-
ty, and capabilities of the new analysis and thus seeds
were chosen arbitrarily within a studied system.

In summary, we introduced a new directed functional
connectivity method: the 4-region-FC analysis method that
uses high order statistics to obtain nonlinear interactions
between 4 time-series functions. The full analytical expres-
sion for coherences between 4 time-series was derived,
verified by computer simulations and applied to resting-
state fMRI data to obtain directed hierarchy of the ventral
visual system, the motor system and the DMN. The analy-
sis can be applied to a variety of different data in brain
research and in other disciplines. The new 4-region-FC
analysis enables to: (i) define functional networks of four
time-series functions; (ii) categorize the architecture of
each network as linear, combined, or disconnected; (iii) obtain
the network’s directed temporal hierarchy and (iv) esti-
mate network information-transfer efficiency by comparing
phases between groups. With the growing interest in
describing the brain by global networks using for example
graph theory, this new analysis calls for a major revolution
in this field by replacing the pairwise interactions with
interactions between 4 time-series functions. This will
increase the complexity but will give a more reliable
description due to the addition of nonlinearity. In addi-
tion, with higher magnetic fields, fMRI data of higher spa-
tial resolution is available and can be used to obtain
detailed anatomical paths of information flow and greater
understanding of complex processes. All these open new
horizons in neuroimaging research.
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