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Abstract: Objectives: Military service members risk acquiring posttraumatic stress disorder (PTSD) and
mild-traumatic brain injury (mTBI), with high comorbidity. Owing to overlapping symptomatology in
chronic mTBI or postconcussion syndrome (PCS) and PTSD, it is difficult to assess the etiology of a
patient’s condition without objective measures. Using resting-state functional MRI in a novel frame-
work, we tested the hypothesis that their neural signatures are characterized by functionally hypercon-
nected brain regions which are less variable over time. Additionally, we predicted that such
connectivities possessed the highest ability in predicting the diagnostic membership of a novel subject
(top-predictors) in addition to being statistically significant. Methods: U.S. Army Soldiers (N 5 87) with
PTSD and comorbid PCS 1 PTSD were recruited along with combat controls. Static and dynamic func-
tional connectivities were evaluated. Group differences were obtained in accordance with our hypothe-
sis. Machine learning classification (MLC) was employed to determine top predictors. Results: From
whole-brain connectivity, we identified the hippocampus-striatum connectivity to be significantly
altered in accordance with our hypothesis. Diffusion tractography revealed compromised white-matter
integrity between aforementioned regions only in the PCS 1 PTSD group, suggesting a structural etiol-
ogy for the PCS 1 PTSD group rather than being an extreme subset of PTSD. Employing MLC, connec-
tivities provided worst-case accuracy of 84% (9% more than psychological measures). Additionally, the
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hippocampus-striatum connectivities were found to be top predictors and thus a potential biomarker
of PTSD/mTBI. Conclusions: PTSD/mTBI are associated with hippocampal-striatal hyperconnectivity
from which it is difficult to disengage, leading to a habit-like response toward episodic traumatic
memories, which fits well with behavioral manifestations of combat-related PTSD/mTBI. Hum Brain
Mapp 38:2843–2864, 2017. VC 2017 Wiley Periodicals, Inc.
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posttraumatic stress disorder; mild traumatic brain injury; network dynamics; hippocampus
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INTRODUCTION

About 20% of military service members develop post-
traumatic stress disorder (PTSD) (Hayes et al., 2012). PTSD
is characterized by high anxiety, re-experiencing traumatic
memories, hypervigilance, and hyperarousal. In combat
veterans, PTSD has high comorbidity with mild-traumatic
brain injury (mTBI) (Hoge et al., 2008, 2009) due to the
risk of being exposed to improvised explosive devices
(IEDs) and nonblast events. A significant percentage of
those who sustain mTBI suffer from chronic symptoms
(postconcussion syndrome [PCS] (Cicerone and Kalmar,
1995)). With current diagnostic procedures and treatments
centering on subjective assessments, a thorough under-
standing of the mechanistic basis for PTSD and PCS is
essential for accurate diagnosis, targeted treatment and for
making return-to-duty decisions. Owing to largely over-
lapping symptomatology between PTSD and PCS (Eierud
et al., 2014), it is necessary to identify and validate objec-
tive biomarkers of the respective neurologic and neuropsy-
chiatric conditions to improve clinical evaluation and,
ultimately, treatment outcomes.

We employed resting-state functional MRI (rs-fMRI),
which avoids task dependency and subsequent perfor-
mance differences. We performed connectivity analysis on
rs-fMRI data, without a priori assumptions concerning
regions of interest (ROIs). Functional connectivity (FC)
refers to measures of instantaneous correlation between a
pair of fMRI time series obtained from different brain
regions. There have been several recent fMRI FC studies
with PTSD (Hayes et al., 2012; Simmons and Matthews,
2012; Spielberg et al., 2015) and PCS (Costanzo et al., 2014;
Eierud et al., 2014; Hoge et al., 2008). However, very little
work has been done on comorbid PTSD and PCS, even
though comorbidity is the norm rather than the exception
in military populations (Spielberg et al., 2015). Existing
findings have been mixed (Simmons and Matthews, 2012).

Hyperconnectivity is seen as a response to neurological
disruption (Hillary et al., 2015) and is observed in individ-
uals with PTSD (Cisler et al., 2014; Hayes et al., 2012; Sim-
mons and Matthews, 2012). Most studies employ only
static FC (SFC) and ignore dynamic variation of connectiv-
ity over time, known as dynamic FC (DFC). Recent studies
have highlighted the enormous importance of dynamics in
deciphering brain functioning (Hansen et al., 2015). Several

studies show that DFC signatures in subjects with mental
disorders are different from those in healthy subjects
(Deshpande et al., 2006; Keilholz et al., 2013; Li et al., 2014;
Majeed et al., 2011). DFC is also related to real world cog-
nitive behaviors (Thompson et al., 2013), which may make
it a good tool for studying disorders such as PTSD and
PCS where cognitive functioning is compromised. SFC and
DFC provide different types of information regarding con-
nectivity between two brain regions (Hutchison et al.,
2013). Reduced temporal variance in DFC is associated
with psychiatric disorders as well as compromised behav-
ioral performance in healthy individuals (Jia et al., 2014;
Sako�glu et al., 2010). This reduction is associated with
compromised ability to dynamically adjust (e.g., behavior,
thoughts, etc.) to changing conditions. This phenomenon is
well recognized in other biological systems such as
reduced heart rate variability being a risk factor of cardiovas-
cular disease (Greiser et al., 2009). As external influences and
internal body states are continually changing, a healthy bio-
logical system varies its activity in real-time to accommodate
these changes. In these terms, “frozen” connectivity reflects
compromised brain health. This study uses these principles
to identify functional connectivities in the brains of soldiers
with PTSD and PCS which are in a “frozen” hyperconnected
state compared to healthy soldiers.

Active duty, U.S. Army soldiers who screened positive
for PTSD, both PCS and PTSD (PCS 1 PTSD), and healthy
combat controls were recruited. We tested an overarching
hypothesis that PTSD with and without PCS is associated
with higher connectivity strength (SFC) but lower connec-
tivity variance (variance of DFC [vDFC] calculated over
time, Fig. 4) as compared to healthy controls (Fig. 1). Fur-
thermore, we hypothesized that the connectivities would
be more extreme (i.e., higher SFC and lower vDFC) in
PCS 1 PTSD subjects compared to PTSD subjects, indica-
tive of greater symptom severity. We notably tested the
hypothesis on whole-brain connectivity data without
imposition of any priors or assumptions. Figure 1 provides
an illustration of our hypothesis.

In addition to the primary hypothesis, there were multi-
ple corollary hypotheses addressed in this study. First, if
the connectivities were indeed more extreme (i.e., higher
SFC and lower vDFC) in PCS 1 PTSD subjects compared
to PTSD subjects, it raises the question as to whether the
PCS 1 PTSD group’s condition is being driven by PTSD.
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Alternatively, is this comorbid group’s state unique, poten-
tially due to the addition of mTBI sequelae? We attempt to
address this question by investigating structural alterations
of white-matter tracts in all the three groups with the
hypothesis that the changes in axonal integrity must be
exclusive to the PCS 1 PTSD group, likely attributed to the
mTBI suffered by these subjects. MRI diffusion tensor
imaging (DTI) tractography provides meaningful informa-
tion concerning diffusion of water molecules in white matter
as a measure of tract trajectory, integrity, and directionality.
White-matter neuropathology can result in increased diffu-
sivity, for example, with inflammation from demyelination
(Harsan et al., 2006; Henry et al., 2003). In a recent study
involving veterans from the Iraq and Afghanistan wars who
were diagnosed with PCS (Morey et al., 2013), DTI showed
differences in white-matter diffusivity associated with the
regions that also had abnormal functional connectivity. In
line with this finding, we predicted that there would be con-
gruently greater diffusivity in the tracts connecting regions
with altered functional connectivity; therefore, supporting
the argument that the PCS 1 PTSD group is etiologically dif-
ferent from the PTSD group.

Second, if we are successful in finding functional con-
nectivities in the brain which satisfy our overarching
hypothesis, it will be important to determine their rele-
vance to behavior and clinical diagnostics. Our subjects
are traditionally assigned diagnostic groups based on clini-
cal observation and symptom reporting. While self-report
symptom scores provide subjective assessments of severity
of the disorders (i.e., psychopathology), neuroimaging
data provide mechanistic characterization of underlying
pathophysiology. Hence, as our secondary hypothesis, we
hypothesized that grouping of subjects based on signifi-
cant connectivity values would be superior (in terms of
how the groups map to behavioral clusters) than conven-
tional diagnostic grouping. Indeed, this approach has been
actively promoted by the National Institute of Mental
Health (NIMH) in the United States by publication of
“Research Domain Criteria” (RDoC, http://www.nimh.
nih.gov/research-priorities/rdoc/nimh-research-domain-
criteria-rdoc.shtml). RDoC is agnostic about current disor-
der categories, and the intent is to generate classifications
in a data-driven way. The “core unit of analysis” advanced
by RDoC is the “measurements of particular circuits as
studied by neuroimaging techniques.” In line with this
ideology, a recent report demonstrates how data-driven
definition of groups in psychiatric spectrum disorders can
identify new groups which map better onto behavioral
clusters (Brodersen et al., 2013). Our regrouping strategy is
inspired by these recent developments.

To address our secondary hypothesis, behavioral mea-
sures obtained from a neurocognitive battery were sepa-
rately grouped using both conventional grouping and the
proposed imaging-based grouping methods. Next, the sta-
tistical separation between the groups was compared for
both grouping methods. This comparison was done to test

the hypothesis that the imaging-based grouping, based on
underlying neurobiology (as inferred from connectivity),
will map better onto neurobehavior than conventional
grouping, based on symptom severity scores.

Third, both our primary hypothesis and corollary
hypotheses are based on an analysis framework which
relies on statistical separation between the groups. Howev-
er, statistical separation of between-group connectivities
does not necessarily imply that they have predictive diag-
nostic ability (Craddock et al., 2009; Deshpande et al.,
2010); that is, they may not be able to predict group mem-
bership at an individual level with reasonable accuracy.
Consequently, those connectivities which are statistically
significant as well as possess the discriminative power to
classify subjects with high accuracy are more powerful.
Several studies report that machine learning classifiers can
be successfully used on fMRI data for diagnostic predic-
tion, including, but not limited to, major depressive disor-
der (Deshpande et al., 2009), Parkinson’s disease
(Marquand et al., 2013), PTSD (Liu et al., 2015), dementia
(Chen et al., 2011), autism (Deshpande et al., 2013), and
prenatal cocaine exposure syndrome (Deshpande et al.,
2010). However, to the best of our knowledge, there are no
studies which have used connectivity markers in the clas-
sification of both PTSD and PCS subjects. For neuropsychi-
atric disorders such as PTSD and PCS, which are currently
diagnosed solely through clinical observation, classification
using neuroimaging signatures could be applied to obtain
more accurate diagnoses in these highly comorbid condi-
tions. We thus employed a machine learning technique
which, in a data-driven way, recursively eliminates unim-
portant features from whole-brain connectivity data to
identify those connectivities (i.e., top predictors) which
predict the diagnostic membership of a novel subject with
high accuracy. We specifically investigated whether there
was an overlap between connectivity paths satisfying the
overarching hypothesis and those identified as having
high predictive ability. We hypothesize that these paths (i)
will better predict the diagnostic membership of a novel
subject than the available non-imaging measures and (ii)
will predict the group membership of a novel subject with
significantly better accuracy for the proposed imaging-
based grouping (as elucidated in the previous paragraph),
as compared to the conventional grouping.

Figure 1.

Illustration of our primary hypothesis: increasing font size of

SFC implies increasing connectivity strength from the control

group to the PTSD group to the PCS 1 PTSD group. Decreasing

font size of DFC implies decreasing variance of connectivity

from the control group to the PTSD group to the PCS 1 PTSD

group. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2 illustrates the complete analysis pipeline with a
hierarchical flowchart (outcomes are discussed in the
Results section).

METHODS

Recruitment

Active-duty soldiers between the ages of 18 and 50 years
were recruited from Fort Rucker, AL, USA and Fort Ben-
ning, GA, USA to voluntarily participate in this study.

Recruitment utilized posters and flyers distributed and
posted at local facilities including the TBI Clinic and
Behavioral Health Clinics. Soldiers who were being treated
for PTSD and/or PCS were referred to the study by clini-
cians if believed to meet eligibility criteria. Interested sol-
diers called the provided phone number whereupon they
were prescreened and sent the consent form via post or
email to be signed and returned. Upon receipt of the
returned consent, potentially eligible participants were
called to schedule their testing session at Auburn Univer-
sity’s MRI Research Center.

Figure 2.

Flowchart illustrating the analysis pipeline. [Color figure can be viewed at wileyonlinelibrary.com]
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The study was carried out in accordance with the latest
version of the Declaration of Helsinki and the protocol
and procedures were approved by Auburn University
Institutional Review Board (IRB) and the Headquarters
U.S. Army Medical Research and Materiel Command, IRB
(HQ USAMRMC IRB).

Participants

Eighty-seven male, active-duty soldiers, 17 with PTSD,
42 with both PCS and PTSD (PCS 1 PTSD), and 28 controls
(with all three groups matched in age, race and educa-
tion), all having combat experience in Iraq (Operation Iraqi
Freedom, OIF) and/or Afghanistan (Operation Enduring
Freedom, OEF), were enrolled in the study.

Subjects were grouped based on PTSD symptom severity
using the PTSD Checklist-5 (PCL5) score, clinician referral,
postconcussive symptoms using the Neurobehavioral Symp-
tom Inventory (NSI) score and medical history. (i) Subjects
with no history of mTBI in the last 5 years, a total score �38
on the PCL5 were grouped as posttraumatic stress group
(PTSD group). (ii) Subjects with a history of medically docu-
mented mTBI, postconcussive symptoms, and scores �38 on
the PCL5 were grouped as the comorbid PCS 1 PTSD
group. (iii) Subjects with a score <38 on the PCL5, no DSM-
IV-TR or DSM-V diagnosis of a psychotic disorder (e.g.,
schizophrenia), no mTBI within the last 5 years, and no his-
tory of a moderate-to-severe TBI were grouped as combat
controls. All subjects were screened for MRI contraindica-
tions. All participants reported having deployed to a combat
environment. The PCL5 scores were significantly different
(P 5 3.64 3 10244) between the control group and the PTSD
and PCS 1 PTSD groups combined. The reason for such a
comparison was that PTSD is the common factor between
the PTSD and the PCS 1 PTSD groups, and PCL5 score
reflects only PTSD symptom severity. Similarly, postconcus-
sive symptom (NSI) scores were significantly different
(P 5 1.32 3 10229) between the PCS 1 PTSD group and the
PTSD and control groups combined.

Measures

PTSD Checklist-5 (PCL5 (Dickstein et al., 2015)). The
PCL5 is a 20 item self-report measure that assesses DSM-5
symptoms of PTSD. The PCL5 has a variety of purposes,
including screening individuals for PTSD, making PTSD
diagnoses, and monitoring symptom change during and
after treatment. Items are rated using a 5-point Likert
scale; 1 5 “Not at all” to 5 5 “Extremely.” A total symptom
severity score (range: 20–100) can be obtained by summing
the scores for each of the 20 items with a cut score of 38
for a precursory diagnosis of PTSD (Weathers et al., 2015).

Neurobehavioral Symptom Inventory (NSI (Cicerone and
Kalmar, 1995)). The NSI is a 22-item self-report question-
naire designed to assess postconcussive symptoms in indi-
viduals who have sustained a TBI (Cicerone and Kalmar,

1995). Participants rate the severity of each symptom with-
in the past month on a 5-point Likert scale ranging from 0
(none) to 4 (very severe). A total symptom severity score
(range: 0–88) can be obtained by summing the scores of
the 22 items (Cicerone and Kalmar, 1995).

CNS-Vital SignsVR (CNS-VS (Gualtieri and Johnson, 2006)).
CNS-VS is a computerized neurocognitive assessment bat-
tery (Gualtieri and Johnson, 2006). This study used five
CNS-VS sub-tests (verbal memory, symbol digit coding,
Stroop test, continuous performance test, and shifting atten-
tion test). The following CNS-VS domain scores were calcu-
lated: verbal memory (VM), complex attention (CA),
reaction time (RT), processing speed (PS), cognitive flexibili-
ty (CF), and executive functioning (EF). Domain scores
have a mean of 100 and standard deviation of 15. Domain
scores were averaged to form a single score or neurocogni-
tive composite index (NCI) (Gualtieri and Johnson, 2006).

Procedures

When participants arrived at Auburn University’s MRI
Research Center for their scheduled testing appointment,
they were rescreened for eligibility, thoroughly screened
for MRI contraindications, and re-consented to ensure full
comprehension of the study’s procedures, benefits, and
their rights.

fMRI

Participants were scanned in a 3 T MAGNETOM Verio
scanner (Siemens Healthcare, Erlangen, Germany) using
T2*-weighted multiband echo planar imaging (EPI)
sequence in resting state (the participants were asked to
keep their eyes open and fixated on a white cross displayed
with dark background on the screen using an Avotec pro-
jection system and not think of anything specific), with
TR 5 600 ms, TE 5 30 ms, FA 5 558, multiband factor 5 2,
slice gap 5 1 mm, anterior to posterior phase encoding
direction, voxel size 5 3 3 3 3 4 mm3, and 1000 volumes.
For the anatomical scan (MPRAGE), we used TR 5 1900 ms,
TE 5 2.5 ms, FA 5 98, and voxel size 5 1 3 1 3 1 mm3.
Brain coverage was limited to the cerebral cortex, subcorti-
cal structures, midbrain, and pons (the cerebellum was
excluded). For each subject, two identical but separate scans
were performed, thus providing us 174 sessions of resting-
state fMRI data for the 87 subjects. The two sessions of data
were processed independently. Mathematically, this boosted
the statistical power for our analysis beyond that which
would have been available from single scans from the 87
subjects, because statistics were performed with connectivi-
ty values which were double in number (per connectivity
path) compared to the number of subjects in the groups.

DTI

Participants were scanned in the same 3T MAGNETOM
Verio scanner (Siemens Healthcare, Erlangen, Germany)
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using diffusion weighted multiband EPI sequence, with
TR 5 3600 ms, TE 5 95 ms, FA 5 908, voxel size5 1.8 3 1.8
3 3 mm3, b 5 0, 1000, 25 slices acquired parallel to the
AC–PC plane, matrix 5 128 3 128, field of view
(FOV) 5 230 mm and number of diffusion directions 5 20.
Participants with partial brain coverage (defined as cover-
age that did not inferiorly cover z 5 212; n 5 3) or exces-
sive motion (via visual inspection for artifact; n 5 2) were
excluded from analyses.

Data Analysis

Non-imaging measures

Mean, median, standard deviation, and range were cal-
culated for the self-report and neurocognitive measures.
Ordinal data were analyzed using Kendall’s Tau B (sb)
test. Separate one-way analyses of variance (one-way
ANOVA) with Dunnett’s C correction for multiple com-
parisons were run when comparing continuous variables
between groups.

fMRI data preprocessing

Standard preprocessing of resting-state fMRI data was
performed including realignment, normalization to MNI
space, elimination of temporal linear trends, and regress-
ing out nuisance covariates (six head motion parameters,
white matter (WM) signal, and cerebrospinal fluid (CSF)
signal). The data were temporally band-pass filtered
(0.01–0.1 Hz). Maximum allowed head motion was half
the voxel size, that is, 1.5 mm. The groups did not exhibit
any significant difference in subject head motion (P> 0.05).
An additional preprocessing pipeline was executed which

was identical to the one described above, but with the
added step of global mean signal regression (GSR) to
examine its effects given conflicting reports about its utili-
ty (Power et al., 2015; Saad et al., 2012). Preprocessing was
performed using Data Processing Assistant for Resting-
State fMRI (DPARSF v1.7) (Chao-Gan and Yu-Feng, 2010),
which is based on Statistical Parametric Mapping (SPM8)
(Friston et al., 2007) and Resting-State fMRI Data Analysis
Toolkit (Song et al., 2011).

The time series data were then deconvolved to obtain
latent neuronal variables using a recently reported method
(Wu et al., 2013). The deconvolution is blind because there
is no external input in case of resting-state fMRI data and
consequently, both the hemodynamic response function
(HRF) and the underlying neuronal latent variables must
be simultaneously estimated from observed fMRI data,
making this an ill-posed estimation problem. Briefly, the
approach relies on modeling resting-state fMRI data as
event-related data with randomly occurring events using
point processes (Power et al., 2015; Saad et al., 2012) and
then estimating voxel-specific HRFs using Weiner decon-
volution. The deconvolution was performed because inter-
subject and spatial variability of the HRF (Handwerker
et al., 2004) could potentially give rise to a scenario where-
in fMRI time series are synchronized while the underlying
neural variables are not and vice versa (Please refer to Fig.
3 for an illustration). Given the high dimensionality of
whole-brain data, mean deconvolved (as well as non-
deconvolved) fMRI time series were obtained from 125
functionally homogeneous regions identified using spectral
clustering (known as the cc200 template (Craddock et al.,
2012)). Further connectivity analysis (performed on the
MatlabVR platform) utilized these 125 time series from each

Figure 3.

Illustrative example showing the importance of performing

hemodynamic deconvolution. Inter-subject and spatial variability

of the HRF could potentially give rise to a scenario wherein (a)

the BOLD fMRI time series are synchronized while the underly-

ing neural variables are not, thus giving high correlation while

the true correlation is low and (b) the undying neuronal varia-

bles are synchronized while the BOLD fMRI time series are not,

thus giving low correlation while the true correlation is high. In

both examples, a lag of 2 TRs was used. [Color figure can be

viewed at wileyonlinelibrary.com]
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subject for each of the four preprocessing pipelines (with
and without GSR, with and without deconvolution).

Connectivity analysis

Most studies investigate functional connectivity (FC), a
metric of synchronicity of activity in disparate brain
regions, assuming connectivity to be temporally stationary.
Dynamic fluctuations of connectivity are not captured
when using static connectivity. It has been shown that
dynamic changes in FC are relevant to neuropathology
(Sako�glu et al., 2010) as well as behavioral performance in
different domains (alertness, cognition, emotion, and per-
sonality traits) in healthy individuals (Jia et al., 2014). For
a comprehensive overview of DFC of resting-state fMRI,
see Hutchison et al. (2013).

Previous studies have not enumerated the utility of
dynamic information in connectivity fluctuations, over and
above the information obtained from conventional static
connectivity, in clinical applications. In this study, we
have used static as well as dynamic functional connectivity
measures. SFC and DFC values were obtained between all
pairs of 125 brain regions. For SFC, Pearson’s correlation
calculated from the entire time series was used. For DFC,
we employed sliding windowed Pearson’s correlation with
variable window length, which was determined adaptively
by assessing time series stationarity through the augment-
ed Dickey–Fuller test (ADF test), as in our recent study
(Jia et al., 2014). This procedure searches for the optimal
window length within a specified range using the statio-
narity of the time series as the criteria for optimization.
We have used a liberal range of 20–140 data points. The
justification for using this range for resting-state fMRI data
is provided in Jia et al. (2014). Figure 4 illustrates the con-
cept underlying SFC and DFC.

SFC and DFC were obtained between all pairs of 125
regions, thus obtaining a 125 3 125 SFC matrix and a
1000 3 125 3 125 DFC matrix per subject (1000 being the
number of time points). Variance of DFC (vDFC) values
over time was evaluated to obtain a 125 3 125 DFC vari-
ance matrix per subject. Significant group differences in
SFC (and vDFC) were obtained individually for each con-
nectivity path with whole-brain connectivity data (P< 0.01
FDR corrected). A Multivariate N-way ANOVA (MANCO-
VAN) statistical test was used. Significant group differ-
ences were controlled for age, gender, race, education, and
head motion (using mean framewise displacement
obtained across all brain voxels for each subject as defined
by Power et al. (2012)). As mentioned before, we investi-
gated the existence of significant connectivity paths which
had higher SFC but lower vDFC in disease compared to
controls, with connectivities being more extreme in
PCS 1 PTSD compared to PTSD. For the paths which fit
our hypothesis, their connectivity values were also corre-
lated with neurocognitive scores (NCI and subtests) and
symptom severity in PTSD (PCL5 score) and in PCS (NSI
score).

Regrouping Subjects Based on Connectivities

Connectivities from significant paths which fit our over-
arching hypothesis were used to regroup the subjects,
yielding two distinct groups (pure control and pure
PCS 1 PTSD) and an intermediate group. In line with our
hypothesis, we postulated the following: (i) new diagnostic
groups created based on the separation of significant con-
nectivity values would better map onto behavior, as com-
pared to commonly used symptom severity scores (PCL5
and NSI) and (ii) PTSD and PCS are spectrum disorders
wherein individuals are likely to lie on a continuum

Figure 4.

Illustration of the evaluation of static and dynamic functional connectivities. [Color figure can be

viewed at wileyonlinelibrary.com]
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ranging from healthy controls to comorbid PCS 1 PTSD,
rather than form distinct clusters; hence forming pure
healthy and comorbid groups (with diagnostic confidence
being very high in the pure groups) and an intermediate
group (low diagnostic confidence) may be clinically useful.
All the control subjects also had combat experience, and
hence a percentage of them might possess borderline neu-
ral and behavioral alterations associated with PTSD and
PCS, or both. Furthermore, subjects that fall within the
PCS 1 PTSD group might exhibit anywhere from mild to
moderate neurocognitive decrements, making it indistin-
guishable from the PTSD group. With all these factors in
place, it may be desirable to develop objective clinical clas-
sifications using imaging rather than symptom reporting.
Hence, we propose a practical approach wherein the sub-
jects are grouped into two extreme pure groups and an
intermediate group based on imaging measures such as
SFC and vDFC. This paradigm is still compatible with the
fact that the groups may have significantly different mean
values, but a large standard deviation so that they overlap.
Therefore, we devised a method wherein the subjects are
regrouped into the following three groups: (1) pure con-
trol, (2) intermediate group, and (3) pure PCS 1 PTSD.

A hypothetical example of regrouping is shown in Fig-
ure 5. Plotting the connectivity values in the two-
dimensional space of SFC (x-axis) and vDFC (y-axis), we
can expect to find connectivities of control subjects and
PCS 1 PTSD subjects at opposite ends. Furthermore, we
can expect to see an intermediate region between these
two extremes where there would be a combination of
subjects that are borderline healthy, those with PTSD

symptoms, and comorbid postconcussive and PTSD symp-
toms. In contrast, pure controls and pure PCS 1 PTSD
groups can be defined as those which have no nongroup
members included in them. In Figure 5, this corresponds
to the subjects who fall outside the intermediate group on
either side. In a mathematical sense, the objectives of the
regrouping procedure, like in a typical optimization prob-
lem, were to minimize the heterogeneity of the two “pure”
groups, while simultaneously maximizing the number of
subjects in the two “pure” groups.

Due to computational feasibility, a grid search was used
to achieve subject grouping (more on this aspect in the
results section). Assuming that N paths satisfy our over-
arching hypothesis (i.e., significantly stronger SFC with
lower vDFC in disease compared to healthy), the connec-
tivity values of all the subjects were embedded in the 2N-
dimensional connectivity space (each path is associated
with an SFC and a vDFC value, hence 2N). To explain this
procedure intuitively, we consider the two-dimensional
example shown in Figure 5. Subjects in the control group
were tagged as “1,” the PTSD group as “2,” and the
PCS 1 PTSD group as “3.” We used the variance of tagged
group values as a measure of heterogeneity. For example,
the pure control group would ideally have only control
subjects (tag 5 1), hence the variance of the tags for the
group would be zero. The intermediate group would have
a mixture of all three groups (1, 2, and 3); hence, it would
have higher nonzero variance.

Two separation hyperplanes of dimension 2N-1 (lines in
the two-dimensional example being considered) were arbi-
trarily initiated. In regard to our specific 2D example, the
equation of a line in two dimensions is given by
y 5 mx 1 c, where y and x are the variables on the y-axis
and x-axis, respectively, m is the slope and c is the inter-
cept. For a given range of x and y values, the position of
the line is determined by its angle (m) and shift (c). Within
the given range of SFC (5x) and vDFC (5y) values, we
generated all possible pairs of lines using all possible val-
ues of angle, shift, and separation between the lines. The
feature space between the two separation lines was identi-
fied as the intermediate group, and the feature space out-
side them as the two pure groups. We evaluated the
heterogeneity of each of the three groups (using variance
as explained earlier) for all possible separation lines gener-
ated. We then searched for that pair of nearest separation
hyperplanes (or lines in our 2D example), which resulted
in highest variance in the intermediate group and zero
variance in the two pure groups (to maintain “purity” of
the groups). These two were chosen as the final separation
hyperplanes (or lines in 2D case), which were used to cre-
ate the new groups based on connectivity: pure controls,
intermediate, and pure PCS 1 PTSD.

If the new imaging-based grouping maps better onto
behavior than the conventional grouping (which was
based on symptom screening and clinician referral), it can
be postulated that the imaging-based grouping can predict

Figure 5.

Hypothetical example using simulated data, illustrating the pro-

posed regrouping procedure. [Color figure can be viewed at

wileyonlinelibrary.com]
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PTSD and PCS sequelae better than conventional methods.
To test this, we statistically compared the subjects on neu-
rocognitive performance measures grouped using both the
conventional grouping as well as the new imaging-based
grouping. Corresponding mean and standard deviation
(SD) values of individual groups were obtained along with
the statistical significance of the differences between the
groups.

It is notable that the regrouping technique proposed by
us can be applied to any arbitrary set of features. If an
application identifies multiple measures as relevant (con-
nectivity, behaviors, etc.), then the same regrouping tech-
nique can be applied on those multiple measures (say RN

different measures, some connectivities, and some behav-
iors). From this, one could obtain an RN-dimensional neu-
robiologically informed feature space which has multiple
decision boundaries, using which a diagnostic decision
similar to ours can be made.

Classification Using Support Vector Machine

Statistical separation between neural signatures (e.g.,
t-test) does not necessarily guarantee generalizability or
predictive capacity of those signatures for diagnosis. A sta-
tistically significant connectivity path need not have high
predictive ability and vice versa (Craddock et al., 2009;
Deshpande et al., 2010). Consequently, those connectivity
paths which are both statistically significant (according to
our hypothesis) and top classifiers (high predictive ability)
assume more power and, therefore, relevance. Hence, we
have used machine learning methods to identify those
connectivity paths (or features) which can accurately clas-
sify individuals between PTSD, PCS 1 PTSD, and controls.
A Recursive Cluster Elimination based Support Vector
Machine (RCE-SVM) classifier (Deshpande et al., 2010)
was used to classify the subjects based on whole-brain
SFC and vDFC values. Notably, results from prior analysis
were not used to bias the machine learning method.

First, significant group differences were found for all the
three comparisons (control vs PTSD, control vs PCS 1 PTSD,
and PTSD vs PCS 1 PTSD), using a threshold of P< 0.05
(controlled for age, race, education, and head motion), for
both SFC and vDFC. We used an uncorrected P< 0.05
threshold as we wanted to be liberal about which features
serve as input to the classifier, and let the classifier choose
the most predictive features. Next, we found overlapping
paths between the three comparisons. The resulting SFC and
vDFC features were combined to provide the input features
to the classifier. This initial filtering enhances the quality of
classification (Craddock et al., 2009), and ensures that non-
discriminatory features are not fed into the classifier.

Our choice of support vector machine (SVM) (Vapnik,
1995) for classification was motivated by its wide accep-
tance and applicability for classification in several fields,
including neuroimaging (Wang, 2005). Previous studies
have shown that using discriminatory features enhances

classification performance of SVMs (Craddock et al., 2009;
Deshpande et al., 2010). Therefore, we employed recursive
cluster elimination (RCE), a wrapper method which itera-
tively eliminates features to minimize the prediction error,
where feature selection and classification steps are embed-
ded together. The RCE-SVM classification technique
involves the clustering step, the SVM scoring step and the
RCE step. The features that were initially input into the
classifier were divided into training and testing data sets.
The classifier was trained using the training data set, while
the testing data set was totally kept blind to the classifier.
Once training was complete, the testing data were input
into the classifier and classification accuracy was obtained.
This method ensures generalizability of the results.

In the clustering step, k-means algorithm was used to
cluster the training data into “n” clusters. The number of
clusters was initially set to the number of features, and
then was iteratively decreased by one until no empty clus-
ters were left. The “n” obtained by this iteration served as
the initial “n” for the RCE-SVM loop. In the SVM-scoring
step, each cluster was scored based on its capacity to dif-
ferentiate between the two groups by using linear SVM.
To assess the performance of the clusters, the training data
were randomly partitioned into 6 non-overlapping subsets
of equal sizes (six folds). Using 5 subsets, the SVM was
trained and performance (accuracy) was computed using
the remaining subset. All possible partitions were generat-
ed by repeating the clustering and cross-validation proce-
dures 100 times. For each of these 100 repetitions, the
classification accuracy was obtained using the testing data.

Using the outcome of 100 repetitions and six folds for
each repetition, the average value of the accuracies was
assigned as the cluster’s score. The bottom 20% of low
scoring clusters was eliminated in the RCE step. Remain-
ing features were merged and the value of “n” was
reduced by 20%. This ensures that only certain top classi-
fying features qualify for the next iteration. The clustering
step, the SVM-scoring step and the RCE step were repeat-
ed again iteratively. After each iteration, performance of
the classifier was obtained using the reduced number of
features compared to the earlier iterations. Once the num-
ber of clusters reached two, the procedure was stopped.
Figure 6 illustrates the RCE-SVM procedure using a flow-
chart. Complete separation of testing and training data
sets in this procedure eliminates bias in the computation
of classification accuracy (Kriegeskorte et al., 2009). Fur-
ther, the features in the final two clusters are those with
highest discriminative ability and hence carry predictive
value for diagnosis. Complete details about the RCE-SVM
algorithm can be obtained from previous reports (Desh-
pande et al., 2010; Yousef et al., 2007).

In this work, we made the following parameter choices
in classification. Eighty percent of the subjects were chosen
in the training set, while 20% were reserved as the testing
set. With k-means clustering of features, we started with
40 clusters in the first RCE step, and bottom 20% clusters
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(based on performance) were eliminated in each subse-
quent RCE step. The final RCE step involved two clusters,
which contained the top-predictive features. Sixfold cross-
validation was performed over 100 random iterations, giv-
ing a total of 600 iterations over the execution.

Classification was performed separately for the three
comparisons in the conventional as well as the proposed
imaging-based groupings (i.e., control vs PTSD, control vs
PCS 1 PTSD, and PTSD vs PCS 1 PTSD in the conventional
grouping; and pure control vs intermediate, pure control vs
pure PCS 1 PTSD, and intermediate vs pure PCS 1 PTSD in
the imaging-based grouping). For both groupings, outcome
measures such as accuracy and final set of discriminative
features were obtained by intersecting the results obtained
by each of three individual classifiers. To be conservative,
we obtained the worst-case classification accuracy by con-
sidering the minimum accuracy value obtained from the
test data set among all 600 iterations (100 repetitions 3 6
folds). The statistical significance of accuracies was obtained
by estimating the P values using a binomial null distribu-
tion B(g,q), q being the probability of accurate classification
and g being the number of participants, as in previous stud-
ies (Pereira et al., 2009). Only those accuracies whose P val-
ues were <0.05 (Bonferroni corrected) were considered as
statistically significant for further inference.

We repeated the above procedure and performed classifi-
cation independently using 32 nonimaging measures (NIMs)

as input features instead of SFC and vDFC connectivities.
The 32 measures were (i) behavioral measures: all CNS-VS
measures including the NCI score; (ii) psychological health
measures: Perceived Stress Scale, Pittsburgh Sleep Quality
Index, Epworth Sleepiness Scale, Zung Anxiety Scale, and
Zung Depression Scale; (iii) exposure/injury descriptives:
Combat Exposure Scale, lifetime concussions, and Life
Events Checklist. Worst-case classification accuracies and
top classifying features were obtained, as before, and these
results were compared with the results obtained using con-
nectivity values.

DTI Data Processing

One of the ways to find out whether increased severity
in the PCS 1 PTSD group is due to an mTBI (structural
damage) or the compounding effect of two disorders
(PTSD and PCS) combined, is to look at structural changes
using DTI. Probabilistic diffusion tractography was carried
out using FSL’s Diffusion Toolbox (FDT) (Behrens et al.,
2003; Johansen-Berg et al., 2005). Regions of interest (ROIs)
which were connected by functional paths satisfying our
overarching hypothesis (i.e., significantly stronger SFC and
lower vDFC in disease compared to healthy) were identi-
fied as seed and target regions. Briefly, a probability densi-
ty function was created at each voxel on the principal fiber
direction. White-matter connectivity probabilities were
estimated between the seed and target ROIs by repeatedly
sampling connected pathways through the probability dis-
tribution function. Samples were drawn from the connec-
tivity distribution, and the proportion of those samples
that passed through both ROIs was defined as the proba-
bility of the connection between the seed and the target.
For each analysis, we thresholded and binarized individu-
al subject’s results to include only those voxels with a con-
nection probability >10%. These images were then
combined to create group maps, which would help us find
out whether there is any structural basis for increased
severity in PCS 1 PTSD subjects. White matter tracts were
subsequently identified using the JHU ICBM DTI 81 White
Matter Label Atlas (http://www.loni.usc.edu/ICBM/
Downloads/Downloads_DTI-81.shtml).

RESULTS

The PCS 1 PTSD group exhibited significantly higher
PTSD and PCS symptom severities and performed signifi-
cantly worse in neurocognitive tests compared to PTSD
and controls. The PTSD group exhibited significantly
higher PTSD symptom severity and performed significant-
ly worse in neurocognitive tests compared to controls.
Supporting Information SI-1 provides detailed findings on
subject demographics, symptom severity, and neurocogni-
tive functioning.

Figure 6.

Flowchart illustrating the RCE-SVM classification procedure.
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RS-fMRI Functional Connectivity

In accordance with our hypothesis, the connectivity path
between left striatum and right hippocampal formation
(Fig. 7a) showed higher connectivity strength and lower
connectivity variance in the PCS 1 PTSD and the PTSD
groups compared to the control group. This path was the
only path in the whole-brain connectivity data to conform
to our hypothesis. The striatal region mainly contained
caudate head (MNI centroid: 211.3, 12.2, 3.5). The hippo-
campal formation contained entorhinal and perirhinal cor-
tices, and anterior hippocampus and parahippocampal
gyrus (MNI centroid: 19.4, 212.4, 225.5).

Figure 7b,c shows the hippocampus-striatum path-
weights which were significantly different between the
three groups, with decreasing vDFC and increasing SFC as
one moves from control to PTSD to PCS 1 PTSD.

This result was obtained using a threshold of P< 0.01
(FDR corrected) for testing statistical significance. Testing
our hypothesis with a more liberal threshold of P< 0.05
(FDR corrected), we found two connectivity paths to be
significant. In addition to the left striatum–right hippocam-
pal formation connectivity path mentioned before, the con-
nectivity between left striatum and left hippocampal
formation was the additional connectivity path to be found
significant.

It is notable that we have used deconvolved data in our
analysis. Deconvolution (Wu et al., 2013) minimizes HRF

variability (Handwerker et al., 2004) in the BOLD fMRI
signal and provides the estimated latent neuronal time
series. Results obtained using non-deconvolved data are
corrupted by HRF variability (Handwerker et al., 2004).
However, we tested our hypothesis on preprocessed fMRI
data without hemodynamic deconvolution as done in con-
ventional resting-state connectivity studies. We notably
did not find any significant connectivity path which fit our
hypothesis, underscoring the importance of removing HRF
variability from fMRI time series even for functional con-
nectivity analyses.

Though lower connectivity variance (vDFC) has been
associated with ill-health, both lower and higher connec-
tivity strengths (SFC) have been previously associated
with ill-health. Specifically, previous literature has shown
both stronger and weaker connectivities (SFC) in PTSD
compared to controls (Cisler et al., 2014; Hayes et al., 2012;
Simmons and Matthews, 2012). Hence, we also investigat-
ed whether paths which had significantly lower connectiv-
ity strength (SFC) and lower connectivity variance (vDFC)
existed in the PTSD and PCS 1 PTSD groups compared to
the control group. However, none of the connectivity
paths could fit this hypothesis using either deconvolved
data or conventional non-deconvolved data.

Our results were obtained with data which had under-
gone global mean signal regression (GSR) while prepro-
cessing the data. There has been debate in the scientific
community about whether or not global mean signal

Figure 7.

(a) Sagittal view of brain showing the hippocampus-striatum path. (b) Variance of dynamicFC and

(c) staticFC values for the three groups. All comparisons in (b) and (c) were statistically signifi-

cant (p < 0.05, FDR corrected) in accordance with our hypothesis. [Color figure can be viewed

at wileyonlinelibrary.com]
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should be removed (Power et al., 2015; Saad et al., 2012).
In fact, Power et al. note that the objections raised to GSR
are mainly based on results from low-dimensional simula-
tions (Saad et al., 2012), and that further work that deter-
mines the applicability of these arguments to empirical
data would usefully inform decisions about using GSR as

part of denoising strategies. To account for this, we also
performed the same analysis on preprocessed data without
GSR. We replicated the results showing that the left stria-
tum–right hippocampal formation connectivity path was
the only significant path in accordance with our hypothe-
sis, but with reduced statistical significance (P< 0.05, FDR

Figure 8.

White-matter connectivity between striatum and hippocampal-formation: fibers connecting the

two ROIs were more diffuse in the PCS 1 PTSD group compared to the PTSD or control

groups. [Color figure can be viewed at wileyonlinelibrary.com]
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corrected). Importantly, the hippocampus-striatum connec-
tivity remained significant despite concerns about con-
founds that global mean signal (or its regression) may

introduce. Additionally, as in the former case, without
GSR, none of the connectivity paths fit our hypothesis
with conventional non-deconvolved data. Also, no

Figure 9.

Association between SFC values and (a) verbal memory, (c) neurocognitive composite index (NCI),

(e) PTSD symptom severity (PCL5) and (g) PCS symptom severity (NSI); association between vari-

ance of DFC values and (b) verbal memory, (d) NCI, (f) PCL5, and (h) NSI. All correlations were

statistically significant (numerical statistics are provided in Supporting Information, SI-2.2). [Color

figure can be viewed at wileyonlinelibrary.com]
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connectivity paths were found when we searched for low-
er SFC and lower vDFC values in the PTSD and
PCS 1 PTSD groups compared to controls, with either
deconvolved data or conventional non-deconvolved data.
In summary, while our result was obtained with decon-
volved data, preprocessed with global mean signal regres-
sion (GSR), no paths were obtained in data without
deconvolution, and excluding GSR did not change the cur-
rent result. All these results unequivocally support that
the left striatum–right hippocampus connectivity path fits
our hypothesis irrespective of several preprocessing
choices debated lately in the scientific community.

DTI Results

DTI results revealed greater diversity in structural con-
nectivity between hippocampus and striatum, with white-
matter fibers connecting these two ROIs being more dif-
fuse (implying less integrity) in the PCS 1 PTSD group
compared to the PTSD and control groups (Fig. 8). The
profile was similar in the control and PTSD groups. From
this, we inferred that compromised structural integrity,
greater symptom severity, and neurobehavioral impair-
ments in individuals with PCS 1 PTSD could be associated
with their documented mTBI, and that they are less likely
just an extreme subset of PTSD. Please refer to Supporting
Information SI-2.1 for details on affected white-matter
pathways.

Association between fMRI Connectivities and

Non-imaging Measures

Connectivity values of the hippocampus-striatum path
had significant associations (Fig. 9) with neurocognitive
functioning (neurocognitive composite index [NCI] and
subtests), PTSD symptoms (PCL5 score), and PCS severity
(NSI score), thus highlighting their relevance to the under-
lying neuropathology. It was notable that correlations fol-
lowed the expected trend: an increase in severity and a
decrease in behavioral performance corresponded with
higher SFC and lower vDFC. Figure 9 also shows the cor-
relation values. Please refer to Supporting Information SI-
2.2 for detailed information.

Regrouping Subjects Based on Connectivities

In accordance with our hypothesis, we postulated the
following: (i) new diagnostic groups created based on the
separation of hippocampus-striatum path-weights would
map better onto behavior (i.e., neurocognitive perfor-
mance) as compared to the original groups based on con-
ventional diagnostic grouping and (ii) PTSD and PCS are
spectrum disorders wherein symptom severity is likely to
lie on a continuum, rather than forming distinct clusters;
and hence forming of high diagnostic confidence groups
(pure healthy and comorbid groups) and a low diagnostic
confidence group (called intermediate group) has the
potential to be clinically useful (see Fig. 5 for a hypotheti-
cal example). Hence, we devised a practical approach to
regroup the subjects into new diagnostic groups with the
objective of maximizing heterogeneity of the intermediate

Figure 10.

SFC and vDFC values of hippocampus-striatum path with pro-

posed imaging-based regrouping. The three new groups are

shown in gray bands. Based on old grouping: red circles are sub-

jects from the control group, blue diamonds from the PTSD

group, and green stars from the PCS 1 PTSD group. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

Figure 11.

Statistical significance (P value) of behavioral measures with both

conventional old grouping and proposed imaging-based grouping. A

logarithmic scale is used for the y-axis of P values. We observed

that all behavioral measures consistently exhibited smaller P value

for all comparisons with the imaging-based grouping. [Color figure

can be viewed at wileyonlinelibrary.com]
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group while simultaneously minimizing the heterogeneity
of the pure control and pure PCS 1 PTSD groups. This
novel approach deviates from traditional ways of grouping
subjects based on symptom reporting and clinical
judgment.

We regrouped the subjects using the SFC and vDFC val-
ues of the hippocampus-striatum path (see Fig. 10, and 3D
visualization in Supporting Information, Fig. S1). Clearly,
there is a relatively narrow intermediate band where all
the PTSD subjects are sandwiched along with borderline
controls and mild PCS 1 PTSD subjects. Outside this band,
we find regions of the two pure groups. We observe a con-
tinuum with the pure control group merging with the nar-
row intermediate band, which later leads to the space of
the pure PCS 1 PTSD group.

Mathematically defined regions for the new imaging-
based groups were found to be as follows:

Pure Control : vDFC > 0:31223SFC10:0268

Intermediate : 0:31223SFC10:0268 > vDFC

> 0:31223SFC20:0223

Pure PCS1PTSD : vDFC < 0:31223SFC20:0223

Further research on larger data samples is required to veri-
fy and validate these regions.

To verify whether the imaging tools used for the new
grouping (viz. SFC and vDFC values) are a better classifier
of PTSD and PCS than symptom scores, and to assess the
quality of the imaging-based grouping, we compared the
statistical differences in the neurocognitive measures using

Figure 12.

Depiction of statistical separation of neurocognitive scores for

both old (conventional) grouping and new (imaging-based)

grouping using population mean and SD values. New grouping

provides better separation between the groups with larger dif-

ference in means and lower within-group variances. Also, the

pure control group performed better than the original control

group, and the pure PCS 1 PTSD group performed worse than

the original PCS 1 PTSD group. [Color figure can be viewed at

wileyonlinelibrary.com]

r Hippocampus-Striatum Pathway as a Biomarker of mTBI and PTSD r

r 2857 r

http://wileyonlinelibrary.com


the imaging-based grouping against the statistical differ-
ences obtained with the conventional grouping (Fig. 11).
We observed that the P values for all behavioral measures
for all groupwise comparisons were consistently smaller
with the imaging-based grouping, thus supporting our sec-
ondary hypothesis (see Supporting Information SI-2.3 for
tables of P values and effect sizes).

Figure 12 shows the mean and SD values of the neuro-
cognitive scores for both the conventional old grouping
and the new imaging-based grouping. This figure reiter-
ates the findings of Figure 11, providing a different per-
spective of the improved separation of neurocognitive
scores with the new grouping. It shows that the new
imaging-based grouping resulted in these important
behavioral measures being separated farther apart between
the groups with lesser variance.

It is observable in Figure 12 that the pure control group
has better scores on neurocognitive tests than the original
control group, and the pure PCS 1 PTSD group has worse
scores than the original PCS 1 PTSD group. These findings
imply that the pure control group is cognitively better
than the original control group, and the pure PCS 1 PTSD
group is cognitively worse than the original PCS 1 PTSD
group. These comparisons further add value to our defin-
ing them as “pure” groups.

Significant differences in behavioral measures were
observed between control subjects in the pure control group
and the intermediate group, with controls in the pure group
performing significantly better than controls in the intermedi-
ate group on several neurocognitive measures (Figure 13).
Those in the pure control group also had lower anxiety and
sleepiness scores, and had lesser combat exposure. Similarly,
PCS 1 PTSD subjects in the pure PCS 1 PTSD group per-
formed significantly worse on neurocognitive tests and had
higher symptom severity than the PCS 1 PTSD subjects in
the intermediate group (Figure 13). Please refer to Support-
ing information for the list of all P values, mean, and SD val-
ues (Supporting Information, Table S8). These observations
show that certain control subjects had behavioral and neuro-
cognitive impairments, which seems to have result in them
being labeled to the intermediate group with our new group-
ing. The PCL5 symptom severity score, however, did not
diagnose them with PTSD with the conventional grouping. It
is possible that the PCL5 score did not capture those impair-
ments in these subjects. It is also possible that these subjects
developed other compensatory mechanisms which rendered
them healthy, thus failing to have them diagnosed with
PTSD through the PCL5 score despite some degree of neuro-
cognitive impairment (similar logic goes with PCS 1 PTSD
subjects).

Figure 13.

Comparing symptom severity, neurocognitive functioning, and

self-report measures of the original control subjects between

those in the pure control group and the intermediate group

(red circles), as well as the original PCS 1 PTSD subjects

between those in the pure PCS 1 PTSD group and the interme-

diate group (green stars). The y-axis shows the P values of com-

parison on a logarithmic scale (log to base 10). The significance

threshold (P 5 0.05) is visible as a thick horizontal line. Control

subjects in the pure control group exhibited significantly better

neurocognitive performance, less sleepiness and anxiety, and less

combat exposure than those control subjects in the intermedi-

ate group (see red circles). PCS 1 PTSD subjects in the pure

group exhibited significantly worse neurocognitive performance

and higher PCS symptom severity than those PCS 1 PTSD sub-

jects in the intermediate group. [Color figure can be viewed at

wileyonlinelibrary.com]
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It is notable that the imaging-based grouping is based
on the underlying neurobiology while the conventional
grouping is based on screening instruments. These find-
ings demonstrate that the imaging-based grouping maps
better onto neurobehavior than the conventional grouping,
indicating that the SFC and vDFC values of the
hippocampus-striatum path may be a clinically significant
marker of PTSD and PCS. We encourage researchers to
employ our regrouping technique to realize more practical
and accurate patient diagnosis.

Classification Using Support Vector Machine

Statistical significance, in simple terms, means that the
difference in population mean values of the measure (e.g.,
connectivity) is relatively large compared to the popula-
tion standard deviations (assuming Gaussianity of data
distribution), implying that it is safe to assume, with cer-
tain confidence, that the two populations exhibit a differ-
ence of significance. However, success in such hypothesis
testing is neither a necessary nor a sufficient condition to
ensure that the measure can predict the diagnostic mem-
bership of a novel subject based on a novel measurement.
It does not provide a mechanism for evaluating the predic-
tive ability of the results, which makes it important to
acknowledge what a technique like hypothesis testing can
do, and cannot do.

Statistically significant neural signatures need not neces-
sarily have generalizability or predictive ability (Craddock
et al., 2009; Deshpande et al., 2010), implying that connec-
tivities which are statistically significant (fitting our hypoth-
esis) as well as top predictors assume higher importance.
Top predictors are those connectivities which possess the
highest ability among all connectivities in predicting the
diagnostic membership of a novel subject. We thus used a
recursive cluster elimination based support vector machine
(RCE-SVM) classifier (Deshpande et al., 2010) to identify
the top predictors, which recursively eliminates low-

performing connectivity features, so as to identify those
connectivities which contribute most towards obtaining
highest classification accuracy. Machine learning classifica-
tion techniques such as RCE-SVM learn the underlying pat-
terns in the training data, and apply the learned pattern to
an untouched testing data to classify the “test” subjects into
one of the groups. Given that the true membership of each
“test” subject is known; the classification accuracy provides
a measure of how well the classification was performed.

Classification was performed for four different para-
digms: classification using 32 non-imaging measures
(NIMs) with (i) conventional grouping and (ii) imaging-
based grouping; classification using whole-brain connectiv-
ities with (iii) conventional grouping and (iv) imaging-
based grouping. Table I summarizes the worst-case classi-
fication accuracies along with the top-predictive features
(see SI-2.4: Supporting Information, Fig. S2 for accuracy in
every RCE iteration and Fig. S3 for average accuracy).

We observed that RCE-SVM classification using connec-
tivities provided significantly higher accuracy (about 9%
more, P< 0.05 Bonferroni corrected) than classification
using NIMs. This finding indicates that SFC and vDFC
have better predictive ability in identifying subjects with
PTSD and PCS compared to NIMs. With both NIMs and
connectivities, classification with the imaging-based group-
ing provided higher accuracy (about 4% more, P< 0.05
Bonferroni corrected) than classification using the conven-
tional grouping. This implies that the imaging-based
groups derived using the hippocampus-striatum path-
weights not only map onto behavior better than the PCL5
and NSI scores (as shown in Figures 11 and 12) but also
have increased predictive power to determine the diagno-
sis of subjects irrespective of whether the features are
based on connectivity or neurocognitive function.

Along with the classification accuracies, the top predictors
which resulted in the highest classification accuracy are also
of considerable interest. The top NIMs with the imaging-
based grouping were the NCI score and the verbal memory

TABLE I. Worst-case classification accuracies, along with top-predictive features which displayed the ability in pre-

dicting the diagnostic membership of a novel subject with high accuracy. Comparison of the accuracies across differ-

ent groupings and measures over the 600 iterations revealed high statistical significance and large effect sizes

Conventional grouping Proposed grouping

P values for
column-wise
comparison

Effect size (Cohen’s d)
for column-wise

comparison

Non-imaging measures 70.79% 74.03% 5.42 3 10211 0.61
Sleepiness and depression NCI and verbal memory

Connectivity values 79.78% 83.59% 1.11 3 10213 0.72
SFC and vDFC values of hippocampus-striatum path

P values for row-wise
comparison

7.12 3 10226 2.68 3 10228

Effect size (Cohen’s d) for
row-wise comparison

1.69 1.81
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score, which also resulted in 4% more accuracy. It is interest-
ing to note that the imaging-based grouping attributes the
two most important neurocognitive measures in PTSD (NCI
and verbal memory) with the highest predictive ability. For
classification using connectivities, SFC and vDFC values of
the hippocampus-striatum path were the top-predictive fea-
tures. Prior to these findings, this connectivity path was
attributed only with statistical significance between the
groups. Statistical significance does not necessarily guarantee
predictive ability of connectivity features (Pereira et al.,
2009). These results show that, in addition to statistical sepa-
ration, this connectivity path also has the highest predictive
ability, all obtained in a data-driven way from whole-brain
connectivity data. For a pictorial description of the entire
pipeline and corresponding results, see Figure 2.

DISCUSSION

Evidence in Favor of Our Hypotheses

Our findings indicate perturbations in functional con-
nectivity of the hippocampal-striatal neural network asso-
ciated with PTSD with/without PCS, indicative of an
increased, yet less variable drive between the regions,
which supports our overarching hypothesis (Fig. 1). SFC
and vDFC values also correlated significantly with neuro-
cognitive measures and symptom severity. Furthermore,
our results revealed directional concurrence in the differ-
ences in symptom severity, cognitive disruption, compro-
mised connectivity, and diffusivity of related white-matter
tracts between the groups, with the PCS 1 PTSD group
being the most compromised, followed by the PTSD group
then the combat control group.

We also found support for three corollary hypotheses
stated in the introduction. First, complementary to the con-
nectivity findings, DTI results confirmed greater diversity
(more diffuse, hence less integrity) of white-matter tracts
between hippocampus and striatum in the PCS 1 PTSD
group compared to both the control and PTSD groups,
suggesting a strong structural basis for PCS. Prior work
shows affected white-matter integrity with left striatum in
subjects sustaining an mTBI (Yeh et al., 2015). This struc-
tural specificity implies that it is unlikely that the
PCS 1 PTSD group is an extreme subset of PTSD. Second,
we regrouped the subjects based on SFC and vDFC of the
hippocampus-striatum path. We found that all neurocogni-
tive measures separated better with our proposed
imaging-based grouping compared to the conventional
grouping (i.e., the P values of separation between the three
new groups were smaller for all groupwise comparisons).
Third, classification using imaging-based grouping provid-
ed significantly higher accuracy than conventional group-
ing (about 4% more). Furthermore, the accuracies obtained
by imaging measures were significantly higher than noni-
maging measures for both conventional and imaging-
based groupings (about 9% more). SFC and vDFC of

hippocampus-striatum path were also the top-predictive
features, in addition to being statistically significant.

Implications for Advancing Our Mechanistic

Understanding of PTSD and PCS

Our results are interesting given that individuals with
PTSD and PCS have cognitive impairments (Eierud et al.,
2014; Hayes et al., 2012) that reflect habit learning or proce-
dural memory, which when impaired, is associated with
perseverative thinking. While the striatum is involved in
this, the hippocampus is implicated in declarative memory
(Mattfeld and Stark, 2015). Both activation and connectivity
studies have previously dealt with this aspect. Goodman
et al. (2012) showed that traumatic memories relatively
increase the activation of striatum while decreasing the acti-
vation of hippocampus, leading to a shift from declarative
to habit formation. Moreover, Packard et al. (2009) showed
that this impairing effect of hippocampus-dependent mem-
ory effectively produces enhanced habit learning by reduc-
ing competitive interference between cognitive and habit
memory systems, and this predominant use of habit memo-
ry is induced by stressful emotional states. In line with this
finding, perseverative thoughts are also elicited by emotion-
al states associated with stress in individuals with PTSD.
Schwabe et al. (2013) showed that the striatum-based proce-
dural memory is stress promoted, meaning that stress indu-
ces a shift from hippocampal to striatal dependent memory.
Taken together, these studies suggest a neural mechanism
explaining why PTSD subjects perseverate on traumatic
memories, more frequently and intensely than memories of
other events, which leads to habit-like responses (Hayes
et al., 2012). Indeed, Spielberg et al. (2015) have shown that
striatum is involved in re-experiencing issues seen in trau-
matized subjects. These observations could explain the
involvement and interplay between striatum and hippo-
campus in PTSD subjects. Both hippocampus and striatum
have been implicated in mTBI and PTSD across several
studies (Boccia et al., 2015; Eierud et al., 2014; Hayes et al.,
2012; Simmons and Matthews, 2012). We postulate that
there exists a fine balance between hippocampus and stria-
tum, implicated in the retrieval of memory, which deter-
mines the relative emphasis placed on these memories. An
imbalance in this mechanism might likely increase persever-
ation of intrusive memories associated with these stress-
related conditions (Ghiglieri et al., 2011).

Next, both structural and functional connectivity studies
have investigated the role of hippocampus and striatum in
studying memory alterations in PTSD. Memories of stress-
ful negative life events, necessary for PTSD, alters the
structural connectivity between striatum and hippocampus
(Favaro et al., 2014), which reiterates the structural basis
for our findings. In support of our findings, Cisler et al.
(2014) showed that there is increased SFC between hippo-
campus and striatum in PTSD subjects during a “repeated
exposure to traumatic memory” task. Building on this, one
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of our crucial contributions is in showing that the
hippocampus-striatum path has significantly lower vari-
ability of connectivity over time in the PTSD and
PCS 1 PTSD groups. This indicates that there may be a
lack of adaptability and regulation between these regions,
suggesting that PTSD is associated with a hyperconnectiv-
ity state, from which it is difficult to disengage, leading to
unwanted thoughts and feelings; a phenomenon which is
often observed with habit formation. This mechanistic
insight may be a valid explanation for clinical/behavioral
manifestations in co-occurring PTSD and PCS.

In this study, we found associations between connectivi-
ties and neurocognitive scores, as well as significant group
differences in neurocognitive functioning. Looking with
more statistical granularity, the greatest differences were
found in executive functioning (EF) and cognitive flexibility
(CF) indices. The EF measures performance in rapid deci-
sion management, recognizing rules, and categories; and CF
measures performance in adaptation to rapidly changing
rules and information manipulation. As such, our results
appear to be in accord with findings from Mattfeld and
Stark (2011, 2015) which suggest functional contributions
and interactions between hippocampus and striatum on
tasks requiring learning of new arbitrary associations.

We have used this mechanistic understanding of altered
neural circuitry to inform us about subject groupings which
seem neurobiologically valid. Our regrouping strategy
using connectivities has interesting implications for clinical
settings wherein one could obtain fMRI connectivity values
from a new subject and potentially assign a diagnostic
membership to the subject based on the position of the sub-
ject’s connectivities in our neurobiologically informed fea-
ture space (NIFS) (see results section for exact boundary
equations). If the connectivities (SFC and vDFC of the
hippocampus-striatum path) are within the bounds of the
pure control group in the NIFS, then the subject can be diag-
nosed as healthy with extremely high confidence (similar
logic for pure PCS 1 PTSD). If the connectivities are, howev-
er, within the intermediate group, then the subject’s symp-
toms are likely due to PTSD, yet further investigation would
be needed to ascertain the diagnosis. Such a classification
could improve diagnostic accuracy above and beyond the
traditional classification method. Future studies should
focus on generalizing these results by replicating it in a
large sample, so that they could be used clinically as
biomarkers.

Interestingly, SFC and vDFC of the hippocampus-
striatum path resulted in the highest classification accuracy.
They were also identified as the top diagnostic features,
which was entirely determined in a data-driven way from
whole-brain connectivity data without any bias from previ-
ous results. This demonstrates that they could be a better
marker of neural and behavioral characteristics of PTSD
and PCS than just PCL5 and NSI scores, and have the poten-
tial as imaging biomarkers for these disorders. Our
“potential biomarker” satisfies three of the four conditions

described by Woo et al. (2015) to be satisfied by a good bio-
marker (diagnosticity, interpretability, and deployability).
In regard to the fourth condition (generalizability), based on
the suggestion in Woo et al., we issue an open call for
researchers possessing similar data to share with us so that
the classifier can be tested on them. It is notable that our
findings are also equally applicable while studying/treating
PTSD alone, or even comorbid PCS and PTSD alone.

We made several methodological innovations in this
work: (i) For the first time in literature, we proposed a
novel unified framework which integrates static and time-
varying connectivity information to provide novel charac-
terizations of brain functioning not available earlier.
Recent studies have highlighted the enormous importance
of dynamics in deciphering brain functioning (Hansen
et al., 2015), yet there has been no methodology in the lit-
erature which integrates the distinct information provided
by static and dynamic connectivities to make a unified
inference. Our methodological innovation enables this. (ii)
Studies performing dynamic connectivity often do not
characterize variability in connectivity. Our use of variance
of DFC (vDFC) as a measure of connectivity variability,
and the association of lower variability of connectivity
with pathology is novel, and would contribute significant-
ly toward understanding of psychiatric disorders and cog-
nitive domains. Furthermore, unlike previous dynamic
functional connectivity studies which have used fixed slid-
ing windows, we have employed a method wherein the
window length dynamically varies over time based on
time series stationarity. (iii) We proposed a novel regroup-
ing technique based on connectivity values and neurobio-
logically informed feature space. This novel technique can
be used to identify objective biomarkers of mental condi-
tions which can predict a subject’s membership with com-
plete certainty in one group while subjects in the uncertain
group may require further investigation. In many cases,
such an approach is more useful than traditional machine
learning classifiers as they often cannot determine a sub-
ject’s membership in any group with high certainty. We
hope that the research community would make use of
these methodological innovations for studying various
mental disorders and cognitive domains.

Limitations and Future Work

We note a number of limitations and caveats which
must be kept in mind while interpreting the results pre-
sented here, and simultaneously suggest how future stud-
ies may address those issues: (1) In accordance with our
hypothesis, we observed that the connectivity values were
more extreme in the case of PCS 1 PTSD compared to
PTSD alone, and that they also correlated significantly
with all the neurocognitive/symptom severity scores. This
shows that the subjects who had the added burden of PCS
along with PTSD had higher symptom severity than sub-
jects with only PTSD, and also showed higher SFC and
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lower vDFC values as compared to PTSD. Additionally,
our DTI results clearly show that mTBI may lead to a
more severe symptomatology due to structural changes,
which might explain why the PCS 1 PTSD group is more
extreme than the PTSD group. Although there is limited
literature on comorbid imaging studies of PCS and PTSD,
we speculate that (i) the burden of a prior mTBI exacer-
bates PTSD-related brain alterations which were potential-
ly already prevalent in these subjects before developing
PCS or (ii) subjects who sustain mTBI and concomitantly
or subsequently had a traumatic experience will end up
with greater functional neural alterations which corre-
spond to higher symptom severity than subjects who expe-
rienced psychological trauma alone. Future experimental
designs must aim to untangle the underlying causal mech-
anisms in comorbid PTSD and PCS to confirm either of
the two scenarios. (2) The structural specificity for PCS in
subjects who had sustained an mTBI implies that the
comorbid group being an extreme subset of PTSD is
unlikely. However, future studies must verify this finding
in subjects with mTBI/PCS, but without PTSD. (3) Our
findings were based on the results obtained from military
subjects with combat exposure. Having a control popula-
tion with combat exposure is a unique contribution as it
provides a more representative control group. Indeed, a
recent study revealed differences in resting-state fMRI con-
nectivity patterns between healthy civilian and combat
controls (Kennis et al., 2015) “potentially due to military
training, deployment, and/or trauma exposure.” There-
fore, further work is needed to verify whether these results
are applicable to non-combat-related (or civilian) PTSD
and PCS. (4) Our findings have interesting implications.
When healthy individuals are subjected to stressful events
and moderate emotional trauma in their day-to-day life, a
temporary shift in the balance between striatal and hippo-
campal learning and memory might come into place, but
they might be able to dynamically engage/disengage the
hippocampus-striatum pathway and eventually succeed in
restoring the balance to its originality. On the other hand,
PTSD and PCS+PTSD are associated with impaired ability
to restore this balance, and regulate thoughts and behav-
iors when exposed to contextually relevant stressors,
which possibly has them being diagnosed as unhealthy.
Future studies could test these specific hypotheses. (5)
While performing RCE-SVM classification, we split the
entire dataset into training (80%) and testing/validation
(20%) datasets. With this, we had only about 17 subjects
(20% of 87) in the testing set, which is a relatively small
number for an fMRI connectivity study. (6) Only male vet-
erans were studied, thus our findings cannot be general-
ized to female soldiers. To ascertain the diagnostic utility
of connectivity values of the hippocampus-striatum path
and apply these methods in clinical settings in the future,
the results need to be replicated on a sample of much larg-
er size, which is more representative of the target popula-
tion in terms of gender, ethnicity, and so on. (7) Future

studies with the targeted populations could specifically
address the habit systems and declarative systems sepa-
rately, with behavioral measures involving probabilistic
classification (e.g., the weather prediction task) which are
sensitive to such shifts (Foerde et al., 2006; Schwabe and
Wolf, 2012). (8) Time since concussion for the PCS subjects
was not available. It is possible that it might correlate with
SFC and vDFC values. Also, the data were acquired from
the subjects only on one instance. Longitudinal studies
could focus on the behavior of the connectivities of
hippocampus-striatum path over the advancement, recov-
ery, and rehabilitation phases of subjects with PTSD with
and without PCS. This will be an appropriate test for vali-
dating the hippocampus-striatum path’s SFC and vDFC as a
candidate imaging biomarker for PTSD and PCS 1 PTSD.
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