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Abstract: Spatial navigation is an imperative cognitive function, in which individuals must interact
with their environment in order to accurately reach a destination. Previous research has demonstrated
that, when traveling a predetermined distance, humans must balance between noise in the measure-
ment process and the prior history of traveled distances. This tradeoff has recently been formally
described using Bayesian estimation; however, the neural correlates of Bayesian estimation during dis-
tance reproduction have yet to be investigated. Here, human subjects performed a virtual reality dis-
tance reproduction task during functional Magnetic Resonance Imaging (fMRI), in which they were
required to reproduce various traveled distances in the absence of overt navigational cues. As previ-
ously demonstrated, subjects exhibited a central tendency effect, wherein reproduced distances gravi-
tated to the mean of the stimulus set. fMRI activity during this task revealed distance-sensitive activity
in a network of regions, including prefrontal and hippocampal regions. Using a computational index
of central tendency, we found that activity in the retrosplenial cortex, a region highly implicated in
spatial navigation, negatively covaried between subjects with the degree of central tendency observed;
conversely, we found that activity in the anterior hippocampus/amygdala complex was positively corre-
lated with the central tendency effect of gravitating to the average reproduced distance. These findings
suggest dissociable roles for the retrosplenial cortex and hippocampal complex during distance repro-
duction, with both regions coordinating with the prefrontal cortex the influence of prior history of the
environment with present experience. Hum Brain Mapp 37:3172-3187, 2016.  © 2016 Wiley Periodicals, Inc.

Key words: distance reproduction; path integration; spatial navigation; hippocampus; retrosplenial cor-

tex; virtual reality

*

*

INTRODUCTION

Distance reproduction represents a fundamental aspect
of spatial navigation [Chrastil and Warren, 2014; Etienne
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and Jeffrey, 2004; Fujita et al., 1993], in which individuals
must continuously integrate idiothetic information in order
to plan the direction and extent of movement within an
environment. Successful distance reproduction requires
that individuals coordinate between the perceived estimate
of distance within their environment and their memory for
previous distances traversed within that environment. Fur-
thermore, distance reproduction is a fundamental compo-
nent of path integration, or “dead reckoning,” the ability
to localize position and heading without overt environ-
mental cues (i.e., landmarks), such as when navigating in
low light conditions or without nearby reference points.
Previous studies in humans and animals have suggested
a network of regions that are utilized for successful
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distance reproduction and path integration. Animal research
has demonstrated that hippocampal place-cells track the cur-
rent location of an animal, usually in reference to a goal or
starting location [McNaughton et al., 2006; O’Keefe and Dos-
trovsky, 1971; Rich et al,, 2014]. In humans, hippocampal
activation has similarly been associated with longer per-
ceived distances, including relational distances between land-
marks [Morgan et al 2011]. However, hippocampal lesions in
humans do not result in path integration deficits [Kim et al.,
2015; Shrager et al, 2008], suggesting that other regions
mediate path integration abilities. Indeed, recent research
demonstrates that the hippocampus acts in concert with
numerous other cortical and subcortical regions during spa-
tial navigation [Boccia et al., 2014; Chrastil, 2013; Hartley
et al., 2003; Iaria et al., 2007; Ito et al., 2015; Kuhn and Galli-
nat, 2014; Viard et al., 2011; Wolbers et al., 2007, 2005].

Distance reproduction tasks generally require subjects to
walk a particular (unknown) distance, and then reproduce
that distance [Bremmer and Lappe, 1999; Durgin et al., 2009;
Mossioet al., 2008; Petzschner and Glasauer, 2011; Redlick
et al., 2001]. To complete this task, subjects may attempt to
replicate the sequence of events or visual dynamics pre-
sented during the initial encoding phase. More generally,
distance reproduction tasks of this type can fall under the
larger order of magnitude estimation tasks, where subjects
may be asked to estimate, produce or judge a number of
other categories, such as length, time, numerosity or size
[Lambrechts et al., 2013; Petzschner et al., 2015; Shi et al.,
2013]. Neuroscientific investigations of the previous two
decades have explored whether magnitude representations
rely on separate neural systems for each domain, or on a
unified system that abstracts across different subtypes
[Bueti and Walsh, 2009]. Recent explorations have identified
the right inferior parietal and prefrontal cortex as two sites
involved in magnitude processing across a variety of differ-
ent dimensions. However, understanding the precise roles of
these structures is hindered by different results, with some
indicating the prefrontal cortex as coding for categorical boun-
daries [Hayashi et al.,, 2013], and others suggesting the pre-
frontal cortex encodes relative magnitude [Genovesio et al.,
2011]. Further work from magnitude estimation suggests that
the prefrontal cortex is specifically engaged in magnitude esti-
mation during goal formation [Genovesio et al., 2012], specifi-
cally during reproduction, but not encoding phase [Jones
et al., 2004].

Magnitude estimation, as with any perceptual inference,
entails a tradeoff between estimation uncertainty and
expectation. Recently, this tradeoff has been formally
described using Bayesian modeling [Petzschner and Glasa-
uer, 2011; Petzschner et al., 2015]. Applied to the percep-
tion of distance, subjects integrate noisy measurements of
perceived distance or direction with a prior memory distri-
bution of experience in the environment. This tradeoff
allows for a concomitant reduction in variability, yet leads
to systematic biases that come with reliance on the mean
of the prior distribution [Jazayeri and Shadlen, 2010]. As

such, subject estimates exhibit central tendency, a ubiquitous
finding across many behavioral paradigms [Hollingworth,
1910; Kwon and Knill, 2013], in which responses gravitate to
the mean of the stimulus set. Under this framework, magni-
tude representations can be divided into separate representa-
tions of prior and likelihood, and tied to potentially distinct
neural substrates [O'Reilly et al., 2013; Vilares et al., 2012].
The application of Bayes Theorem in this case can be gener-
ally applied to the estimation of any magnitude [Petzschner
et al,, 2015]. However, although the application of Bayes The-
orem is agnostic to the magnitude dimension being esti-
mated, the neural computations that approximate not be;
that is, the brain may compute prior and likelihood represen-
tations differently, depending on the type of magnitude
being estimated [Meyniel et al., 2015; Vilares et al., 2012].
Where might the neural computations underlying the
Bayesian tradeoff in distance reproduction occur? Recent
investigations have implicated coordination between the
hippocampus and retrosplenial cortex (RSC) during suc-
cessful spatial navigation and path integration [Epstein,
2008; Miller et al., 2014; Sherrill et al., 2013; Vann et al., 2009;
Wolbers and Buchel, 2005]. In animals, RSC lesions disrupt
spatial learning and alters hippocampal place-cell selectivity
[Cooper and Mizumori, 2001]. In humans, RSC lesions dis-
rupt path integration and route-planning [Epstein, 2008;
Takahashi et al., 1997], and RSC activity is associated with
translations between allocentric and egocentric representa-
tions in spatial navigation [Sherrill et al., 2013]. Additional
work has demonstrated that RSC activity may code for local
spatial reference, by determining the current point within
an environment [Marchette et al., 2014] relative to spatial
landmarks [Augur et al., 2012]. Anatomically, the RSC is
strongly connected to numerous other regions implicated in
spatial navigation [Miller et al., 2014; Vann et al., 2009; Vass
and Epstein, 2013], including prefrontal, parietal, and para-
hippocampal regions, suggesting that the RSC is ideally sit-
uated for integrating a variety of informational and
mnemonic cues. In contrast, the hippocampus has been
highly implicated in the construction of topographical rep-
resentations of the environment [Rich et al., 2014], and addi-
tionally has been related to the updating of this information
over time [Wolbers and Buchel 2005; Wolbers et al., 2007].
Further evidence also suggests that the hippocampus is
increasingly activated when subjects approach a goal loca-
tion [Howard et al., 2011; Sherrill et al., 2013; Spiers and
Barry, 2015; Viard et al., 2011]. These findings suggest that
hippocampal and RSC activity separately coordinate navi-
gation within an environment, with the hippocampus gen-
erating a mental representation of the environment and
remembered locations, and the RSC integrating information
from the environment into a common reference frame.
Presently, whether the RSC or hippocampus (or both)
mediates Bayesian estimation for distance reproduction is
unknown. If both likelihood and prior distribution repre-
sentations were tied to distinct neural regions, then activ-
ity between these regions should covary with the amount
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of reliance on the prior versus the likelihood in estimating
distance [O'Reilly et al., 2013; Vilares et al., 2012]. More-
over, they should be invoked at different times during
path integration [Hanks et al., 2011]. Recent work by
Hanks et al. [2011] has demonstrated that, during percep-
tual decision making, the weighting influence of prior
probability increases throughout the duration of a trial. In
the case of distance estimation, where uncertainty linearly
grows with the distance, in accordance with Weber’s Law,
reliance on the prior should scale as the distance grows.
Consistently, distance estimates, and magnitude estimates
generally, exhibit so-called “range effects,” wherein the
size of the central tendency effect scales with the range of
stimuli presented [Petzschner et al., 2015]. At the outset of
a planned movement, subjects should indicate where they
are likely to travel to [Viard et al., 2011], at which point
the likelihood function should be preferably engaged. As
subjects approach the target, increased noise in the esti-
mate should necessitate that subjects will increasingly rely
on the mean of the prior (see below). To address this, we
replicated a virtual reality distance reproduction task
[Petzschner and Glasauer, 2011], in which subjects must
perform dead reckoning by reproducing a target distance
from an egocentric viewpoint. In this way, we could mea-
sure the reliance of subject estimates on the prior, by
examining central tendency effects. Furthermore, the dis-
tance reproduction paradigm allowed us to dissociate
activity with different phases of the task, between activa-
tion during the initial production and subsequent repro-
duction phase, when subjects must move with the
intention to reproduce the same distance; Also, by varying
the distance to reproduce, we could estimate effects associ-
ated with parametric changes in distance, as well as activ-
ity at the outset of the trial with activity at the end of the
trial, when subjects indicated the selected distance.

MATERIALS AND METHODS
Participants

A total of 24, right-handed subjects (10 females, mean age
22.7%SD 2.7 years) with normal or corrected-to-normal
vision participated in the experiment. Subjects were
recruited from the population at George Mason University
and had no history or psychiatric or neurological disease.
Written consent was obtained from all subjects and the local
Institutional Review Board approved the procedures.

Task Design

Stimuli for the experiment were presented in a virtual-
reality (VR) environment created using Vizard 4.0 software
(Worldviz). Both the design of the VR environment and
the distance estimation task were modeled after the task
created by Petzschner and Glasauer [2011]. The VR envi-
ronment resembled a desert with a textured ground, 20

scattered rocks in the distance, and a clear, sunny sky (Fig.
1). The sky was a simulated 3D dome included in Vizard
software, a black and white noise image was used to cre-
ate the ground texture, and a single rock was modified
and imported from SketchUp 3D (Trimble Navigation)
and replicated within the VR script. The construction of
the VR world was such that environmental distance cues
were either absent or unreliable: the initial location of the
viewpoint and the position and orientation of each of the
rocks was randomized at the start of every trial, and the
3D sky was such that the horizon always appeared to be a
constant distance away. Participants controlled the move-
ment of the viewpoint with a continuous button press,
and the eye height of the VR viewpoint was set to the
approximate eye height of the participant.

Experimental Procedure

Participants performed a distance estimation task, with
each trial consisting of a production and reproduction
phase. At the beginning of each trial a red sphere
appeared on the horizon of the VR, and participants were
instructed to simulate walking forward in the direction of
the sphere. After the specified production distance (dp),
movement of the viewpoint was stopped automatically
and the environmental lighting was dimmed. The words
“reproduce the distance you just walked” were displayed
in the center of the screen. After a variable delay of 4-8 s,
the words disappeared, and the normal lighting resumed.
Participants were allowed to simulate walking forward
again and pushed a button until they had reproduced the
same distance as during the production phase (d,). Cru-
cially, the simulated walking speed was randomly altered
between the production and reproduction phases so that
the participant could not use the time spent simulating
walking as a measure of the distance traveled. For each
trial, the production phase simulated walking speed was
randomly drawn from a uniform distribution (mean speed
across trials: 3.23 m/s +0.71), and the reproduction phase
simulated walking speed was modified such that it was
noticeably faster or slower than the production phase
speed (maximum *60% production speed, drawn from a
normal distribution; mean speed across trials: 3.37 m/
s +1.83). Ten production distances were used (d, =[5, 6, 7,
8,9, 10, 11, 12, 13, 14] m) with a total of 120 trials (12 trials
per sample distance). Although participants were told that
the simulated walking speed would change, they were not
given any information about the range of production dis-
tances used nor were they given feedback on the accuracy
of their distance reproductions. Following reproduction,
subjects viewed a fixation point for a variable inter-trial-
interval drawn from an exponential distribution [Dale,
1999] with a minimum duration of 3 s (mean trial dura-
tion: 12.68 s *+4.39). Participants were informed that each
trial would begin at a new location within the virtual envi-
ronment, but the location would remain the same between

¢ 3174 »



¢ Prior and Likelihood in Virtual Distance ¢

Repr odu

the distanc®
ce

Figure I.

Distance reproduction task. Subjects were initially presented at a
random location within a field environment with a random place-
ment of objects. In the production phase, subjects were required
to walk toward the red sphere on the horizon. After a predeter-
mined distance (dp), unknown to the subject, subjects were
stopped and told to reproduce the distance they had just walked.

production and reproduction phases. Prior to the scanning
session, participants performed a practice task with 20 trials
on a laptop computer. The practice task was identical to the
experimental task, with the exception that at the start of the
reproduction phase, a yellow barrier marking the correct
reproduced distance appeared and remained visible until
subjects collided with it, ending the trial.

MRI Acquisition

Subject scans were conducted at the Krasnow Institute for
Advanced Study at George Mason University. All scanning
was performed on a Siemens Allegra 3T scanner. Visual
stimuli were presented on a rear-projection screen viewed
by subjects on a coil-mounted angled mirror that covered
the field of vision for each subject. All subjects initially
received a high resolution, T1-weighted 3-D magnetization
prepared rapid gradient echo scan (TR = 2,300 ms, TE = 3.37
ms, TT=1,100 ms, matrix size 256 X 256, 0.94 mm isotropic
voxels). Gradient-echo, echoplanar images (EPI) were indi-
vidually acquired (40 coronal slices, 3 mm slice thickness,
TR = 2,000 ms, TE = 25 ms, matrix size 64 X 65, voxel size 3
X 3 X 3.4 mm). EPI volumes were acquired in six separate
runs, with each run lasting a variable duration (~8 min). In
each run, participants performed 20 trials, with each dis-
tance in the stimulus set presented twice. The variable
length of each run was determined by the amount of time

In the reproduction phase, subjects walked until they believed
they had matched d,,, marking the reproduced distance (d,) with a
button press. Subjects were not aware of the range of distances
presented, and did not receive feedback on their performance.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

necessary for each subject to complete all 20 trials, which
differed depending on the randomly determined simulated
walking speed. The first three volumes of each run were
additionally  discarded to allow for steady-state
magnetization.

Data Analysis

For behavioral data, we calculated the reproduced dis-
tance as the displacement between the starting point and
the location where subjects pressed the response button.
The mean reproduced distance was calculated for each of
the ten, presented distances in our stimulus set, along
with the coefficient of variation (SD/mean). Reproduced
distances were then fit with a logarithmic curve (d,=m o
In(d,) + b) in which d; represents the distance reproduced
and d, the distance presented to subjects in the preceding
production phase, from which the slope (m) and intercept
(b) values were obtained.

Under the Bayesian-estimation framework, on any given
trial, subjects must weigh noisy perceptual information
against the uncertainty associated with a given judgment.
The optimal solution to this problem can be formulated as:

(1 Posterior) o< (1 Likelihood) e (p Prior) (1)

In the context of our distance estimation task, the likeli-
hood distribution can be represented by the distance to be
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Figure 2.

Human performance on the distance reproduction task exhibits
central tendency and bias. (A) Example reproduction data from
a representative subject. Open green circles represent individual
trials, with blue circles indicating average reproduction distance
for a given sample distance and blue lines indicating the best fit-
ting logarithmic curve. If subjects performed the task ideally,
without any reliance on the prior, then reproduced distances
should lie along the identity line, indicated by (u Likelihood).
Conversely, if subjects rely entirely on the mean of the prior dis-
tribution, then responses should lie entirely along the mean of
the stimulus set, indicated by (p Prior). The optimal tradeoff
between measurement noise and prior experience results in
human responses lying between these two, with an overestima-
tion of the shortest distance and underestimation of the longest
distance. Additionally, subjects may also exhibit non-optimal bias,
as the prior distribution for a given subject (i Subj Prior) may
not be veridical to the actual stimulus set. In this example, sub-

reproduced on a given trial, whereas the prior distribution
represents the distribution of distances previously experi-
enced [Petzschner and Glasauer, 2011]. Both distributions
may be modeled with Gaussian noise. Additionally, a sub-
ject must assign a weighting factor to each distribution
when multiplying them; as such, a subject may differen-
tially weigh the prior or likelihood when making a
response. These weighting factors reflect how much the
likelihood or the prior estimate is factored when estimat-
ing the posterior. Indeed, substantial individual differences

ject performance matches the actual stimulus set quite well. (B)
A second representative subject, who exhibits a large bias in
performance. If performance were measured entirely against the
stimulus set, then the subject would appear to overestimate
every distance. However, this subject may still be exhibiting cen-
tral tendency, when measured against their own, individual prior
distribution (it Subj Prior). Here, | Subj Prior is calculated as
the mean of the stimulus set, offset by the average reproduced
distance; 1 Subj Likelihood is calculated as the sample distance,
offset by the average reproduced distance. (C) Dependence and
independence of performance indices. Mean R, correlates
well with the slope of the logarithmic curve (m), whereas BIAS
correlates with the intercept (b). Crucially, both indices do not
correlate with one another, indicating independence. Displayed r
values represent Pearson correlation coefficients. [Color figure
can be viewed in the online issue, which is available at wileyonli-
nelibrary.com.]

exist between likelihood and prior weightings on tasks
involving Bayesian estimation [Cicchini et al., 2012]. By
regressing the reproduced distances against the distances
in the stimulus set, we can obtain a measure of this
weighting [Vilares et al., 2012]. Accordingly, if subjects
relied entirely on the likelihood distribution and ignored
the prior, then responses will be proportional to the appro-
priate distance (Fig. 2A), resulting in a slope of one. If,
however, subjects rely entirely on the prior distribution,
then responses will be approximately equal across all
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distances, corresponding to the mean of the stimulus set
(9.5), and a slope of zero [O'Reilly et al.,, 2013; Vilares
et al., 2012]. A Bayesian observer, in order to reduce var-
iance, will combine likelihood and prior distributions, and
thus exhibit a slope value between zero and one. In repro-
duction tasks, this effect manifests as central tendency,
wherein subjects overestimate the smallest magnitude in
the stimulus set and underestimate the largest magnitude
[Kwon and Knill, 2013; Petzschner et al., 2015; Shi et al.,
2013]. However, in contrast to previous reports, we note
that subjects may also exhibit substantial, non-optimal
biases in their responses. These effects may manifest as a
gross overestimation or underestimation of stimulus set
values. Application of a Bayesian model, without factoring
in these subject-specific biases may provide inaccurate esti-
mates. Petzschner and Glasauer, in their formulation of a
Bayesian observer, included shift parameter term (Ax) [Eq.
(8)], that could account for behavioral differences in dis-
tance estimates. A second possibility is that these biases
may be construed as “anti-Bayesian,” in which responses
gravitate away from the prior as a result of noise in the
encoding process [Wei and Stocker, 2015]. However, Wei
and Stocker [2015] note that these shifts occur in the case
of an asymmetric prior distribution, which we did not use
in our study, and so we think this explanation is unlikely
to explain shifts in our data. Nevertheless, these subjects
may still be responding optimally, as responses may still
gravitate to the mean of previously reproduced intervals,
rather than the mean of the stimulus set (Fig. 2B). As such,
the intercept of the logarithmic curve mentioned above
may be used to quantify this bias. However, we note one
problem with this approach; as slope and intercept values
are naturally correlated, any change in slope will naturally
alter the intercept and so will skew a measurement of
bias. In our sample, we thus sought two measures to inde-
pendently index reliance on the prior (Rpior) and non-
optimal bias (BIAS). We defined BIAS as

BIAS=|d,—dj| @)

which indicates absolute deviations of subject responses
from the distances in the stimulus set; this value will be
positively correlated with the intercept of the logarithmic
curve of subject responses to presented distances, as larger
values indicate a deviation from the stimulus set, and so a
higher (or lower) intercept (Fig. 2C). We next defined
Rprior as

Rprior = ‘dr - Hprior| (3)

In which piprior is the mean of the subject prior, defined
as the average reproduced distance across the entire ses-
sion. Here, Ry represents absolute deviation of subject
responses from their mean reproduced distances; this
value will be positively correlated with the slope of the
logarithmic curve fit to subject responses for presented
distances, as large deviations indicate a larger difference

between extreme values and the mean, indicating a steeper
slope (Fig. 2C). Crucially, both measures are independent
of one another, and so changes in one do not associate
with changes in the other (Fig. 2C). This step was neces-
sary for planned analyses (see below), where independ-
ence between factors was a necessary requirement for
multiple regression, in order to avoid confounds resulting
from correlated covariates [Andrade et al., 1999].

We additionally note that our above measures of dis-
tance share commonalities with another model of distance
estimation, one that does not rely on estimates of prior or
likelihood. Lappe et al. [2007] developed a leaky integrator
model to explain patterns of over or underestimation in a
task similar to ours. In their model framework, estimates
of virtual distance are influenced by a gain factor (k) that
increments during movement, and a leak factor (x) that
reduces the integrated estimate. Depending on the context,
values of k and « can produce patterns of central tendency
when the gain factor is low and the leak factor is high.'

Functional image preprocessing and subsequent data
analysis was carried out with SPM8 (http://www. fil.ion.
ucl.ac.uk/spm/) [Friston et al., 1995] and Matlab (Math-
works). Slice-timing acquisition and realignment was
applied for all volumes, which were realigned to the first
volume of the first run, then normalized into standard ste-
reotaxic (Montreal Neurological Institute) space. All vol-
umes were then smoothed with an 8 mm full-width at
half-maximum Gaussian kernel.

At the first level, event-related responses were measured
by first convolving events with a canonical hemodynamic
response function [Friston et al., 1998]. In the present
study, we sought to measure activation related to distance
processing at different times in the behavioral sequence.
Specifically, we wanted to separately measure activity at
the outset and during virtual movement, as well as when
subjects reached their estimated distance. This was neces-
sary to test hypothetical differences in when likelihood
and prior representations would be most active. We, there-
fore, designed two general-linear models (GLMs) for each
subject, one corresponding to onset-locked activation and
the other to response-locked activity. For onset-related
activity, events were time-locked to the onset of the pro-
duction and reproduction phases, respectively. In both
cases, the BOLD responses were parametrically modeled
as boxcars with different lengths depending on the dura-
tion of the production (mean 4.3s +3.84) or reproduction
phases (mean 3.84s £2.7), to better account for duration-
related activity [Grinband et al., 2008]. We included an
additional, parametric regressor for each phase that was
height-modulated by the length of the traveled distance.

'We note that we additionally fit our behavioral data with the leaky
integrator model of Lappe et al. [Eq. (6)]. Subjects did exhibit a low
gain (0.503 = 0.11 s.e.) and high leak (0.22 = 0.01 s.e.), relative to pre-
viously reported values (Lappe et al., 2007). Additionally, we found
both terms to be correlated in our sample (r = —0.484).
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For offset-related activity, events were time-locked to the
offset of each phase. Two, additional parametric regres-
sors, modeled as height-modulated stick functions, were
included for production and reproduction phases, one for
duration and one for distance, entered into the GLM in
that order. Although duration was not a reliable cue for
performing the task, subjects may have been biased by the
time taken to reach the production phase distance; the
duration regressor was included to assess this possibility.
Furthermore, the distance regressor was orthogonalized by
the duration regressor, which allowed for the assessment
of distance adjusted for duration [Mumford et al., 2015].
For each GLM, a high-pass filter (128s) was applied to
remove non-specific noise. Six, additional motion-
parameter regressors were included in each GLM to
account for head movement-related signals. The onset-
related analysis interrogated activity developing during
simulated walking, whereas the offset-related analysis
examined activity following when subjects finished their
movement and made a decision on if they were at the
appropriate distance [Cui et al., 2009]. For onset-related
activity, contrast maps were generated examining the dif-
ference between reproduction and production phases
[REPRO - PRO] and between parametric modulations of
distance for each phase [REPROgist — PROg;st]. For offset-
related activity, the same two contrast maps were gener-
ated, as well as a third between parametric modulations of
duration for each phase [REPROyme — PROpime]. At the
second-level, contrast maps were entered into a random-
effects analysis and tested as one-sample t-tests. Statistical
significance was assessed at a height threshold of P < 0.001
and a cluster threshold of P <0.05, Family-Wise Error
(FWE) corrected (minimum cluster extent k = 10). Anatom-
ical labels of activation clusters were provided by the AAL
atlas [Tzourio-Mazoyer et al., 2002]. Additional localization
of cluster peaks was confirmed with the SPM Anatomy
toolbox [Eickhoff et al., 2005].

Lastly, in order to measure individual differences in reli-
ance on the prior, we conducted an additional, second-level
multiple-regression analysis, with our BIAS and Rpyor indi-
ces included as separate covariates. In this way, we could
independently evaluate neural regions associated with one
index while separately controlling for the confounding
effects of the other. A third, additional regressor was also
included in this analysis: we noted that, although our
design attempts to reduce the utility of a time-based strat-
egy, some subjects may nevertheless have guided their dis-
tance reproduction estimates by matching the duration of
the production phase distance [Mossio et al., 2008], even
though distance estimates are generally more precise than
timing estimates [Durgin et al., 2009]. In order to account
for this potential influence, we assessed the independent
influence of time and distance on reproduction estimates
by running a non-parametric Spearman partial correlation,
for each subject, between the change in velocity between
production and reproduction phases and the reproduced

distance while controlling for the distance presented during
the production phase (see Hayashi et al., 2013 for a similar
approach in magnitude reproduction). The resulting corre-
lation coefficients were included as a third regressor, to
ensure that the measurements of BIAS and R, were not
driven by a time-based strategy; we additionally confirmed
that this regressor was not correlated with either BIAS
(r=0.047) or Rprior (r = —0.059) regressors; both correlations
were additionally confirmed with a permutation test
(10,000 permutations, o = 0.95), indicating that neither was
higher than chance. Separate, one-sample t-tests were run
for each index. In order to assess our a priori hypothesis
regarding regions of interest in the RSC and hippocampus,
we utilized anatomical masks for activation in these
regions. The hippocampus was defined using anatomical
constraints provided by the WFU PickAtlas [Maldjian
et al., 2003]. For the RSC, as no available atlas definitions
are currently available for this region, we used a 12 mm
spherical volume of interest, centered at the coordinates
of previous RSC activation during path integration (MNI:
—4, —62, 24) [Wolbers and Buchel, 2005; Wolbers et al.,
2007]. Activation in these regions was assessed using the
same significance thresholds as described above, but con-
strained to the smaller volume. We additionally explored
whole-brain activity in each of these contrasts and report
these results below.

RESULTS
Behavioral Results

As expected, participant reproductions demonstrated
central tendency, with overestimations of the shortest dis-
tance in the stimulus set and underestimations of the lon-
gest distance [Mean Rpor =1.57 =SD 0.414; one-sample
£(23) = 18.596, P <0.001] [Petzschner and Glasauer, 2011].
Additionally, we found a range of biases across subjects,
with some subjects reproducing distances centered on the
mean of the stimulus set, and others reproducing distances
offset from the stimulus set [Mean BIAS =3.05* SD 2.44;
one-sample #(23)=6.114, P <0.001]. Furthermore, we
observed one subject who, although they claimed to have
understood the task, performed exceptionally poorly, dem-
onstrating a negative slope (m = —2.22), greater than two
SDs from the mean. As such, we excluded this subject from
our functional Magnetic Resonance Imaging (fMRI) analysis
of the effects of Ryior and BIAS. The results of our nonpara-
metric partial correlation also revealed that subjects did
show an influence of duration on distance, as rho values
were significantly above zero [£(22) = 2.689, P = 0.013]; how-
ever, this value was quite low (mean rho 0.1006 * 0.1918),
suggesting that timing only had a marginal influence on
estimated distances. Post-task interviews with subjects indi-
cated a range of strategies for completing the task, with sub-
jects noting that the horizon and distant rocks were not a
useful strategy for determining distance traveled.
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Figure 3.

Brain regions activated exclusively while subjects are reproduc-
ing target intervals, contrasted against when producing them. A
network of prefrontal and parietal regions are exhibited, includ-
ing medial prefrontal cortex and inferior parietal cortex. Activa-
tion is displayed at P <0.00| peak level, corrected for multiple

fMRI Results

For onset-locked data, we found activation in a network
of regions (Fig. 3; Table I). For the [REPRO — PRO] con-
trast, this network included activity in the prefrontal cor-
tex, with local maxima in the inferior frontal gyrus (IFG)
and anterior cingulate cortex. Additional parietal activa-
tion in the inferior parietal cortex and superior temporal
gyrus was also detected. Subcortical peaks in the motor-
related areas, including the cerebellum and basal ganglia,
were also detected. Lastly, we detected activity in hippocam-
pal and parahippocampal regions. The activations in this
contrast indicate regions where activity in the reproduction
phase, where subjects were required to estimate the appro-
priate distance, exceeded activity in the production phase,
where subjects were required to encode the presented dis-
tance. No significant effects at our threshold were found for
the examination of the parametric distance regressor.

For the response-locked analysis, the [REPRO — PRO]
contrast demonstrated activity in white matter near the
hippocampus and in the cerebellum (Table II). This con-
trast indicated activity following the moment subjects indi-
cated, via button-press, when they believed they were at
the appropriate location. Additionally, for the [REPROg;s;
— PRO gst] contrast examining the parametric effect of pro-
duced distance in the reproduction phase, while control-
ling for walked distance in the production phase, we

comparisons at the cluster level (P < 0.05, FWE corrected). The
middle panel displays activation overlayed on an averaged scan
of subjects’ anatomical data. Color scale indicates t-score value.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

observed a significant cluster in the right prefrontal cortex,
within the IFG and extending into the middle frontal
gyrus (Table III). Crucially, we note that this activity
occurs after the response has been made, consistent with
previous research demonstrating parametric post-response
activity [Cui et al., 2009]. Additional regions of activation
in the medial frontal cortex, superior parietal and middle
occipital gyrus were detected but did not exceed our clus-
ter significance threshold. No significant effects were
found for the examination of the parametric duration
regressor. This finding indicates that the effect of distance
in IFG is independent of changes in duration, which may
also induce activity in this region [Wiener et al., 2010].

Additionally, we examined activity for the opposite con-
trast [PRO — REPRO]. For the onset-locked analysis, we
found significant bilateral activation in the occipital cortex,
centered on the lingual gyrus (Supporting Information Fig-
ure S1; Supporting Information Table S1). For the response-
locked analysis, activity was again found in the bilateral lin-
gual gyri, but an additional significant cluster was found in
the left precentral gyrus, extending into the inferior and
middle frontal gyri (Supporting Information Figure S1; Sup-
porting Information Table S1). We note that activity in the
precentral gyrus was also found in the onset-locked analysis
in roughly the same region, but did not survive cluster cor-
rection. No significant effects were found for the parametric
effects at in either onset or response-locked analyses.
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TABLE I. Reproduction versus production?

Location Hemisphere X y z t-score Cluster size
Inferior Frontal Gyrus L —42 15 -12 9.72 147
Insula L -39 3 0 8.35
L -36 0 15 6.86
Cingulate Gyrus R 0 9 39 9.55 583
R 0 -6 42 9.07
Anterior Cingulate R 3 24 30 8.15
Insula R 45 15 -9 9.39 284
Superior Temporal Pole R 57 15 -3 7.8
Rolandic Operculum R 39 3 15 7.46
Precentral L —30 —18 60 9.13 276
Inferior Parietal L —45 —24 45 8.13
L -36 —42 54 7.99
Superior Temporal Gyrus L —63 —27 15 8.66 47
Supramarginal Gyrus R 60 -15 27 8.23 85
R 63 -21 21 8.15
Lingual Gyrus L =27 —63 3 8 78
Cerebellum (Lobule 1V) L -15 —54 -12 7.61
Middle Occipital L —48 =72 9 7.83 12
Pallidus R 15 0 0 7.78 99
Caudate R 6 0 9 7.06
Cingulate Gyrus L -12 —24 39 7.73 25
Cerebellum (Lobule IV) R 15 =57 -12 7.59 62
Cerebellum (Lobule IV) R 15 —54 =30 7.46 29
Parahippocampal Gyrus R 24 —42 -3 7.29 12
Hippocampus R 24 —42 6 6.35
Lingual Gyrus R 36 —57 0 7.13 18
Middle Temporal Gyrus R 42 —66 6 6.36
Cerebellum (Lobule VIIb) L —36 —60 —45 7.13 11
Red Nucleus L -3 —21 -6 6.84 12
Thalamus R 0 —27 3 6.12
Pallidus L —24 -9 -6 6.77 13
L —18 -3 -3 6.35
Supramarginal Gyrus R 54 =30 48 6.5 25
R 54 -30 39 6.19
Inferior Frontal Gyrus R 48 39 -9 6.41 10

*MNI coordinates from cluster peaks and local submaxima. Statistical threshold of P <0.001 height, P <0.05 cluster (FWE) minimum
cluster extent 10 voxels. Bolded regions represent cluster peaks, with submaxima listed below.

For the investigation of our behavioral indices against
neural data, we found a significant positive effect of mean
Rprior against onset-locked activity in the [REPRO - PRO]
contrast. This effect occurred in the RSC region (MNIL: —9,
—63, 24, peak t=5.76, k=53; Table IV), wherein greater

activity was associated with a larger R0 (Fig. 4; top). For
the response-locked analysis, we detected a significant
negative effect of mean Ry against a cluster of activity
in the anterior hippocampus, extending into the parahip-
pocampus and amygdala (MNI: 21, —3, —21, peak t =4.92,

TABLE Il. Reproduction versus production, post response-locked

Location Hemisphere X y z t-score Cluster size
White Matter R 33 —18 -9 9 20
Cerebellum (Lobule IV) R 21 —45 -18 8.97 89
Cerebellum (Loubule VI) R 15 —-63 -18 6.47

Cerebellum (Lobule IV) L —15 —48 -12 7.84 46
Cerebellum (Loubule VI) L -12 —60 -12 6.94

Cerebellum (Lobule VIII) L —33 —60 =51 7.42 15
Vermis R 6 =57 —6 6.7 10
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TABLE Ill. Parametric effect of distance during reproduction versus production

Location Hemisphere x y z t-score Cluster size
Inferior Frontal Gyrus* R 51 21 24 5.89 113

45 24 12 5.24

45 18 6 4.59
Superior Medial Frontal Cortex R 0 27 45 5.14 20
Superior Parietal L —21 —54 39 5.06 35
Middle Occipital Gyrus L —30 —57 36 4.2

*Survives cluster-wise FWE correction P < 0.05.

k =43; Table 1V), wherein lower activity was associated
with a larger Rprior (Fig. 4; middle). We note that the
valence of the relationship here is important, as larger val-
ues of Rpyor are associated with a reduced central tendency,
and so less reliance on the prior. As such, RSC activity
was associated with responses that aligned with the mean
of the subject likelihood function, whereas the hippocam-
pal cluster activity was associated with responses that
aligned with the mean of the subject’s prior. No significant
effect of the BIAS index or nonparametric tho index on
fMRI activation was detected, for either onset or response-
locked data. However, in the onset-locked [PRO — REPRO]
contrast, we detected a significant positive effect of the
BIAS index against a cluster of activation in the basal gan-
glia, centered on the right putamen (MNL 21, 12, —-9;
Table V), wherein greater activity was associated with a
larger BIAS value, associated with a greater shift away
from presented distances (Fig. 4; bottom).

DISCUSSION

In the present study, we sought to elucidate the neural
regions responsible for central tendency in distance repro-
duction, a task that is relevant for real world path integra-

TABLE IV. Regression analysis

tion. We used a VR task implementing a first-person
perspective in which subjects were required to walk a
specified distance, and then reproduce that distance in the
absence of overt environmental cues. To characterize
human performance and bias, which may take the form of
both optimal reliance on a prior distribution and non-
optimal bias away from the mean of the stimulus set, we
utilized indices of each pattern that were independent
from one another. Our results revealed a number of main
findings. First, performance during the reproduction phase
specifically recruits a network of subcortical and cortical
structures comprising the cerebellum, basal ganglia, and
hippocampus, in addition to the prefrontal and parietal
cortices. Second, the right IFG is preferentially activated
when subjects reach their planned destination, and is spe-
cifically modulated by the distance traveled. Third, RSC
and anterior hippocampal/amygdala activity during
reproduction covaries between subjects with the degree to
which subjects rely on the prior distribution of reproduced
distances, but in different ways and at different times.
Finally, activity in the basal ganglia during the production
phase covaries with the degree of non-optimal bias away
from presented distances in the stimulus set.

Our findings are consistent with a wide literature on spa-
tial navigation, demonstrating activation in hippocampal,

results for [REPRO - PRO]

Location Hemisphere x y z t-score Cluster size
Onset-Locked
Retrosplenial Cortex* L -9 —63 24 5.76 53
Precentral Gyrus (BA 6) R 45 -3 27 4.16 11
54 -3 27 3.58
Response-Locked
Hippocampus* R 21 -3 —21 492 43
Putamen 33 3 -9 4.51
24 0 -6 4.48
Middle Temporal Gyrus R 51 —42 6 4.66 34
60 —45 6 3.99
Middle Frontal Gyrus (BA 9) R 24 33 30 4.54 35
Cingulate Cortex (BA 32) 21 21 30 3.9
Temporal Lobe (BA 37) L —45 —42 -3 4.28 13
Parahippocampal Gyrus (BA 36) —42 —33 -9 3.78

*Survives cluster-wise FWE correction P < 0.05.
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Figure 4.

Results of the multiple regression analysis. Activity (beta values,
in arbitrary units) in the RSC (top) and hippocampal/amygdala
complex (middle) while reproducing distance covaries with our
index of the reliance of individual subjects on the prior distribu-
tion of reproduced distances (Rrior), independent of the individ-
ual mean BIAS values. Conversely, activity in the right putamen
(bottom) while encoding distance covaries with our index of
general offset from the presented distances (BIAS). At right,

the correlation from the peak voxel for each structure is pre-
sented, for illustrative purposes only—no additional statistical
analyses have been run. Activation is displayed at P <0.001
peak level, P <0.05 corrected cluster level. Color scale indi-
cates t-score value. Activation is displayed on an averaged ana-
tomical scan. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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TABLE V. Regression analysis results for [PRO -
REPRO]

Location Hemisphere x y  z  t-score Cluster size

Onset-Locked

Putamen* R 21 12 -9 6.08 97
Putamen L -15 6 -9 455 60
L -30 6 —12 4.07
L -21 6 0 4.01

*Survives cluster-wise FWE correction P < 0.05.

RSC, and prefrontal regions [Boccia et al, 2014; Chrastil,
2013; Hartley et al., 2003; laria et al., 2007; Kuhn and Galli-
nat, 2014; Park and Chun, 2009; Sherrill et al., 2015; Vass and
Epstein, 2013; Viard et al, 2011 ]. Additionally, studies of
path integration have found activation in RSC and hippo-
campal regions, similar to our own [Sherrill et al., 2013;
Wolbers and Buchel, 2005]. However, we note that our para-
digm is intended to functional dissociate between route
encoding and reproduction mechanisms [Chrastil and War-
ren, 2014]. In the production phase of our task, subjects must
walk to a predetermined distance, but have no foreknowl-
edge of which distance in the stimulus set will be presented.
In the reproduction phase, subjects have a discrete goal dis-
tance in mind. The distance to be produced will thus depend
on the accuracy of encoding mechanisms during the initial
production phase, as well as comparator mechanisms during
the reproduction phase, both of which may be influenced by
idiothetic cues and action perception and planning mecha-
nisms [Witt and Riley, 2014]. As such, by contrasting activa-
tion in the reproduction phase with the production phase
(and vice versa), our analysis controls for such non-specific
effects as visual stimulation and movement production, leav-
ing only activity putatively related to distance encoding or
reproduction mechanisms. Furthermore, for parametric
regressions, our design allows us to control for the distance
and duration traveled in the production phase when examin-
ing differential effects of these factors on reproduction
activity.

In the production phase, we observed bilateral activity
in the occipital cortex, centered on the lingual gyrus that
was greater than in the reproduction phase. Additional
activation in the left precentral gyrus was also observed
during both phases, but only survived cluster correction
for the response-locked analysis (Supporting Information).
Several points are worth noting about this activation; first,
far less activity was observed during the production than
reproduction phase. This finding is in accordance with
work from the experimental psychology domain suggest-
ing that, once subjects learn the range of stimuli to be pre-
sented, processing during the encoding phase proceeds
automatically [Hasher and Zacks, 1984; Nachmias, 2006;
Schneider and Shiffrin, 1977]. Indeed, subjects are able to
learn the range of a stimulus set relatively quickly [Berniker
et al.,, 2010]. Second, activity in the lingual gyrus has been

associated previously with the encoding of general visual
memories [Cohen et al., 1997; Courtney et al., 1997; Simons
et al., 2006] and spatial encoding [Aguirre et al., 1998; Sulpi-
zio et al.,, 2013]. Third, activity in the left precentral gyrus
may have been related to use of the right-hand for holding
the button press, although it is difficult to say why this
region would be more active in the production phase,
when the button-pressing requirement was equivalent.

Additionally, during the production phase, we observed
a correlation between basal ganglia activity, centered on
the right putamen, and the degree of non-optimal bias
across subjects. The BIAS index we used in our study indi-
cated the degree to which subjects generally over or
underestimated the distances in the stimulus set. As such,
a high value of BIAS would result if subjects were consis-
tently overestimating the presented distances (Fig. 1A).
Given that activation covaried with BIAS in the basal gan-
glia, one possibility is that habitual tendencies influenced
subject performance. Recent work suggests the basal gan-
glia as a center for regulating habitual behaviors [Yin and
Knowlton, 2006], and in the context of spatial navigation
the basal ganglia have been associated with egocentric,
over-learned route sequences [Hartley et al., 2003]. The
between-subject difference in basal ganglia activation may
thus reflect the degree to which subjects could inhibit (or
were susceptible to) inherent biases or errors in the distan-
ces they were encoding. Recent research has indicated that
the volume of the human putamen correlates with turning
bias in a virtual Morris Water Maze task [Yuan et al.,
2014]. These biases would likely be corrected in the pres-
ence of feedback, which was not provided in the present
study, in accordance with the replication of Petzschner
and Glasauer’s [2011] work.

In the present study, we also observed significant activ-
ity in the right IFG after subjects reached their goal dis-
tance. Moreover, the distance traveled on a given trial
modulated this activity. Although some studies have indi-
cated parametric effects of distance in hippocampal activ-
ity, prefrontal activation has been consistently noted in
studies of spatial navigation [Boccia et al., 2014; Kuhn and
Gallinat, 2014]. Additionally, numerous studies demon-
strate activation in this region that is modulated by the
processing of stimulus magnitude, across a number of
domains [reviewed by Bueti and Walsh, 2009]. Indeed,
prefrontal neurons have been found to parametrically
encode spatial distances [Genovesio et al., 2011; Merchant
et al., 2011]. Moreover, this activity may regionally be tied
to task goal representations [Genovesio et al., 2012]. Nota-
bly, stimulation of the right prefrontal cortex in a task
design similar to ours but investigating a different magni-
tude dimension, that of time, selectively disrupts perform-
ance when applied during stimulus reproduction, not
production phases [Jones et al., 2004].

Consistent with Bayesian models of behavior, subjects in
our study exhibited central tendency when estimating dis-
tances in our stimulus set. This effect manifests as an
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overestimation of the shorter distances in the stimulus set
and an underestimation of the longer distances and is also
known as Vierordt’s Law. Bayesian models suggest that,
in facing estimation uncertainty, subjects gravitate to the
mean of the prior distribution, formed from previously
experienced trials [Jazayeri and Shadlen, 2010; Kwon and
Knill, 2013; Petzschner et al., 2015; Petzschner and Glasa-
uer, 2011 ]. Determining the neural regions responsible for
likelihood and prior representations is a current challenge
for neuroscience investigations. In recent studies, likeli-
hood representations have been localized to sensorimotor
regions, whereas prior representations have been localized
to integrative zones where disparate processing streams
are combined [Hampton et al., 2006; O'Reilly et al., 2013;
Vilares et al., 2012]. In our study, we found that both RSC
and hippocampal region activation covaried between sub-
jects with how much a subject relied on the prior when
estimating distance. However, each covaried in different
ways and at different times. In subjects who showed a
strong effect of central tendency, RSC activation was lower
at the onset of the reproduction phase and hippocampal/
amygdala activity was larger at the offset, when a decision
was made. Conversely, greater onset-locked RSC activity
and lower response-locked hippocampal area activity was
found in subjects who showed less of a central tendency
effect, and so reproduced more veridical distances. This
activity occurred while subjects were reproducing distance,
and was not affected by bias. The further implication of
these data is that the RSC mediates the ability of a subject
to accurately reproduce a just-previously-experienced dis-
tance, whereas the hippocampus samples the average repre-
sentation of distances experienced in the environment.

The regions of the RSC and hippocampus observed in
the present study are important to distinguish. The hippo-
campal cluster that we associated with greater reliance on
the prior distribution was located in the anterior hippo-
campus, with some overlap between the amygdala and
parahippocampus. This finding is noteworthy, as anterior
hippocampal activation has been associated with increas-
ing proximity to goal locations [Viard et al., 2011] and epi-
sodic retrieval [Kuhn and Gallinat, 2014]. However, the
peak and majority of voxels in this cluster were in the hip-
pocampus (hippocampus: 48%, amygdala: 30%, parahippo-
campus: 24%). Relatedly, a recent meta-analysis of 66
fMRI experiments of spatial navigation also found a clus-
ter encompassing these regions, although without specula-
tion on possible underlying function [Boccia et al., 2014].
Recent work has shown that the hippocampus and amyg-
dala are co-activated while learning object-location associa-
tions [Manelis et al., 2012] and during the retrieval of
larger memory loads [Schon et al., 2009]. In contrast, the
location of the RSC in our study was found in a region of
the occipital parietal cortex. We identified this region as
the RSC on the basis of our a priori ROI, chosen from a
study involving a similar design [Wolbers and Buchel,
2005]. However, we note that several additional ROIs cen-

tered on coordinates from other studies also encompassed
this cluster [Dilks et al., 2011; Marchette et al., 2014; Park
and Chun, 2009; Sherill et al., 2015], including the RSC
location reported by the meta-analysis of Boccia et al.
[2014]. Nevertheless, we do note that the RSC location in
our study is not immediately adjacent to the splenium.

The RSC has long been implicated in spatial navigation
and path integration (for reviews see Epstein, 2008; Vann
et al., 2009]; however, its precise role has remained elusive.
Additionally, the RSC is ideally situated to integrate infor-
mation from a variety of regions, including the hippocam-
pus, prefrontal and parietal cortices [Alexander and Nitz,
2015; Vann et al., 2009]. Evidence suggests that the RSC
responds to both ego and allocentric representations of the
environment and goal locations [Miller et al., 2014; Sherrill
et al., 2013], and combines idiothetic and spatial cues dur-
ing movement [Wolbers and Buchel, 2005]. RSC lesions in
animals performing spatial navigation tasks induce specific
deficits when changes to the environment occur or when
animals must rely heavily on their internal estimates
[Cooper and Mizumori, 2001; Pothuizen et al., 2008]. Addi-
tionally, recordings of RSC neurons during navigation dem-
onstrate context specific activation to environmental reward
cues, suggesting the RSC encodes goal-directed spatial
information [Alexander and Nitz, 2015; Smith et al., 2012].
Similarly, research in rodent models has suggested that hip-
pocampal place-cell activation relates to map-level represen-
tations of the environment that may be utilized for reaching
a desired goal [McNaughton et al., 2006; Rich et al., 2014].

Given the potential involvement of the RSC in goal-
directed spatial information, one possibility is that greater
RSC activation at the onset is related to the ability to accu-
rately situate oneself in the environment. By doing so, the
individual will have a better idea of how far they must
travel in order to reproduce the correct distance. Indeed,
studies of temporal reproduction, another magnitude
reproduction task very similar to the one used here, have
shown that the accuracy of a to-be-reproduced interval is
driven most by activity at the beginning of the reproduc-
tion phase [Bartolo and Merchant, 2015; Kononowicz and
van Rijn, 2015]. In our study, although we asked subjects
to plan their movement to the target location, the reproduc-
tion of distance was influenced in our task by simulated
walking speed [Mossio et al., 2008; Redlick et al., 2001];
however, previous work has demonstrated that subjects can
accurately identify traveled distance in a task similar to
ours using only ground features [Frenz and Lappe, 2005],
and so can identify the distance they must travel.

The relation of the hippocampal/amygdala cluster in
our task with central tendency suggests that this region is
associated with a sampling of the average reproduced dis-
tance. Furthermore, the involvement of this structure at
reproduction offset suggests that it mediates the proximity
of the subject to the mean of the prior. Accordingly, if a
subject is less certain of the distance they must reproduce,
they will draw from their memory distribution of traveled
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distances, which likely relies on the hippocampus, given
the involvement of this structure in the generation of topo-
graphic spatial representations. Previous research has
demonstrated that the hippocampus is more active in poor
performers on a spatial navigation task similar in some
respects to ours [Baumann et al., 2010].

The findings of the present study suggest that the RSC
and hippocampal/amygdala complex mediate the balance
between reliance on the prior and likelihood distributions
during distance reproduction. More specifically, it suggests
that the RSC samples the likelihood function, whereas the
hippocampus samples the prior distribution. Notably, in a
previous study of Bayesian estimation, Vilares et al. [2012]
found that the superior prefrontal cortex mediated the bal-
ance between the prior and likelihood for individual sub-
jects. However, this study required subjects to make a
probabilistic judgment about the location of a hidden
object—a very different task from the one in the present
study. In relation to magnitude estimation, the Bayesian
model that inspired our design and set of analyses is a
general theory that provides an explanation for central
tendency. As such, the choice of which magnitude to esti-
mate is arbitrary. Indeed, a current question is whether
Bayesian priors are implemented globally or locally in the
brain [Petzschner et al., 2015]. In the present study. The
findings in the present study raises the interesting possibil-
ity that adjudication between the prior and likelihood does
not occur in a single, supramodal brain region, but rather
occurs in regions that are most suitable to the current task.
Indeed, recent work by O’Reilly et al. [2013] using a target
interception task (i.e., space invaders) revealed a possible
locus for combining predictions based on current and past
trajectories in the angular gyrus, another region that may
have been ideally suited for integrating information in the
task. We thus suggest that RSC and hippocampal complex
activation covarying with reliance on the prior in the pres-
ent study is due to their preferential involvement in spa-
tial navigation. Further, the application of our design to
other magnitude dimensions (e.g., time, number, size)
would be more likely to reveal regions associated with
these tasks with representations of prior and likelihood,
rather than the regions found in the present study.

Our application of the Bayesian model to distance repro-
duction follows from a recent application by Petzschner
and Glasauer [2011]. These authors found that central
tendency effects could be explained by a Bayesian optimal
observer model that used an adaptive prior that learned
the distribution of distances over time. Notably, this model
has been applied to a number of other magnitude dimen-
sions [Petzschner et al., 2015], suggesting that the present
findings may be applicable to a wide range of stimuli.
However, the Bayesian model is not the only one that can
explain central tendency. Indeed, recent studies have sug-
gested that central tendency effects can also be explained
by nonstationary effects in memory [Thurley, 2016; Wiener
et al.,, 2010]. Further, Lappe et al. [2007] proposed a leaky

integrator model of distance estimation that relies on
parameters that affect the gain and integration of traveled
space in memory. This model was designed to explain
overestimation and underestimation effects in behavioral
tasks similar, but not identical, to our own. However, we
note that this model can also accommodate central tend-
ency effects by invoking a low gain and high leak rate. In
this case, the model provides an alternative account for
central tendency to the Bayesian one that highlights a spe-
cific mechanism. We conducted an additional analysis of
our data, in which the Lappe model was fit to individual
subject data, and parameter estimates were applied in our
multiple regression analysis. However, no areas of co-
activation were found that passed our significance thresh-
old. This does not necessarily preclude the possibility that
gain and leak parameters (or some combination) are calcu-
lated in the neural regions observed in our study, but could
suggest that our particular analysis or experimental design
are not best suited to the Lappe model. Future studies
should be conducted that more closely replicate the tasks
used by Lappe et al. [2007] with their model to elucidate
the neural correlates of these parameters [Harris and Wolb-
ers, 2012; Lappe and Frenz, 2009; Lappe et al., 2011 ].

CONCLUSIONS

The present study reports, for the first time, an investiga-
tion of the neural regions involved in central tendency effects
during distance reproduction. These findings suggest that
hippocampal and prefrontal regions are utilized for the
encoding and estimation of distance, where human subjects
are known to produce systematic errors. Activation in the
RSC and hippocampal amygdala complex covaried with
individual reliance on the prior distribution of reproduced
distances, suggesting that these regions mediate the optimal
Bayesian tradeoff between uncertainty and expectation dur-
ing distance reproduction in a virtual reality environment.
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