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Abstract: In recent theoretical considerations as well as in neuroimaging findings the left angular gyrus
(AG) has been associated with the retrieval of arithmetic facts. This interpretation was corroborated by
higher AG activity when processing trained as compared with untrained multiplication problems.
However, so far neural correlates of processing trained versus untrained problems were only com-
pared after training. We employed an established learning paradigm (i.e., extensive training of multi-
plication problems) but measured brain activation before and afte training to evaluate neural correlates
of arithmetic fact acquisition more specifically. When comparing activation patterns for trained and
untrained problems of the post-training session, higher AG activation for trained problems was repli-
cated. However, when activation for trained problems was compared to activation for the same prob-
lems in the pre-training session, no signal change in the AG was observed. Instead, our results point
toward a central role of hippocampal, para-hippocampal, and retrosplenial structures in arithmetic fact
retrieval. We suggest that the AG might not be associated with the actual retrieval of arithmetic facts,
and outline an attentional account of the role of the AG in arithmetic fact retrieval that is compatible
with recent attention to memory hypotheses. Hum Brain Mapp 37:3061–3079, 2016. VC 2016 Wiley Periodi-

cals, Inc.
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INTRODUCTION

Mental arithmetic is a particularly well suited domain
for investigating learning processes because it requires the
integration of declarative (e.g., arithmetic facts), procedural
(e.g., algorithms), and conceptual knowledge (e.g., arith-
metic principles). In recent years interest regarding the
neural mechanisms underlying the acquisition of core
arithmetical abilities increased [Delazer et al., 2003, 2005;
Grabner et al., 2009a,b; Ischebeck et al., 2006, 2007]. Brain
imaging studies deepen our understanding of the mecha-
nisms underlying the acquisition of arithmetic competence.
They not only allow for the identification of brain struc-
tures involved in learning arithmetic facts and procedures
but also for investigating changes in brain activation as a
consequence of numerical learning. The majority of studies
on numerical learning so far pursued the acquisition of
arithmetic facts by means of drill trainings of arithmetic
problems - primarily employing difficult multiplication
problems [e.g., 43 3 9 5___; Delazer et al., 2003, 2005;
Grabner et al., 2009a; Ischebeck et al., 2006]. All of these
training studies compared brain activation patterns associ-
ated with the processing of either trained or untrained
multiplication problems in one fMRI session following up
on multiple sessions of drill training [for a different
approach see Ischebeck et al., 2007].

A consistent finding of these training studies was stron-
ger activation of the fronto-parietal network of number
processing—such as the left inferior frontal gyrus and the
intraparietal sulcus (IPS)—for untrained as compared with
trained multiplication problems. In contrast, these studies
reported stronger activation1 in ventral parietal cortex—
precisely in the left angular gyrus (AG) for trained prob-
lems [e.g., Delazer et al., 2003, 2005; Ischebeck et al., 2006].
The authors interpreted this change of brain activation pat-
terns after drill training to reflect a shift from quantity-
based and working memory demanding computations to
automatic retrieval of arithmetic facts from long-term
memory [Delazer et al., 2003; Ischebeck et al., 2006]. It was
argued that the left AG constitutes the key area for these
retrieval processes [e.g., Dehaene et al., 2003]. In particular
researchers assumed the left AG to be recruited specifi-
cally whenever an arithmetic problem can be solved by
retrieval of arithmetic facts from verbal long-term memory
(e.g., multiplication tables such as 2 3 3). A direct compar-
ison of different learning methods (drill vs. strategies) for
solving complex multiplication problems seemed to fur-
ther corroborate the crucial role of the AG in arithmetic

fact retrieval [Delazer et al., 2005]. Multiplication problems
trained by drill led to stronger involvement of the AG
than problems trained by strategies.

Previous work, however, has only focused on compar-
ing brain activation patterns associated with the process-
ing of trained vs. untrained problems after training
[Delazer et al., 2003, 2005; Grabner et al., 2009b; Ischebeck
et al., 2006]. This means that changes in brain activation
due to the actual acquisition of arithmetic facts may not
have been evaluated sufficiently because there was no
fMRI scan before the training. The exact role of the AG for
the acquisition of arithmetic facts is therefore less clear
than suggested by published studies. In line with this
argument, Grabner et al. [2009b] observed a task-
independent increase of AG activation after extensive drill
training not only for multiplication problems but also for a
figural-spatial (non-verbal) task. This is in line with the
view that the AG might be involved in more general proc-
esses of learning such as processes of symbol-referent
mapping which are not domain-specific [Ansari, 2008;
Grabner et al., 2013]. These findings challenge the idea
that the involvement of the AG in mental arithmetic can
be reduced to retrieval processes from verbal long-term
memory.

Moreover, although increased AG activation after train-
ing was generally interpreted as an indicator of fact
retrieval from long-term memory, none of the studies cited
above investigating the acquisition of arithmetic facts
actually evaluated the role of other cortical structures clas-
sically associated with long-term memory such as the
hippocampus, parahippocampus, or retrosplenial cortex
[Baddeley, 1996; Montaldi and Mayes, 2010]. Only
recently, researchers began to elucidate the role of these
traditional memory-related cortex areas in numerical learn-
ing [Qin et al., 2014; Rosenberg-Lee et al., 2014] and arith-
metic fact retrieval [Klein et al., 2013, 2016].

In the present study, we employed a learning paradigm
identical to the one used in previous studies investigating
arithmetic fact learning (i.e., drill training of difficult mul-
tiplication problems), but measured brain activation dur-
ing multiplication problem solving by fMRI scans before
and after the training (pre- and post-training fMRI session).
This allowed us to evaluate changes in brain activation
patterns associated with the actual acquisition of arithme-
tic facts more specifically than the post-training compari-
son of activation patterns elicited by trained vs. untrained
problems. In particular, we were interested in the direct
comparison of AG activation observed for the same set of
items before and after the training. Additionally, attention
was paid to the involvement of cortex areas commonly
associated with semantic long-term memory (i.e., hippo-
campus, parahippocampus, and retrosplenial cortex).

Our specific hypotheses were as follows:

a. Because all previous studies on arithmetic fact learn-
ing by drill reported stronger AG activation for

1Terminology concerning (de-)activation within the angular gyrus is
not consistent across studies. The terms higher activation and less deac-
tivation are often used interchangeably to refer to the fact that the
angular gyrus is deactivated. In fact, the vast majority of training
studied observed lesser degrees of deactivation in the left AG for
trained than untrained multiplication problems (Delazer et al., 2003,
2005; Grabner et al., 2009aa, b; Ischebeck et al., 2006, 2009; for a
review see Zamarian et al., 2009).
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trained vs. untrained problems, we expected stronger
AG activation for both comparisons—the contrast
trained versus untrained multiplication problems of

the post-training session but also the contrast trained
problems of the post-training session vs. the same
problems before the training.

b. Taking into account recent observations regarding
the involvement of the hippocampus in numerical
learning and arithmetic fact retrieval [Qin et al., 2014;
Klein et al., 2013, in 2016], we also expected to
observe hippocampus activation in the same con-
trasts (i.e., trained vs. untrained problems of the
post-training session and trained problems of the
post-training session vs. untrained problems of the
pre-training session).

METHODS

Participants

Thirty-two right-handed volunteers (24 women, mean
age 5 22 years; SD 5 2) participated in the study after hav-
ing given their written informed consent in accordance
with the protocol of the local Ethics Committee of the
Medical Faculty of the University of Tuebingen. All partic-
ipants had normal or corrected to normal vision and
reported neither a previous history of neurological or psy-
chiatric disorders nor weakness in arithmetic.

Stimuli and Design

Three different item sets were used: to avoid simple rep-
etition effects, two sets comprising stimuli that were not
trained were generated. The order of these two sets was
counterbalanced across participants. In the following,
untrained-1 (UT1) refers to the untrained stimuli of the
pre-training session, whereas untrained-2 (UT2) refers to
the untrained stimuli of the post-training session. The
third set comprised the to-be-trained stimuli. This latter
set is termed to-be-trained (TBT) for the pre-training ses-
sion and trained (T) for the post-training session, to distin-
guish between pre- and post-training sessions and to
emphasize that stimuli are unknown in the pre-training
session.

Each of the three item sets comprised 34 different two-
digit (range 12–98) 3 one-digit (range 3–9) multiplication
problems (e.g., “36 3 8”). All three sets were matched
for the following stimulus properties: problem-size of fac-
tor one (M 5 47.91), problem-size of factor two (M 5 5.76)
as well as for the problem-size of the product
(M 5 263.91). Within the item sets the first factor was odd
in 15 and the second factor in 16 of the 34 multiplication
problems. To provide challenging multiplication problems
the second factor was always larger than two. Conse-

quently, the majority (29 out of 34) of results was a
three-digit number.

Procedure

Imaging data

The experiment was a combined event-related fMRI and
reaction time (RT) study. Participants were scanned twice
at the same time of day, with one week in between, both
before (pre-training session) and after (post-training ses-
sion) completing five sessions of intensive multiplication
training. The TBT item set used in the pre-test fMRI ses-
sion, was then trained in five training sessions outside the
scanner. Two additional untrained items sets, one in the
pre-training (UT1) and the other in the post-training (UT2)
fMRI sessions were used. In other words, during the pre-
training fMRI session items of the to-be-trained set (yet
unknown to participants, TBT) and of the untrained sets
(UT1) were presented. In the post-training fMRI session,
the items of the second untrained set (UT2, matched for
item properties) were presented together with the mean-
while trained problems of the to-be-trained set (T).

During pre- and post-training sessions each trial started
with the presentation of a fixation cross (500 ms). Subse-
quently, a multiplication problem together with the correct
result and a distractor was presented. Participants then
had 7 seconds to respond by pressing one of two MRI
compatible response buttons with either their right or left
thumb. In case participants responded earlier within this 7
second period, a mask was shown (##3 #) to keep item
duration fixed and to hold visual input comparable. Each
trial was followed by a jittered inter-trial-interval of 2.5
seconds on average (ranging from 2,000 to 3,000 ms sec).
Each fMRI session comprised 10 practice and 68 experi-
mental trials. Additionally, 20% null-events of 7.5 seconds
duration each were randomly interspersed over each fMRI
session. All stimuli were projected on a screen above the
head of the participant. Participants viewed the stimuli
through a mirror mounted on the head coil of the scanner.
Foam pads were used to minimize head movements
within the head coil during fMRI acquisition. Multiplica-
tion problems were presented centered on the screen.
Operands were presented horizontally aligned separated
by a centered multiplication sign. All stimuli were pre-
sented in white Arial 42 font against a black background.
The experiment was performed using PresentationVR soft-
ware (www.neurobs.com).

Participants were instructed to indicate as fast and as
accurately as possible, which of two solution probes was
the correct result. Incorrect solution probes (distractors)
always differed from the correct result by 10 to prevent
parity-based solution strategies. To familiarize participants
with task requirements and the input devices, they had to
solve 10 multiplication problems within the scanner prior
to the critical trials. None of these practice items was con-
tained in the critical item sets.

AQ1
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Training procedure

In the training sessions no solution probes were pro-
vided and participants had to enter the correct result using
the number pad of a standard QWERTZ keyboard.

The multiplication training comprised five training ses-
sions spread over five consecutive days following the pre-
training fMRI session. Participants were trained on the 34
multiplication problems of the to-be-trained set (TBT).
Overall, each multiplication problem was presented six
times. In total, this resulted in 204 trials per training ses-
sion. Each session was subdivided into three blocks. Order
of problem presentation was randomized and the same
problem was never presented on two consecutive trials.
Each multiplication problem remained visible until the
correct result was entered via the number pad. Feedback
was provided after each attempt to solve a problem. Par-
ticipants were instructed to solve the problems as fast and
accurately as possible. Training duration decreased on
average from approximately 60 min in the first session to
about 40 min in the last session.

The paradigm of the present study closely resembled
former studies investigating fact learning in complex arith-
metic [Delazer et al., 2003; Grabner et al., 2009a,b; Ische-
beck et al., 2006]. Nonetheless, the implementation of a
two-alternative forced choice paradigm during fMRI ses-
sions cannot rule out completely that recognition processes
might have occurred during task execution. However, we
are confident that the free-production paradigm during
the five training sessions in which the result of a multipli-
cation problem had to be reconstructed from scratch did
not foster a problem solving strategy predominantly based
on recognition processes. Besides, in the discussion section
we outline a theory on the retrieval of arithmetic facts
from long-term memory (LTM) which emphasizes the
importance of recognition processes for successful retrieval
of arithmetic facts.

MRI/fMRI acquisition

A high-resolution T1-weighted anatomical scan was
acquired with a 3T Siemens Magnetom TrioTim MRI sys-
tem (Siemens AG; Erlangen, Germany) equipped with a
12-channel head matrix coil (TR 5 2,300 s, matrix 5 256 3

256 mm2, 176 slices, voxel size 5 1.0 3 1.0 3 1.0 mm3;
FOV 5 256 mm, TE 5 2.92 ms; flip angle 5 88). The anatom-
ical scan was performed at the end of the experimental
sessions.

Functional T2*-weighted images were obtained using
gradient-echo Echo planar imaging (EPI; TR 5 2,400 ms;
TE 5 30 ms; flip angle 5 808; FOV 5 220 mm, 88 3 88
matrix; 42 slices, voxel size 5 2.5 3 2.5 3 3.0 mm3,
gap 5 10%). Total scanning time was approximately 20
minutes. A baseline (rest) condition was accomplished by
including about 20% null events in the paradigm.

Analysis

Behavioral results comprised both response times (RT)
and error rates (ER). Analyses of RT were based on trials
followed by a correct response only. A subsequent trim-
ming procedure eliminated all trials for which RT fell out-
side the interval 63 SD around a participant’s mean RT.
Elimination of incorrect trials and trimming procedure
resulted in a loss of 20% trials. We used linear mixed
effects models (LME) to analyze RT data and generalized
linear mixed effects models (GLME) with a binomial error
distribution and the logit as link function to analyze ER
data (see the Supporting Information for results using con-
ventional repeated measures ANOVAs).

Fixed effects in both analyses were item set (trained vs.
untrained), session (pre-training session vs. post-training ses-
sion) and the interaction between item set and session. Pre-
dictor variables were effect-coded prior to analyses. In the
LME for RT data we used the maximum random effect
structure as suggested by Barr et al. [2013]. Thus, we
included a random intercept for participants as well as
items in the model. Additionally, we included random
slopes for item set, session and their interaction in the
model. In the analysis of ER data, we included a random
intercept for participants as well as items. (G)LME were run
using R [R Development Core Team, 2015], and the R pack-
age lme4 for linear mixed model analyses [Bates et al.,
2014]. P-values for fixed effects of RT data were derived
using the Satterthwaite approximation for degrees of free-
dom available in the R package lmerTest [Kuznetsova et al.,
2015]. To obtain P-values for fixed effects of ER data, we ran
likelihood ratio tests using the R package afex [Singmann
et al., 2015]. fMRI data analyses were performed using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Images were
motion corrected and realigned to each participant’s mean
image. Imaging data was then normalized into standard ste-
reotaxic MNI space (Montreal Neurological Institute, McGill
University, Montreal, Canada). Images were resampled
every 2.5 mm using fourth degree spline interpolation and
smoothed with a 5 mm FWHM Gaussian kernel to accom-
modate inter-subject variation in brain anatomy and to
increase signal-to-noise ratio in the images. The data were
high-pass filtered (128 s) to remove low-frequency noise
components and corrected for autocorrelation assuming an
AR(1) process. Brain activity was convolved over all experi-
mental trials with the canonical hemodynamic response
function (HRF) and its first time derivative.

Pre- and post-training fMRI sessions were combined on
the subject level in a generalized linear model (GLM),
using SPM12. For each participant, we added two separate
sessions. Consequently, the GLM on the subject level con-
tained a constant for each session. As outlined above, the
combination of the two factors item-set [(to-be-)trained vs.
untrained] and session (pre- vs. post-training) resulted in
four experimental conditions (UT1, TBT, UT2, T). Impor-
tantly, to capture the influence of problem difficulty and
to control for known effects of problem-size on AG
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activation [e.g., Grabner et al., 2007], we included the cova-
riate problem-size2 (i.e., the size of the result of the multipli-
cation problem) as a parametric regressor in the first
level analysis, because it is an established indicator of
item difficulty [Campbell and Epp, 2005 for a review].

On the group level, we analyzed the estimated beta
weights for each experimental condition of each partici-
pant running an ANCOVA with the covariate problem
size, using the flexible factorial design option within
SPM12. In this model the variance between subjects is
assumed to be different but equal for the different condi-
tions and sessions within a subject. An additional test with
“unequal” variance between subjects for the different ses-
sions and conditions did not reveal substantial differences.

The SPM Anatomy Toolbox [Eickhoff et al., 2005], avail-
able for all published cytoarchitectonic maps from www.

fz-juelich.de/ime/spm_anatomy_toolbox, was used for
anatomical localization of effects where applicable. In
areas not yet implemented, the anatomical automatic label-
ing tool (AAL) in SPM12 (http://www.cyceron.fr/web/
aal anatomical_automatic_labeling.html) was used. Activa-
tions were thresholded at an uncorrected P-value of
<0.001 at the voxel level with a cluster size of k 5 10 vox-
els and were reported when they remained significant fol-
lowing family-wise error correction (FWE) at the cluster-
level with Pcluster-corr <0.05.

In line with our hypothesis, we created two anatomical
regions of interest (ROIs) for the region of interest analysis
using the SPM Anatomy toolbox v2.0 [Eickhoff et al., 2005,
2006, 2007]: an anatomical ROI covering (1) the left AG
(areas PGa and PGp) and (2) the hippocampus bilaterally
(CA1-3, DG, EC, and subiculum). since previous work
emphasized the role of these areas in arithmetic fact retrieval
[Fig. 1; Cho et al., 2012; Dehaene et al., 2003; Delazer et al.,
2003; Ischebeck et al., 2006; Klein et al., 2016; Qin et al.,
2014]. All ROIs were created using the SPM toolbox MarsBar

Figure 1.

The red color indicates the bilateral hippocampus ROI, comprising areas CA1, CA2, CA3, subicu-

lum, and entorhinal cortex. The green color shows the left AG ROI, comprising the areas PGa

and PGp. ROIs are presented on a 3D rendered surface and coronal slices for bilateral hippo-

campus and axial slices for left AG, respectively. MNI coordinates of the center of mass and size

of every ROI in mm3 is denoted in the corresponding color.

2Exclusion of the covariate from the model did not change results
substantially.

r Fact Learning in Complex Arithmetic r

r 3065 r

http://www.fz-juelich.de/ime/spm_anatomy_toolbox
http://www.fz-juelich.de/ime/spm_anatomy_toolbox
http://www.cyceron.fr/web/aal
http://www.cyceron.fr/web/aal


(http://marsbar.sourceforge.net). Additionally, we ran a
multivariate pattern analysis (MVPA) in which we trained a
support vector machine for classifying trained vs. untrained
items (see the Supporting Information).

RESULTS

Behavioral Results

Pre- versus post-training comparison of RT

and ER data

The LME revealed a significant interaction of item set
and session [F(1,72.63) 5 108.56, P< 0.001] indicating that
training effects differed between trained and untrained
items. Post-hoc tests revealed that estimated RT for (to-be-)
trained and untrained items differed in the post-training
session (estimated mean difference of untrained vs. trained
items 5 732 ms, P< 0.001) but not in the pre-training ses-
sion (estimated mean difference of untrained vs. trained
items 5 234 ms, P 5 0.791). Moreover, mean RT decreased
significantly for both untrained and trained items from
pre- to post-training session (estimated mean difference for
untrained items 5 518 ms, P< 0.001; estimated mean differ-
ence for trained items 5 1,283 ms, P< 0.001) (Fig. 2).

Furthermore, the LME revealed a significant main effect
of the factor item set [F(1, 102.36) 5 7.91, P 5 0.006]: partici-
pants needed more time to solve untrained (estimated
M 5 4,028 ms) than (to-be-)trained multiplication items
(estimated M 5 3,679 ms). Additionally, a significant main
effect of the factor session was observed [F(1,32.84) 5

190.89, P< 0.001]. Participants were significantly faster in
selecting the correct answer to a multiplication problem in
the post-training (estimated M 5 3,404 ms) than in the pre-
training session (estimate M 5 4,304 ms).

A GLME on ER paralleled the results of the RT analysis.
We observed a significant interaction of item-set and ses-
sion [v2(1) 5 28.68, P< 0.001], corroborating the findings of
the RT analysis. Post-hoc comparisons showed that (to-be-)

trained items were solved less error-prone than untrained
items in the post-training session [estimated difference in
log odds 5 0.80, in%: 6% z 5 4.19, P< 0.001] but not in the
pre-training session [estimated difference in log odd-
s 5 20.15, in %: 23%, z 5 20.99, P 5 0.513]. Moreover, sim-
ilar to RT data, participants’ error rates decreased from
pre- to post-training session for both untrained and
trained items (estimated difference in log odds for
untrained items 5 1.04, in%: 16%, z 5 9.09, P< 0.001; esti-
mated difference in log odds for trained items 5 1.99, in%:
25%, z 5 14.95, P< 0.001).

Furthermore, both main effects of item set and session
were significant. Participants committed more errors when
solving untrained than (to-be-)trained items [log odd-
s 5 21.51 vs. log odds 5 21.84, in %: 18% vs. 14%;
v2(1) 5 4.56, P 5 0.033]. Moreover, a highly significant main
effect of session was observed [v2(1) 5 322.72, P< 0.001]
indicating that participants made significantly fewer errors
after five sessions of multiplication training (log odd-
s 5 22.43 vs. log odds 5 20.92, in %: 8% vs. 29%).

In sum, converging results from RT and ER data pro-
vide robust evidence that multiplication problem-solving
skill improved significantly after five sessions of extensive
multiplication training.

Imaging Results

Comparing trained and untrained items of the

post-training session

Trained items (T) versus untrained items (UT2). In line
with recent results, contrasting trained and untrained mul-
tiplication items of the post-training session revealed reli-
able activation in left-hemispheric language areas, the AG,
and the basal ganglia. In particular, we observed activation
in bilateral AG (PGa) (Fig. 3, Table I; T–UT2). Furthermore,
we found activation in the right supramarginal gyrus
(SMG, PFm/PFcm/PFop), bilateral retrosplenial cortex,
bilateral middle temporal gyrus, bilateral putamen, and

Figure 2.

Estimated mean reaction times of the pre-training (TBT: to-be-trained items; UT1: untrained-1

items) and post-training (T: trained items; UT2: untrained-2 items) fMRI session. Error bars indi-

cate 95% confidence intervals of parameters.
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left caudate nucleus. Importantly, we also found activation
difference in bilateral hippocampal and parahippocampal
areas (Fig. 4A). Further clusters with significant activation
were observed bilaterally in the frontal gyrus.

Moreover, we conducted region of interest (ROI) analy-
ses to further evaluate the observed activation difference
in the left AG and in hippocampal areas. Therefore, we
determined left AG and bilateral hippocampus as ROIs
(see “Methods” section for details; Fig. 1) using the SPM
Anatomy Toolbox v2.0 [Eickhoff et al., 2005, 2006, 2007].
The mean percent signal changes (PSC) relative to fixation
within each ROI were extracted for each participant and
condition using the MarsBar toolbox (http://marsbar.sour-
ceforge.net). PSC values for the respective conditions were
then compared using Bonferroni–Holm corrected paired t-
tests [Holm, 1979]. The analysis revealed that the signifi-
cant activation difference in the AG and the hippocampus
after training (revealed by the whole brain analysis)
reflected a relative change in deactivation rather than acti-
vation (Fig. 5A). Compared with baseline (rest) stronger
deactivation was observed for untrained than trained mul-
tiplication problems in the left AG t(31) 5 2.70, P 5 0.022
and the hippocampus (t(31) 5 2.62; P 5 0.03; Fig. 5B).

Untrained items post-training (UT2) versus trained items

(T). The reverse comparison between untrained and
trained multiplication problems after the training
revealed—also in line with previous studies—left hemi-
spheric activation in the intraparietal sulcus (hIP2, hIP3).
Further left hemispheric activation was observed for clus-
ters in the insula and putamen, while bilateral activation
was found in inferior frontal areas (BA 44 and 45), middle
frontal gyrus, supplementary motor area (BA6), and thala-
mus (Fig. 3, Table I; UT2–T).

Comparing trained problems with to-be-trained prob-

lems of the pre-training session

Trained items (T) versus to-be-trained items pre-training

(TBT). The contrast between trained multiplication prob-
lems versus to-be-trained multiplication problems before
the training revealed no supra-threshold activation in the
(left) AG. Instead, bilateral activation in retrosplenial cor-
tex, supramarginal gyrus, insula, and putamen were
observed (Fig. 6A, Table II; T–TBT). Furthermore, left hem-
ispheric activation was found in the hippocampus and
parahippocampus, while right hemispheric activation

Figure 3.

Panel A depicts the comparison of trained and untrained items

of the post-training session (T–UT2). In line with previous

research, larger signal change in left angular gyrus as well as fur-

ther left-hemispheric language areas was replicated. Panel B

reflects the comparison of untrained and trained items of the

post-training session (UT2–T). The activation in the whole

fronto-parietal network of magnitude processing (including IPS

activation, see Table I) reported in previous studies was repli-

cated as well (allz at Pcluster-corr< 0.05, cluster size of k 5 10

voxels).
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included inferior frontal gyrus (IFGtri), superior temporal
gyrus, thalamus, supplementary motor area (BA6), middle
cingulate cortex, and occipital clusters. Both, the ROI anal-
ysis with left AG (t(31) 5 20.60, P 5 0.55) and with bilat-
eral hippocampus (t(31) 5 20.66, P 5 0.517) as region of
interest revealed no activation or deactivation difference
for trained problems of the post-training session and to-
be-trained problems of the pre-training session.

We conducted a Bayesian analysis to further examine the
potential null effect in AG activation for the contrast trained
versus to-be-trained (T–TBT) multiplication problems. The
Bayes factor (BF) offers a possibility of evaluating evidence
in favor of a null hypothesis. The alternative hypothesis is
compared with the null hypothesis by means of the BF B
which indicates how much more likely the observed data
are under the alternative than under the null hypothesis
[Dienes, 2014]. We calculated a BF of B 5 0.269 in favor of
the alternative hypothesis (difference in AG activation).
Thus, the evidence in favor of the null hypothesis (no dif-

ference in AG activation) was 3.71 (1/0.269) as large as in
favor of the alternative hypothesis. This value is above 3,
which is considered to indicate substantial evidence in
favor of the null hypothesis [Dienes, 2011, 2014].

To-be-trained items pre-training (TBT) versus trained

items (T). Contrasting activation associated with to-be-
trained multiplication problems before to activation for trained
problems after the training revealed activation of a widely
distributed network of brain regions with clusters in the basal
ganglia, left-hemispheric language areas as well as bilateral
temporal and frontal areas (Fig. 6B, Table II; TBT–T). In par-
ticular, we observed signal change in the bilateral putamen,
caudate nucleus, left inferior frontal gyrus (BA44), bilateral
middle and superior frontal gyrus (frontal eye fields) as well
as in the right superior parietal lobule (Area 7PC). Moreover,
right inferior temporal gyrus and bilateral temporal poles as
well as bilateral parahippocampal gyrus, left hippocampus,
and right fusiform gyrus showed reliable activation.

Figure 4.

Panel A depicts the comparison of trained and untrained multi-

plication problems of the post-training session (T–UT2), showing

bilateral hippocampal and parahippocampal activation. Panel B

depicts the contrast between trained multiplication problems of

the post-training session and to-be-trained (yet unknown) prob-

lems of the pre-training session (T–TBT), showing comparable

hippocampal and parahippocampal activation (all at Pcluster-

corr< 0.05, cluster size of k 5 10 voxels).
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Comparing untrained problems before and after the

training

Untrained items post-training (UT2) versus untrained

items pre-training (UT1). Comparing untrained items
after to untrained items before the training revealed activa-
tion in the left intraparietal sulcus (hIP3), bilateral insula,
left hemispheric language areas (BA44/45) and bilateral
thalamus (Fig. 7A, Table II; UT2–UT1). The reverse con-
trast (untrained multiplication problems before vs. after
training; UT1–UT2) did not reveal any supra-threshold
clusters.

To-be-trained items pre-training (TBT) versus untrained

items post-training (UT2). Comparing to-be-trained items

before to untrained items after the training revealed a large
fronto-parietal network of supra-threshold clusters includ-
ing the AG and the intraparietal sulcus (Fig. 7B, Table II;
TBT–UT2). Therefore, although both untrained item sets
were matched for item properties brain activation after
training differed substantially from brain activation before
training.

DISCUSSION

Recent results of multiplication training studies indi-
cated the left AG to be associated specifically with the
retrieval of arithmetic facts from long-term memory
[Delazer et al., 2003, 2005; Ischebeck et al., 2006]. However,

TABLE I. Complex contrasts of cortical regions more strongly involved in the post-training session either in trained

items (T) or in untrained items (UT2)

Contrast Brain region MNI (x, y, z) Cluster size z

T–UT2 LH angular gyrus (PGa) 256 260 35 202 6.35
RH angular gyrus (PGa) 55 257 33 35 4.59
RH supramarginal gyrus (PFcm) 55 242 25 196 5.31
RH supramarginal gyrus (PFm) 57 247 45 24 4.52
RH supramarginal gyrus (PFop) 60 222 23 27 6.06
LH retrosplenial cortex 26 245 33 184 5.91
RH retrosplenial cortex 15 252 35 301 6.11
LH ventromedial prefrontal cortex (Fp2) 28 56 15 739 5.89
LH middle temporal gyrus 263 227 213 46 5.69
RH middle temporal gyrus 52 222 28 36 4.89
LH putamen 231 210 5 51 4.90
RH putamen 30 215 3 176 6.26
LH caudate nucleus 221 227 28 59 4.51
LH hippocampus (CA1) 236 237 25 14 4.60
RH hippocampus (DG/CA1) 30 237 25 31 4.12
LH parahippocampal gyrus 228 230 215 60 5.52
RH parahippocampal gyrus 25 242 210 15 4.94
RH insula 42 3 8 19 4.71
LH rolandic operculum 241 22 18 47 4.67
LH middle frontal gyrus 241 18 53 25 5.14
RH superior frontal gyrus 15 41 38 37 5.55
LH precentral gyrus 226 220 58 25 5.12
LH middle cingulate cortex 23 217 38 85 5.70

UT2–T LH intraparietal sulcus (hIP2) 238 242 40 116 4.08
LH intraparietal sulcus (hIP3) 226 267 48 62 3.99
LH inferior frontal gyrus (44. IFGoper) 246 6 28 617 5.97
LH inferior frontal gyrus (45. IFGtri) 248 21 30 5.50
RH inferior frontal gyrus (IFGorb) 32 26 23 118 6.51
RH inferior frontal gyrus (IFGtri) 50 33 20 16 3.80
LH insula 231 23 23 98 6.05
LH supplementary motor area (BA6) 26 8 58 543 7.09
RH supplementary motor area (BA6) 12 11 55 5.53
LH middle frontal gyrus 226 11 58 109 4.72
RH middle frontal gyrus 55 33 28 15 4.20
RH thalamus (prefrontal) 7 215 3 140 4.43
LH thalamus (prefrontal) 26 217 3 138 5.43
LH putamen 216 8 0 13 4.32

Pcluster-corr< 0.05 (k 5 10 voxels); MNI, Montreal Neurological Institute coordinates; T, trained items of the post training session; UT2,
untrained items of the post-training session.
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all these studies evaluated the difference in brain activa-
tion patterns for trained and untrained multiplication
problems in a single post-training fMRI session. Conse-
quently, the dynamics of changes in brain activation due
to arithmetic fact acquisition remained unsolved, because
no study directly compared activation patterns for to-be-
trained problems before to activation patterns for trained
problems after training by means of fMRI. Therefore, we
employed a comparable multiplication training in the pres-
ent study and ran two fMRI sessions—one before and one
after the training. This allowed for a full pre-post training

comparison of brain activation patterns.
Importantly, we replicated previous results when we

contrasted untrained and trained multiplication problems
after the training. For the processing of untrained prob-
lems fMRI data indicated stronger relative signal change
in bilateral inferior parietal lobules along the IPS, bilateral
inferior frontal gyrus as well as in bilateral SMA (Fig. 3B).
This fronto-parietal network of numerical cognition is
associated with the manipulation of number magnitude
and was observed repeatedly for complex arithmetic tasks
[see Arsalidou and Taylor, 2011 for meta-analysis]. More-
over, for trained problems we observed significant signal
change in the left AG (PGa), accompanied by reduced
frontal activation (Fig. 3A). So far, this frontal-to-AG shift
was interpreted to reflect a change in solving the respec-
tive multiplication problems from effortful manipulation
of magnitudes to the retrieval of arithmetic facts from

long-term memory [Dehaene et al., 2003; Delazer et al.,
2003; Grabner et al., 2009a; Ischebeck et al., 2006]. The idea
that the AG seems to be critical for the retrieval of multi-
plication facts from long-term memory was further sup-
ported by our MVPA analysis (see Supporting
Information). Average classification accuracy was signifi-
cantly above chance level and depended on the size of the
training effect: It was better for participants with larger
training effects. Furthermore, this interpretation seemed to
be corroborated by the behavioral data revealing that the
decrease in RT and the increase in ER from the pre- to the
post-training session were more pronounced for the
trained problems.

However, when we contrasted brain activity for trained
multiplication problems in the post-training session with
brain activity observed for the very same problems in the
pre-training session, no significant signal change in the left
AG was present, even when lowering the threshold to
P< 0.01 uncorrected. This result of the pre-post training
comparison was unexpected because we again contrasted
brain activation patterns for trained and untrained multi-
plication problems—with the only difference that the
untrained items had to be solved before the training. This
observed null effect in left AG activation difference was
substantiated by Bayesian analyses indicating it to be reli-
able. Importantly, apart from the missing left AG signal
change, the overall activation pattern was almost identical
when contrasting trained and untrained items either

Figure 5.

Percent signal change (PSC) for to-be-trained (TBT), trained (T),

and untrained (UT1, UT2) multiplication problems in pre- and

post-training fMRI session. Subjects had to select the correct

result to a presented multiplication problem. Panel A depicts

results from the left AG (PGa, PGp), reflecting in all conditions

a relative change in deactivation rather than activation. Panel B

shows the respective pattern in the bilateral hippocampi. While

signal change was about 0 before the training, a significant stron-

ger deactivation of the hippocampi is shown after the training

for untrained items compared with trained items, revealing that

the hippocampus significantly less used when untrained items

had to be solved compared with trained items.
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between pre- and post-training fMRI sessions or within the
post-training session only. In particular, we found reliable
stronger activation in areas associated with retrieval from
long-term memory such as hippocampus and parahippo-
campal areas as well as signal change in SMG in both con-
trasts. Thus, the pre-post-training comparison does not
corroborate the dominant assumption that the left AG is
the key area for arithmetic fact retrieval. Instead, our
results point toward a central role of brain structures com-
monly associated with long-term memory functioning in
arithmetic fact retrieval. Activation of the bilateral hippo-
campus as well as parahippocampal and retrosplenial cor-
tex areas were the most stable pattern of results, when
contrasting trained and untrained multiplication problems
across pre- and post-training sessions as well as within the
post-training session. This was further supported by the
MVPA analysis revealing that classification accuracy did
not differ between the hippocampus and the AG. Addi-
tionally, classification accuracy for the hippocampus
depended on the size of the training effect with increasing
classification accuracy for participants with larger training
effects (see Figure A of the Supporting Information).
Therefore, our results corroborate recent neuro-imaging

findings regarding the importance of areas associated with
long-term memory in arithmetic fact learning [Supekar
et al., 2013] and retrieval [Cho et al., 2012; Klein et al.,
2013, 2016].

To sum up, in the present study we found AG activa-
tion only when comparing trained and untrained items of
the post-training fMRI session (T–UT2) but not for the
inter-session comparison of to-be-trained and trained items
(T–TBT), a finding which challenges the central role of the
AG during the actual retrieval of arithmetic facts. Conse-
quently, two questions arise: (1) when the (left) AG itself
may not be involved in the actual retrieval of arithmetic
facts, which structures may then subserve this process?
And (2) if the (left) AG itself is not involved in actually
retrieving arithmetic facts, what is its actual role in
retrieval situations?

Regions Subserving Fact Retrieval

For both the intra-session comparison of trained and
untrained multiplication problems (T–UT2), as well as for
the inter-session comparison of trained and to-be-trained

Figure 6.

Panel A shows no significant angular gyrus signal change for the

contrast between trained multiplication problems of the post-

training session and to-be-trained multiplication problems (yet

unknown) of the pre-training session (T–TBT). However, the peri-

sylvian language areas are activated. Panel B depicts the contrast

between to-be-trained multiplication problems of the pre-

training session and trained problems of the post-training ses-

sion (TBT–T). A widely distributed network of brain regions is

revealed including clusters in the superior parietal cortex, many

frontal clusters as well as temporal activation (all at Pcluster-

corr< 0.05, cluster size of k 5 10 voxels).
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problems (T–TBT), we observed activation in brain struc-
tures typically associated with long-term memory, such as
hippocampus and parahippocampus [Montaldi and

Mayes, 2010] and the recognition of familiarity, such as
the retrosplenial cortex [see Vann et al., 2009 for a review].
The role of these cortical regions for arithmetic fact

TABLE II. Complex contrasts of cortical regions of either (to-be-)trained items (TBT, T) or untrained items before

(UT1) and after training (UT2)

Contrast Brain region MNI (x, y, z) Cluster size z

T–TBT LH supramarginal gyrus (PFop) 251 227 23 111 6.03
RH supramarginal gyrus (PF) 62 232 28 186 5.19
RH insula 50 3 0 20 4.68
LH insula 241 3 28 13 3.76
RH inferior frontal gyrus (p. Tri) 40 36 0 12 4.56
RH superior temporal gyrus 65 247 20 13 5.17
RH retrosplenial cortex 7 260 30 153 5.04
LH retrosplenial cortex 211 270 40 53 4.25
LH retrosplenial cortex 26 245 18 37 4.76
LH hippocampus (CA1) 238 220 223 11 4.46
LH hippocampus (DG) 226 237 25 40 4.51
LH parahippocampal gyrus 233 242 28 23 4.28
RH putamen 32 210 23 62 4.90
LH putamen 231 210 3 129 4.63
RH thalamus 10 225 10 61 4.95
RH supplementary motor area (BA6) 2 210 50 10 3.91
RH middle cingulate cortex 7 6 43 15 4.41
LH postcentral gyrus 223 237 65 36 3.98
RH calcarine sulcus (V1) 7 297 23 15 4.26

TBT–T LH putamen 216 13 0 1045 7.65
LH caudate nucleusa 211 11 18 6.72
RH caudate nucleus 17 18 8 1086 7.62
RH putamena 20 16 25 7.62
LH inferior frontal gyrus (Area 44) 253 16 15 24 4.29
RH middle frontal gyrus 27 6 53 60 4.66
LH middle frontal gyrus 238 56 10 51 4.00
LH superior frontal gyrus 218 16 68 240 4.47
RH superior frontal gyrus 32 8 68 18 4.11
LH superior frontal gyrus (Fp1) 223 56 5 29 5.20
RH superior parietal lobule (Area 7PC) 27 255 63 39 5.00
LH precuneus 26 262 60 93 4.52
RH medial temporal pole 45 11 230 93 5.05
LH temporal pole 241 13 223 33 4.95
RH inferior temporal gyrus 52 267 8 84 4.66
RH parahippocampal gyrus 32 215 223 55 5.73
LH parahippocampal gyrus 231 247 23 27 4.96
LH hippocampus 213 242 15 13 4.17
RH fusiform gyrus (Area FG2) 42 262 218 22 4.61
RH postcentral gyrus 45 225 45 29 4.18
LH precentral gyrus 233 222 60 52 5.19

UT2–UT1 LH intraparietal sulcus (hIP3) 238 255 55 97 4.89
RH insula 35 21 25 119 5.22
LH insula 233 23 0 49 4.32
LH inferior frontal gyrus (Area 45) 243 21 28 27 4.30
LH inferior frontal gyrus (Area 44) 251 8 23 10 3.57
RH thalamus 10 215 0 25 5.70
LH thalamus 211 27 3 16 4.78
LH precentral gyrus 243 8 38 30 4.31

aSecondary peak; Pcluster-corr< 0.05 (k 5 10 voxels); MNI, Montreal Neurological Institute coordinates; T, trained items of the post training
session; TBT, to-be trained items of the pre training session; UT2, untrained items of the post training session; UT1, untrained items of
the pre-training session.
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retrieval and mathematical learning processes were speci-
fied only recently [Cho et al., 2012; Klein et al., 2016; Qin
et al. 2014; Supekar et al., 2013].

Based on structural connectivity data, Klein et al. [2016]
outline a putative theory on the role of the hippocampus,
parahippocampus, and the retrosplenial cortex in arithme-
tic fact retrieval. Fiber tracking data indicate that AG and
hippocampus are not connected directly but via the retro-
splenial cortex only. The main connections of the retrosple-
nial cortex include both ventral and dorsal connections
with the hippocampal formation: ventral connections with
the parahippocampal region and the entorhinal cortex as
well as dorsal connections with the parietal cortex [Klein
et al., 2016]. Thereby, the rich connectivity of the retrosple-
nial cortex with both archicortical structures associated
with long-term memory and neocortical parietal structures
associated with the processing of numbers suggests a cen-
tral role of the retrosplenial cortex in the retrieval of arith-
metic facts.

In particular, Klein et al. [2016] argue that familiarity
information is extracted in the retrosplenial cortex during
a first stage of the retrieval process, reflecting the domain
unspecific role of this area in assessing the familiarity of
stimuli [e.g., Shah et al., 2001; Sugiura et al., 2005]. Famili-

arity information is then propagated via two separate bun-
dles to the hippocampus, one via the parahippocampus
and one directly to the hippocampus and is available to
support retrieval.

The hippocampus itself is thought to integrate familiar-
ity (e.g., from parahippocampal areas, retrosplenial cortex)
with recollection information (e.g., from entorhinal cortex)
to finally retrieve (arithmetic) fact information, as argued
by Montaldi and Mayes [2010]. Interestingly, the network
supporting fact retrieval seems to extend to the ventrome-
dial prefrontal cortex (VMPFC) as well [see Atique et al.,
2011; Baetens et al., 2013; Spunt et al., 2011].

This putative retrieval model is supported by the find-
ings of the present training study, since, both, the hippo-
campus as well as the retrosplenial cortex and prefrontal
areas were specifically activated during the retrieval of
arithmetic facts. Most importantly, this holds true for the
intra-session comparison of trained and untrained multi-
plication problems (T–UT2) but also for the inter-session
comparison (T–TBT).

In line with this reasoning, Qin et al. [2014] recently pro-
vided a comprehensive overview of the involvement of
the hippocampus during arithmetic learning and arithme-
tic fact retrieval. For example, hippocampus activation was

Figure 7.

Panel A shows the comparison of untrained items of the pre-

training session with untrained items of the post-training session

(UT2–UT1), revealing activation in left IPS as well as left middle

and inferior frontal areas. Panel B depicts the comparison of to-

be-trained items of the pre-training session to untrained items of

the post-training session (TBT–UT2), revealing a large fronto-

parietal network of supra-threshold clusters including the angu-

lar gyrus and the intraparietal sulcus.
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observed to be largest while children acquired retrieval-
based and not calculation based solutions. Moreover, by
means of multivoxel pattern analysis Qin et al. [2014] dem-
onstrated that adolescents and adults showed less hippo-
campal activation than children during arithmetic fact
retrieval. In contrast, however, the stability of multivoxel
activation patterns in the hippocampus and prefrontal cor-
tex across solved problems increased with refinement of
retrieval-based arithmetic problem solving. This was inter-
preted to reflect the acquisition of more stable representa-
tions of arithmetic fact knowledge. Taken together, this
seems to suggest that the hippocampus is not only
engaged in retrieval from long-term memory but is also
important for arithmetic fact learning in close functional
connection with frontal areas [Qin et al. 2014]. This is in
line with other recent evidence. Cho et al. [2012] showed
that children with better fluency in arithmetic fact retrieval
showed more pronounced hippocampal activation. In this
vein, Supekar et al. [2013] were able to show that larger
hippocampal volume predicted learning improvements in
a math tutoring program.

In summary, in the present study we observed the hippo-
campus, parahippocampus, and retrosplenial cortex to be
activated specifically whenever trained problems had to be
processed. In this triad the retrosplenial cortex might be
most possibly involved in monitoring familiarity information
and recognition [Shah et al., 2001; Vann et al., 2009], while
the actual retrieval of arithmetic facts may then reflect an
integration of familiarity and recollection processes in the
hippocampus [Montaldi and Mayes, 2010]. This has impor-
tant implications for the representation of arithmetic facts. So
far, it was supposed that arithmetic fact retrieval is associ-
ated with inferior parietal areas such as the AG [Dehaene
et al., 2003]. Extending this view, the present data indicate
that arithmetic fact retrieval seems to recruit a larger network
incorporating the hippocampus with its close connections to
frontal, retrosplenial, and parietal areas. In this network, the
hippocampus is associated with retrieval processes from
long-term memory, frontal areas may subserve domain-
general cognitive functioning [Qin et al., 2014; Supekar et al.,
2013], the retrosplenial cortex may be associated with famili-
arity recognition [Sugiura et al. 2005], and parietal areas sub-
serve number processing [Klein et al., 2016].

The Role of the AG Revisited?

The missing signal change in the left AG for the pre-
post training session comparison of trained and untrained
multiplication problems is also hard to reconcile with
another hypothesis on the role of the AG in arithmetic fact
retrieval. Following the argument of Ansari [2008, see also
Grabner et al., 2013] stronger activation of the left AG after
training may reflect processes of automatic mapping
between multiplication problems and their associated solu-
tions and thus processes of recognition instead of arithme-
tic fact retrieval itself. However, mapping and associated

recognition processes should be equally strong for both
contrasts: in the inter-session (T–TBT) as well as in the
intra-session (T–UT2) comparison of trained and untrained
multiplication problems half of the items were known to
participants and should thus trigger these mapping proc-
esses. In summary, these results challenge both the fact-
retrieval and the symbol-referent mapping hypothesis
about the role of the left AG in arithmetic fact learning.

A possible explanation for the current findings may be
an interindividually varying mixture of multiplication
problem solving strategies of the participants in the pre-
training session. It is reasonable to assume that prior to
any training participants relied on a combination of fact
retrieval (e.g., of interim results) and effortful magnitude
manipulations. This account was supported by the rather
undifferentiated activation of the two distinct networks
responsible for magnitude processing and arithmetic fact
retrieval before the training. In this vein, both networks
were “ramped up” when participants solved complex mul-
tiplication problems without any prior training. One might
speculate that only after the training participants were
able to solve multiplication problems efficiently and more
consistently by either fact retrieval (for trained problems)
or magnitude manipulations (for untrained problems).
That means trained problems may then be solved primar-
ily by fact retrieval whereas untrained problems still need
to be solved by calculation-based strategies. However,
because participants were trained to solve multiplication
problems in five sessions of extensive training the required
procedures for magnitude manipulation should have been
trained as well, as indicated by the decrease in RT for
untrained problems in the post-training session. This
means that solving untrained problems relies primarily on
magnitude manipulation—before and after training. Never-
theless, as computational procedures (for magnitude
manipulation) were incidentally trained during the train-
ing phase, the processing of untrained multiplication prob-
lems may have changed quantitatively in the sense that
the same procedures of magnitude manipulation are used
more efficiently. In contrast, for trained problems the
change in processing seemed to be qualitative reflecting a
transition from effortful magnitude manipulation to direct
fact retrieval from long-term memory.

Following this argument, functional segregation of the
magnitude manipulation and the fact retrieval system
would have been the ultimate result of extensive training.
This might explain why we replicated the commonly
reported frontal-to-AG shift of activation, when we con-
trasted brain activation for trained and untrained prob-
lems after the training, whereas no AG activation was
observed when comparing activation for trained items in
the post-training session with activation for the same prob-
lems before the training. Therefore, we suggest that the
reported activation of the left AG in arithmetic fact
retrieval in previous studies may not have reflected the
retrieval of facts from verbal LTM.

r Bloechle et al. r

r 3074 r



Instead, we argue that the known engagement of the left
AG in domain-unspecific processes such as attention regu-
lation [Cabeza et al., 2012; Cabeza, 2008; Humphreys and
Lambon Ralph, 2015] might account for the observation of
(left) AG activation in studies evaluating arithmetic fact
training. In the following we outline an attentional account
on the role of the AG in arithmetic fact retrieval.

An Attentional Account on the Role of the AG in

Arithmetic Fact Retrieval

Recently a structural and functional subdivision of pari-
etal cortex into dorsal stream areas (in or above the IPS,
superior parietal lobule, precuneus, i.e., Brodmann Area
7) and ventral stream areas (AG, SMG, i.e., Brodman
Areas 40 and 39) was put forward, based on the specific
contribution of these areas for top-down or bottom-up
driven allocation of attention in memory retrieval [Cabeza
et al., 2008, 2012; Cabeza, 2008; Humphreys and Lambon
Ralph, 2015]. It was argued that the dorsal part (DPC) of
the parietal lobe is part of a domain general fronto-
parietal executive control system that is involved in non-
automatic goal directed memory processes with high exec-
utive demands (i.e., top-down regulated attention). The
ventral part (VPC) in contrast was supposed to be
involved in more automatic and stimulus-driven process-
ing with lower executive demands. Interestingly, the latter
bottom-up driven attentional system is not only triggered
by external events (e.g., a flashing light), “but also by
highly salient internal events, such when a remembered
item [e.g., a solution to a trained multiplication problem]
‘pops’ into awareness” [Humphreys and Lambon Ralph,
2015].

Applied to the present case of multiplication fact learn-
ing, the typically used contrast of brain activation patterns
for trained versus untrained arithmetic problems after the
training basically reflects a comparison of tasks with low
and high executive as well as distinct attentional demands.
In line with the above argument, processing untrained and
trained arithmetic problems should differ with respect to
top-down versus bottom-up driven processing. While the
result of a known multiplication problem is activated auto-
matically in a bottom-up manner by the mere presentation
of the respective operands [e.g., Galfano et al., 2003, 2009;
Rusconi et al., 2006], this is not assumed for untrained
complex arithmetic problems [e.g., Dehaene and Cohen,
1995]. So far, stronger activation of the VPC (i.e., the AG)
for trained as compared with untrained multiplication
problems after the training was interpreted to reflect direct
fact retrieval from verbal long-term memory [e.g., Delazer
et al., 2003, 2005; Ischebeck et al., 2006]. However, in this
interpretation it was widely neglected that task execution
for trained and untrained problems differs largely with
respect to the need for top-down versus bottom-up atten-
tion [but see Grabner et al., 2013 for an automatic symbol-
referent mapping approach]. Following the above rationale

on the dorsal-ventral subdivision of parietal cortex, one
might speculate that stronger activation in the VPC for
trained as compared with untrained multiplication prob-
lems after the training simply reflects the difference
between bottom-up as compared with top-down
processing.

This account is also compatible with the missing AG
activation when contrasting brain activation for trained
items with activation for the very same problems prior to
any training. In particular, one might speculate that the
intermixed and alternating presentation of trained and
untrained problems in the post-training fMRI sessions led
to repeated shifts between top-down (i.e., magnitude
manipulations) and bottom-up (i.e., fact retrieval) driven
solution processes, which in turn should be reflected by
the activation of VPC areas (including the AG) associated
with such shifting demands. In contrast, these shifts
between top-down magnitude manipulations and bottom-
up fact retrieval should be less pronounced for the con-
trast of brain activation for trained items after and activa-
tion for to-be-trained problems prior to the training. In
particular, prior to the training both the network for mag-
nitude manipulation as well as the network for arithmetic
fact retrieval are ramped up and thus require constant
monitoring and adaptation (as reflected by VPC, including
AG activation). In turn, this led to no observable differen-
ces in AG activation for to-be-trained problems prior to
the training (TBT) and trained problems (T).

The role of the AG in arithmetic fact retrieval might
thus reflect its general, domain-unspecific role of attention
allocation in human cognition as described above. In line
with this view, the attention to memory (AtoM) model
[Cabeza et al., 2008, 2012] posits that VPC activity during
memory retrieval reflects attentional adjustment based on
incoming information from working memory (WM) and
classical memory structures in the medial temporal lobe
and not the actual retrieval of information from long-term
memory itself [Cabeza et al., 2008, 2012; Cabeza, 2008]. To
be more specific, Cabeza et al. [2008, 2012] argue that anal-
ogous to its role in attention allocation “the VPC mediates
the bottom up capture of attention by salient memory con-
tents” [Cabeza et al., 2012; p. 342]. Within this framework,
the VPC—including the AG—is neither regarded as an
accumulator, nor as a buffer for information from WM
and medial temporal lobe (MTL; including the hippocam-
pus and parahippocampal areas). Rather, the AG is
assumed to serve as a circuit breaker that signals the need
for change in the locus of internal attention.

Based on our findings and theoretical consideration of
the AtoM model, we hypothesize that the left AG might
serve as an interface that adjusts and adapts attentional
demands and thereby indirectly allocates cognitive resour-
ces during number processing. When a solution of a
trained multiplication problem from long-term memory
enters working memory it captures bottom-up attention,
which is then reflected by VPC (AG) activity.
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In case a multiplication problem cannot be solved by
direct fact retrieval from long-term memory, activation of
the DPC and the fronto-parietal network of magnitude
processing might be ramped up to provide the required
top-down attention and therefore further cognitive resour-
ces. As a result, a shift from bottom-up to top-down
driven processing to solve the multiplication problem at
hand occurs. Consequently, we propose that the AG might
serve as a circuit-breaker that adapts and adjusts the rela-
tive activation of the magnitude processing and fact
retrieval networks. Based on its functional and structural
connectivity [e.g., Caspers et al., 2011; Seghier, 2013; Uddin
et al., 2010] it is reasonable to assume that this putative
interfacing mechanism relies on information from working
memory areas in prefrontal cortex as well as areas in the
MTL, commonly associated with long term memory
including hippocampus and parahippocampal areas.
Importantly, in the current study, these areas were consis-
tently activated for both, the comparison of trained versus
untrained problems of the post-training session as well as
the comparison of trained problems of the post-training
session with to-be-trained problems of the pre-training
session.

Compared with baseline, the left AG was deactivated in
all stimulus conditions. This corroborates the findings of
previous studies involving mental calculation [e.g., Grab-
ner et al., 2007, 2013; Grabner et al., 2009a,b; Ischebeck
et al., 2006; Stanescu-Cosson et al., 2000]. Comparable
deactivations of the left AG during cognitive tasks are not
restricted to numerical paradigms but were also observed
in various other domains [for a review see Humphreys
and Lambon Ralph, 2015; Raichle, 2015]. The AG is a key
parietal node of the default mode network. Besides the
parietal node, this network is comprised of medial pre-
frontal and medial as well as lateral temporal cortices
[DMN; Raichle, 2015; Raichle et al., 2001]. Compared with
a resting period or passive baseline, the DMN is consis-
tently deactivated during cognitive, goal-directed tasks
[for review see Andrews-Hanna et al., 2014; Buckner et al.,
2008; Raichle, 2015]. Furthermore, this network is more
strongly deactivated for demanding than easy cognitive
tasks [e.g., Mckiernan et al., 2003]. It has therefore been
argued that different levels of deactivation in the AG dur-
ing mental arithmetic simply reflect domain-general altera-
tions in the DMN resulting from differences in task
difficulty [e.g., Wu et al., 2009]. However, this view has
been questioned by a recent study of Grabner et al. [2013]
showing that a more difficult numerical task led to less
deactivation in the left AG. This challenges exclusively
DMN-related explanations of differential activation in the
left AG during numerical cognition. In line with this, the
fact that we did not find any difference in left AG activa-
tion when we compared trained items of the post-training
sessions with to-be-trained items of the pre-training ses-
sion (T–TBT) is not compatible with mere modulation of
the DMN due to changing task difficulty.

Transfer Effects in Difficult Multiplication

Learning

Apart from these unexpected results regarding the role of
the left AG in arithmetic fact retrieval there was another
interesting finding. The pre- versus post-training comparison
of behavioral results indicated a transfer effect of the multi-
plication fact training to untrained problems after training,
which were responded to significantly faster than before the
training. Importantly, this is in contrast to the previous either
magnitude manipulation or fact retrieval distinction assumed
for the processing of multiplication problems, which does
not consider such transfer effects for drill training [Delazer
et al., 2003; Grabner et al., 2009b; Zaunm€uller et al., 2009].
Instead, this finding suggests that similar to what was
argued for addition and subtraction problems unspecific pro-
cedures needed to solve complex multiplications are fostered
by extensive training. This finding is in line with a recent
argument by Klein et al. [2016]: the authors propose a flexi-
ble interplay between fact retrieval and magnitude manipu-
lation in complex arithmetic instead of an either-or
distinction. Already in 1995, Dehaene and Cohen suggested
that during complex arithmetic, bilateral intraparietal areas
would be recruited whenever direct fact retrieval fails, result-
ing in semantic re-coding of the problem by manipulations
of the respective magnitudes. However, in previous studies
on arithmetic fact learning this could not be investigated
because both behavioral data as well as imaging data was
only recorded after the training.

Taken together, our findings support the view that train-
ing difficult multiplication problems not only improves
declarative knowledge (i.e., arithmetic facts) but also pro-
vides transfer effects to procedural (e.g., algorithms) and
conceptual knowledge (e.g., arithmetic principles), because
verbally mediated fact retrieval and magnitude manipula-
tion interact closely.

This interactive nature of magnitude manipulation and
arithmetic fact retrieval, reflected in our fMRI data, may
be due to the way arithmetic facts are acquired. During
training, the results of multiplication problems have to be
calculated by effortful magnitude manipulation at a first
stage, before they are finally stored in long-term memory
as arithmetic facts after repeated calculation. One may
speculate that this dynamic process of learning also occurs
during natural learning of basic multiplication facts in
childhood [e.g., Campbell and Graham, 1985; Siegler, 1988;
see also Domahs and Delazer, 2005]. In this sense, our
results support a multiple stages account of learning arith-
metic [e.g., Crawford, 2004; Garnett, 1992; Garnett and
Fleischner, 1983; Steel and Funnell, 2001; Siegler, 1988].
According to this, the effective acquisition of arithmetic
facts during childhood proceeds through at least three
stages: In a first stage children need to acquire procedural
knowledge of figuring out facts. That means concepts like
multiplication and the procedures for magnitude manipu-
lation need to be learned and practiced. In a second, inter-
mediate, stage strategies for remembering facts are
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developed. For example, one problem is linked to a related
problem to solve a task [e.g., for 5 3 6, thinking “5 3

5 5 25, so 5 3 6 5 25 1 5 5 30,” see also Siegler, 1988]. Con-
sequently, during this stage both fact retrieval and magni-
tude manipulation take place. Finally, in a third stage
problems can be recalled directly from LTM as over-
learned arithmetic facts. Therefore, the present findings
stress the importance of a curriculum that follows these
stages of successful arithmetic fact learning [e.g., Stein
et al., 1997]. For example, it is crucial that children develop
a sound understanding of the concept of multiplication
and practice procedures for magnitude manipulation
before memorizing multiplication facts.

CONCLUSIONS AND PERSPECTIVES

Taken together, in line with previous findings our results
point toward a functional role of the left AG in mental
arithmetic. However, by contrasting brain activation for to-
be-trained multiplication problems prior and trained prob-
lems after the training we found evidence indicating that
the left AG may not subserve arithmetic fact retrieval per
se. Rather, our findings point toward an engagement of the
left AG in arithmetic fact retrieval that reflect its domain-
unspecific role for attention allocation during memory
retrieval in general [e.g., Cabeza et al., 2012]. We propose
that based on the attentional demands of the problem at
hand the AG might serve as a circuit breaker that adjusts
and adapts relative activation in the neural networks associ-
ated with fact retrieval and magnitude manipulation.

Thereby, our data suggest that it may be more appropri-
ate to investigate the influence of numerical learning on
the activation of brain networks rather than considering
specific brain areas in isolation. Particularly the role of the
AG in arithmetic fact retrieval cannot be specified compre-
hensibly when evaluated in isolation. This role needs to be
investigated considering the influence of other brain
regions with which the AG is connected in networks sub-
serving long-term memory functioning such as the hippo-
campus, parahippocampal areas and retrosplenial cortex
[e.g., Klein et al., 2016] but also attention regulation [e.g.,
Cabeza et al., 2012]. Future studies evaluating changes in
functional connectivity of the AG during arithmetic fact
learning are needed to substantiate this argument. In fact,
it is rather surprising that the AG is still considered the
key area for arithmetic fact retrieval even though the exact
role of posterior parietal cortex sites in more general long-
term memory functioning is still a matter of controversial
debate [see Cabeza et al., 2012, 2008 for review].

REFERENCES

Andrews-Hanna JR, Smallwood J, Spreng RN (2014): The default

network and self-generated thought: Component processes,

dynamic control, and clinical relevance. Ann N Y Acad Sci

1316:29–52.

Ansari D (2008): Effects of development and enculturation on

number representation in the brain. Nat Rev Neurosci 9:278–

291.
Arsalidou M, Taylor MJ (2011): Is 2 1 2 5 4? Meta-analyses of

brain areas needed for numbers and calculations. NeuroImage

54:2382–2393.
Atique B, Erb M, Gharabaghi A, Grodd W, Anders S (2011): Task-

specific activity and connectivity within the mentalizing net-

work during emotion and intention mentalizing. Neuroimage

55:1899–1911.
Baddeley A (1996): Exploring the central executive. Q J Exp Psy-

chol 49A:5–28.
Baetens K, Ma N, Steen J, Van Overwalle F (2013): Involvement of

the mentalizing network in social and non-social high con-

strual. Social Cogn Affect Neurosci 9:817–824.
Barr DJ, Levy R, Scheepers C, Tily HJ (2013): Random effects

structure for confirmatory hypothesis testing: Keep it maximal.

J Mem Lang 68:255–278.
Bates D, Maechler M, Bolker BM, Walker SC (2014): Fitting linear

mixed-effects models using lme4. J Stat Softw 67:1–48.
Buckner RL, Andrews-Hanna JR, Schacter DL (2008): The brain’s

default network: Anatomy, function, and relevance to disease.

Ann N Y Acad Sci 1124:1–38.
Cabeza R (2008): Role of parietal regions in episodic memory

retrieval: The dual attentional processes hypothesis. Neuropsy-

chologia 46:1813–1827.
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008): The parie-

tal cortex and episodic memory: An attentional account. Nat

Rev Neurosci 9:613–625.
Cabeza R, Ciaramelli E, Moscovitch M (2012): Cognitive contribu-

tions of the ventral parietal cortex: An integrative theoretical

account. Trends Cogn Sci 16:338–352.
Campbell JID, Graham DJ (1985): Mental multiplication skill:

Structure, process, and acquisition. Can J Psychol 39:338–366.
Campbell JID, Epp LJ (2005): Architectures for arithmetics. In

Campbell JID, editor. Handbook of Mathematical Cognition.

New York, NY: Psychology Press. pp 347–360.
Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R,

Shah NJ, Zilles K (2011): Probabilistic fibre tract analysis of

cytoarchitectonically defined human inferior parietal lobule areas

reveals similarities to macaques. NeuroImage 58:362–380.
Cho S, Metcalfe AWS, Young CB, Ryali S, Geary DC, Menon V

(2012): Hippocampal – prefrontal engagement and dynamic

causal interactions in the maturation of children’s fact

retrieval. J Cogn Neurosci 9:1849–1866.
Crawford D (2004): How can all students successfully learn math

facts? Direct Instruct News 3:43–45.
Dehaene S, Cohen L (1995): Towards an anatomical and functional

model of number processing. Math Cogn 1:83–120.
Dehaene S, Piazza M, Pinel P, Cohen L (2003): Three parietal cir-

cuits for number processing. Cogn Neuropsychol 20:487–506.
Delazer M, Domahs F, Bartha L, Brenneis C, Lochy A, Trieb T,

Benke T (2003): Learning complex arithmetic—an fMRI study.

Cogn Brain Res 18:76–88.
Delazer M, Ischebeck A, Domahs F, Zamarian L, Koppelstaetter F,

Siedentopf CM . . ., Felber S (2005): Learning by strategies and

learning by drill–evidence from an fMRI study. NeuroImage

25:838–849.
Dienes Z (2011): Bayesian Versus Orthodox Statistics: Which side

are you on? Perspect Psychol Sci 6:274–290.
Dienes Z (2014): Using Bayes to get the most out of non-

significant results. Front Psychol 5:1–17.

r Fact Learning in Complex Arithmetic r

r 3077 r



Domahs F, Delazer M (2005): Some assumptions and facts about

arithmetic facts. Psychol Sci 47:96–111.
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR,

Amunts K, Zilles K (2005): A new SPM toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging

data. NeuroImage 25:1325–1335.
Eickhoff SB, Heim S, Zilles K, Amunts K (2006): Testing anatomi-

cally specified hypotheses in functional imaging using

cytoarchitectonic maps. NeuroImage 32:570–582.
Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K,

Amunts K (2007): Assignment of functional activations to proba-

bilistic cytoarchitectonic areas revisited. NeuroImage 36:511–521.
Galfano G, Rusconi E, Umilt�a C (2003): Automatic activation of

multiplication facts: Evidence from the nodes adjacent to the

product. Q J Exp Psychol A 56:31–61.
Galfano G, Penolazzi B, Vervaeck I, Angrilli A, Umilt�a C (2009):

Event-related brain potentials uncover activation dynamics in

the lexicon of multiplication facts. Cortex 45:1167–1177.
Garnett K (1992): Developing fluency with basic number facts:

Intervention for students with learning disabilities. Learn Disa-

bil Res Pract 7:210–216.
Garnett K, Fleischner JE (1983): Automatization and basic fact per-

formance of normal and learning disabled children. Learn Dis-

abil Q 6:223–230.
Grabner RH, Ansari D, Reishofer G, Stern E, Ebner F, Neuper C

(2007): Individual differences in mathematical competence pre-

dict parietal brain activation during mental calculation. Neuro-

Image 38:346–356.
Grabner RH, Ansari D, Koschutnig K, Reishofer G, Ebner F,

Neuper C (2009a): To retrieve or to calculate? Left angular

gyrus mediates the retrieval of arithmetic facts during problem

solving. Neuropsychologia 47:604–608.
Grabner RH, Ischebeck A, Reishofer G, Koschutnig K, Delazer M,

Ebner F, Neuper C (2009b): Fact learning in complex arithmetic

and figural-spatial tasks: The role of the angular gyrus and its

relation to mathematical competence. Human Brain Mapp 30:

2936–2952.
Grabner RH, Ansari D, Koschutnig K, Reishofer G, Ebner F

(2013): The function of the left angular gyrus in mental arith-

metic: Evidence from the associative confusion effect. Human

Brain Mapp 34:1013–1024.
Holm S (1979): A simple sequentially rejective multiple test proce-

dure. Scand J Stat 6:65–70.
Humphreys GF, Lambon Ralph MA (2015): Fusion and fission of

cognitive functions in the human parietal cortex. Cereb Cortex

25:3547–3560. doi:10.1093/cercor/bhu198
Ischebeck A, Zamarian L, Siedentopf C, Koppelst€atter F, Benke T,

Felber S, Delazer M (2006): How specifically do we learn?

Imaging the learning of multiplication and subtraction. Neuro-

Image 30:1365–1375.
Ischebeck A, Zamarian L, Egger K, Schocke M, Delazer M (2007):

Imaging early practice effects in arithmetic. NeuroImage 36:

993–1003.
Ischebeck A, Zamarian L, Schocke M, Delazer M (2009): Flexible

transfer of knowledge in mental arithmetic — An fMRI study.

NeuroImage 44:1103–1112.
Klein E, Moeller K, Glauche V, Weiller C, Willmes K (2013): Proc-

essing pathways in mental arithmetic - Evidence from proba-

bilistic fiber tracking. PLoS ONE 8:e0055455.
Klein E, Suchan J, Moeller K, Karnath HO, Knops A, Wood G,

Nuerk HC, Willmes K (2016): Considering structural connec-

tivity in the triple code model of numerical cognition: Differ-

ential connectivity for magnitude processing and arithmetic

facts. Brain Struct Funct 221:979–995. doi:10.1007/s00429-014-

0951-1.
Kuznetsova A, Brockhoff PB, Christensen RH (2015): lmerTest:

Tests in Linear Mixed Effects Models. R package version 2.0-

29. https://CRAN.R-project.org/package5lmerTest
Mckiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR

(2003): A Parametric manipulation of factors affecting task-

induced deactivation in functional neuroimaging. J Cogn Neu-

rosci 15:394–408.
Montaldi D, Mayes AR (2010): The role of recollection and famili-

arity in the functional differentiation of the medial temporal

lobes. Hippocampus 20:1291–1314.
Qin S, Cho S, Chen T, Rosenberg-Lee M, Geary DC, Menon V

(2014): Hippocampal-neocortical functional reorganization

underlies children’s cognitive development. Nat Neurosci 17:

1263–1269.
Raichle ME (2015): The brain’s default mode network. Annu Rev

Neurosci 38:413–427.
Raichle ME, MacLeod M, Snyder Z, Powers WJ, Gusnard D,

Shulman GL (2001): A default mode of brain function. Proc

Natl Acad Sci U S A 98:676–682.
R Core Team (2015). R: A Language and Environment for Statisti-

cal Computing. Vienna, Austria: R Foundation for Statistical

Computing. URL: https://www.R-project.org/.
Rosenberg-Lee M, Ashkenazi S, Chen T, Young CB, Geary

DC, Menon V (2014): Brain hyper-connectivity and

operation-specific deficits during arithmetic problem solv-

ing in children with developmental dyscalculia. Dev Sci

18:1–22.
Rusconi E, Galfano G, Rebonato E, Umilt�a C (2006): Bidirectional

links in the network of multiplication facts. Psychol Res 70:32–

42.
Seghier ML (2013): The angular gyrus: Multiple functions and

multiple subdivisions. Neuroscientist 19:43–61.
Shah NJ, Marshall JC, Zafiris O, Schwab A, Zilles K, Markowitsch

HJ, Fink GR (2001): The neural correlates of person familiarity.

Brain 124:804–815.
Siegler RS (1988): Strategy choice procedures and the development

of multiplication skill. J Exp Psychol Gen 117:258.
Singmann H, Bolker B, Westfall J (2015): afex: Analysis of Facto-

rial Experiments. R package version 0.15-2. https://CRAN.R-

project.org/package5afex
Spunt RP, Satpute AB, Lieberman MD (2011): Identifying the

what, why, and how of an observed action: An fMRI study of

mentalizing and mechanizing during action observation.

J Cogn Neurosci 23:63–74.
Stanescu-Cosson R, Pinel P, van De Moortele PF, Le Bihan D,

Cohen L, Dehaene S (2000): Understanding dissociations in

dyscalculia: A brain imaging study of the impact of number

size on the cerebral networks for exact and approximate calcu-

lation. Brain 123:2240–2255.
Steel S, Funnell E (2001): Learning multiplication facts: A study of

children taught by discovery methods in England. J Exp Child

Psychol 79:37–55.
Stein M, Silbert J, Carnine D (1997): Designing Effective Mathe-

matics Instruction: A Direct Instruction Approach, 3rd ed.

Upper Saddle River, NJ: Prentice-Hall, Inc.
Sugiura M, Shah NJ, Zilles K, Fink GR (2005): Cortical representa-

tions of personally familiar objects and places: Functional orga-

nization of the human posterior cingulate cortex. J Cogn

Neurosci 17:183–198.

r Bloechle et al. r

r 3078 r

http://https://CRAN.R-project.org/package=lmerTest
http://https://CRAN.R-project.org/package=lmerTest
http://https://www.R-project.org/
http://https://CRAN.R-project.org/package=afex
http://https://CRAN.R-project.org/package=afex
http://https://CRAN.R-project.org/package=afex


Supekar K, Swigart AG, Tenison C, Jolles DD, Rosenberg-Lee M,
Fuchs L, Menon V (2013): Neural predictors of individual dif-
ferences in response to math tutoring in primary-grade school
children. Proc Natl Acad Sci U S A 110:8230–8235.

Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA,
Greicius MD, Menon V (2010): Dissociable connectivity within
human angular gyrus and intraparietal sulcus: Evidence from
functional and structural connectivity. Cereb Cortex 20:2636–
2646.

Vann SD, Aggleton JP, Maguire EA (2009): What does the retro-
splenial cortex do? Nat Rev Neurosci 10:792–802.

Wu SS, Chang TT, Majid A, Caspers S, Eickhoff SB, Menon V
(2009): Functional heterogeneity of inferior parietal cortex dur-
ing mathematical cognition assessed with cytoarchitectonic
probability paps. Cereb Cortex 19:2930–2945.

Zamarian L, Ischebeck A, Delazer M (2009): Neuroscience of
learning arithmetic -Evidence from brain imaging studies.
Neurosci Biobehav Rev 33:909–925.

Zaunm€uller L, Domahs F, Dressel K, Lonnemann J, Klein E,
Ischebeck A, Willmes K (2009): Rehabilitation of arithmetic fact
retrieval via extensive practice: A combined fMRI and behav-
ioural case-study. Neuropsychol Rehabil 19:422–443.

r Fact Learning in Complex Arithmetic r

r 3079 r


