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BACKGROUND: Ambient fine particulate air pollution with aerodynamic diameter ≤2:5 lm (PM2:5) is an important contributor to the global burden of
disease. Information on the shape of the concentration–response relationship at low concentrations is critical for estimating this burden, setting air
quality standards, and in benefits assessments.
OBJECTIVES:We examined the concentration–response relationship between PM2:5 and nonaccidental mortality in three Canadian Census Health and
Environment Cohorts (CanCHECs) based on the 1991, 1996, and 2001 census cycles linked to mobility and mortality data.
METHODS: Census respondents were linked with death records through 2016, resulting in 8.5 million adults, 150 million years of follow-up, and 1.5
million deaths. Using annual mailing address, we assigned time-varying contextual variables and 3-y moving-average ambient PM2:5 at a 1 × 1 km
spatial resolution from 1988 to 2015. We ran Cox proportional hazards models for PM2:5 adjusted for eight subject-level indicators of socioeconomic
status, seven contextual covariates, ozone, nitrogen dioxide, and combined oxidative potential. We used three statistical methods to examine the shape
of the concentration–response relationship between PM2:5 and nonaccidental mortality.
RESULTS: The mean 3-y annual average estimate of PM2:5 exposure ranged from 6.7 to 8:0 lg=m3 over the three cohorts. We estimated a hazard ratio
(HR) of 1.053 [95% confidence interval (CI): 1.041, 1.065] per 10-lg=m3 change in PM2:5 after pooling the three cohort-specific hazard ratios, with
some variation between cohorts (1.041 for the 1991 and 1996 cohorts and 1.084 for the 2001 cohort). We observed a supralinear association in all
three cohorts. The lower bound of the 95% CIs exceeded unity for all concentrations in the 1991 cohort, for concentrations above 2 lg=m3 in the
1996 cohort, and above 5lg=m3 in the 2001 cohort.

DISCUSSION: In a very large population-based cohort with up to 25 y of follow-up, PM2:5 was associated with nonaccidental mortality at concentra-
tions as low as 5 lg=m3. https://doi.org/10.1289/EHP5204

Introduction
Exposure to ambient fine particulate air pollution with aerody-
namic diameter ≤2:5 lm (PM2:5) consistently ranks among the
leading risk factors for premature death and disease worldwide
(Burnett et al. 2018; GBD 2017 Risk Factors Collaborators 2018;
Lim et al. 2012). A number of studies supporting this work have
found that the relationship between PM2:5 concentrations and
mortality risk (for various causes) was supralinear across the

global range (Burnett et al. 2014; Pope et al. 2009, 2011; Yin
et al. 2017). In a detailed examination of the shape of the PM2:5–
mortality association in 15 of the world’s largest cohorts (Burnett
et al. 2018), 12 displayed a supralinear association. A supralinear
concentration–response curve is characterized by a positively
sloped curve of decreasing steepness, such that risk initially rises
rapidly with a decreasing slope as concentrations increase.
Studies that specifically characterize the shape of concentration–
response relationships at low-PM2:5 mass concentrations offer
great value given the steady decline in PM2:5 levels over recent
decades in North America (ECCC 2017). Further, a substantial
proportion of the global PM2:5 disease burden is from relatively
low level exposures (Apte et al. 2015). Canada is an ideal setting
to conduct such analyses, given the availability of large, national
cohorts with sufficient sample sizes and detailed exposure infor-
mation at low PM2:5 concentrations.

Canadian cohort studies have shown consistent positive asso-
ciations between PM2:5 and mortality from various causes at low
PM2:5 concentrations (i.e., annual concentrations generally below
20lg=m3 even in large urban areas) (Crouse et al. 2012, 2015;
Nasari et al. 2016; Pinault et al. 2016b, 2017; Weichenthal et al.
2017). Crouse et al. (2012) used the 1991 Canadian Census
Health and Environment Cohort (CanCHEC) to conduct the first
nationwide cohort analysis and identified a hazard ratio (HR) for
nonaccidental mortality of 1.07 [95% confidence interval (CI):
1.06, 1.08] per 10-lg=m3 change in PM2:5 among nonimmigrant
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adults. In a recent analysis of the 2001 CanCHEC, Pinault et al.
(2017) reported a larger HR of 1.18 (95% CI: 1.15, 1.21) for
PM2:5 and nonaccidental mortality. While these studies made im-
portant contributions to the evidence base for mortality risks at
low PM2:5 levels, they also had several important limitations. For
example, with the exception of Pinault et al. (2017), past studies
used coarser-resolution PM2:5 models (i.e., 10 × 10 km) to assign
exposures to census respondents. Furthermore, most of the previ-
ous studies excluded immigrants, although this group represents
nearly 20% of the Canadian population. Additionally, most of
these studies had only 10 y of follow-up.

The present study specifically investigated the shape of the
concentration–response function between PM2:5 and nonacciden-
tal mortality at low levels of exposure among Canadian adults.
We examined data from the 1991, 1996, and 2001 CanCHECs
with follow-up until 2016. We address a number of limitations of
previous cohort studies in Canada by extending the period of
follow-up to 25 y (i.e., for individuals in the 1991 cohort), includ-
ing all but recent immigrants in the analysis, using annual 1 km2

PM2:5 estimates from 1988–2015, using time-varying contextual
covariates over the duration of follow-up, and applying a vali-
dated marginalization index to represent four orthogonal dimen-
sions of neighborhood- or community-level socioeconomic status.
We examined the shape of associations at low levels of PM2:5 expo-
sure by applying restricted cubic splines (RCS) (Harrell 2015),
monotonically increasing smoothing splines (MISS) (Pya and
Wood 2015), and the Shape Constrained Health Impact Function
(SCHIF) (Nasari et al. 2016).

Methods

Analytical Cohort
We created three new, separate analytical cohorts from the 1991,
1996, and 2001 CanCHECs. Briefly, the CanCHECs are population-
based, administrative data cohorts that link eligible census respond-
ents (i.e., noninstitutional respondents to the mandatory Statistics
Canada long-form census questionnaire that is distributed to 20% of
all Canadian households) to their annual mailing address (1981–
2016) and follow subjects for mortality. Information on a number of
variables capturing the social and economic status of the subjects was
available from the long-form census (Table 1).

The linkage was approved by Statistics Canada (linkage
requests 037-2016 and 045-2015) and is governed by the Directive
onMicrodata Linkage (Statistics Canada 2017a). Eligible respond-
ents were first linked probabilistically to tax records using sex, date
of birth, postal code (PC), and spousal date of birth (if available).

This initial linkage was necessary since linkage to the mortality
database is based on the social insurance number (SIN), a unique
personal identifier. The long form censuses did not capture the
SIN, but they are available on tax records. The linkage rate to tax
records near the time of cohort inception was approximately 80%,
of which 99% were determined to be accurate matches (Christidis
et al. 2018; Pinault et al. 2016a;Wilkins et al. 2008).

Mortality and PC history data were attached to the census-tax
cohorts using Statistics Canada’s Social Data Linkage Environment
(SDLE) Derived Record Depository (DRD) (Statistics Canada
2017b), a dynamic relational database. About 99.8% of all deaths
that occurred in Canada between 1991 and 2016 were linked to the
DRD before being linked to eligible census respondents. From this
linkage, we obtained death date and underlying cause of death if it
occurred between census day and 31 December 2016. Mortality
data were coded by underlying cause of death according to the
International Classification of Diseases, 9th Revision, prior to 2000
(ICD-9; WHO 1977), and 10th Revision post-2000 (ICD-10; WHO
2016).

We enhanced the cohort with a number of data elements char-
acterizing the environment in which each subject lived, using PC
histories from tax records, of which the primary source was
income tax filings (1981 to 2016). We assigned a representative
point (latitude and longitude) to each PC (Statistics Canada
2017c). In large cities, PCs often correspond to a single block
face, though in rural areas, they can range over much larger areas.
Similarly, the point estimates of PCs are accurate within 0:2 km
in urban centers and 5:6 km in rural areas (Khan et al. 2018).
These point estimates were used to derive estimates of air pollu-
tion and location-based contextual risk factors.

We note that these three linked cohorts are newly created
using an enhanced linkage environment (SDLE) and thus are not
identical to the CanCHEC cohorts used in previous publications
(Crouse et al. 2015; Pinault et al. 2017).

Outdoor Air Pollution Concentrations
We used annual ambient PM2:5 surfaces as our main exposure of in-
terest at a 0:01˚×0:01˚ resolution (∼ 1 km2) over North America
for 1981–2016 (Meng et al. 2019; van Donkelaar et al. 2015). PM2:5
estimates for the years 1998–2012 were developed by relating
satellite-based retrievals of total column aerosol optical depth to
near-surface PM2:5 concentrations using the geophysical relation-
ship simulated by a chemical transport model (CTM). These esti-
mates were constrained using ground-based monitoring from the
NationalAir Pollution Surveillance (NAPS) program stations, along
with other North America–based measurements, land-use informa-
tion, and simulated composition in a geographically weighted
regression (V4.NA.01; vanDonkelaar et al. 2015). For years outside
this period, we used PM2:5 surfaces developed using a backcasting
method (Meng et al. 2019) that applied observed annual trends in
groundmonitoring data for PM2:5 and coarser size fractions to adjust
pregridded PM2:5 estimates backwards or forwards in time.We esti-
mated a 3-y moving-average exposure window with 1-y lag for
assigning PM2:5 exposures for consistency with previous studies, as
ambient PM2:5 is regulated based on a 3-y time window in Canada
(CCME2012).

We assigned estimates of exposures to ambient ozone (O3; as
a May–September daily maximum 8-h average) and nitrogen
dioxide (NO2; annual) for inclusion in multipollutant models.
Additionally, we estimated a measure of the combined oxidant
capacity of O3 and NO2, expressed as Ox = 2=3O3 + 1=3NO2
(Weichenthal et al. 2017). We estimated a 3-y average with 1-y
lag for each of O3, NO2, and Ox for inclusion in the hazard mod-
els. Modeled O3 surfaces at 21-km spatial resolution were devel-
oped by Environment and Climate Change Canada (ECCC) for

Table 1. PM2:5 Distribution by cohort with lowest (2nd percentile) and high-
est (98th percentile) knot values for restricted cubic spline.

2001 1996 1991

100% max 18.50 20.00 20.00
99% 12.30 15.00 17.26
98% (highest knot) 11.70 13.97 17.03
95% 10.70 12.20 14.63
90% 9.80 10.70 12.60
75% Q3 8.23 8.84 9.83
50% median 6.40 6.75 7.40
25% Q1 4.87 5.04 5.38
10% 3.97 4.10 4.26
5% 3.57 3.67 3.80
2% (lowest knot) 3.00 3.29 3.43
1% 3.00 3.05 3.13
0% min 0.37 0.37 0.37
Mean 6.68 7.18 7.95
SD 2.24 2.70 3.28

Note: SD, standard deviation.
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2002–2015 using chemical transport modeling informed by sur-
face observations (Robichaud and Ménard 2014; Robichaud et al.
2016). Estimates of ambient NO2 were based on a national land-
use regression model (LUR) developed for 2006 (Hystad et al.
2011) with a spatial resolution of 100m. The LUR estimates
were built using satellite-derived NO2 (with 10-km resolution),
distances to highways and major roads, and roadway kernel den-
sity gradients as predictive variables.

We temporally adjusted the O3 and NO2 models to obtain ex-
posure estimates over our study period (i.e., 1988–2015). Our
adjustment was based on observed trends in ground monitoring
data for NO2 and O3 from the NAPS in Canada. For each of 24
census divisions (CDs) that had monitoring data available, we
estimated yearly adjustment factors from the ratio of observed
CD-average concentration in a specific year to the reference year(s)
for which the original surfaces were estimated (i.e., 2006 for NO2
and 2002–2015 average for O3). We assigned adjustment factors
for each PC from the closest CD.

Contextual Covariates
We assigned contextual risk factors describing neighborhood-level
characteristics and geographic identifiers using residential PC and
data from the closest census (every 5 y from 1991 through 2016).
We included in our analysis the Canadian Marginalization Index
(CAN-Marg), population size of home community or city, an indi-
cator of urban form, and regional airshed to capture risk factors
beyond those captured at the subject level. We assigned these four
categories of contextual covariates to residential PCs linked to cen-
sus geography for each census year.

CAN-Marg is a publicly available index of neighborhood mar-
ginalization in Canada that was developed by Matheson et al.
(2012) using an analysis of the 2001 and 2006 long-form census
cycles. CAN-Marg consists of four dimensions that aim to capture
different aspects of marginalization: material deprivation, residen-
tial instability, ethnic concentration, and dependency. Following
the methodology of Matheson et al. (2012), we developed CAN-
Marg using the 1991 and 1996 censuses. We assigned CAN-Marg
to PC locations and then created quintiles (based on the cohort dis-
tribution) of the continuous values in the four Can-MARG dimen-
sions in order to account for any potentially nonlinear associations
withmortality.

We used a variable to describe the population size of a subject’s
community (Pinault et al. 2017) (Table 2). We categorized geo-
graphic locations into the following: census metropolitan areas
(CMAs) or census agglomerations (CAs; Statistics Canada 2003)
with a population exceeding 1.5 million; 500,000–1.49 million;
100,000–499,999; 30,000–99,999; or 10,000–29,999, as well as
non-CMAs/CAs.We note that although non-CMA/CAs are always
rural areas, CMAs cover both the urban core of a city and the
urban–rural fringe, such that some rural locations fall within a
CMA/CA. As such, this variable does not perfectly delineate sub-
jects living in rural vs. urban settings.

To further differentiate between the kinds of built environments
and neighborhoods within communities, we created an urban form
variable following the methodology developed by Gordon and
Janzen (2013). This measure of urban form is informed by popula-
tion density and the most frequently reported mode of transporta-
tion (active or transit) in each census tract as reported on each
census cycle. The categories of this variable include an active
urban core, transit-reliant suburb, car-reliant suburb, exurban, and
non-CMA/CA. We note that mode of commute was not reported
on the 1991 census cycle andwas derived from the 1996 census.

We included airshed as a geographic covariate in our analysis
(Crouse et al. 2016). Airsheds divide Canada into six regions
(Western, Prairie, West Central, Southern Atlantic, East Central,

and Northern) based on large-scale differences in air masses and
meteorology. Airsheds can also be used to represent regional dif-
ferences in mortality rates across Canada that remain uncaptured
by other geographic covariates.

Exclusion of Person-Years of Follow-Up
PC history was not available for each person in every year of
follow-up, either because they did not file a tax return or from
gaps in administrative data. Any gaps in PCs that had the same
PC prior to and after the gap were assigned that PC for all years
of the gap. After this imputation, 87.8% of person-years had an
available PC. We imputed an additional 2.1% of person-years of
missing PCs if the bounding PCs shared the first two characters
(Finès et al. 2017; Pinault et al. 2017), totaling 89.9% of person-
years with a PC.

After imputation, person-years were excluded if they did not
have an assigned PC. Further exclusions of person-years
occurred due to: immigrated to Canada less than 10 y before sur-
vey date (9,364,400 person-years), age during follow-up period
exceeded 89 y (7,357,200), could not be linked to air pollution
values (17,814,400), could not be linked to CAN-Marg values
(25,973,900), could not be linked to CMA/CA size (25,613,100),
could not be linked to airshed (25,545,500), 3-y moving average
being informed by only 1 y of exposure (20,056,400), and year af-
ter subject death (17,936,100). The above are not mutually exclu-
sive numbers of exclusions. The total available person-years for
analyses were 150,996,500 after all exclusions (Figure S1).

Statistical Analysis
Our primary statistical model relating exposure to mortality was
the Cox proportional hazards model (Cox 1972). Participants were
at least 25 y of age at the beginning of each cohort, and the time
axis was the year of follow-up until 2016. Person-years before a
census year and after a subject’s death year were excluded from
analysis. Events were determined by year of death for nonacciden-
tal causes. The Cox model baseline hazard function was stratified
by age (5-y groups), sex, and immigrant status (yes or no). This lat-
ter strata variable was included since immigrants to Canada live
longer, on average, than do Canadian-born citizens (Ng 2011). We
excluded immigrants living in Canada for less than 10 y at cohort
commencement due to the healthy immigrant effect (Ng 2011) and
lack of knowledge of their historical air pollution exposures. Each
subject was censored at 89 y of age, either at the start of each cohort
or during follow-up, due to evidence suggesting an increased mis-
match between home address and the tax returnmailing address with
increasing age (Bérard-Chagnon 2017). We postulate that relatives
of elderly people were completing their tax returns. Each of the three
CanCHECcohorts (1991, 1996, and 2001)was examined separately.
Estimates of the cohort-specific hazard ratios were then pooled to
form a single summary hazard ratio.We also conducted a test for dif-
ferences in the hazard ratios between cohorts (Cochran 1950).

We fit two covariate adjustment models for each cohort. The
first was based on a directed acyclic graph (DAG; Figure S2) and
consisted of all the geographically based predictors: CAN-Marg
(four dimensions), airshed, urban form, and CMA/CA size. The
secondmodel, denoted as “Full,” additionally included the subject-
level predictors (income, education, occupational class, Indigenous
status, visible minority status, employment status, and marital sta-
tus), which are not a priori causes of outdoor PM2:5 concentrations,
but which may contribute to confounding owing to a chance imbal-
ance across the PM2:5 distribution.

We also conducted analysis by categories of: immigrant status
(yes or no), sex (male or female), and age during follow-up (<65,
65–74, or ≥75 y) for each cohort separately, again pooling the
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Table 2. Descriptive statistics of 1991, 1996, and 2001 Canadian Census Health and Environment Cohort (CanCHEC) study cohorts.

Covariate

1991 CanCHEC 1996 CanCHEC 2001 CanCHEC

Person-years

PM2:5
concentration

(lg=m3) Person-years

PM2:5
concentration

(lg=m3) Person-years

PM2:5
concentration

(lg=m3)

n % Mean SD n % Mean SD n % Mean SD

Total 54,042,100 100.0% 8.10 3.44 54,082,700 100.0% 7.18 2.70 42,871,700 100.0% 6.68 2.24
Sex
Male 27,769,300 51.4 8.14 3.43 28,240,300 52.2 7.23 2.69 22,308,500 52.0 6.72 2.24
Female 26,272,800 48.6 8.06 3.45 25,842,400 47.8 7.13 2.70 20,563,200 48.0 6.64 2.24
Age group
24–34 y 3,540,300 6.6 10.56 3.96 3,170,900 5.9 8.37 3.18 2,659,100 6.2 7.18 2.52
35–44 y 10,088,100 18.7 8.75 3.58 10,368,100 19.2 7.37 2.82 8,518,300 19.9 6.64 2.29
45–54 y 14,381,600 26.6 7.72 3.25 14,364,600 26.6 6.99 2.61 11,112,700 25.9 6.58 2.21
55–64 y 11,986,800 22.2 7.55 3.19 11,839,400 21.9 6.93 2.56 9,401,200 21.9 6.57 2.17
65–74 y 8,227,800 15.2 7.84 3.32 8,259,400 15.3 7.12 2.64 6,335,700 14.8 6.69 2.21
75–89 y 5,817,700 10.8 7.88 3.13 6,080,300 11.2 7.26 2.55 4,844,600 11.3 6.90 2.20
Immigrant status
Nonimmigrant 45,568,900 84.3 7.82 3.34 45,280,200 83.7 6.94 2.62 35,465,100 82.7 6.46 2.20
Immigrant, 11–20 y 2,711,900 5.0 9.48 3.48 2,114,600 3.9 8.40 2.60 1,871,300 4.4 7.82 2.00
Immigrant, 21–30 y 2,585,500 4.8 9.57 3.57 3,148,000 5.8 8.45 2.69 2,055,200 4.8 7.69 2.06
Immigrant, >30 y 3,175,800 5.9 9.63 3.74 3,539,800 6.6 8.47 2.84 3,480,100 8.1 7.69 2.23
Visible minority status
No 51,309,700 94.9 8.02 3.42 51,075,900 94.4 7.10 2.69 37,791,200 88.2 6.69 2.22
Yes 2,732,400 5.1 9.61 3.40 3,006,700 5.6 8.56 2.49 5,080,500 11.9 6.60 2.41
Indigenous status
No 51,920,400 96.1 8.17 3.43 51,916,000 96.0 7.28 2.68 40,921,000 95.5 6.78 2.22
Yes 2,121,800 3.9 6.28 3.06 2,166,700 4.0 4.90 1.99 1,950,700 4.6 4.61 1.69
Marital status
Never married/not
common-law

6,776,600 12.5 8.52 3.49 6,597,000 12.2 7.57 2.74 5,233,700 12.2 7.05 2.29

Common-law 4,035,500 7.5 7.73 3.24 5,066,100 9.4 6.81 2.50 4,693,200 11.0 6.50 2.15
Married 37,316,200 69.1 7.95 3.40 36,029,200 66.6 7.07 2.68 27,590,800 64.4 6.57 2.22
Separated 1,275,500 2.4 8.46 3.53 1,323,000 2.5 7.49 2.78 1,032,800 2.4 6.89 2.29
Divorced 2,524,900 4.7 8.62 3.46 2,861,000 5.3 7.65 2.68 2,404,100 5.6 7.09 2.21
Widowed 2,113,400 3.9 9.11 3.76 2,206,300 4.1 7.83 2.91 1,917,000 4.5 7.09 2.37
Educational attainment
<High school graduation 17,025,100 31.5 8.00 3.55 16,190,200 29.9 7.01 2.80 11,564,900 27.0 6.50 2.34
High school, with or
without trades certificate

20,516,400 38.0 8.00 3.39 19,575,600 36.2 7.11 2.65 15,491,200 36.1 6.60 2.22

Postsecondary nonuniversity 8,940,200 16.5 8.11 3.35 10,185,400 18.8 7.23 2.63 8,542,100 19.9 6.71 2.17
University degree 7,560,400 14.0 8.55 3.38 8,131,400 15.0 7.64 2.62 7,273,600 17.0 7.08 2.16
Income inadequacy
Q1 (lowest income) 8,373,700 15.5 8.25 3.61 8,693,400 16.1 7.21 2.81 7,216,300 16.8 6.76 2.36
Q2 9,989,100 18.5 8.22 3.50 9,949,900 18.4 7.28 2.75 8,078,000 18.8 6.74 2.28
Q3 11,417,600 21.1 8.09 3.42 11,248,900 20.8 7.21 2.69 8,772,600 20.5 6.70 2.23
Q4 12,023,900 22.3 8.03 3.37 11,875,400 22.0 7.15 2.65 9,194,600 21.5 6.64 2.19
Q5 (highest income) 12,237,800 22.6 7.97 3.34 12,315,200 22.8 7.08 2.62 9,610,200 22.4 6.58 2.17
Employment status
Employed 38,679,600 71.6 8.00 3.36 36,133,000 66.8 7.13 2.64 28,781,900 67.1 6.65 2.20
Unemployed 3,380,300 6.3 7.65 3.42 3,018,000 5.6 6.72 2.71 1,739,800 4.1 6.06 2.29
Not in labor force 11,982,200 22.2 8.53 3.63 14,931,700 27.6 7.41 2.82 12,350,000 28.8 6.82 2.32
Occupational class
Management 4,811,500 8.9 8.17 3.36 4,107,400 7.6 7.25 2.62 3,806,700 8.9 6.75 2.18
Professional 6,718,300 12.4 8.25 3.35 6,598,700 12.2 7.39 2.62 5,593,100 13.1 6.87 2.17
Skilled, technical,
and supervisory

14,058,800 26.0 7.77 3.33 12,379,800 22.9 6.89 2.61 10,290,500 24.0 6.45 2.18

Semi-skilled 14,023,100 26.0 7.99 3.40 13,401,200 24.8 7.11 2.67 9,410,200 22.0 6.62 2.22
Unskilled 4,339,400 8.0 7.92 3.46 4,091,000 7.6 6.95 2.72 2,996,100 7.0 6.46 2.29
Not applicable 10,090,900 18.7 8.64 3.66 13,504,600 25.0 7.47 2.82 10,775,000 25.1 6.88 2.33
Residential instability (CAN-Marg)
Q1 (lowest marginalization) 12,129,000 22.4 7.28 3.19 12,537,400 23.2 6.50 2.53 10,200,700 23.8 6.06 2.09
Q2 13,959,900 25.8 7.46 3.29 14,328,200 26.5 6.63 2.61 11,519,100 26.9 6.20 2.16
Q3 11,234,900 20.8 8.18 3.56 11,059,600 20.5 7.23 2.79 8,645,800 20.2 6.69 2.29
Q4 9,674,400 17.9 8.86 3.41 9,488,700 17.5 7.92 2.62 7,407,900 17.3 7.37 2.14
Q5 (highest marginalization) 7,044,000 13.0 9.58 3.25 6,668,800 12.3 8.53 2.37 5,098,300 11.9 7.97 1.95
Dependence (CAN-Marg)
Q1 (lowest marginalization) 8,881,200 16.4 8.30 3.48 8,958,200 16.6 7.14 2.68 7,416,500 17.3 6.44 2.12
Q2 9,310,000 17.2 8.44 3.43 8,908,400 16.5 7.38 2.65 6,938,000 16.2 6.73 2.11
Q3 9,079,900 16.8 8.67 3.55 8,702,200 16.1 7.65 2.75 6,663,500 15.5 7.06 2.25
Q4 11,665,500 21.6 8.22 3.43 11,497,400 21.3 7.36 2.71 8,882,800 20.7 6.93 2.31

Note: CA, census agglomeration; CAN-Marg, Canadian Marginalization Index; CMA, census metropolitan area; Pop, population; SD, standard deviation.
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cohort-specific hazard ratio estimates among the three cohorts. In
addition, we examined the PM2:5 association, adjusting for O3,
NO2, or Ox by cohort.

Shape of the Association between PM2:5 and Mortality
The main purpose of the current study was to describe the associ-
ation between PM2:5 and mortality in a manner that can be used
for risk and benefits assessment. The standard approach is the
log-linear (LL) model that relates the logarithm of the hazard ra-
tio to exposure in a linear manner: logHRðPM2:5Þ= bPM2:5.
Here, b represents a change in relative risk per unit change in
concentration estimated using the Cox model. Nasari et al. (2016)
developed the SCHIF in order to extend the LL model to nonlin-
ear transformations of exposure, TðPM2:5Þ, with the form:
SCHIFðPM2:5Þ= hTðPM2:5Þ. Nasari et al. (2016) proposed a spe-
cific family of transformations based on a sigmodal function that
could accommodate a variety of shapes they suggested would be
suitable for risk and benefits assessment. Here, h represents a
change in risk per unit change in TðPM2:5Þ. The SCHIF can then
be used in benefits assessment in a manner similar to the LL
model after a suitable transformation of concentration.

The SCHIF approach has two major limitations: The first is in
defining an appropriate number of transformations of a sigmodal
function that can capture all shapes of interest; the second is that
the method requires considerable computational capacity if the
selected family is very large. This can be a serious limitation
when cohort sizes are very large, such as with the CanCHECs.

Spline methods have also been proposed to characterize the
shape. RCSwith a few knots have been used (Beelen et al. 2014) in
addition to smoothing splines (Di et al. 2017). However, the man-
ner in which splines are presented by graphic representation of the
mean predictions and uncertainty bounds over the concentration
range limits their use in risk and benefits assessment, as these
assessments typically require a differentiable algebraic function in
addition to a quantitative estimate of uncertainty by concentration.

We developed and applied a new method that combines the
flexibility of splines and the ease of use of the SCHIF in benefits
assessment. Our method involves three steps. The first step is a
data reduction step in which we fit a RCS with a large number of
knots in order to characterize the shape of the concentration–
response relationship in sufficient detail. RCS can easily be fit to
large cohorts, as they only involve a series of transformations of
concentration. Here, we have converted millions of person-years
of data into a few hundred observations of RCS predictions over
the observed concentration range. In step 2, we smooth the poten-
tial erratic predictions due to the large number of knots using a
MISS, and in step 3, we fit our SCHIF function to the MISS pre-
dictions. In addition, we model the uncertainty in the spline fit as
a cubic polynomial in concentration in a manner that assigns all
uncertainty to the h parameter in the SCHIF model, but unlike
the LL model, uncertainty can vary with concentration. We now
have a differentiable algebraic function of both relative risk and
its uncertainty by concentration. This approach also allows for
visualization of the SCHIF as well as its representation of the
underlying data (as summarized by the RCS).

Table 2. (Continued.)

Covariate

1991 CanCHEC 1996 CanCHEC 2001 CanCHEC

Person-years

PM2:5
concentration

(lg=m3) Person-years

PM2:5
concentration

(lg=m3) Person-years

PM2:5
concentration

(lg=m3)

n % Mean SD n % Mean SD n % Mean SD

Q5 (highest marginalization) 15,105,600 28.0 7.32 3.22 16,016,500 29.6 6.72 2.62 12,970,900 30.3 6.41 2.27
Material deprivation (CAN-Marg)
Q1 (lowest marginalization) 11,497,200 21.3 7.59 3.07 10,947,700 20.2 7.00 2.52 8,651,800 20.2 6.61 2.04
Q2 12,268,900 22.7 8.18 3.24 11,270,800 20.8 7.29 2.49 8,383,500 19.6 6.86 2.06
Q3 10,965,300 20.3 8.46 3.43 10,652,500 19.7 7.44 2.63 8,375,900 19.5 6.85 2.16
Q4 8,826,900 16.3 8.59 3.49 9,190,500 17.0 7.61 2.73 7,335,900 17.1 7.08 2.29
Q5 (highest marginalization) 10,483,800 19.4 7.76 3.88 12,021,200 22.2 6.70 2.98 10,124,600 23.6 6.15 2.47
Ethnic concentration (CAN-Marg)
Q1 (lowest marginalization) 15,066,600 27.9 6.81 3.20 17,014,800 31.5 6.08 2.38 14,272,200 33.3 5.71 1.96
Q2 12,404,500 23.0 7.79 3.22 13,274,500 24.5 7.02 2.54 10,882,100 25.4 6.57 2.16
Q3 9,435,300 17.5 8.37 3.33 9,457,600 17.5 7.48 2.63 7,569,000 17.7 6.93 2.22
Q4 8,678,400 16.1 9.18 3.34 7,620,700 14.1 8.26 2.66 5,616,300 13.1 7.71 2.16
Q5 (highest marginalization) 8,457,300 15.7 9.43 3.48 6,715,100 12.4 8.65 2.64 4,532,100 10.6 8.28 1.80
CMA/CA size
Pop: > 1,500,000 15,000,000 27.8 10.07 3.32 14,932,200 27.6 8.85 2.36 12,159,300 28.4 8.13 1.83
Pop: 500,000–1,499,999 8,747,700 16.2 8.16 2.82 8,679,700 16.1 7.40 2.18 6,991,200 16.3 6.95 1.81
Pop: 100,000–499,999 9,759,400 18.1 8.68 3.56 9,751,700 18.0 7.83 2.92 7,826,800 18.3 7.16 2.42
Pop: 30,000–99,999 5,510,600 10.2 7.66 3.27 5,267,500 9.7 6.68 2.42 4,081,700 9.5 6.14 1.98
Pop: 10,000–29,000 2,111700 3.9 6.44 2.51 2,107,400 3.9 5.73 1.88 1,699,900 4.0 5.27 1.42
Non-CMA/CA 12,912,700 23.9 5.78 2.33 13,344,100 24.7 5.13 1.72 10,112,800 23.6 4.83 1.39
Urban form
Active urban core 4,152,200 7.7 10.02 3.26 4,006,700 7.4 8.95 2.40 3,220,700 7.5 8.32 1.92
Transit-reliant suburb 3,490,900 6.5 10.50 3.26 3,405,600 6.3 9.31 2.30 2,689,000 6.3 8.58 1.69
Car-reliant suburb 21,595,500 40.0 9.16 3.30 21,787,500 40.3 8.18 2.50 17,930,300 41.8 7.53 2.00
Exurban 2,951,100 5.5 6.57 2.59 3,000,100 5.6 5.98 2.06 2,471,500 5.8 5.68 1.72
Non-CMA/CA 21,852,400 40.4 6.50 2.87 21,882,700 40.5 5.70 2.16 16,560,200 38.6 5.27 1.74
Airshed
Western 6,532,200 12.1 7.92 3.44 6,404,500 11.8 6.58 2.08 5,137,600 12.0 5.95 1.55
Prairie 6,942700 12.9 6.45 2.07 7,016,900 13.0 5.92 1.73 5,675,500 13.2 5.61 1.54
West Central 3,205,600 5.9 5.86 1.73 3,322,900 6.1 5.30 1.41 2,589,400 6.0 5.01 1.25
Southern Atlantic 5,312,600 9.8 5.41 1.87 5,324,000 9.8 4.80 1.30 4,044,400 9.4 4.54 1.05
East Central 31,626,600 58.5 9.23 3.48 31,439,700 58.1 8.25 2.71 24,932,700 58.2 7.65 2.17
Northern 422,300 0.8 4.19 1.37 574,600 1.1 3.80 1.11 492,100 1.2 3.67 1.05
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Specifically, we selected 15 knots defined at the 2nd, 4th,
10th, 14th, 18th, 22nd, 26th, 50th, 74th, 78th, 82nd, 86th, 90th,
94th, and 98th percentiles of the PM2:5 person-year distribution.
We selected a large number of knots covering both the lower and
upper quartiles in order to capture a variety of desired shapes.
From this first step, we obtain estimates of the logarithm of the
RCS hazard ratio (logRCS) and the associated standard error at
several hundred concentrations between the minimum and the
99th percentile of the exposure distribution. We do not include
predictions above the 99th percentile, since RCS are linear
beyond the highest knot concentration. This linear form can have
some influence on the shape of the SCHIF throughout the con-
centration range, and especially over the higher concentrations,
since the SCHIF is a single algebraic function. We also fixed the
logRCS to zero at the minimum concentration, and its associated
standard error was also set to zero.

In step 2, we smooth the potentially erratic logRCS predic-
tions with a MISS in order to obtain predictions suitable to model
with the SCHIF algebraic function, which itself is monotonically
increasing (Pya and Wood 2015). The SCHIF hazard ratio func-
tion has the form:

logSCHIFðzÞ= hf ðzÞlðzÞ
with l zð Þ= 1

1+exp −z−l
srð Þ½ � a logistic function in concentration.

Here, h, l, and s are unknown parameters to be estimated from
the data, r is the range in the translated exposure, and
z=PM2:5 −minðPM2:5Þ such that logSCHIFð0Þ=0. The function
f ðzÞ can take two forms: f ðzÞ= z (linear) and f ðzÞ= logðz+1Þ
(log). We have constructed the SCHIF to be similar to the LL
model, logLLðzÞ= bz, by writing: logSCHIFðzÞ= hTðzÞ, where
TðzÞ= f ðzÞlðzÞ is a specific transformation of concentration.

The linear form f ðzÞ= z can model both linear and sublinear
associations, while the log form f ðzÞ= logðz+1Þ can model
supralinear associations with mortality. Both forms can accom-
modate S-shaped functions through lðzÞ. Sets of values ðl,sÞ are
selected that define the shape of lðzÞ. Larger values of l result in
larger ranges of concentration for which a sublinear association is
modeled at lower concentrations due to the property of the logis-
tic function. Larger values of s generate shapes for lðzÞ with less
curvature. By limiting the ranges for ðl,sÞ, we can limit the
amount of curvature in the SCHIF.

A linear regression model was constructed using each trans-
formation as the single predictor and the MISS prediction as the
response. Using the MISS predictions, we were then able to
select a wide range of values of the parameters to examine a wide
variety of shapes that is not possible by modeling the subject-
level cohort data. We selected values of l ranging from 0 to r by
integers, and s ranging from 0.1 to 1 by 0.1 increments. For each
set of parameters and the two forms of f ðzÞ, we obtained an esti-
mate of h and its standard error. We then created a single SCHIF
curve by a weighted average of all the SCHIF curves examined,
with weights determined by the fit of each curve on the MISS
values. However, as the model averaged predictions at each con-
centration are themselves a potentially complicated function,
these predictions can be summarized as a single algebraic func-
tion. Specifically, we fit a generalization of the SCHIF model

logSCHIF zð Þ=
h log z

a +1
� �

1+ exp − z−lð Þ=v
� �

to the mean SCHIF predicted curve over the concentration range.
We added an additional parameter a to model the combination of
the linear and log forms of f ðzÞ used in the fitting step. The func-
tion log z

a +1
� �

is nearly linear in z for large values of a. We

collapse the product sr into a single parameter v to simplify the
reporting of the parameter estimates.

In the LL model, all uncertainty in the hazard ratio is assigned
to the single unknownparameter,b.We aim tomake a similar char-
acterization of uncertainty in the SCHIF predictions, where all the
uncertainty is ascribed to the parameter h. We do this by consider-
ing a model of the standard error in the RCS predictions. However,
unlike the LL model, RCS standard errors can vary in a nonlinear
manner with concentration. We therefore consider a model for the
standard error as a function of concentration of the form:
seRCSðzÞ= sehðzÞ×TðzÞ, with sehðzÞ denoting our standard error
model of h, dependent on concentration.We select a general model
that can accommodate a variety of shapes such as a cubic polyno-
mial with the form: sehðzÞ=r0 +r1z+r2z2 +r3z3.

Finally, we construct pooled SCHIF models among the three
cohorts in the following manner: Let vcðzÞ be the variance of the
logarithm of the SCHIF prediction, logSCHIFcðzÞ, at concentra-
tion z for cohort c=1,2,3. We construct a meta-analytic summary
of the SCHIF predictions among the three cohorts as:

logSCHIFPooledðzÞ=
X3

c=1

wc logSCHIFcðzÞ,

where wcðzÞ= ½1=vcðzÞ�=
P3

c=1
1=vcðzÞ. For the variance of

logSCHIFPooledðzÞ, we include the variation in predictions among
the cohorts in addition to the sampling uncertainty for each
cohort as:

X3

c=1

w2
cðzÞfvcðzÞ+ ½logSCHIFcðzÞ− logSCHIFPooledðzÞ�2g:

In order to obtain an algebraic function for the pooled SCHIF,
we used nonlinear regression to estimate the SCHIF parameters,
with logSCHIFPooledðzÞ defining the data for the regression. We
also modeled the standard error of the pooled SCHIF in a manner
similar to that for each cohort separately. The variance of the
pooled SCHIFs is a function of both the variance of each cohort-
specific SCHIF prediction and the squared difference between the
cohort-specific SCHIF predictions and the pooled SCHIF predic-
tion. This latter term captures the uncertainty in both the shape
and magnitude of the hazard ratio predictions among the three
cohorts.

Results

Main Analysis
PM2:5 by cohort and covariate categories. Table 1 presents per-
centiles of the PM2:5 distribution based on person-years for each
of the three cohorts separately. Concentrations were highest for
the 1991 cohort, moderate for the 1996 cohort, and lowest for the
2001 cohort. Concentration differences were well within 1 lg=m3

between cohorts for median and lower percentiles, with greater
differences for the higher percentiles, suggesting that greater
declines in exposure were observed in locations with higher lev-
els. The spatial distribution of PM2:5 across Canada is presented
for selected 3-y averages (Figure 1). Concentrations declined
over time in the heavily populated areas of Southern Ontario and
Quebec. Moderate concentrations were observed in the earlier
time periods for Northern Canada and the Prairies. These levels
declined through the 1990s but then increased during the latter
part of our cohort follow-up period.
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Table 2 reports both the number of person-years and percen-
tages among the categories of mortality predictors for each cohort
separately, in addition to the mean and standard deviation of PM2:5
assigned to each category. Males tended to be assigned higher con-
centrations than females in all three cohorts, although the differ-
ence was very small (<1 lg=m3). There was a U-shaped pattern
with age at cohort commencement for all three cohorts, with con-
centration declining with age up to the 55- to 64-y-old group and
then increasing. Immigrants were consistently assigned higher
concentrations than nonimmigrants; however, concentrations were
similar over the length an immigrant subject lived in Canada.
Subjects who defined themselves as visible minorities had higher
assigned concentrations than those subjects who did not in the 1991
and 1996 cohorts. Subjects of Indigenous identity had lower concen-
trations. Married and common-law subjects had lower assigned
exposures compared to other marital categories in all cohorts.
Exposuremonotonically increasedwith educational attainment in all
cohorts. However, exposure monotonically declined with income.
Employed subjects at the time of interview had higher exposures
compared to those unemployed subjects. Exposure tended to decline
over the occupational class categories moving from management/
professional to semi- and unskilled workers. Note that the “not in the
labor force” and “not-applicable occupational class” categories had
the highest exposures, possibly to due to older subjects who tended
to have higher than average exposures. There was a tendency for ex-
posure to increase over the quintiles of three of the CAN-Marg
dimensions: residential instability, material deprivation, and ethnic
concentration, with no clear trend for the fourth dimension, depend-
ence. Outdoor concentrations increased with CMA/CA size and for
the inner-city categories of urban form. Of the six airsheds, the East
Central contained 58% of person-years and had the highest concen-
trations. Based on the associations between several geographic and
subject based covariates, there is some potential that adjustment for
these variables could influence themagnitude of our estimates of the
PM2:5–mortality association.

Hazard ratio estimates. Table 3 reports the hazard ratio and
95% confidence limits per 10-lg=m3, for each cohort separately and

pooled among the three cohorts by categories of immigrant status,
age, and sex, for both the DAG and Full models. There was a tend-
ency for the hazard ratio to be larger under the Full model compared
to the DAG for the 1991 and 1996 cohorts, but smaller for the 2001
cohort. Consequently, there was less variation among the hazard
ratios between cohorts under the Full compared to the DAG models.
The Full model was a better predictor of mortality compared to the
DAGmodel based on its much lower Akaike Information Criterion/
Schwarz's Bayesian Criterion values (see Table S1). We therefore
focus our interpretation on the results using the Fullmodel.

When all subjects were considered together, hazard ratio esti-
mates were similar for the 1991 and 1996 cohorts (HR=1:041),
with a larger estimate observed for the 2001 cohort (HR=1:084).
The pooled cohort HR estimate was 1.053 (95% CI: 1.041,
1.065). Hazard ratio estimates for nonimmigrants were higher
than for immigrants in the 1991 and 1996 cohorts, but lower in
the 2001 cohort. Hazard ratio estimates for males were higher
than for females in the 1991 and 1996 cohorts but lower in the
2001 cohort. Hazard ratio estimates declined with age in all three
cohorts, however.

Hazard ratio estimates based on interquartile range changes
in concentrations were larger for Ox compared to O3, and low-
est for NO2 (Table 3). The PM2:5 HR estimate was moderately
sensitive to adjustment for NO2, declining from 1.053 to 1.043
per 10-lg=m3, but very sensitive to adjustment for either O3,
declining to 0.982, and Ox, declining to 0.955.

Shape of PM2:5–mortality association. The shape of the asso-
ciation between PM2:5 concentrations and mortality for the Full
model is displayed in Figure 2 for each of the three cohorts sepa-
rately and pooled among cohorts using the SCHIF. MISS predic-
tions (dashed black line) and RCS predictions (dashed red line)
over the concentration range are also displayed. A similar shape
is observed in each cohort for the MISS, with a steep increase
below 5 lg=m3 followed by a much shallower increase for higher
concentrations. The SCHIF predictions also display a supralinear
association with concentration. Note that the SCHIF predictions
display much less curvature than the MISS; a design feature of

Figure 1. Spatial distribution of particulate matter with aerodynamic diameter ≤2:5 lm (PM2:5) across Canada for selected 3-y averages: 1998–2000 (first ex-
posure assigned to the 1991 cohort), 1993–1995 (first exposure assigned to 1996 cohort), 1998–2000 (first exposure assigned to 2001 cohort), 2003–2005,
2008–2010, and 2013–2015 (exposure assigned to last year of follow-up, 2015).
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constraining the shape of the SCHIF. The SCHIF 95% CIs (gray-
shaped area) are clearly widest in the 2001 cohort, as it had the
shortest follow-up time (15 y) and lowest concentrations (Table 1)
compared to the 1991 and 1996 cohorts. The steepness of the
increase in the HR below 5 lg=m3 appears to dampen between
the 1991 to 1996 to 2001 cohorts, with the SCHIF predictions
of the MISS improving over these lower concentrations as the
start date of the cohorts increased. The lower bound of the CIs
exceeded unity for all concentrations for the 1991 cohort, above
2lg=m3 for the 1996 cohort, and above 5 lg=m3 for the 2001
cohort.

We display the association between both h and its standard
error and show that association varies with concentration by the ra-
tioNðzÞ= h=sehðzÞ in Figure 3. Here,NðzÞ represents the signal-to-

noise ratio by concentration. This ratio increases with concentration
for all three cohorts, exceeding the 1.96 value (dashed black line)
for all concentrations in the 1991 cohort, above 2 lg=m3 in the 1996
cohort, and above 5 lg=m3 in the 2001 cohort. For the pooled
SCHIF, the ratio increases for concentrations less than 7 lg=m3 and
then is relatively stable for higher concentrations. This pattern is
due to the additional variation between the SCHIF values among the
three cohorts at higher levels. The parameter estimates for both the
SCHIF and its standard error are given in Table 4.

Discussion
The three CanCHEC cohorts included 8.5 million adults with 150
million person-years of follow-up and nearly 1.5 million deaths,

Table 3. Hazard ratio (HR) estimates and 95% confidence intervals (CIs) for the association between PM2:5 and nonaccidental mortality, as well as for copollu-
tants (NO2, Ozone, oxidative potential), within the Canadian Health and Environment Cohorts (CanCHECs) from 1991, 1996, 2001, and pooled cohorts. Effect
modification analyses by immigrant status, sex, and age, and multi-pollutant models are also provided.

Subgroup/model Model form

1991 Cohort 1996 Cohort 2001 Cohort Pooled resultsa

HR 95% CI HR 95% CI HR 95% CI HR 95% CI p-Value

All subjects
— DAGb 0.982 0.959 1.006 1.033 1.016 1.051 1.120 1.096 1.146 1.044 1.031 1.056 <0:01
— Fullc 1.041 1.016 1.066 1.041 1.024 1.059 1.084 1.060 1.108 1.053 1.041 1.065 <0:01
Immigrant statusd

No DAG 0.975 0.951 1.000 1.024 1.005 1.043 1.105 1.078 1.133 1.032 1.019 1.045 <0:01
No Full 1.049 1.022 1.076 1.058 1.039 1.078 1.089 1.062 1.116 1.064 1.050 1.078 0.09
Yes DAG 1.016 0.945 1.092 1.082 1.040 1.125 1.190 1.131 1.253 1.104 1.073 1.136 <0:01
Yes Full 1.006 0.935 1.081 1.027 0.987 1.068 1.109 1.053 1.167 1.049 1.019 1.079 0.03
Sexd

Female DAG 0.956 0.921 0.993 1.001 0.976 1.026 1.121 1.084 1.160 1.022 1.004 1.040 <0:01
Female Full 1.009 0.972 1.048 1.008 0.983 1.034 1.093 1.056 1.130 1.031 1.013 1.050 <0:01
Male DAG 0.993 0.963 1.024 1.055 1.032 1.078 1.116 1.083 1.150 1.055 1.039 1.071 <0:01
Male Full 1.053 1.021 1.086 1.062 1.039 1.086 1.071 1.040 1.104 1.062 1.046 1.079 0.74
Age during follow-upd

<65 y DAG 1.022 0.971 1.075 1.057 1.019 1.097 1.176 1.119 1.236 1.078 1.051 1.106 <0:01
<65 y Full 1.079 1.026 1.136 1.095 1.056 1.136 1.165 1.108 1.225 1.109 1.081 1.137 0.07
65–74 y DAG 0.984 0.939 1.031 1.079 1.044 1.116 1.176 1.122 1.232 1.077 1.052 1.103 <0:01
65–74 y Full 1.069 1.020 1.120 1.092 1.057 1.130 1.130 1.078 1.184 1.096 1.070 1.122 0.25
>75 y DAG 0.929 0.899 0.961 0.986 0.964 1.009 1.062 1.031 1.094 0.994 0.978 1.010 <0:01
>75 y Full 0.972 0.940 1.005 0.985 0.963 1.008 1.031 1.001 1.062 0.995 0.979 1.011 0.02

Single pollutant
NO2 DAG 1.009 1.004 1.015 0.997 0.993 1.001 1.003 0.998 1.008 1.002 0.999 1.004 <0:01
NO2 Full 1.015 1.009 1.020 1.001 0.997 1.005 1.003 0.998 1.009 1.005 1.002 1.008 <0:01
O3 DAG 1.016 1.006 1.027 1.035 1.029 1.041 1.041 1.034 1.049 1.034 1.030 1.038 <0:01
O3 Full 1.044 1.033 1.055 1.076 1.069 1.082 1.081 1.073 1.088 1.073 1.068 1.077 <0:01
Ox DAG 1.030 1.018 1.043 1.037 1.029 1.044 1.049 1.040 1.058 1.040 1.035 1.045 0.03
Ox Full 1.068 1.056 1.081 1.086 1.078 1.093 1.094 1.085 1.103 1.086 1.080 1.091 <0:01
Two pollutant
Adjusted for NO2

e

PM2:5 DAG 0.966 0.942 0.991 1.038 1.02 1.057 1.115 1.089 1.142 1.040 1.028 1.053 <0:01
NO2 DAG 1.010 1.004 1.015 0.997 0.993 1.001 1.003 0.998 1.009 1.002 0.999 1.005 <0:01
PM2:5 Full 1.014 0.989 1.041 1.039 1.021 1.058 1.078 1.052 1.104 1.043 1.030 1.056 <0:01
NO2 Full 1.015 1.010 1.021 1.001 0.997 1.006 1.004 0.998 1.009 1.006 1.003 1.009 <0:01
Adjusted for O3

e

PM2:5 DAG 0.969 0.944 0.994 0.996 0.978 1.014 1.073 1.048 1.098 1.011 0.998 1.024 <0:01
O3 DAG 1.016 1.006 1.026 1.034 1.028 1.04 1.040 1.033 1.047 1.033 1.029 1.037 <0:01
PM2:5 Full 1.003 0.978 1.029 0.963 0.946 0.981 0.996 0.973 1.020 0.982 0.970 0.994 0.01
O3 Full 1.043 1.033 1.054 1.074 1.068 1.08 1.079 1.072 1.086 1.071 1.067 1.075 <0:01
Adjusted for Ox

e

PM2:5 DAG 0.950 0.925 0.977 0.988 0.97 1.007 1.056 1.031 1.083 0.998 0.985 1.011 <0:01
Ox DAG 1.028 1.017 1.039 1.034 1.027 1.04 1.045 1.037 1.053 1.037 1.032 1.041 0.03
PM2:5 Full 0.967 0.941 0.994 0.941 0.923 0.959 0.970 0.946 0.994 0.955 0.943 0.968 0.10
Ox Full 1.062 1.051 1.074 1.078 1.071 1.085 1.086 1.077 1.094 1.078 1.073 1.083 <0:01

Note: —, no data; NO2, nitrogen dioxide; Ox, combined oxidant capacity of O3 and NO2; O3, ambient ozone; PM2:5, particulate matter with aerodynamic diameter ≤2:5 lm.
aTests for heterogeneity of hazard ratio among cohorts: *p<0:05, **p<0:01.
bDirected acyclic graph (DAG) model is stratified by 5-y age groups by age at baseline, sex, and immigrant status and included the following geographic-based covariates: four
Canadian Marginalization Index dimensions, urban form, CMA/CA size and airshed.
cFull model is stratified by 5-y age groups by age at baseline, sex, and immigrant status and included the geographic based covariates: four Canadian Marginalization Index dimen-
sions, urban form, CMA/CA size and airshed, and the subject-based covariates: marital status, education, income quintile, Indigenous status, visible minority status, employment status,
and occupational class.
dNote that the models by immigrant status are not stratified by immigrant status. The models by sex are not stratified by sex.
ePM2:5 always uses 10 units, copollutants use: O3, 10:20 ppb; NO2, 6:63 ppb; Ox, 8:05 ppb.
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representing one of the largest population-based air pollution
cohort analyses conducted to date. We found a HR of 1.053 (95%
CI: 1.041, 1.065) per 10-lg=m3 change in PM2:5 after pooling
the three cohort-specific hazard ratios. Hazard ratio estimates
based on a LL model do not fully characterize the relationship
between PM2:5 exposure and mortality, as in each cohort, a supra-
linear association was observed (Figure 1).

We found variation in the sensitivity of covariate model spec-
ification. The full model yielded larger hazard ratio estimates
compared to the DAG model for both the 1991 and 1996 cohorts,
with the opposite pattern observed in the 2001 cohort. It is not
completely clear why such patterns occur, as the change in

exposure among the categories of the covariates was similar in
all three cohorts (Table 1), although the differences in exposure
among the categories decreases with more recent cohort start
dates due to generally declining concentrations over time.

We observed an increase in the hazard ratio for the immigrant
population over time, starting with the weakest association for
the 1991 cohort (HR=1:006; 95% CI: 0.935, 1.081), a slightly
stronger association in the 1996 cohort (HR=1:027; 95% CI:
0.987, 1.068), with the strongest association in the 2001 cohort
(HR=1:109; 95% CI: 1.053, 1.167). We previously also obs-
erved no association in the 1991 cohort (Crouse et al. 2015) for
immigrants to Canada. There also appeared to be little evidence

Figure 2. Shape Constrained Health Impact Function (SCHIF) (solid blue line), monotonically increasing smoothing spline (MISS) (dotted black line), and re-
stricted cubic spline (RCS) (dashed red line) predictions by particulate matter with aerodynamic diameter ≤2:5 lm (PM2:5) concentration and Canadian Census
Health and Environment Cohort (CanCHEC) (1991, 1996, and 2001). Hazard ratio predictions based on pooling cohort-specific SCHIFs are also presented.
Uncertainty bounds are displayed as gray shaded area. Tick marks on PM2:5 axis represent the 15-RCS knot locations.
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of an association for females in the 1991 and 1996 cohorts, with
much stronger evidence for males. However, the association was
similar for males and females in the 2001 cohort (Table 3).

The observation that the PM2:5 hazard ratio can be partially
explained by NO2 and fully explained by O3 also supports previ-
ously reported results (Crouse et al. 2015). As these gaseous pol-
lutants may exhibit varying correlations with different components
of PM2:5, these multipollutant results can provide insight into the
source components of PM2:5 that are most influential in the rela-
tionship between PM2:5 mass and mortality. That is, the results of
our models with NO2 and O3 may, in part, reflect differences in
the mixture/composition of PM2:5 across space and time. Earlier
work has shown that the distribution of components, such as sul-
fate, organic matter, and black carbon, vary by total mass concen-
tration in Canada (van Donkelaar et al. 2019). Using this spatial
variation, Crouse et al. (2016) showed that inclusion of compo-
nents in addition to total mass improved the prediction of mortality
in the 1991 cohort. Mortality from ischemic heart disease has been
shown to vary by source of PM2:5 in the U.S.-based American
Cancer Society (ACS) cohort (Thurston et al. 2016). Therefore,
differences over time in the component distribution could explain
some of the differences in our hazard ratio estimates between
cohorts. However, the empirical evidence for such temporal
changes in the component distribution is not supported by our

recent modeling efforts (van Donkelaar et al. 2019), which suggest
that the proportion of components is relatively stable over time,
even as total mass concentrations have clearly declined.

We find a substantially lower hazard ratio estimate based on
the LL model than in previous CanCHEC analyses. There are a
number of possible explanations for these differences. First, this
new version of the cohort includes an improved death and mobil-
ity linkage with updated methodology. Second, the period of
follow-up in our analysis ranges from 15 to 25 y (up to 2016).
Our analysis further differs from previous CanCHEC studies
(e.g., Crouse et al. 2012; Pinault et al. 2017; Weichenthal et al.
2017) in our inclusion of immigrants in the analytical cohort.
Immigrants generally have lower mortality rates than the
Canadian-born population due to screening criteria for immigra-
tion into Canada (Newbold 2005; Ng 2011). Immigrants also
tend to live in cities with higher PM2:5 concentrations, leading to
different risks of air pollution exposure. Our methods of PM2:5
averaging at the PC level and imputation differed slightly from
previous analyses. Specifically, we required a minimum of a two-
digit PC (e.g., K1) to assign a PM2:5 value based on a population-
weighted average of the geographic area. Some previous analyses
assigned the national average PM2:5 value in absence of any PC
information. We also removed all person-years that resulted in
missing environmental (PM2:5, O3, or NO2) or contextual covari-
ates that may have informed previous analyses, while in previous
analyses, we either imputed all missing person-years or included
dummy variables for geographically based predictors. Finally,
these analyses employ updated PM2:5 estimates for the 2012–2016
period based on enhancements to the satellite retrievals (van
Donkelaar et al. 2019) and backcasted estimates prior to 2000 that
were not available previously. We do note, however, that the rela-
tionship between PM2:5 and mortality, in both shape and magni-
tude, is similar to that previously reported for the 1991 (Crouse
et al. 2015) and 2001 (Pinault et al. 2017) cohorts. This observa-
tion suggests that caution is required in interpreting the magnitude
of an association solely based on the LL model without further
consideration of the shape of the association.

This work supports observations of a supralinear concentra-
tion–response between PM2:5 exposure and risk of nonaccidental
mortality similar to that reported in Crouse et al. (2012, 2015) for
the 1991 cohort and Pinault et al. (2017) for the 2001 cohort in
more limited analyses. Most of the previous major cohort studies
on PM2:5 did not examine the shape of the concentration–mortality
association at the low levels that are observed in our cohort, in
which the 25th percentile is 5:1 lg=m3, and the median is
6:9 lg=m3 among all person-years of the three cohorts combined.
For example, the lower end of the exposure distribution in the
Medicare cohort was 6:2 lg=m3 (minimum; Di et al. 2017), the
National Health Interview Survey cohort (NHIS) was 7:6 lg=m3

(minimum; Pope et al. 2018), and the ACS Cancer Prevention
Study II cohort was 6:7 lg=m3 (first percentile; Turner et al. 2016).
Our mortality HR estimate of 1.053 (95% CI: 1.041, 1.065) is
slightly below estimates of U.S. cohorts such as the Medicare
cohort (HR=1:073; 95% CI: 1.071, 1.075), NHIS cohort (HR=
1:056; 95%CI: 1.005, 1.110), and theACS cohort (HR=1:07; 95%
CI: 1.06, 1.09). Our estimate for the 2001 cohort—the only
CanCHEC cohort that did not require backcasted exposure data—
was slightly higher than the U.S. cohorts at 1.084 (95% CI: 1.060,
1.108).

Strengths and Limitations
Our study has a number of strengths and limitations. These analy-
ses include a large number of deaths (nearly 1.5 million); popula-
tion representativeness; a number of subject-level mortality
predictors, such as occupation, income, and education, that are

Figure 3. Signal-to-noise ratio, NðzÞ= h=sehðzÞ, by concentration and
Canadian Census Health and Environment Cohort (CanCHEC; 1991, 1996,
2001). Dashed-dotted horizontal black line represents a ratio of 1.96.

Table 4. Shape-constrained health impact function and standard error param-
eter estimates by Canadian Census Health and Environment Cohort
(CanCHEC) cohorts.

Cohort

Shape-constrained health impact function parameters

h a l v

1991 0.1102 1 0 1.688
1996 0.0942 1 0 1.465
2001 0.0703 1 0 1.193
Pooled 0.1126 1.477 −0:233 1.165

Standard error parameters
r0 × 10−2 r1 × 10−3 r2 × 10−4 r3 × 10−6

1991 5.639 −6:608 4.148 −9:179
1996 5.835 −6:942 4.411 −9:747
2001 6.267 −5:330 1.183 6.406
Pooled 3.383 −3:640 3.593 −11:13
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often not available in such large administrative-based cohorts
(Di et al. 2017); and annual location information through linkage
to income tax filings back to 1981. Our temporally resolved air
pollution estimates could then be assigned to each year of follow-
up. We also developed a method to combine the flexibility of
splines to characterize the shape of the relationship between
PM2:5 and mortality with the usefulness of the SCHIF in risk and
benefits assessments. This new approach is feasible with respect
to computing resources for very large cohort studies.

Despite these important strengths, the study includes a number
of limitations. Specifically, the cohorts lack individual information
on behavioral mortality risk factors such as smoking, diet, and obe-
sity. We have previously examined the influence of further adjust-
ment for these missing risk factors using statistical methods of
indirect adjustment (Crouse et al. 2015; Erickson et al. 2019; Shin
et al. 2014) and direct adjustment in a cohort based on annual health
surveys in Canada where such information was available (Pinault
et al. 2016b). For both of these approaches, we found that the
PM2:5–mortality association remained positive. These observations
indicate that it is unlikely that the positive associations we observed
are entirely due to lack of inclusion ofmissing risk factors.

We captured information on social and economic status of
each subject only at cohort inception. Thus, information on mari-
tal status, income, education, occupation, and employment may
have changed over time, and we were not able to model any
potential influence of such changes on the PM2:5–mortality asso-
ciation. The 1991 cohort may have been most influenced by this
lack of temporal adjustment given its 25 y of follow-up.

As we examined a 3-y moving-average PM2:5 exposure win-
dow lagged by 1 y in all analyses, for the 2001 cohort, the initial
exposure window assigned to the 2001 follow-up year was a
1998–2000 average and thus did not include backcasted expo-
sures. The 1991 cohort used more years of backcasted exposures
(1988–1997) than the 1996 cohort (1993–1997). Backcasted pre-
dictions may have induced greater exposure error in the two ear-
lier cohorts.

We employed three very different exposure models for PM2:5,
NO2, and O3. The PM2:5 exposure model included remote sens-
ing information coupled with CTM predictions. Land-use infor-
mation informed any bias in the CTM predictions for the
chemical components of total mass, but were not included as
direct predictors of ground measurement data. The NO2 model
used both land-use and remote sensing information, while the O3
model fused ground data with CTM predictions. The spatial reso-
lution of the models was also different, with NO2 having the fin-
est resolution of 100m and PM2:5 at 1 km, while the O3 model
was at a resolution of 21 km. It was therefore difficult to directly
compare the associations with mortality between pollutants and
even more difficult with multiple-pollutant models subject to
potential differential exposure error. However, the observed stron-
ger associations with O3 may be due to a lower exposure error in
both the original surfaces and the temporal adjustments, since O3 is
known to be more spatially homogenous than PM2:5, while NO2 is
known to have the largest spatial variation. Additionally, although
the quantitative estimates presented here reflect the large and
diverse geographic area of Canada, they may not apply to places
around the world with notably different sources and compositions
of PM2:5, for example, in areas where a much higher proportion of
the PM2:5 is from dust and sand.

In summary, we found positive associations between PM2:5
and mortality in all three cohorts, and a similar supralinear concen-
tration–response relationship. Lower uncertainty bounds were ele-
vated above unity for all concentrations in the 1991 cohort, above
2lg=m3 in the 1996 cohort, and above 5 lg=m3 in the 2001 cohort,
suggesting our confidence in identifying concentrations where

there exists a positive response is declining as concentrations
decline over time. Therefore, interest exists in examining subse-
quent CanCHEC cohorts as they become available with the admin-
istration ofmore recent long form censuses.
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