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Abstract: Math-gifted subjects are characterized by above-age performance in intelligence tests, excep-
tional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain
organization and white matter microstructure in the frontoparietal executive network of math-gifted
individuals. However, the cortical morphometry of these subjects remains largely unknown. The main
goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an
age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis
of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner
cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which
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are involved in executive processing and creative thinking, respectively. The combination of reduced
cortical thickness and larger surface area suggests above-age neural maturation of these networks in
math-gifted individuals. Hum Brain Mapp 37:1893–1902, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

In the last decade, new insights from brain imaging
techniques have revealed a potential association between
individual differences in intelligence (e.g., IQ, g-factor)
and brain functioning and cortical morphometry [Jung
and Haier, 2007]. In parallel, neuroimaging researchers
have been trying to identify the neural bases that underlie
giftedness. In broad terms, giftedness is a special type of
intelligence that takes the form not only of higher IQ and
enhanced executive functioning but also of exceptional cre-
ativity (such as the production of novel and useful ideas)
and higher motivation in specific traits [Kalbfleisch, 2004;
Kießwetter, 1985; Renzulli, 1978, 1998; Sternberg, 2010;
Sternberg and Davidson, 2005]. Regarding the motivation
(called also task commitment by Renzulli), gifted subjects
show high levels of interest, fascination, perseverance, and
dedicated practice in a particular problem or area of study.
When these abilities are applied to mathematical thinking,
subjects are referred to as “math-gifted.”

Task-based functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI) data support
the existence of special characteristics of the frontoparietal
executive network (FPN) in math-gifted individuals [Desco
et al., 2011; Hoppe et al., 2012; Lee et al., 2006; Navas-
Sanchez et al., 2014; O’Boyle, 2008; O’Boyle et al., 2005;
Prescott et al., 2010]. For instance, task-based fMRI studies
on executive functioning and fluid reasoning detected
enhanced functional bilateralism in math-gifted adoles-
cents in the dorsolateral prefrontal cortex, parietal cortex
(including the superior and inferior parietal regions), and
anterior cingulate cortex [Desco et al., 2011; O’Boyle et al.,
2005; Prescott et al., 2010]. Similarly, a recent DTI study in
math-gifted subjects [Navas-Sanchez et al., 2014] reported
heightened connectivity between the left and right hemi-
spheres, as well as enhanced intrahemispheric white mat-
ter connectivity between the frontal and parietal cortices.

In the same way, some neuroimaging studies showed
recently the involvement of the default mode network
(DMN) in the creative cognition [Benedek et al., 2014; Ella-
mil et al., 2012; Gonen-Yaacovi et al., 2013; Jung et al.,
2013; Takeuchi et al., 2011a; Wei et al., 2014]. Creativity is
related with the unconscious knowledge and with an
adaptive problem solving (i.e., often inductive as opposed
to deductive reasoning). Creative thought appears to
depend, at least in part, on disinhibitory neuronal proc-
esses within the DMN but also with cognitive control net-
works [Jung et al., 2013].

Several reports indicate that gifted individuals perform
above their age in cognitive tests, thus suggesting a higher
level of intellectual maturation than their same-age peers
[Alexander et al., 1996; Geake, 2008; Gross, 2004; O’Boyle
and Benbow, 1990]. This cognitive precocity, especially in
terms of IQ and working memory, has been associated
with particular neural features that are compatible with a
higher level of maturation in the frontoparietal executive
network [Alexander et al., 1996; Geake, 2008]. Importantly,
some characteristics of the brain cortex, particularly corti-
cal thickness or surface area, have been shown to be a reli-
able correlates of cognitive abilities, as well as a good
indicator of neural maturity. On one hand, studies in non-
gifted subjects have reported the existence of relationships
between measurements of cortical thickness and surface
area and high-level neurocognitive abilities such as IQ, g-
factor, executive functioning, fluid reasoning, or creativity
[Burzynska et al., 2012; Colom et al., 2013; Fjell et al., 2006,
2015; Jung et al., 2010; Karama et al., 2011; Luders et al.,
2009; Narr et al., 2007; Schnack et al., 2015; Shaw et al.,
2006; Skranes et al., 2013; Tamnes et al., 2010b). Broadly
speaking, these associations indicate that higher cognitive
ability corresponds to lower cortical thickness and larger
surface area. Furthermore, a previous VBM study
described larger cortical volume in frontoparietal regions
in adult mathematicians highlighting the association
between the exceptionally enlarged inferior parietal
lobules and outstanding creativity in mathematic thinking
[Aydin et al., 2007]. On the other hand, developmental
studies suggested that during adolescence, cortical thick-
ness decreases and surface area increases [Aleman-Gomez
et al., 2013]. Furthermore, cross-sectional and longitudinal
studies report different patterns of cortical maturation as a
function of subject IQ [Schnack et al., 2015; Shaw et al.,
2006]. However, to our knowledge, the possible existence
of cortical features that are specific to math-gifted children
has not been explored.

In this study, we aim to describe the morphometric
characteristics of the cortex of mathematically gifted ado-
lescents. To ensure that IQ effects are not confounded with
those of the construct of “giftedness,” the control subjects
included in the study were group-matched for overall IQ
level with the math-gifted subjects.

Based on prior studies of math-giftedness and previous
data from average math ability subjects, we hypothesized
that the cognitive precocity of giftedness would entail cort-
ical features that are compatible with above-age brain mat-
uration. More specifically, we predict that these
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differences would affect regions of the frontoparietal exec-
utive network. In addition, since creativity skills are con-
sidered a central characteristic of giftedness [Geake, 2008;
Navas-Sanchez et al., 2014; Renzulli, 1978, 1998; Sternberg
and Davidson, 2005] and recent literature suggests that
individual differences in creativity are associated with key
nodes of the default mode network (DMN) [Jung et al.,
2013; Takeuchi et al., 2011a), we also expect above-age
morphometric characteristics—such as thinner cortex and
larger surface area—in the DMN of math-gifted
individuals.

METHODS

Sample Description

The sample recruited for the study included 62 right-
handed adolescents (aged between 11 and 15 years), of
whom 13 were math-gifted subjects (5 females) and 49
were controls (22 females). From the 49 controls, we
selected a subsample of 21 subjects (6 females) who were
group-matched in age and IQ with the math-gifted sam-
ple. In addition, 4 controls were excluded owing to move-
ment during image acquisition; therefore, the final sample

included 17 control subjects (6 females). All subjects had
between 5 and 9 years of schooling in the Spanish educa-
tion system. Subjects meeting the criteria for neurological
disease, psychiatric disease, presence of MRI-incompatible
bioimplants, or medical conditions were not included in
the study. Table I shows the demographic characteristics
of the sample.

The math-gifted adolescents were recruited form the
Stimulus of Mathematical Talent Program (ESTALMAT;
http://www.uam.es/proyectosinv/estalmat/) of the Span-
ish Royal Academy of Mathematical, Physical, and Natural
Sciences in Madrid. Candidates for the ESTALMAT pro-
gram are children who are particularly good at mathemat-
ics and willing to participate in the program and are
recommended by teachers. The subjects underwent a
screening process consisting of a personal interview and
math-related tests.

Those who passed this preliminary assessment under-
went a second examination based on a variety of specific
tests proposed by Kießwetter [1985] according to the iden-
tification and assessment of “mathematical giftedness”
from Renzulli [1978]. The objective of these tests is to
detect complex mathematical abilities that could be catego-
rized as cognitive, motivational, and creative. Specifically,

TABLE I. Median, mean, and standard deviation (SD) of demographic variables and global brain morphometric vari-

ables (LH, left hemisphere; RH, right hemisphere)

Math-gifted
(n 5 13; 5 females)

High-IQ controls
(n 5 17; 6 females)

p value Cohen’s d

95% IC

Median Mean SD Median Mean SD Lower Upper

Age (years) 13 13.23 0.7 13 13.15 1.2 1 0.08
Sex (females) 38% 35% 0.858

Age range (years) [min–max] [12–14] [11–15]
Estimated full-scale IQ 129 130 10.7 125 123 8.4 0.123 0.68 20.67 13.67
IQ range [min–max] [112–149] [112–137]
Verbal IQ 120 125.08 12.1 114 120.35 17.5 0.385 0.31 26.92 16.38
Performance IQ 131 128.85 12.1 123 121.18 14.1 0.94 0.58 22.36 17.70
Intracranial volume (cm3) 1485.12 98.32 1392.29 115.76 0.035 0.85 10.85 174.81

Total grey matter volume (cm3) 592.17 42.42 570.58 45.41 0.245 0.49 211.73 54.91
LH grey matter volume (cm3) 297.44 20.65 286.70 23.53 0.213 0.48 26.12 27.60
RH grey matter volume (cm3) 294.73 22.03 283.88 22.15 0.213 0.49 25.83 27.53
Total white matter volume (cm3) 456.89 34.56 424.37 39.03 0.031 0.87 4.46 60.58

LH white matter volume (cm3) 225.30 17.32 210.62 19.89 0.065 0.78 0.47 28.89
RH white matter volume (cm3) 231.59 17.50 213.75 19.25 0.014 0.96 3.86 31.82

Total cortical volume (cm3) 531.28 39.69 513.30 41.74 0.245 0.44 212.87 48.83
LH cortical volume (cm3) 265.75 19.24 256.89 21.48 0.263 0.43 26.65 24.37
RH cortical volume (cm3) 265.52 20.75 256.41 20.48 0.263 0.44 26.43 24.65
Total surface area (cm2) 183.94 13.10 172.13 15.20 0.031 0.82 0.99 22.63

LH surface area (cm2) 91.63 6.71 86.02 7.98 0.065 0.75 20.02 11.24
RH surface area (cm2) 92.31 6.47 86.12 7.29 0.015 0.89 0.94 11.44

Mean cortical thickness (mm) 2.579 0.082 2.652 0.078 0.039 0.92 20.13 20.01

LH mean cortical thickness (mm) 2.580 0.080 2.659 0.078 0.010 1.00 20.14 20.02

RH mean cortical thickness (mm) 2.579 0.087 2.645 0.081 0.072 0.79 20.13 0.00

The global measurements of brain morphometry—intracranial volume, total grey matter volume (including cortex and basal ganglia),
total cortex volume, total surface area, and whole brain mean thickness—were obtained with VBM8 and FreeSurfer. Significant p values
controlled by FDR correction (q< 0.05) and confidence intervals (95% CI) are shown in bold type.
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the tests assess visuospatial thinking, intuition, creativity,
abstraction, manipulation, and ability to manage thoughts
as follows: (1) organizing materials; (2) recognizing pat-
terns or rules; (3) changing the representation of the prob-
lem and recognizing patterns and rules in a new area; (4)
comprehending and working with highly complex struc-
tures; (5) reversing and inverting processes; and (6) find-
ing related problems [Heller et al., 2000]. Test answers
were examined by mathematicians who considered not
only the correctness of the answers but also the argumen-
tation followed to achieve the solution. The tests chosen
were as original as possible, in such a way that previous
training would not imply a clear advantage. In contrast
with other standardized measures such as SAT-Math
(Scholastic Assessment Test, Mathematics Section), ESTAL-
MAT emphasizes problem solving by creative thinking,
rather than using concepts and previous expertise gained
at school [Navas-Sanchez et al., 2014]. This procedure was
used in previous works [Desco et al., 2011; Navas-Sanchez
et al., 2014] and followed similar criteria to that used in
some other articles about math-giftedness [Zhang et al.,
2014, 2015].

The control group was selected based on their age and
IQ and academic levels. IQ was estimated using the
Vocabulary, Information, and Block Design subtests from
the Spanish version of the Wechsler Intelligence Scale for
Children—Revised. These tests show good correspondence
with full-scale IQ [Ringe et al., 2002; Silverstein, 1985] and
are commonly used in the literature. The cognitive assess-
ment was performed by a child neuropsychologist and a
child psychiatrist, who also analyzed the subjects’ school
records.

This study was approved by the Hospital Ethics and
Clinical Research Boards. Written informed consent was
obtained from both subjects and their parents before the
study was performed.

Magnetic Resonance Imaging Acquisition

Data were acquired with a Philips Intera 1.5 T MRI
scanner (Philips Medical Systems, Best, The Netherlands). The
details of the protocol were as follows: high-resolution
structural image T1-weighted gradient-echo; repetition
time [TR] 5 25 ms; echo time [TE] 5 9.2 ms; field of view
[FOV] 5 256 3 256 3 175; flip angle 5 308; voxel size 5 1 3

1 3 1 mm3.

MRI Data Preprocessing

First, MRI scans were skull-stripped and tissue-
segmented with SPM8 (Wellcome Trust Centre for Neuroi-
maging, London, UK; available at: http://www.fil.ion.ucl.
ac.uk/spm) using the VBM8 toolbox (available at: http://
dbm.neuro.uni-jena.de/vbm). All the images had to pass
an exhaustive quality control following the considerations
recently appointed by [Ducharme et al., 2016]. All the

images were visually inspected and the skull was man-
ually removed if necessary by an experienced neuroradiol-
ogist blind to the groups. Less than 20% of images
required manual correction. The reconstructed surfaces
were also checked and none of those presented any topo-
logical errors.

Second, we performed a vertex-wise analysis using
surface-based methods to account for group differences in
whole-brain cortical thickness and surface area. Briefly, we
processed the structural images with the standard FreeSur-
fer pipeline (available at: http://www.surfer.nmr.mgh.har-
vard.edu, version 5.3), which constructs models of the
cortical interfaces (white–grey matter and CSF–grey mat-
ter) for all the subjects in the native anatomical space
[Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 1999].
Before the statistical analyses, cortical thickness and sur-
face area maps were normalized to a standard space (MNI
space) and smoothed using a Gaussian filter with a full-
width at half-maximum of 15 mm.

Statistical Analysis

Group differences in whole-brain measurements (grey
matter volume, intracranial volume, white matter volume,
mean thickness, surface area, and cortex volume) were
based on nonparametric statistical methods, namely
Mann–Whitney U test. Standardized effect sizes and confi-
dence intervals of the differences (95% CI) were also
reported. Gender differences were compared using Pear-
son’s chi-square test. The results of the whole-brain meas-
urements were controlled by the False Discovery Rate,
FDR (q< 0.05).

A vertex-wise statistical analysis was carried out sepa-
rately for both the left and right hemispheres. The statisti-
cal significance in vertex-wise data (cortical thickness and
surface area) was assessed using a two-tailed two-sample t
test. Standardized effect sizes (Cohen’s d) were also calcu-
lated in the vertex-wise maps.

Correction for multiple comparisons used the cluster-
wise probability method (CWP) [Hagler et al., 2006]. A
total of 10,000 Monte-Carlo random permutations were
used to obtain a CWP value <0.05.

Additionally, to ensure that group differences in age,
gender, and IQ were not confounded, we repeated group
comparisons including “age,” “gender,” and “IQ” as cova-
riates. Furthermore, to exclude the potential effect of corti-
cal volume, we also performed another ANCOVA with
cortex volume as a covariate. The output of these models
is reported in the Supporting Information.

RESULTS

Global Measurements

Compared with controls, math-gifted subjects presented
larger intracranial volume (d 5 0.83), lower whole-brain
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mean cortical thickness (d 5 0.91), larger white matter vol-
umes (d 5 1.22), and larger whole-brain surface area
(d 5 0.84). There were no significant differences between
math-gifted subjects and controls in total cortical volume
(Table I).

Vertex-Wise Analysis: Group Differences in

Cortical Thickness

Vertex-wise cortical thickness analysis revealed thinning
in the bilateral superior frontal gyrus, left medial prefron-
tal cortex, anterior cingulate cortex, left precuneus, left
medial prefrontal cortex (mPFC), left orbitofrontal cortex,
and right superior parietal cortex (Table II and Fig. 1-1) in
math-gifted individuals. In addition, the Cohen’s d maps
(Fig. 1-1) of group differences revealed a large effect size
for the right medial prefrontal cortex, the lateral orbito-
frontal cortex, and the supramarginal gyrus (d> 0.8). Com-
pared with math-gifted subjects, the controls did not show
a significant reduction in cortical thickness.

Vertex-Wise Analysis: Group Differences in

Surface Area

Vertex-wise analysis of surface area revealed that the
surface of the left and right frontal lobes was larger for
math-gifted subjects, particularly in the left caudal and the
right rostral middle frontal gyri, which are included in the
dorsolateral prefrontal cortex. Moreover, the surface area
of the left lateral occipital and inferior parietal lobes and
of the right lingual gyrus was significantly larger in math-
gifted subjects (Table II and Fig. 1-2). The Cohen’s d map
indicates that the area of the bilateral parahippocampal
gyrus, right mPFC, and left anterior cingulate cortex is sig-
nificantly larger in math-gifted subjects (Fig. 1-2).

The inclusion of covariates such as sex, IQ, and total
cortical volume did not noticeably alter the findings for
cortical thickness or surface area (Supporting Information).

In other words, the significant clusters observed in the t-
test are the same as that obtained in the ANCOVA in
which we include IQ and Gender, and the model is more
parsimonious with a great number of degrees of freedom.
Indeed, the results with “age” as a covariate in the model
were omitted because there is a lack of significance of the
“age” covariate probably due to the age range spanned.
Only when including “Total Cortex Volume” as covariate

in the surface area data, any cluster survived the CWP

correction. However, the effect size (Cohen’s d) showed

between-group differences in the same regions than the

t-test analysis.

DISCUSSION

The relationship between cortical morphometry and
intellectual abilities such as general intelligence or creativ-
ity has been widely described in the literature; however,
to our knowledge, the relationship between cortical mor-
phometry and math-giftedness has not yet been explored.
The aim of this study was to identify potential morpho-
metric differences, in particular cortical thickness and sur-
face area, between math-gifted adolescents and controls
using surface-based methodologies. Biologically, cortical
thickness and surface area should be considered as inde-

pendent measurements. Cortical thickness is more related
to the number of cells (the amount of neurons or glial
cells) and capillary support, whereas the surface area is

related to the number and spacing of minicolumnar units
of cells [Feczko et al., 2009; Hill et al., 2010; Mountcastle,
1997; Panizzon et al., 2009; Rakic, 1988]. The difference in
the cortical features (cortical thickness and area) between
math-gifted and controls could explain the differences in
intelligence and creativity. We found that the cortex of
gifted subjects was thinner in the superior dorsolateral
prefrontal and superior parietal regions and that the sur-
face area was larger in the superior and middle dorsolat-
eral prefrontal cortex, which are key regions of the

TABLE II. Vertex-wise analysis of cortical thickness and surface area

Measurement Anatomical region Side
Cluster

size (mm2) X Y Z CWP

Lower cortical thickness
Superior parietal RH 1339.62 17.6 268.8 45.2 0.0315
Superior frontal RH 3901.20 7.5 6.6 65.6 0.0001
Pars orbitalis LH 2994.61 244.1 41.3 211.4 0.0001
Superior frontal LH 4543.72 25.9 22.7 59.8 0.0001
Precuneus LH 2266.05 211.6 262.6 21.8 0.0007

Larger surface area
Superior frontal RH 3955.97 21.7 28 36.3 0.0001
Lingual RH 4188.24 6.6 279.6 24 0.0001
Superior frontal LH 3984.19 221.9 9.9 48.7 0.0001
Inferior parietal LH 2833.52 243.6 275.8 14.5 0.0022

The anatomical coordinates indicate the location where math-gifted subjects showed significantly thinner cortex or significantly larger
surface area in the corrected clusters (LH, left hemisphere; RH, right hemisphere). CWP: cluster-wise probability.
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frontoparietal executive network (FPN). We also found the
cortex to be thinner in the mPFC and precuneus and the
surface area to be larger in the medial temporal lobes and
the right mPFC, which are key nodes of the DMN.

Neural Development in Math-Giftedness

One of the main features that characterize gifted indi-
viduals is that they perform above their age in cognitive
tests (mainly IQ) and creativity measurements, thus dem-
onstrating a higher level of cognitive maturation than their
same-age peers [Geake, 2008; Gross, 2004]. Our findings of
a thinner cortex and larger surface than in same-age con-
trols suggest that this cognitive precocity may be the out-
come of above-age neural development.

Several studies have suggested the existence of cortical
thinning due to synaptic pruning [Changeux and Danchin,
1976; Huttenlocher and Dabholkar, 1997; Paus, 2005;
Petanjek et al., 2011] and neuropil myelination [Gogtay

and Thompson, 2010; Sowell et al., 2004] during adoles-
cence. Furthermore, some cross-sectional studies also sug-
gested that a thinner cortex at a given age might reflect
earlier cortical maturation [Tamnes et al., 2010a,]. Accord-
ing to these data, our finding of decreased whole-brain
cortical thickness in gifted individuals could indicate a
more mature brain in terms of synaptic pruning and mye-
lination. Our data also indicate that math-gifted adoles-
cents show larger surface area and white matter volume.
According to the “Balloon Model” hypothesis [Seldon,
2005], this finding may reflect a more advanced level of
myelination. This model proposes a neuroanatomical
description linking human white matter growth and vol-
ume to the thickness of the overlying cortex, and justifies
the inverse relationship between cortical thickness and
surface area. Therefore, we can speculate that the excep-
tional cognitive skills of math-gifted subjects might be
linked to above-age neural development, as reflected by
thinner cortex and highly expanded surface area.

Figure 1.

Vertex-wise analysis. Group differences in (1) cortical thickness and

(2) surface area. Thinner cortex in math-gifted adolescents is rep-

resented in blue, and larger surface area than high-IQ controls

appears in warm colors. Math-gifted subjects did not present

regions with significantly thicker cortex or lower surface area than

controls. The Cohen’s d maps are thresholded at d> 0.5 (medium

effect, represented with dark blue or red), and d> 0.8 (high effect,

represented in light blue or yellow). The clusters that survived the

multiple comparisons correction (CWP< 0.05) were identified as

superior frontal gyrus (SFG), superior frontal gyrus-dorsolateral

prefrontal cortex (SFG-dlpfc), superior parietal lobule (SPL), infe-

rior parietal lobule (IPL), medial prefrontal cortex-pars orbitalis

(mPFC-POrb), and lingual. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Between-Group Differences in Cortical

Morphometry: Frontoparietal and Default Mode

Networks

Morphometric differences are localized in regions
belonging to frontoparietal and default mode networks.
The maturation of these networks during childhood and
adulthood underlies the development of higher-level cog-
nitive functions, such as executive functioning and creative
thinking, which are often exceptional in gifted individuals
[de Bie et al., 2012; Hoff et al., 2013].

The frontoparietal network plays a key role in intelli-
gence as it is critical for executive control by keeping on-
line working memory representations necessary for prob-
lem solving, decision-making, and other goal-directed
processes [Baddeley, 2003; Jung and Haier, 2007]. Our
findings complement previous data showing special char-
acteristics of the frontoparietal executive network in terms
of functionality [Desco et al., 2011; Hoppe et al., 2012; Lee
et al., 2006; O’Boyle, 2008; O’Boyle et al., 2005; Prescott
et al., 2010] and anatomical connectivity [Navas-Sanchez
et al., 2014]. Although the FPN has been extensively
related to individual differences in general intelligence
[Jung and Haier, 2007], it is unlikely that the implication
of the FPN in giftedness could be explained merely in
terms of IQ level since the control group was matched for
overall IQ.

According to theoretical definitions of giftedness, gifted
individuals show not only higher IQ and enhanced execu-
tive functioning but also exceptional creativity and higher
task motivation [Heller et al., 2000; Kalbfleisch, 1985, 2004;
Renzulli, 1978, 1998; Sternberg and Davidson, 2005]. In
recent years, an increasing number of functional and struc-
tural neuroimaging studies point to the implication of the
DMN in creative thinking [Benedek et al., 2014; Ellamil
et al., 2012; Gonen-Yaacovi et al., 2013; Jung et al., 2013;
Takeuchi et al., 2011a; Wei et al., 2014]. Consistently, our
findings suggest that giftedness is associated with atypical
cortical characteristics in regions of the DMN. In particu-
lar, we found that math-gifted subjects present thinner cor-
tex in the precuneus and the mPFC and anterior cingulate
cortex (ACC), as well as larger surface area in the medial
temporal lobes bilaterally (including the parahippocampal
gyrus) and the right mPFC-ACC, areas that have been
directly associated with creative thinking [Jung et al.,
2013]. Notwithstanding, some authors suggest that creativ-
ity does not rely exclusively on the DMN but also on the
interplay between DMN regions and other areas such as
the dorsolateral prefrontal cortex, the inferior parietal cor-
tex, and the orbitofrontal cortex [Aydin et al., 2007; Jung
et al., 2010; Shamay-Tsoory et al., 2011; Takeuchi et al.,
2010, 2011b), which we also found to be atypical in our
sample of gifted subjects. In keeping with previous theo-
rizing, the mPFC and ACC regions have been proposed as
key regions for mathematical giftedness [O’Boyle et al.,
2005; Prescott et al., 2010]. And the aforementioned
enhanced functional connectivity among brain regions in

math-gifted subjects could be orchestrated by the ACC
being a hub not only for motivation or attention but also
for information processing and creative cognition [Jung,
2014].

Additionally, we found surface area to be greater in the
bilateral visual cortex of math-gifted subjects than that of
controls. The visual cortex has been extensively implicated
in attentional functions as well as in visual imagery and
visuospatial processing [Jehee et al., 2011; Leshikar et al.,
2012; Moradi et al., 2012]. fMRI reports in math-gifted sub-
jects have shown activations in visual areas while perform-
ing executive functioning and fluid reasoning tasks [Desco
et al., 2011; Lee et al., 2006; O’Boyle et al., 2005]. Similarly,
in our previous DTI study, we also found that math-gifted
subjects have a higher fractional anisotropy (FA) in the
parieto-occipital and fronto-occipital tracts, thus suggest-
ing greater abilities in visuospatial stream processing and
possibly enriched mental images associated with visuospa-
tial working memory [Navas-Sanchez et al., 2014].

Finally, we believe that the integration of morphological,
functional, and DTI data from math-gifted individuals is
key to understanding math-giftedness. We previously
characterized the current math-gifted sample in terms of
functionality—while performing executive functioning and
fluid reasoning tasks [Desco et al., 2011]—and structural
connectivity [Navas-Sanchez et al., 2014]. In this study, we
describe their morphometric features.

Combining our findings, math-gifted subjects show
greater bilateral activation in dorsal attentional and FPN
networks [Desco et al., 2011], enhanced structural connec-
tivity between frontoparietal and fronto-striatal major
tracts [Navas-Sanchez et al., 2014], and larger surface area
accompanied by thinner cortex in frontoparietal regions.

Previous studies on morphometric and functional fea-
tures suggest the presence of a negative relationship
between cortical thickness and functional activity [Lu
et al., 2009; Nunez et al., 2011]. Although the neural mech-
anisms underlying this negative association are unknown,
it has been suggested that the synaptic pruning leading to
cortical thinning during adolescence could also increase
the selectivity and effectiveness of the neural structure,
thus producing stronger functional activations [Lu et al.,
2009; Nunez et al., 2011]. Furthermore, Lu et al. [2009] pro-
posed that higher skill level, such as that observed in
math-gifted individuals, is associated with a stronger acti-
vation pattern in frontoparietal and attentional networks.
These activations also corresponded to more “mature”
morphology in these regions (thinner cortex), even after
controlling for IQ [Lu et al., 2009; Nunez et al., 2011].
Moreover, white matter microstructure and cortical prop-
erties are also negatively associated with maturational
processes [Giorgio et al., 2008; Tamnes et al., 2010a]. It has
been proposed that age-related changes in cortical thick-
ness and white matter microstructure may be driven, in
part, by a common biological mechanism, presumed to be
associated with changes in cerebral myelination [Kochu-
nov et al., 2011].
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Math-gifted subjects are qualitatively and quantitatively
different, not only in terms of brain activation and white
matter organization but also in terms of cortical morphom-
etry. From a transversal imaging perspective, our studies
depict a math-gifted brain characterized by exceptional
and above-age structural properties in the frontoparietal
circuit.

Our study presents several limitations. First, the cross-
sectional design prevents us from assessing the cognitive
and neural maturation of the subjects over time. Of note,
the term “precocity,” as used in this manuscript, refers
merely to the presence of cognitive and neural features
typically found in older subjects.

Furthermore, the sample size is relatively small. As
expected, it was difficult to recruit larger samples since we
are studying an exceptional form of intelligence that is
extremely rare in the population. However, our sample
was very carefully selected, and comprised math-gifted
adolescents and nongifted controls, all right-handed, with
balanced gender effects, who were all right-handed, bal-
anced for gender, of the same age and importantly, within
an approximately similar IQ range.

Our findings are also limited by the cognitive characteri-
zation of the two groups. Recruitment of math-gifted sub-
jects was based on their admission to the ESTALMAT
program although controls were not evaluated and
excluded by the same ESTALMAT program. Because con-
trols did not undertake the same selection test battery, we
cannot positively rule out the possibility that a given con-
trol individual was in actuality, math-gifted; however,
given the low proportion (<5%) of math-gifted subjects in
the population, we can realistically assume that our con-
trols were not gifted.

Most importantly, the effect of possible misclassification
of controls weakens our hypothesis since the statistical
effect of giftedness would appear diminished. Neverthe-
less, our findings remain reasonably robust despite this
potential drawback.

CONCLUSIONS

In summary, math-gifted adolescents showed special
morphological properties in regions of the frontoparietal
and default mode networks in charge of executive process-
ing and creative thinking, respectively. The combination of
reduced cortical thickness and larger surface area in these
regions suggests the presence of above-age neural matura-
tion in gifted individuals.
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