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Abstract: Despite decades of research, the anatomical abnormalities associated with developmental
dyslexia are still not fully described. Studies have focused on between-group comparisons in which
different neuroanatomical measures were generally explored in isolation, disregarding potential inter-
actions between regions and measures. Here, for the first time a multivariate classification approach
was used to investigate grey matter disruptions in children with dyslexia in a large (N 5 236) multisite
sample. A variety of cortical morphological features, including volumetric (volume, thickness and
area) and geometric (folding index and mean curvature) measures were taken into account and
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generalizability of classification was assessed with both 10-fold and leave-one-out cross validation
(LOOCV) techniques. Classification into control vs. dyslexic subjects achieved above chance accuracy
(AUC 5 0.66 and ACC 5 0.65 in the case of 10-fold CV, and AUC 5 0.65 and ACC 5 0.64 using LOOCV)
after principled feature selection. Features that discriminated between dyslexic and control children were
exclusively situated in the left hemisphere including superior and middle temporal gyri, subparietal sul-
cus and prefrontal areas. They were related to geometric properties of the cortex, with generally higher
mean curvature and a greater folding index characterizing the dyslexic group. Our results support the
hypothesis that an atypical curvature pattern with extra folds in left hemispheric perisylvian regions char-
acterizes dyslexia. Hum Brain Mapp 38:900–908, 2017. VC 2016 Wiley Periodicals, Inc.

Key words: machine learning; reading impairment; grey matter; brain anatomy; developmental
dyslexia
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INTRODUCTION

The definition of developmental dyslexia emphasizes its
neurobiological origins [Lyon et al., 2003]. However, at the
anatomical level, despite decades of study, the patterns of
abnormality are still not fully described. The search for
structural biomarkers of reading disorders started with the
postmortem histological studies of Galaburda and Kem-
per, 1979 and Galaburda et al., 1985. Specific anomalies
consisting in ectopias and microgyrias were found in the
brains of dyslexic subjects around the Sylvian fissure of
the left hemisphere. These architectonic malformations
were interpreted as consequences of disrupted neuronal
migration during the prenatal stage [Galaburda et al, 1985;
Humphreys et al., 1990]. Magnetic resonance imaging
(MRI) findings consistent with congenital brain malforma-
tions were also reported in a few cases of dyslexia and
developmental language disorders including periventricu-
lar nodular heterotopia [Chang et al., 2005] and perisyl-
vian polymicrogyria [de Vasconcelos Hage et al., 2006].
Contrary to the predictions based on postmortem studies,
Casanova et al. [2004] found reduced gyrification in 16
dyslexic subjects with an automatic method for assessment
of cortical folding.

Additional anatomical abnormalities, mainly smaller
neurons, were found in the thalamus, primary visual cor-
tex and the cerebellum in postmortem studies [Finch et al.,
2002; Galaburda et al., 1994; Jenner et al., 1999 ]. The matu-
ration of automatic methods permitting objective analysis
of T1-weighted anatomical images produced more struc-
tural MRI studies of dyslexia. So far, around twenty have
been published with voxel-based morphometry (VBM)
with the aim of examining grey matter volume (GMV) dif-
ferences between dyslexic and non-dyslexic adults and
children. Nevertheless, two meta-analyses [Linkersd€orfer
et al., 2012; Richlan et al., 2013] show very little consisten-
cy between these studies. Whereas Linkersd€orfer et al.
[2012] reported lower GMV in dyslexics in both supra-
marinal gyri, cerebellum, right superior temporal gyrus,
left fusiform and inferior temporal gyri, Richlan et al.
[2013] only found differences in both superior temporal

areas. The variability of findings with VBM was further
supported by a large multisite analysis [Jednor�og et al.,
2015], in which only the left thalamus showed consistent
GMV differences between groups across three different
languages.

Alternative measurements of cortical grey matter ana-
tomical integrity, such as cortical thickness (CT) and sur-
face area (SA) have been used less often for investigating
dyslexia [Altarelli et al., 2013; Clark et al., 2014; Frye et al.,
2010; Ma et al., 2014]. Here again, the pattern of results is
inconsistent. Reports vary between lesser [Altarelli et al.,
2013; Clark et al., 2014] and greater CT [Ma et al., 2014] in
the left fusiform gyrus in dyslexic children, and no CT dif-
ferences but lower SA in dyslexic adults [Frye et al., 2010].
Other findings include greater CT in the right superior
temporal gyrus, planum temporale, middle temporal
gyrus, Heschl’s gyrus and supramarginal gyrus [Ma et al.,
2014]; lesser CT in the left orbitofrontal cortex and in the
anterior segment of the superior temporal cortex [Clark
et al., 2014], as well as decreased SA in inferior frontal
gyrus [Frye et al., 2010]. A recent study [Im et al., 2016]
using yet another univariate technique, a graph-based sul-
cal pattern comparison method, found that the pattern of
the sulcal basin area in the left temporo-parietal cortex
was atypical in dyslexia.

Recently Cui et al. [2016] used for the first time a multi-
variate machine learning approach to study white matter
disruptions in dyslexia. Having five different white matter
measures (volume, fractional anisotropy, mean diffusivity,
axial and radial diffusivity) they were able to distinguish
dyslexic children from controls with 83.61% accuracy and
characterize the most discriminative features as belonging
to reading, limbic and motor systems. To date, most stud-
ies examining grey matter differences in dyslexia have
focused on between-group comparisons in which different
grey matter measures were explored in isolation. Howev-
er, such an approach disregards potential interactions
between regions and measures. We therefore used a
machine learning approach to investigate grey matter dis-
ruptions in children with dyslexia by reanalysing data pre-
sented in Jednor�og et al. [2015]. A variety of
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morphological measures, including volumetric and geo-
metric parameters were assessed simultaneously to classify
dyslexic from nondyslexic individuals.

MATERIALS AND METHODS

Participants

The dataset consists of 236 T1-weighted (T1w) images
acquired in magnetic resonance imaging (MRI) studies on
children from three countries: 81 Polish children—35 con-
trol (22 girls) and 46 dyslexic (20 girls); 84 French chil-
dren—45 control (23 girls) and 39 dyslexic (14 girls); and
71 German children—26 control (10 girls) and 45 dyslexic
(22 girls). Participants came from diverse social back-
grounds and had finished at least one and a half years of
formal reading instruction to differentiate serious prob-
lems in reading acquisition from early delays that are not
always persistent. Dyslexic participants were either identi-
fied in school, through clinics or were specifically request-
ing clinical assessment of their reading problems. Most of
the studied children already had a clinical diagnosis of
dyslexia and all were screened for inattention/hyperactivi-
ty symptoms and other language disorders. Participants
were recruited using the following criteria in each country:
age between 8.5 and 13.7 years; IQ greater than 85, or an
age-appropriate scaled score of at least 7 on the WISC
Block Design, and 6 on the WISC Similarities tests, no for-
mal diagnosis of ADHD, no reported hearing, eyesight or
neurological problems. The inclusion criterion for dyslexia
was 1.5 SD or more below grade level on a standardized
test of word reading; for controls it was no more than 0.85
SD below grade level. Behavioral measures used for diag-
nosis, reading and reading related measures as well as
group differences on these tests in the current sample
were described before [Jednor�og et al., 2015]. In the French
sample, reading level was assessed by the standardized
French test “L’alouette” [Lefavrais, 1967]. In German sam-
ple two different standardized reading tests were used—
W€urzburger Leise Leseprobe [K€uspert and Schneider,
1998] for 26 children and single word reading test
[Repscher et al., 2012] for 45 children. In the Polish sample
real word from the normalized Polish battery of tests used
for diagnosis of dyslexia [Bogdanowicz et al., 2008] was
applied. All studies were approved by local ethics commit-
tees (CPP BiceR tre in France; Medical University of Warsaw
in Poland; Uniklinik RWTH Aachen in Germany). The
children and their parents gave written informed consent
prior to study participation.

Procedure

High-resolution T1w images were acquired in three dif-
ferent countries:

French sample

For 13 control and 11 dyslexic children, whole brain
images were acquired on a 3 Tesla (3T) Siemens Trio Tim
MRI platform with a 12-channel head coil using the fol-
lowing parameters: acquisition matrix: 256 3 256 3 176,
TR 5 2,300 ms, TE 5 4.18 ms, flip angle 5 9 deg,
FOV 5 256 mm, voxel size: 1 3 1 3 1 mm. For 32 control
and 28 dyslexic children, images were acquired from the
same scanner, using a 32-channel head coil with the fol-
lowing parameters: acquisition matrix 5 230 3 230 3 202,
TR 5 2,300 ms, TE 5 3.05 ms, flip angle 5 9 deg,
FOV 5 230 mm, voxel size 5 0.9 3 0.9 3 0.9 mm.

German sample

For 10 control and 35 dyslexic children, whole brain
images were acquired on a 3T Siemens Trio Tim scanner
using a standard birdcage head coil with the following
specifications: acquisition matrix: 256 3 256 3 176,
TR 5 1,900 ms, TE 5 2.52 ms, flip angle 5 9 deg,
FOV 5 256 mm, voxel size: 1 3 1 3 1 mm. For the remain-
der (16 controls and 10 dyslexics), whole brain images
were acquired on a 1.5T Siemens Avanto scanner using a
standard birdcage head coil with the following parame-
ters: acquisition matrix: 256 3 256 3 170, TR 5 2,200 ms,
TE 5 3.93ms, flip angle 5 15 deg, FOV 5 256 mm, voxel
size: 1 3 1 3 1 mm.

Polish sample

For 35 controls and 46 dyslexics whole brain images
were acquired on a 1.5T Siemens Avanto platform with a
32-channel phased array head coil. T1w images with the
following specifications were collected: acquisition matrix:
256 3 256 3 192; TR 5 1,720 ms; TE 5 2.92 ms; flip
angle 5 9 deg, FOV 5 256, voxel size 1 3 1 3 1 mm.

Data Preprocessing and Feature Extraction

The MR image data were preprocessed in order to
retrieve features to be used for the purpose of classifica-
tion. In order to extract reliable cortical volume and thick-
ness estimates, images were automatically processed in the
FreeSurfer image analysis suite (FS v5.1.0) [Dale et al.,
1999; Fischl et al., 1999]. First, the high-resolution T1w
images were converted to FreeSurfer format, normalized
for intensity and resampled to isotropic voxels of 1 mm3.
Next, the skull was removed using a skull-stripping algo-
rithm and images were segmented into three tissue types
(white matter, grey matter and CSF). The Destrieux Atlas
[Destrieux et al., 2010] was used to parcelate each brain
into 74 regions per hemisphere in the native space of each
subject. Then each subject’s brain was warped to a stan-
dard average cortical surface template (FSaverage) with a
nonlinear procedure that aligned cortical folding patterns
to the template with a number of deformable procedures
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including surface inflation and spherical registration mini-
mizing cortical geometry mismatch. Finally, subject cortical
thickness was resampled at each vertex of the FSaverage pial
surface in order to match their resolution and allow subse-
quent vertex by vertex comparisons. For each region the fol-
lowing measures were extracted: volume, cortical thickness,
surface area, folding index and mean curvature, summing
up to 740 features (5 measures times 148 brain areas).

Classification Framework

Our classification framework consists of three steps,
applied sequentially: confounding factor corrections, fea-
ture selection and classification. To assess the generaliz-
ability of the proposed system a cross validation (CV)
technique was applied in two configurations: leave-one-
out (LOOCV) and 10-fold CV, the latter was repeated 100

times. Data samples were divided into training and test
subsets at each CV iteration. Because the distribution of
classes in analyzed dataset is not equal (106 control: 130
dyslexic) we used stratified 10-fold cross validation where
each class is (approximately) equally represented across
each fold. Computation of b parameters for confounding
factor corrections, feature selection and classifier learning
were performed on training sets of the data. Subsequently,
a classification system was applied to the test data sets.
Classification performance was evaluated by its response
on test datasets, aggregated from all CV iterations. The
classification system scheme is presented in Figure 1.

Confounding Factor Corrections

Features used in classification depended not only on
group status (dyslexic vs. control participants) but also on

Figure 1.

Schematic flowchart of the classification scheme.
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other group-unrelated factors such as country, field
strength (1.5 vs. 3T scanner), coil (32 channel vs. 12 chan-
nel vs. birdcage), sex, age and total intracranial volume
(TIV). There was no data dependency on participant’s age,
while other confounding factors were regressed from the
data using a general linear model (GLM) as described pre-
viously [Dukart et al., 2011; Pło�nski et al., 2014]. Feature
selection and classifier training were performed on cor-
rected data.

Feature Selection Procedure

Since a universally optimal feature selection method is
lacking, the following feature selection algorithms were
compared: t-test [Haury et al., 2011], Information Gain (IG)
[Duch et al., 2003], Random Forest Variable Importance
(RF var. imp.) [Breiman, 2001]. The selection algorithms
provided information about feature importance, however
information about the optimal number of features was not
available with such a simple procedure. Therefore, subsets
with increasing numbers of selected features were created,
starting with the most significant and adding others
sequentially by descending significance order. The optimal
number of features was chosen as the subset with the low-
est LogLoss discrimination power metric evaluated using
classifier and internal LOOCV on training samples, in a
manner similar to that of Eskildsen et al. [2015]. The fea-
ture selection procedure was repeated on each CV itera-
tion. Feature selection using inner LOOCVs avoids
overfitting for the final classifier training [Cui et al., 2016].

Our dataset has a smaller number of samples (i.e., par-
ticipants) than features, hence a stability problem arises—
in each CV iteration different features might be selected as
the most significant [Kalousis et al., 2007]. Thus, we moni-
tored the stability of selection algorithm with the Jaccard
index; additionally we computed the feature selection fre-
quency across all CV iterations [Eskildsen et al., 2015]. The
Jaccard stability index can be used to select an optimal
classification method from among several cases of similar
discrimination power [Kalousis et al., 2007].

Classifiers

The classification algorithm was trained using the fea-
tures selected as described above. A universal optimal
classification algorithm that outperforms other algorithms
on all datasets does not exist. Therefore, several algorithms
were reviewed: Logistic Regression (LR), Support Vector
Machine (SVM) with linear kernel [Hastie et al., 2009] and
Random Forest (RF) [Breiman, 2001]. Both, SVM and LR
were used with default parameters values, whereas 100
trees were used in RF algorithm. We measured classifica-
tion performance with receiver operating characteristic
(ROC) curves, areas under the ROC curves (AUC) and
their accuracy (ACC). Additionally, we used a permuta-
tion significance test to check that the classifier

outperformed random guessing to determine whether the
accuracy and AUC obtained above were significantly
higher than values expected by chance [Ojala and Garriga,
2010].

The classification framework scheme is presented in Fig-
ure 1. Importantly, in every step of classification frame-
work the training and test sets were kept distinct. All
computations from classification framework were per-
formed in R environment [R Core Team, 2012].

RESULTS

The performance of each combination of feature selec-
tion and classification algorithms for the total sample is
presented in Table I. Almost all combinations give signifi-
cantly better than chance performance with AUC and
ACC around 65%. However, the most stable feature selec-
tion in all CV iterations between control and dyslexia clas-
sifiers was seen for the t-test and for Logistic Regression
(LR). Table I presents P-values for AUC and ACC based
on permutation testing with 100 repetitions.

On the basis of these results, we took the t-test com-
bined with LR to be superior to other algorithms for analy-
sis of our dataset. All classification analyses are therefore
based on these two statistical criteria. The features selected
with t-test combined with LR for LOOCV and 10-fold CV
are presented in Table 2. Figure 2A depicts common fea-
tures, selected by both LOOCV and 10-fold CV. All were
located in the left hemisphere and most were related to
geometric characteristics of the cortex, that is, its folding
and curvature. Due to the multivariate character of the
analysis, which also considers interregional correlations,
each selected feature should be interpreted in the context
of the entire discriminating pattern and not in isolation.
Nevertheless, for a more precise characterization of the
results obtained, boxplots of six common features, adjust-
ed for confounding factors, are presented for control and
dyslexic subjects (Fig. 2B). Dyslexic children had higher
mean curvature in the left superior temporal gyrus and
planum polare, left subparietal sulcus and left transverse
frontopolar gyrus and sulcus than the control group. With
respect to the folding index, higher values in dyslexic chil-
dren than the control group were observed in the left mid-
dle temporal gyrus. Additionally in the left frontal lobe,
the surface area of the fronto-marginal gyrus and sulcus
was lesser in the dyslexic group.

To assess significance of classification system we used
label and feature permutation tests. The performance com-
parison of classification system (t-test, LR) with classifica-
tion system learned with random labels is presented in
Figure 2C. The proposed method is significantly better
than random classifier on both metrics with P-value< 0.01.
The comparison of classifier trained using selected features
versus trained with random features is presented in Figure
2D. The ROC curves obtained for the classifier trained
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with selected features are far more significant than those
obtained with classifiers trained on randomly chosen features.

DISCUSSION

The goal of this study was to gain insights into grey
matter differences between typical and reading impaired

children. A multivariate approach was used for the first
time on T1-weighted images in a large multisite sample of
children [Jednor�og et al., 2015] that took into account a
variety of cortical morphological measures, including volu-
metric (i.e., volume, thickness and area) and geometric
(i.e., folding index and mean curvature) measures.

Classification into control vs. dyslexic subjects achieved
above chance accuracy after principled feature selection

TABLE II. Features selected by t-test combined with LR with percentage occurrence in CV iterations for features

selected at least in half of the 10-fold CV iterations and in LOOCV

Region Hemi Measure

Selection frequency
for LOOCV
(10-fold CV) Discrimination weights

The same in LOOCV and 10-fold CV

Middle temporal gyrus L Folding index 100 (98.1)% 1.201
Planum polare of the superior temporal gyrus L Mean curvature 100 (99.9)% 0.327
Transverse frontopolar gyri and sulci L Mean curvature 100 (100)% 0.399
Fronto-marginal gyrus (of Wernicke) and sulcus L Area 100 (100)% 20.368
Lateral aspect of the superior temporal gyrus L Mean curvature 100 (100)% 0.238
Subparietal sulcus L Mean curvature 44.1 (98.3)% 0.193
Selected only in 10-fold CV

Fronto-marginal gyrus (of Wernicke) and sulcus R Volume 94.80%
Orbital gyrus L Thickness 95.70%
Orbital gyrus L Mean curvature 86.50%
Planum polare of the superior temporal gyrus R Mean curvature 75.40%
Subparietal sulcus L Folding index 71.60%
Orbital gyrus R Mean curvature 61.20%

TABLE I. Classification performance computed on LOOCV and 10-fold CV repeated 100 times (mean and 95%

confidence bounds) for different combinations of selection and classification algorithms together with

permutation-based P-values

Method AUC [conf. interv] P-value (AUC) ACC [conf. interv] P-value (ACC) Stability (Jaccard index)

LOOCV

t-test, LR 0.65 0.01 0.64 0.01 0.93
t-test, SVM 0.6 0.02 0.62 0.01 0.95
t-test, RF 0.62 0.01 0.62 0.01 0.91
IG, LR 0.39 ns 0.52 ns 0.78
IG, SVM 0.6 0.01 0.61 0.01 0.88
IG, RF 0.68 0.01 0.65 0.01 0.86
RF var. imp., LR 0.53 ns 0.57 0.04 0.25
RF var. imp., SVM 0.63 0.01 0.65 0.01 0.48
RF var. imp., RF 0.67 0.01 0.67 0.01 0.43
10-fold CV

t-test, LR 0.66 [0.63–0.69] 0.01 0.65 [0.61–0.67] 0.01 0.71
t-test, SVM 0.61 [0.57–0.66] 0.02 0.62 [0.58–0.65] ns 0.7
t-test, RF 0.61 [0.56–0.66] <0.01 0.61 [0.58–0.64] 0.01 0.68
IG, LR 0.56 [0.50–0.62] 0.05 0.58 [0.56–0.63] ns 0.25
IG, SVM 0.63 [0.58–0.68] 0.02 0.62 [0.58–0.67] 0.02 0.46
IG, RF 0.66 [0.61–0.70] 0.01 0.65 [0.60–0.69] 0.01 0.43
RF var. imp., LR 0.57 [0.51–0.63] 0.03 0.59 [0.56–0.62] ns 0.18
RF var. imp., SVM 0.61 [0.54–0.67] ns 0.61 [0.58–0.65] 0.04 0.34
RF var. imp., RF 0.65 [0.60–0.69] 0.01 0.64 [0.61–0.68] 0.01 0.34

ns - not significant (P> 0.05), LR – Logistic Regression, SVM – Support Vector Machine, RF – Random Forest, IG – Information Gain,
RF var. imp. – Random Forest Variable Importance.
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and assessment of classification algorithm accuracy. The
best performance and greatest stability was found for the
t-test and Logistic Regression classifier where AUC 5 0.66
and ACC 5 0.65 in the case of 10-fold CV, and AUC 5 0.65
and ACC 5 0.64 using LOOCV. Classification performance
is less than that obtained using similar multivariate analy-
ses in major neurological disorders such as Alzheimer’s
disease, where AUC is often above 90% [for e.g., Liu et al.,
2012]. However, dyslexia is a more heterogeneous syn-
drome [Jednor�og et al., 2014; Talcott et al., 2013] and there

is little consistency in the results of previous univariate
grey matter studies. Our results therefore are the first to
convincingly demonstrate a distinct grey matter pattern of
abnormality for this developmental disorder. In a similarly
heterogeneous syndrome—autism spectrum disorder—
multivariate classification analyses have failed to find even
this degree of classification accuracy between those with
and without the disorder [Haar et al., 2016]. Conversely,
in a recent study [Cui et al., 2016] a classifier based on
white matter measures achieved much better accuracy

Figure 2.

A. Selected features common for 10-fold CV and LOOCV dis-

played on an inflated left hemisphere cortex_330117V template

from Brainstorm (B) and their boxplots. C. Label permutation

test of the t-test, LR classifier (the performance of a classifier

without permuted labels is marked with an arrow) D.

comparison of ROC curves of classifier trained with selected

features vs. trained with random features, all permutation tests

were repeated 100 times. [Color figure can be viewed at

wileyonlinelibrary.com]
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(83.6%) distinguishing between dyslexic and control chil-
dren, which might imply that these tissue properties are
better biomarkers of dyslexia. However, the classifier was
based on a small cohort (28 dyslexic and 33 controls) of
children, which could have inflated decoding accuracies
because of wider decoding accuracy distribution character-
istic for small samples [Haar et al., 2016]. Further, the gen-
eralization of the results was tested only with LOOCV,
which might give estimates of prediction error that are
more variable than other forms of crossvalidation includ-
ing 10-fold CV [Hastie et al., 2009]. Similarly high accuracy
(80%) was found by Tamboer et al. [2016], who used linear
SVM and LOOCV on grey matter volume derived from
structural images of 22 control and 27 dyslexic students,
mostly women. However, when the classifier was tested
on an independent large sample of young adults, the clas-
sification performance dropped to 59%, since large per-
centage of false alarms was found.

In our study, most of the features that discriminate
between dyslexic and control children are related to geomet-
ric properties of the cortex, with generally higher mean cur-
vature and a greater folding index characterizing the
dyslexic group. The brain areas with such characteristics are
exclusively situated in the left hemisphere, including areas
previously implicated in dyslexia such as certain classical
language areas (i.e., the superior temporal and middle tem-
poral gyri) as well as prefrontal and parietal regions. Higher
mean curvature and greater folding index both indicate
more complex folded cortex than usual. Our results can
therefore be considered as an in vivo replication of Gala-
burda and Kemper, 1979; Galaburda et al., 1985 findings of
cortical microgyrias situated near the Sylvian fissure of the
left hemisphere in dyslexic brains. All features included in
our classification are corrected for confounding factors,
including total intracranial volume, thus the increased fold-
ing and mean curvature in dyslexic is not simply a conse-
quence of larger brain size. Our findings are consistent with
a recent report of atypical sulcal patterns in left parieto-
temporal and occipitotemporal regions in children with a
clinical diagnosis of dyslexia [Im et al., 2016]. In these
regions dyslexic children had more sulcal basins of smaller
size than the control group. Neither Im et al., nor we find
dyslexia vs. non-dyslexia group differences in the right
hemisphere. Im et al. argued that in contrast to morphomet-
ric measures, sulcal pattern measurements may better reflect
genetic influences on cortical development (i.e., neuronal
migration) since the global pattern of primary gyri and sulci
is determined prenatally and shows relatively little change
during postnatal development [Meng et al., 2014]. Thus, our
results support the hypothesis that an atypical sulcal pattern
with extra folds in left hemispheric perisylvian regions con-
stitute a biomarker of dyslexia.

Lastly, this study being a multisite study, it suffers from
a number of limitations. The data was merged from five
different studies carried out on four scanners with differ-
ent scanning parameters in three countries, which might

have introduced error variance to the results. To reduce
multisite bias, we included covariates in the GLM model
to improve data integrity [Chen et al., 2014], however one
cannot exclude the possibility that a less heterogeneous
dataset might result in better classification accuracies.
Additionally, children came from different social back-
grounds, yet this variable could not be properly controlled
for, as the information about parental education and pro-
fession was not available for the entire sample.

Together with other nuisance variables, sex was regressed
from the data because splitting the group by sex decreased
the reliability of the analyses. Future studies with larger
sample sizes would benefit from treating it as a variable of
interest, since there is now some evidence suggesting that
the neural basis of developmental dyslexia may to some
extent differ between males and females [Altarelli et al.,
2013, 2014; Clark et al., 2014; Evans et al., 2014].

To conclude, our study shows that developmental dys-
lexia is characterized of distinct pattern of grey matter
abnormality, which allows for moderate classification
accuracy into dyslexic and non-dyslexic individuals. Dys-
lexic children had generally higher mean curvature and a
greater folding index of left hemispheric brain regions pre-
viously linked with language processing.
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