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BACKGROUND: The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to
fine particulate matter (PM2:5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control.

OBJECTIVES: Our goal was to investigate the associations of exposure to fine particulate matter (PM2:5) with HRV as an indicator of cardiac auto-
nomic control during early development.

METHODS:We studied 237 maternal–infant pairs in a Boston-based birth cohort. We estimated daily residential PM2:5 using satellite data in combina-
tion with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous
electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response
to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2:5 exposure across pregnancy in relation
to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)—an established metric of HRV
that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms.

RESULTS: In adjusted models we found that a 1-unit increase in PM2:5 (in micrograms per cubic meter) was associated with a 3.53% decrease in base-
line RSAc (95% CI: −6:96, 0.02). In models examining RSAc change between episodes, higher PM2:5 was generally associated with reduced PNS
withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not
observe a significant interaction between PM2:5 and sex.
DISCUSSION: Prenatal exposure to PM2:5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary find-
ings. https://doi.org/10.1289/EHP4434

Introduction
Substantial evidence documents adverse cardiovascular effects of
recent (hours to days) and chronic (weeks to years) ambient air
pollution exposure in older children and adults (An et al. 2018;
Chuang et al. 2007; Franklin et al. 2015; Pope et al. 2004), with
mechanistic research highlighting the contribution of fine particu-
late matter (PM < 2:5 lm in aerodynamic diameter; PM2:5) to the
development of adverse health outcomes (Nelin et al. 2012). For
example, short- and long-term exposure to particulate pollution
has been linked to reduced heart rate variability (HRV) (Chuang
et al. 2007; Gold et al. 2000; Liao et al. 2004; Luttmann-Gibson
et al. 2010; Park et al. 2005; Pieters et al. 2012), which in turn is
associated with increased risk of myocardial infarction, arrhyth-
mias, hypertension, metabolic syndrome, and corresponding mor-
bidities (Buccelletti et al. 2009; Licht et al. 2010; Tentolouris
et al. 2008; Thayer et al. 2010). A critical step in identifying

individuals at risk for costly chronic cardiometabolic disorders is
characterizing relevant exposures and mechanisms that lead to
early predisposition. Although it is increasingly recognized that
complex chronic diseases have their roots in early development
(Hoffman et al. 2017; Thornburg 2015), little research has exam-
ined associations between PM2:5 exposure and autonomic nerv-
ous system (ANS) functioning in early life.

Critical components of the ANS develop and mature during
gestation. For example, differentiation of the hypothalamic lateral
zone and myelination of the vagus nerve typically occur by the
end of the second trimester (Cheng et al. 2004; Koutcherov et al.
2003) and baroreflex responsivity increases throughout the re-
mainder of gestation (Porges and Furman 2011). Clinical studies
also support that parasympathetic control of cardiac rhythm is
functional by the first half of pregnancy (Groome et al. 1994).
Likewise, animal and human data show that programming of the
infant ANS response begins in utero (Card et al. 2005; Igosheva
et al. 2004; Jansson and Lambert 1999; Mukerjee et al. 2018),
suggesting environmental exposures that alter the normal course
of ANS maturation may have lifelong implications for mental and
physical health (Abboud 2010; Ernst 2017; Rees 2014). During
rest, the parasympathetic nervous system (PNS) maintains a state
of internal homeostasis optimal for physical growth and develop-
ment. When faced with external challenges, parasympathetic activ-
ity withdraws, enabling the sympathetic (SNS) branch to increase
arousal and mobilize resources. For example, stress-induced with-
drawal of inhibitory PNS inputs to pacemaker cells in the cardiac
sinoatrial node (i.e., release of the vagal brake) results in increased
heart rate and contraction force, leading to greater cardiac output
and ultimately enabling an optimal response to external signals
(Drew and Sinoway 2012).
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Respiratory sinus arrhythmia (RSA) is a temporal pattern of
HRV that reflects respiration-synchronized oscillations in PNS-
SNS cycling and is widely used as a metric of cardiac vagal tone
(Paton and Pickering 2012), including in young infants (Ritz et al.
2012). At rest, higher RSA indicates a greater potential to respond
to stressful stimuli, whereas reduced RSA during stress reflects
appropriate withdrawal of the PNS (Porges et al. 1996). Results
from empirical research conducted in children suggest that higher
resting RSA, as well as stress-induced reductions in RSA, are asso-
ciated with positive behavioral, cognitive, and physical outcomes,
including fewer externalizing problems (Calkins and Dedmon
2000; Calkins et al. 2007; El-Sheikh et al. 2007; Kahle et al.
2018), better emotion regulation (Butler et al. 2006; Oveis et al.
2009; Porges et al. 1996; Zhang et al. 2017), improved attention
(Feldman 2009; Huffman et al. 1998; Suess et al. 1994), better
working memory, higher cognitive efficiency (Staton et al. 2009),
higher intelligence (Porges et al. 1994), better academic perform-
ance (Blair and Diamond 2008; Graziano et al. 2007; Staton et al.
2009), healthy body mass index (Graziano et al. 2011), and fewer
sleep disruptions (El-Sheikh et al. 2007).

Fetal exposure to tobacco smoke is associated with lower rest-
ing RSA during infancy (Schuetze et al. 2011, 2013), suggesting
prenatal programming of autonomic tone may be susceptible to
disruption by environmental toxicants. No epidemiologic studies
have investigated the relationship between prenatal exposure to
PM2:5 and ANS functioning in early life. In the present study, we
examined prenatal exposure to PM2:5 in relation to infant RSA
measured during brief periods of emotional stress and recovery
elicited by the Repeated Still-Face Paradigm (SFP-R). We
hypothesized that higher prenatal exposure to PM2:5 in pregnancy
would be associated with lower baseline cardiac vagal tone (i.e.,
lower resting RSA) and reduced PNS withdrawal during stress
(i.e., attenuated decrease in RSA). We report the results of mod-
els examining prenatal PM2:5 exposure adjusted for postnatal
PM2:5 among a subset of infants (86%) with available postnatal
data; however, we do not investigate main effects of postnatal ex-
posure given our focus on investigating prenatal programming
effects.

Methods

Study Participants
Participants included maternal–infant pairs enrolled in the
PRogramming of Intergenerational Stress Mechanisms (PRISM)
study, an ethnically mixed pre-birth cohort that was designed to
investigate the independent and joint effects of perinatal stress and
environmental chemicals on child development (Brunst et al. 2014,
2017). Women were recruited from prenatal clinics in the Boston
area at 27± 8weeks gestation [mean± standard deviation ðSDÞ]
between March 2011 and August 2012. Eligible women were
English- or Spanish-speaking, ≥18 years of age, and pregnant with
a singleton. Mothers who were HIV+ or who reported drinking≥7
alcoholic drinks/week prior to pregnancy or any alcohol during
pregnancy were excluded. All study procedures were approved by
the institutional review board at the Brigham and Women’s
Hospital (BWH); Beth Israel Deaconess Medical Center relied on
BWH for review and oversight of the protocol. Written informed
consent was obtained in themother’s primary language.

PM2:5 Exposure Assessment
We geocoded maternal residential address during pregnancy
using ESRI’s ArcGIS software, as previously described (Brunst
et al. 2018). We estimated daily PM2:5 exposure for each study
participant using a satellite-based hybrid model that combines

spectral aerosol optical depth (AOD) estimates with PM2:5 moni-
toring data and spatiotemporal predictors (population density, ele-
vation, traffic density, land use type, and PM2:5 point and area
source emissions, air temperature, wind speed, daily visibility, sea
land pressure, and relative humidity) (Kloog et al. 2014). AOD
products were estimated from the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite sensor at a 1 × 1 km spatial
resolution using the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm (Kloog et al. 2014). Daily PM2:5
concentrations were obtained from the U.S. Environmental
Protection Agency (EPA) Air Quality System (AQS) database and
the Interagency Monitoring of Protected Visual Environments
(IMPROVE) network. Data sources for temporal and spatial pre-
dictors have been previously described in detail (Kloog et al.
2014). Briefly, a mixed model was used to regress AOD values on
PM2:5 monitoring data while adjusting for land use variables and
allowing day-specific temporal factors to vary. These PM2:5-
calibrated AOD values were then used to predict PM2:5 concentra-
tions in grid cells without monitoring data. In grid cells with no
AOD value for a given day, PM2:5 was predicted based on PM2:5
in neighboring grids as well as the relationship between PM2:5 and
AOD across the region and within grid cells. Finally, residuals
from the final model were regressed using machine learning (sup-
port vector machine) against high-resolution (200× 200m) spatio-
temporal predictors (traffic density, population density, elevation,
percent urban, distance to major roads, distance to source emission
points, and visibility) specific to a given ground monitor. We used
10-fold out-of-sample cross validation to evaluate model perform-
ance. We randomly divided the data into 90% and 10% subsets 10
times. For the data sets including 10% of values, we predicted con-
centrations using the model fit with the remaining 90% of the data;
overall model performance was excellent (mean out-of-sample
R2 = 0:88). The spatial and temporal components of the out-of-
sample results also demonstrated good fit to the withheld data
(R2 = 0:87, R2 = 0:87, respectively). Our results revealed minimal
bias in the predicted concentrations (slope of predictions vs. with-
held observations = 0:99). We averaged predicted daily PM2:5
across pregnancy (estimated date of conception through delivery)
for each study participant. Figure 1 presents a map of predicted,
average PM2:5 exposure levels during pregnancy for mothers en-
rolled in PRISM. Among a subset of 204 infants (86%) with avail-
able postnatal data, we created a summary measure of postnatal
PM2:5 exposure by averaging predicted daily values between birth
and the day of SFP-R testing.

Repeated Still-Face Paradigm
Mother–infant pairs completed the SFP-R during a follow-up
visit to our laboratory when the infant was approximately 6
months of age. The SFP-R is a 10-min observational procedure
designed to assess infant reactivity to and recovery from brief,
moderate levels of stress induced by maternal disengagement
(Tronick et al. 1978). The procedure is considered the gold-
standard protocol for evaluating infant reactivity to moderate
stress and is commonly coupled with measurement of RSA and
other physiological indicators (Adamson and Frick 2003;
Mesman et al. 2009). During the SFP-R, the infant was posi-
tioned in a car seat facing the mother, who was instructed to play
with her infant as she normally would (Play). After 2 min, the
mother transitioned to the first Still-Face episode (SF1), during
which she maintained a neutral facial expression and avoided
touching or vocalizing with her infant. Following 2 min of disen-
gagement, the mother resumed interacting with her infant
(Reunion 1; R1). The 4-min Still-Face-Reunion sequence was
then repeated, with the mother transitioning directly to the second
Still-Face episode (SF2) following the first Reunion episode (R1)

Environmental Health Perspectives 107007-2 127(10) October 2019



and to the second Reunion episode (R2) following the second
Still-Face episode (Figure 2 provides a stylized representation of
a typical RSA response profile during the SFP-R procedure). The
procedure was stopped if the infant remained distressed by the
end of the first Reunion episode. Likewise, Still-Face episodes
were terminated early (<2min) if the infant engaged in 1 min of
continuous fussing or 30 s of hard crying. Trained research assis-
tants recorded whether a maternal behavioral violation occurred
(yes/no) during the Still-Face episodes based on video recordings
of the session. Violations included the following: maternal touch-
ing, verbalizing with, laughing at, turning from, making faces at,
or otherwise interacting with the infant in any way, including giv-
ing the infant an object or displaying clear signs of negativity.
When administering the SFP-R, study staff followed a standar-
dized protocol, including explicit written instructions detailing

protocol set-up (e.g., where to seat the mother relative to the
infant), use of video recording equipment (e.g., where to focus
the camera to allow proper coding), physiology data acquisition
(e.g., where and how to place electrodes), and interactions with
the study participants (e.g., a verbal script that is administered to
the mother at the start of the procedure). In addition, factors
related to administration of the SFP-R were kept as constant as
possible between laboratory visits. For example, the infant seat
used during the SFP-R was strapped to a table so that it could not
be moved and thus was always positioned in the same location
for all SFP-R administrations. Before administering the SFP-R,
study staff were trained to follow all procedures and materials by
a developmental psychologist. As part of this training, staff
watched video recordings of previously recorded SFP-R sessions
from other studies and practiced administering the protocol under

Figure 1.Map of predicted PM2:5 levels for PRISM study participants during pregnancy. Each point represents residential PM2:5 (lg=m3) averaged across
pregnancy. PM2:5, fine particulate matter; PRISM, PRogramming of Intergenerational Stress Mechanisms.
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supervision. A developmental psychologist also reviewed live
sessions and video recordings of sessions for quality control and
met regularly with staff to discuss any concerns regarding proto-
col administration. Because all sessions were video recorded,
including provision of instructions to the mother and all video
sessions were coded for participant behaviors, any anomalies in
administration were observable and noted during coding.
Notably, anomalies were rare, and the SFP-R is robust to minor
anomalies in administration.

We measured infant respiration and cardiac activity during the
SFP-R using a noninvasive ambulatory respiratory inductance
plethysmography device (BioRadio) that continuously records and
stores raw signals from two inductance bands and a three-lead
electrocardiogram (ECG). We calibrated inductance band output
by volume using the qualitative diagnostic calibration procedure
and processed respiration and heart rate data using VivoSense soft-
ware (Vivonoetics), which is designed for analysis of complex
waveforms, detection of artifacts, and calibration of respiratory pa-
rameters (Ritz et al. 2012; Sackner et al. 1989). We calculated tidal
volume-normalized RSA within each breathing cycle as the differ-
ence between the longest (peak) and shortest (valley) cardiac inter-
beat interval (IBI; in milliseconds) divided by tidal volume (VT; in
milliliters) (Bosquet Enlow et al. 2014; Schulz et al. 2009). To cor-
rect for inter-individual variation in respiration, which has been
shown to improve estimation of cardiac vagal activity (Grossman
et al. 1991; Ritz et al. 2001; Saul et al. 1989), we performed a
within-individual regression of natural-log transformed tidal
volume-normalized RSA lnðRSA=VTÞ (in milliseconds per millili-
ter) on total respiratory cycle time (TTOT; in seconds) during a 5-
min period of natural breathing, as previously described (Enlow
et al. 2009), and added the resulting residual value for each infant
to the mean lnðRSA=VTÞ across all infants in the sample (RSAc;
in milliseconds per milliliter) (Ritz et al. 2012). We natural-log
transformed tidal volume-normalized RSA before residualizing
against TTOT to meet normality assumptions of linear regression.

We quantified infant movement by coding activity in 10-s
intervals from videos of the SFP-R using a four-point scale

(0= quietmotor: no movement other than slow moving of fin-
gers; 1= slow=mild movements: slow bending but not lifting of
limbs; 2=moderate movements: slow lifting of limbs; 3 =
pronounced movements: forceful lifting of limbs (scale modified
from Bazhenova et al. 2007). We averaged all 10-s interval
scores within an episode and multiplied this value by 100 to cre-
ate a possible activity score for each episode ranging from 0 to
360. Infant activity level was scored by three independent
research assistants, with every fourth infant coded by two
research assistants; the inter-rater reliability scores across coders
indicated a high degree of consistency (r≥ 0:83).

Covariates
During the prenatal and early postnatal periods, trained research
assistants collected extensive information on maternal sociode-
mographic characteristics and lifestyle factors using question-
naires. We assessed prenatal exposure to cigarette smoke based
on maternal self-report of smoking during pregnancy (ever vs.
never), as well as maternal report of exposure to environmental
tobacco smoke (ETS) during pregnancy (<1 h=week vs. ≥1 h=
week). Likewise, we assessed postnatal exposure to ETS based
on the mother’s report of infant exposure to cigarette smoke for 1
h/week or more at 2 and 6 months after birth. We evaluated mate-
rial hardship based on the mother’s response (not at all likely vs.
somewhat likely vs. likely to extremely likely) to the question:
“In the next two months, how likely is it that you and your family
will experience hardships such as inadequate housing, food, or
medical attention?” We evaluated maternal stress during preg-
nancy using the Life Stressor Checklist–Revised (LSC-R), which
is an established self-report instrument for assessing traumatic
and stressful life events (Wolfe and Kimerling 1997). The mother
was asked whether she had ever experienced a series (n=30) of
stressful life events and the degree [not at all (1) to extremely
(5)] to which the event affected her life in the previous year. We
summed scores across the 30 items such that final scores (possi-
ble range 0–150) reflect a mother’s subjective rating of how a

Figure 2. Stylized representation of a typical RSAc response during the Repeated Still-Face Paradigm (SFP-R). The SFP-R is a 10 min, 5-episode procedure
(episodes=Play, SF1, R1, SF2, R2) that is designed to induce moderate stress in the infant via maternal disengagement and reunion. During the Play and
Reunion episodes, the mother is instructed to interact with her infant, who is seated in a car seat across from her, as she normally would. During the Still-Face
episodes, the mother maintains a neutral facial expression and avoids touching or vocalizing with her infant. PNS, parasympathetic nervous system; R1, first
Reunion episode; R2, second Reunion episode; RSAc, respiratory sinus arrhythmia adjusted for total respiratory cycle time (TTOT); SF1, first Still-Face episode;
SF2, second Still-Face episode.
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stressor affected her life in the previous year (i.e., through the ma-
jority of pregnancy and the entire postpartum period).

Statistical Analysis
We used multivariable linear regression to model pregnancy-
averaged PM2:5 exposure treated as a continuous variable in rela-
tion to baseline (Play) lnRSAc (Model 1). We additionally mod-
eled associations between continuous, pregnancy-averaged PM2:5
and PNS withdrawal and activation, indexed by changes in back-
transformed RSAc between sequential episodes (Model 2: DRSAc
Play to SF1; Model 3: DRSAc SF1 to R1; Model 4: DRSAc R1 to
SF2; Model 5: DRSAc: SF2 to R2). Associations with PM2:5 cate-
gorized into quartiles supported the use of linear models (see
Figure S1) and histograms confirmed normality of model residuals.
We used t-tests and chi-square tests of independence to examine
differences between infants included and excluded from the analy-
sis as appropriate. To account for noise in RSAc signals attribut-
able to infant motor activity and jostling of ECG wires, we a priori
adjusted models for infant activity level, which often accompanies
distress on autonomic measures and was higher during Still-Face
(mean±SD: 158:9± 34:7) compared with Play (80:6±40:1) and
Reunion (97:5±44:4) episodes (see Table S1) (Bazhenova et al.
2007). For models examining RSAc change between episodes, we
adjusted for the difference in infant activity between the two epi-
sodes. We considered several sociodemographic, lifestyle, and
perinatal factors as potential confounders (maternal race/ethnicity,
age, education, marital status, household material hardship, life
stress, depressive symptoms, smoking during pregnancy, exposure
to ETS during pregnancy, parity, and infant gestational age and
birthweight) and used directed acyclic graph (DAG) theory to
select covariates for inclusion in adjusted models based on previ-
ous research and substantive knowledge (see Figure S2) (Textor
et al. 2011, 2016). In addition to infant activity, we adjusted final
models for race/ethnicity (black vs. Hispanic vs. white vs. other),
material hardship (not likely vs. somewhat likely vs. likely to
extremely likely), and maternal stress (continuous LSC-R score).
These variables were sufficient to close biasing paths based on the
conditional dependencies encoded by our proposed causal dia-
gram, with the exception of potential confounding by postnatal ex-
posure. As described below, in sensitivity analyses we examined
models also adjusting for postnatal PM2:5 exposure among a subset
of infants with available data. Differences in physiologic stress
reactivity by sex are well established (Aults et al. 2015; Tibu et al.
2014; Vidal-Ribas et al. 2017; Wilhelm et al. 2017), and previous
research suggests boys and girls have differential susceptibility to
prenatal air pollution exposure (Bertin et al. 2015; Brunst et al.
2018; YH Chiu et al. 2016; YM Chiu et al. 2017; Lee et al. 2018a,
2018b); therefore, we explored effect modification by infant sex
using cross-product terms and stratified analyses.

We conducted several sensitivity analyses to evaluate the
robustness of our findings. First, we investigated whether chil-
dren who failed to complete the full SFP-R protocol differed
from those who completed the protocol by analyzing final models
excluding children who did not complete the second sequence.
Second, we analyzed models excluding 14 infants diagnosed
with a chronic medical condition (atopic disorder, acid reflux,
hypothyroidism, heart murmur, dysphagia, or hydronymphosis).
Third, we dropped maternal–infant pairs with one or more Still-
Face violation. Fourth, we analyzed models excluding infants
whose state was not “alert, rested, and feeling good” at the time
of the laboratory visit as reported by the mother. Fifth, we ana-
lyzed models excluding infants exposed to cigarette exposure for
≥1 h per week during the postnatal period based on maternal
report (n=14). To examine the potential impact of short-term
and long-term postnatal PM2:5 exposure, we examined models

additionally adjusting for a) residential PM2:5 levels on the day
of testing treated as a continuous variable, and b) average PM2:5
exposure between birth and the date of SFP-R testing treated as a
continuous variable. Postnatal PM2:5 was estimated using the
same satellite-based hybrid model and methodology as was used
to estimate prenatal PM2:5 exposure; geocoding of residential
addresses was updated to account for any moves between the pre-
natal and postnatal periods. We also evaluated the potential
impact of several variables related to the day of SFP-R testing,
including ambient temperature, humidity, and barometric pres-
sure in the laboratory as well as participant travel time to the lab-
oratory. Finally, we evaluated models adjusting for LSC-R scores
treated as a dichotomous variable stratified at the fourth quartile
(>11 vs. ≤11) to evaluate the degree to which our assumption of
linearity impacted results. All analyses were conducted using
SAS (version 9.4; SAS Institute Inc.) or RStudio (version
1.1.447; RStudio).

Results

Characteristics of Study Participants
At the prenatal visit, 417 mothers were eligible and enrolled into
the Boston-based PRISM study. At the 6-month follow-up visit,
244 infants completed the SFP-R and had acceptable ECG data for
extraction of RSA. We excluded 2 infants with missing PM2:5 data
and 5 infants with missing maternal stress data, resulting in a final
sample size of 237 mother–infant pairs (57% of those enrolled)
(see Figure S3). Table 1 presents characteristics of included partic-
ipants stratified by quartile of PM2:5 exposure. The majority of
mothers were racial/ethnic minorities (26% black, 32% Hispanic,
8% mixed/other), 23% had less than a high school education, and
31% reported it was somewhat to extremely likely that her family
would experience material hardship within the next 2 months. The
mean ± SD and median± interquartile range ðIQRÞ LSC-R scores
were 9:6± 11 and 6:0±8:0, respectively, and the range was 0–96.
These scores are higher than those reported by a sample of 179
active-duty U.S. military service members (4:5± 5:7, range:
0–35) (Bakalar et al. 2018), but lower than a clinical sample of new
mothers enrolled in substance-abuse treatment program (n=21,
45:1± 24:4, range: 17–104) and their demographically matched
controls (n=27, 19:6±11:2, range: 2–58) (Goldman Fraser et al.
2010). The mean gestational age of infants was 39 weeks, with 9%
of the sample born premature (<37weeks). Estimated average pre-
natal PM2:5 exposure across pregnancy was normally distributed
with amean of 8:3±0:9lg=m3 and range of 6:0–10:3lg=m3.

We did not detect significant differences between enrolled
participants included and excluded from the analysis except that
fewer mothers included in the analysis had a high school degree
(77%) compared with those excluded (86%, p=0:02) (see Tables
S2 and S3). Similarly, infants that completed both Still-Face
sequences did not significantly differ from those completing only
one sequence except that they were less likely to have been pre-
natally exposed to tobacco smoke (14% vs. 25%, p=0:04) (see
Tables S2 and S3).

Change in RSAc across Episodes
RSAc scores within each SFP-R episode followed a natural log-
normal distribution. We found an average decrease in RSAc dur-
ing stress sequences [Play to SF1: b= − 8:30 [95% confidence
interval (CI): −10:12, −6:47]; R1 to SF2: b= − 8:86 (95% CI:
−10:78, −6:93)] and an average increase in RSAc during recov-
ery sequences [SF1 to R1: b=7:00 (95% CI: 5.40, 8.60); SF2 to
R2: b=6:39 (95% CI: 4.26, 8.51)], independent of PM2:5 expo-
sure, which is consistent with the expected pattern of PNS
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withdrawal and activation across the SFP-R (Table 2). At base-
line, girls [geometricmean ðGMÞ±geometric standard deviation
ðGSDÞ: 16:3±0:3] had significantly lower RSAc compared with
boys (17:3± 0:3) and showed less change in RSAc between se-
quential episodes (Table 3).

Associations between PM2:5 and RSAc

In adjusted models we found that RSAc at baseline decreased
with increasing prenatal exposure to PM2:5 [3.53% decrease in
RSAc for a 1-unit (lg=m3) increase in PM2:5 (95% CI: −6:96,
0.02)] (Table 2). When examining change between episodes, we
found that for every 1-unit increase in PM2:5 exposure, the aver-
age decrease in RSAc during the first stress sequence (Play to
SF1) was attenuated by 0.74 units (95% CI: −0:12, 1.60), and the
average decrease in RSAc during the second stress sequence (R1
to SF2) was attenuated by 0.61 units (95% CI: −0:43, 1.66).

Although these associations were not statistically significant,
they suggest a possible inhibitory effect of PM2:5 on PNS with-
drawal during stress (Table 2; Figure 3). In models examining
change in RSAc between stress and recovery, for which we
expect RSAc to increase with PNS activation, PM2:5 was associ-
ated with an attenuated increase in RSAc during the second
[DRSAc SF2 to R2: b= − 1:04 (95% CI: −2:24, 0.15)], but
not first [DRSAc SF1 to R1: b=0:04 (95% CI: −0:84, 0.92)]
sequence. Overall, these findings suggest that higher maternal
PM2:5 exposure during pregnancy may be associated with less
infant PNS withdrawal during stress and less infant PNS activa-
tion during recovery, resulting in an overall flattened response
(Table 2; Figure 3). We did not observe a statistically significant
interaction between PM2:5 and sex in any model (Table 3); how-
ever, with increasing PM2:5, girls showed a trend toward a
reduced ability to recover following stress, as indicated by nega-
tive effect estimates between Still-Face and Reunion episodes

Table 1. Characteristics of mother–infant pairs enrolled in the Boston-based PRISM study (n=237) stratified by quartile of PM2:5 exposure during pregnancy
[mean ± standard deviation or N (%)].

Characteristic Overall (n=237) Q1 (n=59) Q2 (n=58) Q3 (n=60) Q4 (n=60)

Prenatal PM2:5 (lg=m3) 8:3± 0:9 7:2± 0:4 8:0± 0:2 8:6± 0:2 9:5± 0:3
Maternal age at enrollment (y) 30:8± 5:5 32:1± 5:9 30:9± 4:7 30:7± 5:2 29:6± 5:9
Maternal race/ethnicity
White 80 (34) 32 (54) 27 (47) 15 (25) 6 (10)
Black 61 (26) 15 (25) 17 (29) 17 (28) 12 (20)
Hispanic 77 (32) 10 (17) 9 (16) 18 (30) 40 (67)
Other/mixed 19 (8) 2 (3) 5 (9) 10 (17) 2 (3)
Maternal high school degree
No 54 (23) 9 (16) 10 (17) 13 (22) 22 (37)
Yes 180 (77) 48 (84) 48 (83) 46 (78) 38 (63)
Material hardship
Not likely 163 (69) 45 (76) 45 (78) 37 (62) 36 (60)
Somewhat likely 48 (20) 8 (13) 9 (16) 16 (27) 15 (25)
Likely, very likely, or extremely likely 26 (11) 6 (10) 4 (7) 7 (12) 9 (15)
Maternal Life Stressor Checklist–Reviseda 9:6± 10:8 10:9± 15:3 9:4± 8:7 8:9± 9:6 9:0± 8:6
Tobacco smoke exposure during pregnancyb

No 200 (84) 52 (88) 48 (83) 48 (62) 52 (87)
Yes 37 (16) 7 (12) 10 (17) 12 (20) 8 (13)
Tobacco smoke exposure after birthc

No 215 (94) 55 (98) 52 (93) 53 (93) 55 (92)
Yes 14 (6) 1 (2) 4 (7) 4 (7) 5 (8)
Infant sex
Male 129 (54) 33 (56) 31 (53) 37 (62) 28 (47)
Female 108 (46) 26 (44) 27 (47) 23 (38) 32 (53)
Gestational age (weeks) 39:0± 1:8 38:8± 1:8 39:4± 1:5 38:8± 1:7 38:9± 1:9
Birthweight (kg) 3:2± 0:6 3:2± 0:6 3:3± 0:5 3:2± 0:7 3:2± 0:5
Infant alert, rested, and feeling good at SFP-R
No 30 (19) 6 (13) 4 (10) 9 (21) 11 (35)
Yes 129 (81) 39 (87) 37 (90) 33 (79) 20 (65)

Note: There are no missing covariate data with the exception of maternal high school degree (n=3 missing). ETS, environmental tobacco smoke; PM2:5, fine particulate matter;
PRISM, Programming of Intergenerational Stress Mechanisms; Q, quartile; SFP-R, Still-Face Paradigm–Repeated.
aAssessed with the Life Stressor Checklist–Revised, possible range: 0–150.
bMaternal self-report of smoking or exposure to ETS for ≥1 h=week during pregnancy.
cMaternal report of infant exposure to ETS for ≥1 h=week assessed at ages 2 and 6 months, n=229.

Table 2. Adjusted change [b (95% CI)] in RSAc at baseline (play) and between sequential SFP-R episodes (DRSAc) and for a 1-unit increase in PM2:5
(lg=m3).

SFP-R episode Typical PNS response
Adjusted change in RSAc across

the SFP-R (n=237)
Adjusted change in RSAc across the SFP-R per a

1-unit increase in PM2:5 (n=237)

Model 1: Play Baseline 16.73 (15.45, 18.11)a −3:53 (−6:96, 0.02)b
Model 2: DRSAc Play to SF1 Withdrawal −8:30 (−10:12, −6:47) 0.74 (−0:12, 1.60)
Model 3: DRSAc SF1 to R1 Activation 7.00 (5.40, 8.60) 0.04 (−0:84, 0.92)
Model 4: DRSAc R1 to SF2 Withdrawal −8:86 (−10:78, −6:93)c 0.61 (−0:43, 1.66)c
Model 5: DRSAc SF2 to R2 Activation 6.39 (4.26, 8.51)c −1:04 (−2:24, 0.15)c

Note: The models were adjusted for infant activity, maternal race/ethnicity, maternal stress and material hardship. CI, confidence interval; PM2:5, fine particulate matter; RSAc, respira-
tory sinus arrhythmia [in ms/mL corrected for total respiratory cycle time (TTOT)]; R, Reunion; SF, Still-Face, SFP-R, Repeated Still-Face Paradigm.
aAdjusted geometric mean.
bRSAc during Play is natural-log transformed; therefore, the estimate is interpreted as the percentage change in RSAc for a 1-unit increase in PM2:5.
cn=185.
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(Table 3). In contrast, among boys we observed positive, yet stat-
istically insignificant, changes in RSAc between stress and recov-
ery per 1-unit increase in PM2:5, suggesting a potential improved
ability to recover.

Sensitivity Analyses
Results from models excluding infants who a) experienced one or
more Still-Face violation (n=46), b) were reported to be not alert
or rested at the time of testing (n=30), c) had a chronic medical
condition (n=14), or d) were postnatally exposed to ETS (n=14)
did not substantially deviate from overall findings (see Table S4).
Consistent with models including all infants [n=237, RSAc at
Play: b= − 3:53 (95% CI: −6:96, 0.02)] baseline PNS levels also
decreased with increasing PM2:5 among the subset of infants that
completed both Still-Face episodes [n=185, DRSAc Play:
b= − 3:05 (95% CI: −6:94, 0.98)]. Likewise, results from models
examining PNS withdrawal and activation among the subset of
infants that completed both Still-Face episodes were not substan-
tially different from models including all infants (see Table S4).
Among the 204 participants with available postnatal data, residen-
tial PM2:5 concentrations between birth and the 6-month SFP-R visit
were approximately normally distributed with a mean±SD of
7:96± 0:78lg=m3 and range of 6.12–9:95lg=m3. Predicted PM2:5
concentrations on the day of testing had a small right tail with a
GM±GSD of 6:90± 0:23lg=m3 and range of 2.10–24:03lg=m3.
Findings from models adjusting for these chronic and short-term
postnatal exposure metrics did not substantially vary from main
results (see Table S5). The mean±SD (range) laboratory tempera-
ture (degrees Fahrenheit), humidity (percentage), and barometric
pressure [milliliters mercury (mmHg)] on the day of testing among
142 participants for which this information was collected was:
72:0± 2:4 (65.9–77.7), 34:4± 14:1 (20.0–65.0), and 30:0±1:2
(19.9–39.8), respectively. Participant travel time to the laboratory
was on average 33± 19min (range: 5–120 min). Models adjusting
for these laboratory conditions were similar to results from main
models (see Table S6). Finally, models treating maternal LSC-R
scores as a dichotomous (quartile 4 vs. quartiles 1, 2, and 3 col-
lapsed) variable were similar in magnitude and direction to final
results presented in themanuscript (see Table S7).

Discussion
To our knowledge this is the first study to suggest that higher
maternal exposure to PM2:5 during pregnancy may be associated
with decreased resting vagal tone among infants. We additionally
detected a trend toward reduced PNS withdrawal during stress, a
pattern that may indicate reduced autonomic flexibility. Although
significant differences in exposure pathways and putative under-
lying biological mechanisms exist when considering prenatal ver-
sus postnatal PM2:5 exposure, we note that our findings are
generally consistent with previous observational research con-
ducted in adults that show exposure to particulate air pollution is
inversely related to HRV (Devlin et al. 2003; Gold et al. 2000;
Pope et al. 2004). Consistent with findings among older children
and adolescents (5–19 years of age), baseline RSAc levels were
significantly lower among girls compared with boys (Koenig et al.
2017). However, we did not detect RSAc differences between
boys and girls in relation to PM2:5 exposure, which may in part
reflect our relatively small sample size.

Although the physiological significance and precise mecha-
nisms underlying the respiratory–cardiac coupling characteristic
of RSA remain incompletely understood (Yasuma and Hayano
2004), substantial observational and clinical research has linked
lower resting vagal tone with increased psychological, behavioral,
and somatic disease risk across the life span. For example, low vagalT
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tone during infancy has been associated with an increased incidence
of sudden infant death syndrome (Peirano et al. 1992). Among chil-
dren, reduced vagal withdrawal during emotionally or cognitively
challenging tests has been shown to predict obesity (Graziano et al.
2011) and high blood pressure (Gangel et al. 2017) during early to
late childhood. Likewise, a recent meta-analysis of 44 studies
(n=4,996 children) found greater RSA withdrawal in response to
stress was associated with fewer externalizing, internalizing, and
cognitive/academic problems (Graziano and Derefinko 2013). In
adults, lower RSA is an established risk factor for cardiovascular dis-
ease (Dekker et al. 2000)—the leading cause of death worldwide
(GBD 2016 Causes of Death Collaborators 2017)—as well as for
other chronic diseases [diabetes, hypertension, and obesity (Masi
et al. 2007)] and psychopathologies [depression, anxiety disorders,
borderline personality disorder, and schizophrenia (Bylsma et al.
2014; Clamor et al. 2016; Jurysta et al. 2010; Kemp et al. 2010;
Koenig et al. 2016)]. Owing to differences in study design and catch-
ment populations, as well as variation in the approach to quantifying
and reportingRSAacross research labs and publications, it is not pos-
sible to directly compare the magnitude of our observed associations
to previous studies examining RSA in relation to health outcomes or
to determine the physiological significance of ourfindings. However,

the direction of observed associations is consistent with research
demonstrating adverse effects of PM2:5 on cardiovascular and auto-
nomic health. In addition, several observational studies in children
have found inverse associations between prenatal exposure to air pol-
lution and neurocognitive and behavioral outcomes (Chiu et al. 2016;
Cowell et al. 2015; Jedrychowski et al. 2015; Yorifuji et al. 2016). It
is plausible that these associations are partially mediated by
PM2:5-related disruption of cardiac vagal tone, which has previously
been linkedwith poor emotional, behavioral, and cognitive outcomes
in children.

Little evidence supports the passage of PM2:5 across the pla-
cental barrier, suggesting that the mechanisms through which
maternal exposure to PM2:5 during pregnancy disrupt fetal devel-
opment involve changes to the maternal or placental systems or
to both. Putative mechanisms based on prior research include
altered placental gene expression, increased oxidative stress, and
changes to maternal immune system status. Experiments using a
transgenic mouse model have shown insufficient levels of brain-
derived neurotrophic factor (BDNF), which promotes survival of
parasympathetic (i.e., cholinergic) neurons during embryonic de-
velopment, results in reduced cardioinhibitory vagal activity in
the brainstem and leads to decreased parasympathetic tone (Wan

Figure 3. Scatter plot of difference in RSAc (DRSAc) between sequential SFP-R episodes by PM2:5 (lg=m3) among infants enrolled in the Boston-based
PRISM study (n=237). Plotted DRSAc values are residuals from linear regression models between predictors (PM2:5, infant activity, race/ethnicity, maternal
stress, material hardship) and DRSAc added to the grand mean DRSAc for each episode. The lines correspond to the estimated coefficients in Table 2 and the
rug on the x-axis represents the distribution of PM2:5 concentrations. PM2:5, fine particulate matter; PRISM, PRogramming of Intergenerational Stress
Mechanisms; R, Reunion; RSAc, respiratory sinus arrhythmia [in ms/mL corrected for total respiratory cycle time (TTOT)]; SF, Still-Face; SFP-R, Repeated
Still-Face Paradigm.
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et al. 2014). Prenatal exposure to PM2:5 has been associated with
changes in expression of placental genes key to fetal neurodevel-
opment, including those involved in BDNF signaling pathways
(Saenen et al. 2015), suggesting PM2:5 has the potential to disrupt
central control of PNS activity. Further, although we are not
aware of studies that have investigated prenatal exposure to
PM2:5 in relation to anatomical changes in fetal brain structure,
prenatal exposure to cigarette smoke has been associated with
hypodevelopment of brainstem nuclei involved in autonomic
control (Lavezzi et al. 2016) and reduced RSA modulation in
infancy (Schuetze et al. 2013). Alternatively, it is plausible that
PM2:5 targets overlapping pathways between the autonomic and
stress response systems. A recent randomized, double-blind
crossover trial in humans found higher exposure to PM2:5 was
associated with significantly increased levels of cortisol, epineph-
rine, and norepinephrine (Li et al. 2017), which are end products
of hypothalamic–pituitary–adrenal (HPA) axis activation. Maternal
cortisol crosses the placenta leading to elevated levels in fetal circu-
lation (Benediktsson et al. 1997; Hennessy et al. 1982) and animal
models have demonstrated maternal catecholamines reduce uterine
blood flow (Barton et al. 1974) and placental perfusion (Salomon
et al. 2006), resulting in a sustained increase in fetal catecholamine
production (Gu et al. 1985). In sheep, elevated prenatal exposure to
these hormones has been associated with lower fetal blood pressure
and heart rate, as well as with significantly shortened increases in fe-
tal blood pressure during acute maternal stress, providing evidence
that cardiovascular responses to stress may begin in utero (Dreiling
et al. 2018).

Particulate air pollution is known to induce cellular oxidative
stress in the peripheral circulation via several pathways (Lodovici
andBigagli 2011;Miller et al. 2012; Risomet al. 2005; Rossner et al.
2007). Recently, PM2:5 exposure during pregnancy has been associ-
ated with elevated oxidative stress at the maternal–fetal interface, as
indicated by significantly increased levels of 3-nitrotyrosine in the
placenta (Saenen et al. 2016). Likewise, cigarette smoke during
pregnancy has been associated with elevated markers of oxidative
stress not only inmaternal blood but also in placental tissue and cord
blood (Aycicek and Ipek 2008; Aycicek et al. 2011). These findings
suggest environmentally induced changes in the maternal milieu
may translate to the intra-uterine environment. In adults, reactive ox-
ygen species have been shown to play a role in development of auto-
nomic dysfunction, including disruption to central cardiovascular
regulation (Hirooka et al. 2010). During fetal development, corre-
lates of oxidative stress have been linked to programming of ANS
dysfunction in rodent (Danson and Paterson 2006; YC Wu et al.
2011) and primate (Duncan et al. 2009; Slotkin et al. 2011) models.
Taken together, thesefindings support that increased oxidative stress
levels may be one putative mechanism through which particulate
pollution alters early life programming of autonomic balance.

The PNS plays a key role in anti-inflammatory responses
(Czura and Tracey 2005; Tracey 2002), with multiple studies
demonstrating inverse correlations between C-reactive protein
(CRP), a marker of acute systemic inflammation, and vagal tone
in adults (Carney et al. 2007; Frasure-Smith et al. 2009; Haensel
et al. 2008; Lampert et al. 2008). In murine models, exposure to
PM2:5 or diesel exhaust particles has been shown to upregulate
pro-inflammatory markers in the placenta [interleukin-6 (IL-6),
tumor necrosis factor-alpha (TNFa), IL-1b] (Auten et al. 2009,
2012; Fujimoto et al. 2005) and fetal brain (Bolton et al. 2012).
In humans, exposure to PM has been associated with elevated
IL-1b in cord blood (Latzin et al. 2011) and increased levels of
maternal (Lee et al. 2011) and fetal (van den Hooven et al. 2012)
CRP. Based on these findings, it is plausible that prenatal expo-
sure to PM2:5 triggers activation of anti-inflammatory neural cir-
cuits, with potential downstream consequences for programming

of other PNS-controlled pathways (i.e., parasympathetic outflow
to the heart).

We are not aware of experimental animal research that has
directly investigated the effects of PM2:5 exposure during preg-
nancy on offspring autonomic parameters. However, several stud-
ies using rodent models have suggested that maternal exposure to
PM2:5 during pregnancy can program other key physiological
systems, including cardiovascular, renal, and metabolic systems,
independent of offspring exposure during postnatal life. For
example, adult offspring of dams exposed to PM2:5 throughout
pregnancy show evidence of altered cardiac volume, cardiac
inflammation, electrical remodeling, and significant cardiac dys-
function (Gorr et al. 2014; Stapleton et al. 2018; Tanwar et al.
2017). Likewise, murine research has linked later life metabolic
dysfunction with gestational PM2:5 exposure. Specifically,
research has shown that adult offspring prenatally exposed to
PM2:5 present with significantly altered b cell function and mor-
phology and impaired glucose tolerance (Chen et al. 2018).
These offspring also show significantly decreased birthweight,
but increased adiposity and body weight among males (Chen et al.
2017). Evidence of prenatal reprogramming by PM2:5 also
extends to the renal system; research in rats suggests that adult
offspring of dams exposed to PM2:5 via oropharyngear drip dur-
ing pregnancy have impaired renal dopamine D1 receptor-
mediated sodium excretion and increased blood pressure (Ye et al.
2018). Although these studies do not provide direct experimental
evidence to support our findings or hypothesis of a prenatal pro-
gramming mechanism, they suggest that maternal exposure to
PM2:5 during pregnancy has the potential to disrupt offspring
physiological systems independent of direct postnatal exposure.
Given putative differences in PM2:5 exposure pathways and bio-
logical mechanisms between the prenatal and postnatal periods,
including little evidence of a correlation between direct infant ex-
posure and biologically relevant effects of maternal exposure, we
do not conceptualize infant PM2:5 exposure as a confounder of
prenatal PM2:5–infant RSA associations. The results of sensitivity
analyses examining models additionally controlling for postnatal
PM2:5 exposure a) on the day of RSA testing and b) averaged
between birth and RSA testing further support that postnatal ex-
posure does not confound the prenatal PM2:5 −RSAc association
that we observed in the PRISM sample.

This study is one of the first to examine prenatal exposure to
ambient PM2:5 in relation to early life autonomic function, which
we assessed in a controlled laboratory environment. We measured
RSA during the SFP-R, which is considered the gold-standard pro-
tocol for eliciting vagal withdrawal in infants and is commonly
coupled with assessment of physiological measures (Adamson and
Frick 2003; Mesman et al. 2009). Assessing HRV using an electro-
physiological approach parallel to adult studies is challenging in
young infants given their rapid underlying heart and respiration
rates. We were able to improve precision of RSA values by correct-
ing for respiration using our previously validated approach (Ritz
et al. 2012), as well as adjusting for infant activity, which we coded
at a high temporal resolution (10-s intervals). As is typical given
challenges with obtaining valid cardiac data from young children,
we were unable to use data from 53 infants due to excessive respira-
tory artifacts (n=49) or technical problems with the equipment
(n=4), which reduced our power to detect associations with PM2:5.

The high predictive accuracy of our 1× 1 km–resolution spa-
tiotemporal land-use regression model for estimating PM2:5
exposure is expected to minimize measurement error and conse-
quent downward biases in effect estimates. However, our use of
maternal residential location to predict individual PM2:5 exposure
may have introduced misclassification among mothers who spent
substantial time away from the home. It is possible that maternal
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time spent away from home could be positively (i.e., maternal
employment outside the home leading to better socioeconomic
circumstances and more household resources) or negatively (less
bonding and direct interaction with baby during early life) related
to infant autonomic reactivity to stress. Given these uncertainties,
we are unable to speculate how potential misclassification would
affect observed associations.

In the PRISM cohort, pregnancy-averaged PM2:5 concentrations
(maximum: 10:3 lg=m3) are lower than the U.S. EPA National
Ambient Air Quality Standards annual limit (i.e., 12:0lg=m3), sug-
gesting exposure reflects that of the general U.S. population; how-
ever, our findings may not be generalizable to regions with higher
ambient PM2:5 levels. In addition, althoughwe view the sociodemo-
graphic diversity of the sample, including a large representation of
minority and lower income families, as a strength of this research,
our findingsmay not be generalizable tomore racially homogenous,
rural communities. Likewise, given that we examined autonomic
tone only once, at approximately 6 months of age, it remains
unknownwhether our findingswill extend to later childhood.

Previous research in adults has documented associations
between recent (hours) exposure to PM2:5 and changes in resting
HRV (Breitner et al. 2019; He et al. 2011; S Wu et al. 2011;
Zanobetti et al. 2010). Unfortunately, we were not able to monitor
PM2:5 levels in the testing room during the SFP-R. However, all
laboratory procedures took place in the same climate-controlled,
indoor testing roomwith no windows open to the ambient environ-
ment, reducing the likelihood of fluctuations in indoor PM2:5 lev-
els. In addition, in sensitivity analyses, adjusting for short-term
postnatal PM2:5 exposure did not attenuate associations between
prenatal PM2:5 and measures of RSAc. Likewise, including aver-
age postnatal PM2:5 exposure during the first 6 months of life as a
covariate did not substantially alter associations between prenatal
PM2:5 and RSAc. Importantly, if there is misclassification in our
measure of postnatal PM2:5 (e.g., due to variability in the amount
of time infants spend outdoors), it is possible that uncontrolled, re-
sidual confounding by postnatal exposure remains. In addition,
because the precise biological mechanisms linking maternal expo-
sure to PM2:5 during pregnancy with changes in infant RSA are
unknown, it is possible fetal exposure to the biologically relevant
consequences of maternal PM2:5 exposure is misclassified due to
inter-individual variability in maternal biology. As with all obser-
vational studies, there is also a possibility for residual confounding
by unmeasured factors related to both PM2:5 and RSA. For exam-
ple, it is plausible that cultural differences not captured by race/eth-
nicity could influence where a mother resides and may also relate
to parenting styles, which in turn could be linked to infant auto-
nomic reactivity during the SFP-R.Wewere not able to investigate
associations between RSA and other air pollutants (e.g., ozone,
carbon monoxide, nitrogen oxides, sulfur dioxide, elemental car-
bon) that may co-vary or interact with PM2:5 (Buteau andGoldberg
2016). Future research that is able to investigate combined expo-
sures to these pollutants is needed to better understand how mix-
tures of ambient air pollutants impact the developing autonomic
and cardiovascular systems. In addition, although we had informa-
tion on postnatal exposure for a subset of infants, we focused anal-
yses on gestational exposure given our interests in understanding
prenatal programming effects. Future research investigating PM2:5
exposure during infancy and studies evaluating whether the mech-
anisms underlying associations differ depending on the timing of
exposure (e.g., prenatal vs. postnatal) will contribute to our under-
standing of how early life PM2:5 exposure impacts autonomic sys-
tem development and function.

In summary, our findings support previous research con-
ducted in older children and adults that has found PM2:5 is inver-
sely associated with HRV and suggest that environmentally

induced disruption of autonomic tone may extend to the prenatal
period. Putative mechanisms include altered immune function,
endocrine signaling, enhanced oxidative stress, or disruption of
central control of PNS activity at the level of the brainstem or a
combination of these mechanisms potentially via altered placenta
gene signaling pathways. Although it is difficult to interpret the
physiological relevance associated with the degree of change we
observed, previous research has linked lower RSA and reduced
PNS withdrawal with a number of chronic diseases and psycho-
pathologies (Bylsma et al. 2014; Clamor et al. 2016; Dekker et al.
2000; Gangel et al. 2017; Graziano et al. 2011; Jurysta et al.
2010; Kemp et al. 2010; Koenig et al. 2016; Masi et al. 2007).
These findings, in combination with increasing worldwide expo-
sure to PM2:5, emphasize the importance of examining early life
exposure to PM2:5 in relation to autonomic outcomes. However,
until these preliminary findings are replicated by future studies, it
is critical they be interpreted with caution.
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