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Abstract: Current neuroscientific research has shown that the brain reconfigures its functional interac-
tions at multiple timescales. Here, we sought to link transient changes in functional brain networks to
individual differences in behavioral and cognitive performance by using an active learning paradigm.
Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindi-
vidual behavioral variability was quantified with a learning rate measure. By using a multivariate sta-
tistical framework (partial least squares), we identified patterns of network organization across
multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked
these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior
network connectivity was present early in the trial for fast, and later in the trial for slow performers.
In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal
regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in
the posterior network were correlated with visual/spatial scores obtained from independent neuropsy-
chological assessments, with fast learners performing better on visual/spatial subtests. No relationship
was found between functional connectivity dynamics in the memory network and visual/spatial test
scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive,
and neurophysiological), we report that individual variations in learning-related performance change
are supported by differences in cognitive ability and time-sensitive connectivity in functional neural
networks. Hum Brain Mapp 37:3911–3928, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Human learning and memory are complex and highly
adaptive cognitive processes. When given new tasks to

learn, individuals tend to employ unique behavioral and

neural strategies [Iaria et al., 2003; Poldrack et al., 2001;

Sanfratello et al., 2014] that often reflect inherent predispo-

sitions [Luck and Vogel, 2013] and cumulative experiences.

Additional Supporting Information may be found in the online
version of this article.

Contract grant sponsor: Canadian Institutes of Health Research;
Contract grant sponsor: James S McDonnell Foundation; Contract
grant sponsor: Ontario Mental Health Foundation.

*Correspondence to: Zainab Fatima; Rotman Research Institute,
Baycrest Centre, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada.
E-mail: zee.fatima1@gmail.com

Received for publication 29 December 2015; Revised 23 May 2016;
Accepted 2 June 2016.

DOI: 10.1002/hbm.23285
Published online 29 June 2016 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 37:3911–3928 (2016) r

VC 2016 Wiley Periodicals, Inc.



Accurate differentiation of neural mechanisms that give
rise to behavioral and cognitive flexibility must take into
account individual differences [Bassett et al., 2015; Braver
et al., 2010]. This line of inquiry is valuable for developing
personalized therapies to remediate cognitive impairments
across the lifespan (from development to aging); and for
creating educational materials that enhance performance
for different learning styles. In this study, our main goal
was to obtain comprehensive features (behavioral, cogni-
tive, and neurophysiological) that highlighted individual
differences in learning novel associations using data-
driven methods.

Conditional associative learning paradigms [Law et al.,
2005; Mattfeld and Stark, 2011; Petrides, 1985; Toni and
Passingham, 1999], in which participants actively decipher
correct relationships between stimuli and responses, are
well-suited for examining individual variability. During
the learning process, individuals transition from an early
exploratory phase where responses are mainly driven by
trial-and-error to a later automated phase where responses
are retrieved from memory. Transitions from trial-and-
error to asymptotic performance occur at variable rates
across individuals but the trajectory of learning can be
quantified for interindividual comparison [Buchel et al.,
1999]. In conjunction, neuropsychological test batteries can
offer more standardized indices of comparing cognitive
skills across individuals. Here, our first aim was to gener-
ate composite profiles of learners using their online per-
formance (e.g., accuracy, speed of learning) and intrinsic
cognitive ability (e.g., scores on several subtests); and sub-
sequently link these profiles to time-sensitive functional
network organization in the brain.

Previous neuroscientific research posits that adaptive
cognitive control depends on coordination of information
across local and distributed brain sites [Bressler and Tog-
noli, 2006; McIntosh, 2000]. This integrative property of
the human brain, as expressed in large-scale functional
network interactions (functional connectivity), can be
explored in multiple dimensions (e.g., spatiotemporal,
spectral, topological, etc.) during active learning [Bassett
et al., 2011, 2015; Brovelli et al., 2015]. Our main focus was
to establish the link between whole-brain functional con-
nectivity derived from two different temporal scales
(across the learning session, minutes; within trials of learn-
ing, milliseconds) with individual differences in perform-
ance measures (rate of learning) and cognitive ability
(neuropsychological test scores). While support for time-
varying analyses of connectivity are growing in the litera-
ture [Allen et al., 2014; Di and Biswal, 2015; Fu et al., 2013;
Handwerker et al., 2012; Hutchison et al., 2013], the applic-
ability of these methods for understanding brain–behavior
relationships still remains to be determined.

We made several methodological choices in this study
to enable us to assess relationships across multiple indices
of associative learning (speed, accuracy, cognitive skill,
functional network organization at two time scales). First,

we acquired neurophysiological data with magnetoence-
phalography (MEG), a neuroimaging modality with good
spatial and temporal resolution. We also adopted an anal-
ysis method that was sensitive to transient changes in
whole-brain network dynamics [Allen et al., 2014]. Rather
than calculate functional connectivity between source pairs
over the entire time series [Friston, 1995], connectivity was
computed in short time windows spanning the duration of
a learning trial (see review of method: Hutchison et al.
[2013]). Patterns embedded in multidimensional data were
extracted and validated using partial least squares (PLS)
[McIntosh and Lobaugh 2004]. PLS is optimized to identify
relationships within multidimensional MEG data [Cheung
et al., 2016] and has successfully been used in a wide
range of MEG studies on cognition [Duzel et al., 2003; Fat-
ima et al., 2013; Hopf et al., 2013; McIntosh et al., 2013;
Misic et al., 2010, 2014]. By employing a combination of
methods (novel and typical), we sought to identify holistic
(behavioral, cognitive, and neurophysiological) markers of
individual differences in acquiring novel associations.

MATERIALS AND METHODS

Participants

Fourteen right-handed young adults (8 female) between
the ages of 19 and 30 (mean age: 22 6 2 years) participated
in the study. All participants had normal to corrected vision.
Exclusion criteria included any metal implants, neurological,
psychiatric, and substance abuse-related problems. Partici-
pants gave consent in accordance with the joint Baycrest
Centre-University of Toronto Research Ethics Committee.

Stimuli and Apparatus

Two types of visual stimuli were used: scenes and colors.
Four scene pairs were chosen from a photograph repository
[Riggs et al., 2009] based on the similarity of their composi-
tion (content, lines, edges, landmark features, etc.). There
were 2 fireplace scenes (indoor), 2 kitchen scenes (indoor),
2 mountain views (outdoor), and 2 seascapes (outdoor). All
scenes were converted to grayscale with equal mean lumi-
nance so that a color-based strategy for encoding scene con-
tent was discouraged and instead, participants had to focus
on binding the spatial elements of the scene (important for
associative learning, see later discussion). The second set of
stimuli consisted of circles in 8 distinct colors: red, blue,
yellow, green, magenta, cyan, orange, and pink.

All visual stimuli were displayed with an NEC projector
(model NP215) on a translucent screen that hung above
the MEG scanner. Distance of the screen from the partici-
pant was approximately 1.68 m with horizontal and verti-
cal angles of 50.58 and 39.58, respectively. Scenes filled the
entire screen display at a resolution of 1024 3 768 pixels
while colors were shown on a black background, placed on
the left and right side of a fixation cross in the center of the
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screen (see Fig. 1 for schematic). A white square (38 3 38
pixels) was projected on the top right-hand corner of each
screen with a visual stimulus, outside the participant’s field
of view. Luminance changes, detected by a photodiode, sig-
naled the presence or absence of a visual stimulus (white
square when stimulus was on, no square (black space)
when stimulus was off). Photodiode pulses recorded by the
acquisition computer were later used to obtain precise tim-
ing information about stimulus events in line with best
practices [Gross et al., 2013]. Participants responded to the
colored circles with left or right button press (index finger).
Fiber-optic response paddles recorded responses. These
devices were constructed at the Rotman Research Institute
with custom nonmagnetic parts. Stimulus delivery and
response data collection were enabled by Presentation soft-
ware (version 14.5, Neurobehavioural Systems Inc.).

Task Design Parameters

MEG data recordings consisted of two task blocks—
associative learning (experimental task) and response

selection (control task)—with 152 trials of each type (Fig.
1). In the associative learning task, participants had to
learn the conditional relationship between scene–color
pairs (e.g., fireplace 1-red circle, fireplace 2-blue circle).
The conditional associative relationships in the task were
deterministic: same color pair (e.g., red, blue) was always
associated with the same scene pair (e.g., fireplace 1, 2).
Participants had to learn a total of 4 scene–color associa-
tions (with equal probability of 0.25, each scene presented
38 times) using trial-and-error. Scenes were presented one
at a time for 500 ms followed by a delay of 750 ms. Then,
the color pair would be displayed for up to 1.2 s during
which time participants had to select a color (left/right
button press to indicate left/right color choice). A particu-
lar color was equally likely to appear in the left or the
right spatial location (separated by fixation cross) and the
location had no relevance for learning. After responses
were made, participants received on-screen written feed-
back (correct, wrong). The trial ended with a randomized
intertrial interval between 4.5 and 6 s. The response selec-
tion task was designed as a control task with no learning
component. Participants were informed of which colors

Figure 1.

Task parameters. Details related to experimental design are

shown here for the associative learning and response selection

task. In associative learning, participants have to learn the cor-

rect deterministic relationship between a particular scene and

a particular color. The same color pair (e.g., red, blue) is

always associated with the same scene pair (e.g., fireplace 1,

2). Each scene is presented separately (with equal probability

of 0.25, each scene presented 38 times) but the colors appear

in pairs. Participants receive onscreen feedback (correct/

wrong) after response execution. Associations between color

pairs and scene pairs are assigned randomly for each partici-

pant and unique stimuli are used for each task. In the

response selection task, participants are told which color to

select in the instructions. Scenes in the response selection

task bear no relationship to upcoming color pairs. For simplic-

ity, 2 out of 4 stimulus pairs are displayed and the scenes are

replaced with text. The hand symbol indicates the response

chosen for this example. [Color figure can be viewed at

wileyonlinelibrary.com]
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would yield “correct” feedback. Trial structure for the con-
trol task was identical to the learning task except scenes
were presented randomly and were not related to upcom-
ing color pairs.

Each task (associative learning, response selection) had a
unique set of stimuli, taken at random from the stimulus
pool (4 scene pairs, 4 colors). Scene–color assignments
were fully randomized across participants, scene presenta-
tions were randomized within experimental sessions, and
the order in which tasks were performed was also counter-
balanced (e.g., associative learning first, response selection
second; or vice versa).

MEG Data Acquisition

MEG recordings were acquired at Baycrest Centre in a
magnetically shielded room with a 151-channel whole-
head axial gradiometer system (VSM-Med Tech Inc.,
Coquitlam, BC, Canada) that had receiver coils uniformly
spaced approximately 3 cm apart on a helmet-shaped
array. Participants lay in supine position during data
acquisition to minimize motion artifacts. Two MEG record-
ing sessions, 18 min each, took place (one for each task).
The data sampling rate was 625 Hz. Head position was
documented at the beginning and the end of every data
session with 3 indicator coils (nasion, left/right preauricu-
lar). Motion tolerance was set to 0.5 cm and all partici-
pants fell within this limit.

In addition to MEG, a structural magnetic resonance
image (MRI) was also acquired for coregistration purposes.
This image was a 3D MPRAGE T1-weighted pulse
sequence (echo time, 2.6 ms; repetition time, 2 s; 256 3 256
acquisition matrix; voxel size,1.0 3 1.0 3 1.0 mm) from a
3T magnet (Siemens Magnetrom TIM Trio Whole Body
scanner) located at Baycrest Centre.

Debriefing Questionnaire and

Neuropsychological Test Battery

Following data acquisition, participants filled out a
debriefing pamphlet that had questions related to task dif-
ficulty, type of strategy used to learn novel associations,
and an explicit statement describing the exact scene–color
relationships set by the experimenters. Participants did not
find the tasks difficult: mean ratings were 1.93 6 0.70 on a
five-point scale (1 for easy, 5 for very difficult). Partici-
pants also explicitly named the scenes presented to them
and informed us of the exact relationship between scene–-
color pairs.

To link behavioral performance during learning to inde-
pendent measures of cognitive ability, a series of standar-
dized neuropsychological tests were administered. Order
effects were minimized by counterbalancing the test
sequence across participants. The battery included tests for
memory (Designs and Logical Memory subtests were
taken from the Wechsler Memory Scale – IV [Wechsler,

2009]) and executive function (Phonemic Fluency - word
generation by letters F, A, S in 1 min [Spreng et al., 2013],
and Digit Span (Forward, Backward, Sequence) from the
Wechsler Adult Intelligence Scale [Wechsler, 2008]). Mean
scores in each subtest are shown in Supporting Informa-
tion, Table S1.

Neuropsychological data was first analyzed using pair-
wise correlations to determine the structure of dependen-
cies among test scores. Results from this preliminary
analysis suggested grouping of test scores into three clus-
ters (Supporting Information, Fig. S1). A more detailed
clustering analysis on the data was performed with princi-
pal component analysis (PCA).

Dimensionality Reduction of

Neuropsychological Data

PCA helped identify which test categories shared com-
mon cognitive features and simultaneously reduced
dimensionality of data into fewer variables that could be
correlated with behavioral indices from the study (learning
rate, in particular). The output from PCA was a set of
orthogonal principal components (PCs: linear combination
of original variables) that were ranked in order of the var-
iance they accounted for in the original data [Abdi and
Williams, 2010]. Not all computed PCs were retained for
further analysis and here, the decision was made to retain
PCs based on the consensus reached between the Scree
plot and Kaiser’s rule [Jolliffe, 2002].

Learning Curve Approximation

Every learning trial was scored as correct (1) or incorrect
(0). To capture behavioral changes that spanned the entire
learning session, accuracy (proportion of correct responses)
was plotted on a continuum with temporal smoothing.
Moving average windows consisting of different trial
lengths (4, 6, 8, 10, and 12) were systematically evaluated
across individuals. The goal was to obtain a smoothing
factor (number of trials) that provided the best single
parameter fit of the exponential function for all individu-
als. The function taken from Buchel et al. [1999] for esti-
mating learning rate was

f xð Þ512e2kx; 0 < k < 1

The k parameter was bound between 0 and 1 with values
near 0 indicating slower rates. On the graph, higher values
of k translated into a function with steeper curvature (see
Fig. 3 for example). The Curve Fitting toolbox (The Math-
Works, http://www.mathworks.com/products/curvefit-
ting/) was used for estimating participant-specific curves.
The fitting method for a custom exponential equation was
set to nonlinear least squares, with robust least squares
regression (LAR), to reduce the impact of extreme values.

The default algorithm (trust-region) for bound coeffi-
cients was used for fitting. The procedure for each
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nonlinear fit was as follows: a starting value was given for
a coefficient and a fitted curve was produced. Next, the
coefficient was adjusted to determine whether the fit
improved (default settings, e 5 0.1). This iterative process
continued until the fit converged or the maximum number
of model evaluations/fit iterations was reached. For the
present dataset, the fit converged before 600 function eval-
uations/400 iterations (default settings).

Other indices of goodness of fit that were estimated by
the toolbox included r-square, standard error (root mean
square error, RMSE) and 95% confidence intervals. These
three indices are listed in Table I in addition to the free
parameter.

Correlation of Behavioral Measures

A correlation analysis was performed to relate individ-
ual cognitive ability to observed behavioral performance
during the MEG session. Component scores were calcu-
lated by projecting the variables onto the PCs [Abdi and
Williams, 2010; McIntosh and Misic, 2013] and served as
proxies for individual cognitive capacity. The rate parame-
ter from the curve fitting procedure provided a metric for
associative learning ability. Score–rate correlations were
statistically evaluated with resampling metrics: permuta-
tions and bootstraps.

Ten thousand permutation tests were used to assess
whether a set of correlations were significantly different
from chance [Good, 2000]. For every permutation, the cor-
respondence between PC scores and the rate parameter

were randomized without replacement. Next, the score–
rate correlations were calculated to generate a null distri-
bution of the correlations. A probability value was
assigned based on the number of times the permuted coef-
ficient exceeded the original coefficient. If the permuted P

value was less than a critical alpha of 0.05, the score–rate
relationship was deemed significantly different from zero.

Bootstrap estimation provided an index of the robust-
ness of the score–rate correlation across participants [Efron
and Tibshirani, 1986]. For each of the 5000 bootstraps, the
correspondence between PC scores and learning rate were
randomized with replacement. The bootstrap distribution
was used to derive confidence intervals (90%) for the
mean score–rate correlation.

An additional correlation analysis verified whether the
subjective experience of participating in the learning task
(difficulty ratings from debriefing questionnaire) was
related to the rate of acquiring new associations. No statis-
tically significant relationship (r 5 0.14, P 5 0.63) was
found between the rate parameter and task difficulty
ratings.

Data Preprocessing and Analysis Workflow

Schematic summary of preprocessing and data analysis
methods are included in Supporting Information (Fig. S2).

MEG Data Preprocessing

Magnetoencephalograms were corrected for external
noise using third-order gradiometrization and DC offsets
were removed from the data. To examine activity changes
strictly in the time domain, similar to Diaconescu et al.
[2011], Moses et al. [2009], and Urbain et al. [2015], the
data was band-pass filtered over a broad spectral range
(0.5–55 Hz). Artifacts were removed from each task sepa-
rately with independent components analysis [Delorme
and Makeig, 2004]. The rank of the covariance matrix was
reinstated using the smallest nonzero eigenvalue for regu-
larization [Fatima et al., 2013].

Two methodological choices were made with regards to
the temporal scales selected from the learning task. First,
within a trial, the time interval was restricted to the encod-
ing phase of the scene (up to 600 ms post-scene onset)
with a baseline of 360 ms pre-stimulus onset. This decision
was based on previous MEG research wherein scene per-
ception was indexed by activity in medial temporal and
parieto-occipital structures 200–300 ms after stimulus pre-
sentation [Sato et al., 1999]. Second, to observe changes in
scene encoding across the learning session, data was
divided into early learning trials (1–33) and late learning
(67–100) (see group differences section for clarification). It
was hypothesized that during initial learning, spatial ele-
ments of the scenes would have to be bound together
whereas later in learning, scene configurations could be

TABLE I. Goodness of fit values for

learning rate estimation

Group k R-square RMSE Lower CI Upper CI

Fast Learners

1 0.1367 0.9848 0.0128 0.1340 0.1395
2 0.1831 0.9904 0.0078 0.1803 0.1859
3 0.1373 0.9952 0.0071 0.1358 0.1389
4 0.3008 0.9928 0.0041 0.2970 0.3047
5 0.1690 0.9977 0.0046 0.1676 0.1704
6 0.2149 0.9906 0.0069 0.2116 0.2181
7 0.1671 0.9920 0.0074 0.1649 0.1694
8 0.1880 20.1840 0.1052 0.1489 0.2271
a 0.1830 0.9888 0.0142 0.1782 0.1883
Slow Learners

9 0.0343 0.9860 0.0236 0.0337 0.0349
10 0.0610 0.9968 0.0106 0.0604 0.0617
11 0.0485 0.8719 0.0770 0.0452 0.0518
12 0.0534 0.6368 0.1178 0.0476 0.0593
13 0.0431 0.6186 0.1277 0.0385 0.0477
14 0.0225 0.1725 0.1886 0.0197 0.0254

Abbreviations: k, learning rate; RMSE, root mean square error; CI,
confidence intervals.
aCurve fits for participant # 8 were performed twice with different
smoothing parameters (see “Results” for further details). Partici-
pant numbers match those in Figure 3.
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recognized and compared for correct retrieval of correct
scene–color associations [Olsen et al., 2012].

Whole-brain source analysis was carried out with the
event-related vector beamformer [Quraan and Cheyne,
2010; Sekihara et al., 2001] with a multisphere forward
model [Lalancette et al., 2011]. Functional images were
produced by applying beamformer weights to each voxel
(21,000 brain-only voxels at 0.4 cm resolution) over a 40
ms sliding window with 20 ms overlap (similar to Mills
et al. [2012]). For a 600 ms task epoch, this resulted in 29
consecutive time windows. Each voxel’s activity within a
time interval was computed as a pseudo-z statistic [Robin-
son and Vrba, 1999]. Volumetric images for individual
time slices were transformed to MNI space using an affine
transformation and 4d-spline interpolation in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).
After spatial normalization, images were concatenated
over time into a 4D dataset, viewable in AFNI software
(http://afni.nimh.nih.gov/afni/). Group maps were gener-
ated by averaging functional images on a timepoint-by-
timepoint basis across individuals.

Identification of Whole-Brain Activations

PLS, a multivariate statistics technique that finds spatio-
temporal patterns that covary optimally with a set of
experimental conditions/groups, was used for brain data
analysis [McIntosh and Lobaugh, 2004; McIntosh and
Misic, 2013]. Data is first organized into a two-dimensional
matrix using a nested format (participants within condi-
tions: early, late; within groups: fast, slow) in the rows;
and space by time (pseudo-Z values for every voxel for all
time samples) vector in the columns.

The input data matrix was first mean-centered by sub-
tracting the grand mean per time point (average across all
participants/conditions) from each participant’s condition-
specific data. This deviation matrix served as the input for
singular value decomposition (SVD). SVD produced a set
of orthogonal latent variables that had three components:
(i) design scores: relationship between experimental
groups/conditions represented by an optimal contrast, (ii)
participant brain scores: weighted contribution of each
participant’s original spatiotemporal patterns that express
the contrast, and (iii) singular value: covariance between
(i) and (ii). Effect size of the latent variable or the propor-
tion of cross-block covariance can be calculated by the
fraction: squared singular value by sum of squared singu-
lar values from SVD.

Latent variables were statistically evaluated using two
independent resampling methods: permutations and boot-
straps. Permutation tests evaluated whether a specific
latent variable was significantly different from chance
[McIntosh et al., 1996]. Bootstrapping evaluated the
reliability of brain voxel saliences (or weights) that contrib-
uted to a latent variable [Efron and Tibshirani, 1986;
McIntosh et al., 1996]. The image constructed from

bootstrapping was essentially a nonparametric statistical
map in PLS. These maps were thresholded at a bootstrap
ratio (BSR) of 6 2.5 (scores greater than two and half times
the standard error). For group analysis of experimental
effects, 500 permutations and 350 bootstraps were
conducted.

Functional Connectivity Analysis

A clustering heuristic on the group PLS was used to
select regions for functional connectivity analysis. Only
those brain areas that showed robust activity (high boot-
strap ratio, i.e., greatest overlap across participants) within
a spatial cluster (clusters were subscribed using a mini-
mum distance between activity peaks and minimum voxel
size) at multiple time points (contiguous time samples in
the trial epoch) were considered. The built-in clusterize
function in AFNI (http://afni.nimh.nih.gov/afni/) was
used to select voxels that were at least 2 cm apart and had
a minimum of 20 contiguous voxels. The clusters were
then subjected to temporal clustering whereby regions that
showed sustained activity at multiple time intervals (3
contiguous time samples (sustained activity over 80 ms) or
more than 5 time samples within a trial) were retained.
Source waveforms were extracted from locations that
passed spatiotemporal clustering for each participant. Pair-
wise correlations between sources were computed at milli-
second (3 time bins, 200 ms each, based on dominant
patterns of group differences within these time bins – see
Supporting Information, Fig S2 for details). Correlations
were arranged in vector format and analyzed with PLS.
This omnibus approach enabled us to examine time-
sensitive global variations in functional coupling/decou-
pling in the same analysis for both groups (fast, slow).

Four sets of PLS analyses were conducted to test the
main effect of different phases in the learning process
(early, late) across groups (analyses 1 and 2 as follows)
and the interaction between group and phase of learning
(analyses 3 and 4): (1) fast versus slow learners in early
learning, (2) fast versus slow learners in late learning, (3)
fast learners in early learning versus slow learners in late
learning, and (4) fast learners in late learning versus slow
learners in early learning. These pairwise analyses were
computed to find patterns where fast and slow learners
showed similarities/differences in their behavioral per-
formance during the learning process.

RESULTS

Behavioral Performance

A 2 (response time: learning, choice reaction time) 3 2
(accuracy: learning, choice reaction time) repeated meas-
ures ANOVA was performed to test a potential task-
dependent speed-accuracy tradeoff. Mean response times
and accuracy for both conditions are shown in Figure

r Fatima et al. r

r 3916 r

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://afni.nimh.nih.gov/afni
http://afni.nimh.nih.gov/afni


2(a,b). Overall accuracy was higher for choice reaction
time (F(1,13) 5 13.93, P< 0.005) but there were no significant
response time difference between tasks (F(1,13) 5 0.88,
P> 0.1). Accuracy was plotted as a function of trial num-
ber to see if there were progressive changes over time
(Fig. 2c). By about trial 100, the learning curve was indis-
tinguishable from choice reaction time (RT) suggesting
that accuracy differences were mainly driven by early tri-
als. From this point forward, the response selection task
was not considered for further analysis since its primary
function was to identify the part of the learning curve
where participants were actively forming associations
between stimuli.

Rate Parameter Estimation

Each individual had a unique trajectory for acquiring
new associations (Fig. 3). Based on average behavioral
performance obtained from comparing response selection
to associative learning tasks (Fig. 2c), only the first 100 tri-

als were considered the active period. An exponential
function was fit to individual accuracy curves to calculate
the rate of acquisition. Goodness-of-fit indices (Table I)
indicated high r-square values, low RMSE, and tight confi-
dence intervals for 13 out of 14 participants only for the
smoothing factor of 10 trials. For learner 8, however, a
negative r-square value was obtained. Given that r-square
is defined as the proportion of variance accounted for by
the fit; in the event that the fit is poor, a negative r-square
value can be possible. The fit can be poor due to two prob-
able reasons: an inappropriate starting point for the itera-
tive fit or the lack of a constant term in the exponential
equation being used for fitting. The choice of the exponen-
tial function was based on previous application in the con-
text of learning [Buchel et al., 1999] and because this
function was successful in fitting data from 13 out of 14
participants, we examined more closely the starting point
of the fit and the smoothing parameters that data had
undergone as an initial data processing step. Learner 8
had the best fit for a smoothing factor of 6 trials, which

Figure 2.

Behavioral performance. Group means for all participants and

trials are shown here for (a) reaction time and (b) accuracy

measures. (c) Average learning curves show accuracy (propor-

tion correct) as a function of trial number for both task types

(see legend for color assignment). At 100 trials (marked with a

bar), learning performance reached asymptote. In (d), the num-

ber of trials was restricted to the cutoff from (c) and divided

into fast and slow learners (see Figure 3 for details) for associa-

tive learning only. [Color figure can be viewed at wileyonlineli-

brary.com]
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did not change dramatically the rate but boosted the
r-square value by a large margin (see a in Table I), possi-
bly because the starting value for the fit was more appro-
priate in this case and there were less outliers to fit

compared to the scenario with smoothing by 10 trials.
Rather than discount this participant’s data, we kept the
initial smoothing option of 10 trials. The rate parameter
was rounded to two decimal places for learner 8 for all

Figure 3.

Learning curves for all participants. Top panel: learners with

slow rate estimates (lower k). Bottom panel: learners with fast

rate estimates (higher k). Learners were divided into fast and

slow groups using a mean split (k 5 0.12). Participant number (in

green) for each curve plot is assigned based on the order list

from Table I. Smoothed accuracy values (y-axis) for trials (x-axis)

are shown as red dots with the blue curve representing the

exponential function fit to the data. [Color figure can be viewed

at wileyonlinelibrary.com]
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subsequent calculations. By making this assumption, fair
comparisons between all participants’ rate estimates could
be made.

Learner Profiles

Neuropsychological test data were analyzed with PCA
to uncover commonalities among test types and to reduce
data dimensions. The scree plot and Kaiser’s rule corrobo-
rated retention of the first three PCs which in total

accounted for 84% of the variance. Correlations between
the original variables and the component scores are shown
in Figure 4a. A cutoff of 0.7 (almost half of the variance in
the original variable accounted for by the component) was
applied. The first PC grouped phonemic word generation,
forward and backward digit span tests. These tests tend to
rely on maintenance in working memory. Only two tests,
both involving verbal memory where semantic details are
retained over short and long delays, were expressed in the
second PC. The last component was indicative of visual
and spatial ability since the design tests and the sequence

Figure 4.

Principal components and their relationships with learning rate.

(a) Component loadings for the first three principal compo-

nents at the 0.7 cutoff (red line). At this mark, more than half of

the variable’s variance is explained by the component. Colored

bars show the variables that surpass threshold; all other bars

are in gray. Different aspects of memory—working (purple),

verbal (green), and visual/spatial (orange)—are emphasized in

each component. For further details about individual test catego-

ries, see Supporting Information, Table S1. (b) Scatterplots

depict the relationship between learning rate (y-axis) and scores

for each component. The correlation coefficient (r) and the P

value (obtained from permutation testing) are also displayed

above each plot. Scatterplots show differentiation by group: fast

(blue) and slow (red). [Color figure can be viewed at wileyonli-

nelibrary.com]
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Figure 5.

Spatiotemporal brain activity patterns for fast and slow learners.

(a) and (b) outline the optimal contrast captured by the latent

variable and its expression in different brain regions. (a) Con-

trast shows group differences in activations irrespective of learn-

ing stage (early, late). Error bars indicate confidence intervals

(95%) derived from the bootstrap distribution. (b) MEG sources

that reliably expressed the contrast are visualized with Brain

Net Viewer [Xia et al., 2013] with spatial locations taken from

cluster peaks from group analysis. Average source amplitudes

(measured as pseudo-z) for time ranges (points to millisecond

conversion in legend) are displayed for each region in (c) with

the baseline indicated as the period before the grey line (scene

onset: 0 s). Time ranges where group differences were robustly

expressed (absolute bootstrap ratio of greater than 6 2.5) are

shown with green circles. Regions are labeled by hemisphere (L/

R) and abbreviations are available in the text. [Color figure can

be viewed at wileyonlinelibrary.com]
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digit span required complex manipulation of visual/spa-
tial material in memory.

Next, the component scores were correlated with the
rate parameter as a continuous measure (Fig. 4b). There
was a strong positive relationship (r 5 0.56) between the
speed of learning and the third PC (scatter plot is shown
in Fig. 4b). This positive correlation was the only one that
passed permutation testing (P< 0.05) and was also reliable
across participants (95% confidence bounds: [0.093 0.832]).

Group Differences in Spatiotemporal Activity

When the average estimate of rate (k 5 0.12) for the cur-
rent participant sample was calculated, it was obvious that
participants either acquired associations fairly quickly
(bottom panel, Fig. 3; fast means: 0.19 6 0.02 [standard
error of the mean]) or relatively slowly (top panel, Fig. 3;
slow means: 0.04 6 0.01). Given these data, we divided
participants into fast and slow groups rather than consider
the rate of acquisition as a continuous variable. Average
rates for fast and slow learners in the associative learning
task are the only ones depicted in Figure 2d.

To investigate this trend in brain data, participants were
assigned to two groups: fast and slow. Brain data was fur-
ther divided into equal sets of trials sampling the learning
process. This split was based on fast learners acquiring
associations quickly (during first 33 trials, see Fig. 2d) after
which point their performance accuracy was at ceiling. In
slow learners, performance accuracy approached ceiling
during later trials of learning (67–100 trials). By equating
the behavioral performance in these two groups, we could
uncover different neural strategies (network organizations)
that corresponded to differences in behavioral perform-
ance (i.e., rate of acquisition). The middle set of trials was
not considered here based on the assumption that there
would be greater variations in brain responses in this
period as slow learners explored different ways of acquir-
ing the correct conditional associations. This exploratory
phase (as seen by fluctuations in response accuracy) would
make it challenging to find overlapping brain activity pat-
terns across the slow group. On the other hand, perform-
ance of fast learners would have reached asymptote
during the middle period, and therefore, learners within
this group would possibly display more similar brain
activity patterns. Due to greater individual variability in
the slow group during the middle set of trials, a fair com-
parison between fast and slow learners would not be
made if these trials were considered.

Hypothetically, two patterns could be present in the
data—similar patterns of brain activity regardless of differ-
ences in behavioral performance for the two groups (fast
vs slow) or differences in brain activity that corresponded
to differences in behavior during the learning process
(e.g., fast early vs slow late). The PLS analysis identified a
single statistically significant latent variable (P< 0.05) that
emphasized group differences in brain activity (fast vs

slow). This latent variable accounted for 84% of the cross-
block covariance (Fig. 5a). Clusters that met spatiotemporal
criteria are shown in Figure 5b (see figure caption for
abbreviations). Group differences were expressed at
several time points for all clusters (Fig. 5c). The full list of
spatial locations in MNI coordinates (xyz in mm) corre-
sponding to the cluster peaks from group analysis was as
follows: GFi, inferior frontal gyrus [x: 36.0 y: 40.0 z: 28.0];
Cu, cuneus [x: 16.0 y: 292.0 z: 16.0]; PHG, parahippocam-
pal gyrus [x: 20.0 y: 243.0 z: 6.0]; Caud, caudate head [x:
12.0 y: 20.0 z: 4.0]; LPi, inferior parietal lobule [x: 244.0 y:
232.0 z: 40.0]; LPp, posterior parietal [x: 240.0 y: 268.0 z:
40.0]; PCC, posterior cingulate cortex [x: 216.0 y: 256.0 z:
8.0]; PCu, precuneus [x: 220.0 y: 260.0 z: 24.0]; MTG, mid-
dle temporal gyrus [x: 64.0 y: 240.0 z: 24.0]; STG, superior
temporal gyrus [x: 60.0 y: 24.0 z: 4.0]; GPrC, precentral
gyrus [x: 56.0 y: 8.0 z: 12.0]; GPoC, postcentral gyrus [x:
244.0 y: 228.0 z: 44.0].

Fast learners engaged some regions (R GFi, R Cu, L
LPp, R STG) earlier in the trial compared to slow learners.
For other regions (R MTG, R STG, R GPrC), the amplitude
was greater for fast learners later in the trial. Notably, infe-
rior frontal (R GFi), medial temporal (R PHG), and striatal
areas were more active in fast learners during the middle
of the trial. Also, these regions shared many time points
where the group difference was expressed reliably as indi-
cated by the BSR. As anticipated, spatiotemporal patterns
were complex and reflected transient network configura-
tions that took place within trials. However, we did notice
that there were distinct times within the trial where brain
responses were changing (see Supporting Information, Fig.
S2 for graph). Generally, brain scores are collapsed across
space and time, but by plotting participant brain scores on
a timepoint-by-timepoint basis, we noted that brain
responses changed within the scene encoding period in
increments of 200 ms. Therefore, these time bins were cho-
sen for subsequent connectivity analyses (see next section).

Network Organization at Multiple Time Scales

The regions that were selected in the first PLS were sen-
sitive to group differences in acquiring novel associations.
Time series from these spatial locations (Fig. 5b) served as
the input for network analysis at multiple time scales
(ms/min). Correlation matrices were computed for 6 con-
ditions in total: 2 groups (fast and slow) and 3 bins
(approximately 200 ms in length) within the trial repre-
senting the millisecond time range. To get the average con-
nectivity matrices, participant correlation data was
subjected to a Fisher transformation [Fisher, 1915]. This
procedure normalizes correlations that lie near the
extremes (61) [Fisher, 1921]. The transformed data was
averaged and then a reverse transform was computed to
obtain the mean correlation values.

Out of the four pairwise analyses computed, only one
analysis with fast learners using the first block of trials
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Figure 6.

Functional connectivity dynamics by learning stage and group

assignment. (a) Preasymptotic performance, indexed by the

shape of accuracy curve and overlap in error bars (standard

error of the mean), is displayed for the early trials during the

learning session for the fast group (blue) and the late set of

trials for the slow group (red). (b) PLS identified a significant

latent variable that captures an interaction effect between

groups (fast and slow) and time bins within a trial (t1–3). (c)

Robust expression of the PLS contrast (absolute bootstrap

ratio >2) are plotted in matrix format with sources in the

rows and columns. Source names follow the convention

reported in Figure 5. (d) Positive (red circles) and negative

(blue) expressions of the contrast in (b) are visualized with

Brain Net Viewer [Xia et al., 2013]. Strength and direction of

stable correlations are shown using values and pink/light blue

lines. [Color figure can be viewed at wileyonlinelibrary.com]
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and the slow learners using the last block of trials within
the active learning period was significant (P< 0.05). We
examined behavioral performance during these trials for
both groups and found that there was considerable over-
lap in the error bars (standard error of the mean);
although we could not calculate an accurate rate given
the decrease in data points from 100 to 33 (Fig. 6a). The
group/condition effect captured by the latent variable
showed an interaction between group assignment (fast
early, slow late) and time segments during scene encod-
ing; and accounted for 39% percent of the cross-block
covariance (Fig. 6b). The contrast illustrated in Figure 6a
was expressed in stable functional connectivity patterns

that were thresholded at 95% confidence bound from
bootstrapping procedures (Fig. 6c). The strength and
direction of connections were retrieved from the original
group-average correlation matrices for each condition
(Fig. 6d).

Functional connections that fast learners recruited early
in the trial epoch were the same connections that slow
learners recruited late in the trial epoch. For fast learners,
the correlation between L PCC and L LPi was strongest
(r 5 0.59) at early time bins (first 200 ms) but for slow
learners, posterior regions were functionally connected
(r> 0.3) and the strongest connection was between L Cu
and MTG (r 5 0.44) in the second time bin (200–400 ms).

Figure 7.

Functional connectivity dynamics and cognitive ability. Previously,

functional connectivity in each group was assessed at three con-

secutive time bins within a trial (t1: 0–200 ms, t2: 200–400 ms,

t3: 400–600 ms) with PLS (Fig. 6b). The main latent variable was

characterized by increased connectivity within the posterior

memory network in time bin 1 for fast learners (blue bar) and

time bin 3 for slow learners (red bar), compared to the connec-

tivity within the associative memory network in time bin 3 for

fast learners (blue bar) and time bin 1 for slow learners (red

bar; see Fig. 6d for details). Here, participant scores (extent to

which participant’s connectivity data expresses the latent vari-

able in Fig. 6d) against cognitive scores from neuropsychological

tests. (a) Participant scores associated with increased connectiv-

ity in the posterior memory network are correlated with visual/

spatial scores derived from the third principal component (see

Fig. 4b, last row). (b) Participant scores associated with

decreased connectivity in the associative memory network are

correlated with visual/spatial scores derived from the third prin-

cipal component. Correlation coefficients (r) and p values are

indicated on scatterplots. [Color figure can be viewed at

wileyonlinelibrary.com]
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By the third time bin (400–600 ms), the slow learners also
showed higher functional connectivity between L LPi and
L PCC (r 5 0.35), similar to the fast learners in first time
bin (0–200 ms).

Fast learners engaged the same functional connections
in the latter two-thirds of the trial (time bins 2 and 3) as
the slow learners in the first third of the trial (time bin 1).
Three regions—R GFi, R caud, and R PHG—were posi-
tively coupled for fast learners in time bin 2. In time bin 3,
coupling between R GFi and R caud increased (from
r 5 0.65 to r 5 0.78) and this was paralleled by a decrease
in coupling between R PHG and R caud (from r 5 0.62 to
r 5 0.48). For slow learners, R GFi was positively corre-
lated with R caud (r 5 0.5) and R caud and R PHG shared
a weak positive correlation (r 5 0.11).

Brain–Behavior Relationships

To more directly assess whether the recruitment of a
certain network configuration at a specific time in the
learning trial could be predicted from independent scores
cognitive ability, a post-hoc analysis was performed (Fig.
7). Note that the third principal component derived from
PCA had a positive correlation with the rate of acquisition
(Fig. 4b, last row). Scores on this component were corre-
lated with participant brain scores reflecting the positive
and negative expression of the contrast in Figure 6 (e.g.,
functional connectivity dynamics). There was a positive
correlation (r 5 0.60, P< 0.05 – determined from permuta-
tion testing) between the network connectivity in posterior
regions (referred to as the posterior network) and visuo-
spatial ability (Fig. 7a) for fast learners in time bin 1 and
slow learners in time bin 3 (positive expression of the con-
trast in Fig. 6b). There was no correlation between network
connectivity in prefrontal, striatal, and medial temporal
areas (referred to as the memory network) and visuospa-
tial skill (Fig. 7b) for fast learners in time bin 3 and slow
learners in time bin 1 (negative expression of the contrast
in Fig. 6b).

DISCUSSION

The majority of neuroimaging studies on human learn-
ing have focused on examining hemodynamic activity at
coarse time scales (seconds) in several regions including
medial temporal, striatal, and prefrontal regions [Poldrack
et al., 1999, 2001; Toni and Passingham, 1999; Hartley
et al., 2003; Iaria et al., 2003; Voermans et al., 2004; Law
et al., 2005; Moses et al., 2010; Sadeh et al., 2010; Mattfeld
and Stark, 2011]. In some of these experiments, strategic
differences between individuals performing a task have
been explored in selected regions that comprise memory
networks [Iaria et al., 2003; Law et al., 2005; Mattfeld and
Stark, 2011; Sanfratello et al., 2014]. More recently [Bassett
et al., 2015], learning-related changes have been studied in
large-scale functional networks for multiple timescales

(resolution of seconds) and practice sessions (blocks,
days). Here we expand on this work in several ways. First,
we show that dynamic changes in functional networks
occur at even finer temporal resolutions (milliseconds)
afforded by MEG. Second, these dynamic functional
configurations are related to cognitive ability and online
performance during associative learning.

Distributed Spatiotemporal Activity

Our findings suggest that large-scale network activity
changes throughout associative learning (Fig. 5b). Particu-
larly, two features mark individual differences in rate of
change of behavioral performance. First, fast learners had
greater activity in a specific subset of areas (R GFi, L LPi,
R MTG, R STG, R GPrC, and L GPoC) at specific times in
the trial compared to slow learners. Second, the onset of
activity was earlier in the trial for the fast group in the
same or other regions (R GFi, R Cu, L LPp, and R STG).
Given that the data-driven contrast (Fig. 5a) expressed
group differences, magnitude increases and earlier activity
onsets could be related to any part of the learning session
(early or late trials). Previous research shows that
increased activity in some regions (e.g., anterior cingulate,
posterior parietal, medial prefrontal cortex, cerebellum,
etc., see table in Kelly and Garavan [2005] for full list) was
found in early learning where participants directed greater
attention to new information [Kelly and Garavan, 2005];
whereas, temporal shifts arose from anticipatory (priming)
responses that developed as a result of learning [Nobre
et al., 2007]. In our data, these characteristics jointly distin-
guish fast performers from slower ones.

Whole-brain analysis also revealed coincident activity in
medial temporal (R PHG), striatal (R caud), and prefrontal
(R GFi) areas for individuals that acquired associations
quickly. This is significant because previous work has sug-
gested that medial temporal and striatal regions engage in
a competitive relationship [Poldrack and Packard, 2003]
and that their interactions are likely mediated by prefron-
tal cortices [Poldrack et al., 2001]. By contrast, our data
demonstrate transient (last a few hundred milliseconds)
and time-dependent co-activations. We speculate that in
past fMRI studies, this cooperative effect may have been
attenuated due to the poor temporal resolution of the
method. To our knowledge, this is the first demonstration
of transient activity in these regions related to associative
learning.

Time-Dependent Functional Connectivity

The functional connectivity analysis was geared toward
linking behavioral changes (fast/slow trajectories) over
longer time scales (early/late parts of the learning session)
to neural changes occurring at short timescales (three peri-
ods of 200 ms each within the trial). A latent variable (Fig.
6b) indicating a three-way interaction (group by learning
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phase by time bin) was significant. To interpret this pat-
tern, trial-by-trial accuracy plots were re-examined. It was
apparent that both groups displayed similar behavior
(overlapping error bars) in the pre-asymptotic phase, i.e.,
behavioral trajectories showed incremental gains in acquir-
ing associative relationships. In terms of brain responses,
however, unique network configurations were identified at
separate times in the trial.

Fast performers engaged a posterior network that con-
sisted of posterior cingulate (L PCC), precuneus (L PCu),
inferior parietal (L LPi), middle temporal (R MTG), and
cuneus (R Cu) regions during early scene processing
(0–200 ms). Interactions within this posterior network
could be necessary for representing spatial and topograph-
ical aspects of the scene. Support for this claim comes
from patients with posterior cortical atrophy who show
profound impairments in visuospatial processing [Gardini
et al., 2011]. Within this network, strongest functional cou-
pling (high correlation) was present for inferior parietal (L
LPi) and posterior cingulate (L PCC) cortices. Inferior pari-
etal areas have been implicated in coding spatial relations
[Suchan et al., 2002]. Interestingly, emerging ideas about
the functional contribution of the posterior cingulate sug-
gest that this region may interface with learning systems
in the brain to detect changes in the environment and to
adapt responses to meet external demands [Pearson et al.,
2011]. Since feedback in the task is not provided until after
responses are made, greater connectivity between these
regions could reflect maintenance of visuospatial content
of scenes for informing later behavioral choices. During
latter parts of the trial (200–600 ms), positive functional
relationships were seen among medial temporal (R PHG),
dorsal striatal (R caud), and ventrolateral prefrontal (R
GFi) areas. These data suggest that the coactivity patterns
observed in the group analysis (Fig. 5b) did indeed reflect
interactions among learning and memory systems in the
fast group.

Slow performers relied on prefrontal–striatal regions
early in the trial but functional coupling between medial
temporal and striatal areas was weak. Considering that
spatial elements of the scene are extracted in later parts of
the trial for slow learners (posterior sites are functionally
coupled late), the medial temporal areas may not be
engaged for binding elements together [Olsen et al., 2012].
This role may at least partly be fulfilled by sensory regions
such as the cuneus (R Cu). The coupling between cuneus
(R Cu) and middle temporal gyrus (R MTG), another area
involved in visuospatial imagery [Pearson et al., 2011],
was strongest during the middle part of the trial. Thus,
the inference is that slow performers rely on visual
imagery, for example, by actively imagining the spatial
content of scenes during the task, rather than binding rela-
tions among spatial elements for later retrieval using
medial temporal structures [Olsen et al., 2012]. Evidence
for the importance of visual areas to conditional associa-
tive learning has been documented in nonhuman primates

[Petrides, 1987]. Furthermore, there is some suggestion in
humans that visual cues are recognized faster as a product
of visuomotor learning [Toni and Passingham, 1999]. This
strategy may be less efficient possibly because the same
extrastriate region is not only registering the stimulus but
also integrating spatial components. The bottleneck in vis-
ual areas can result in slower reaction times in sensorimo-
tor tasks [Fatima and McIntosh, 2011] and may be
responsible for less efficiency in task performance here.

In sum, the functional connectivity analysis demonstrated
that even when slow learners were performing well (late
stage), their network organization was different from fast
learners. Although both network strategies supported
acquisition of novel associations, the features that made
each network different were the connection strengths
among regions and the temporal order of when the func-
tional interactions took place during a trial. But what makes
an individual rely on one network configuration versus
another to perform this task? Were there inherent differen-
ces in the cognitive abilities of individuals? To answer these
questions, we used normative data acquired via a small
battery of neuropsychological tests and linked it to behav-
ioral performance in the associative learning task.

Cognitive Ability and Online Behavioral

Performance

Emerging trends in neuropsychological research impli-
cate more than one neural mechanism for behavioral suc-
cess [Merhav et al., 2015; Ryan et al., 2013; Smith et al.,
2014; Voermans et al., 2004]. In our work, in spite of
observing variable speeds of learning, all participants were
able to acquire the full set of stimulus pairings before the
end of the experimental session. We sought to examine
whether there existed cognitive markers that could predict
an individual’s behavioral trajectory during associative
learning and thereby the underlying network configura-
tion. Such predictors of individual differences would be of
utmost importance in customizing programs that reinstate
brain function for persons with disease/disability.

A systematic data-driven approach was used to test com-
binations of features across cognitive, behavioral, and neuro-
physiological domains. First, learner profiles were derived
based on the relationship between certain cognitive skills, as
measured by standardized neuropsychological batteries and
online behavioral performance during learning. Rather than
comparing each test to the learning rate measure, a data
summary technique (PCA) [Abdi and Williams, 2010; McIn-
tosh and Misic, 2013] was initially applied to quantify inter-
dependencies between test types. Cognitive scores were
summarized into three PCs, but only one of these compo-
nents showed a statistically reliable relationship with the
rate of behavioral change during associative learning (Fig.
4). The subtests that contributed to this factor were in the
areas of visuospatial memory and complex manipulation of
items in working memory. It seemed that participants with
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superior visuospatial working memory were also the ones
that acquired associations at a faster pace.

Notably, sequence digit span considered as a working
memory test [Wechsler, 2008] did not contribute to the first
PC which contained high loadings from the forward and
backward span versions. It is questionable whether the for-
ward and backward digit span tests are indeed comparable
in their extraction of working memory reserve [Reynolds,
1997]. Here, results suggest that forward and backward digit
spans were more similar to each other than to the sequence
subtest presumably because participants only had to repeat
digits maintained in working memory. On the other hand,
digit span sequence required participants to simultaneously
maintain and manipulate items by repeating them in
ascending order. This subtest was perhaps more challenging
than its forward/backward counterparts. By the same token,
the designs subtest was also demanding because partici-
pants had to maintain and manipulate visuospatial content
across a short (immediate) or long delay. In the associative
learning task, individuals remembered spatial relations
within a scene over a delay period and retrieved the correct
associative relationship with color at the time of target pre-
sentation. The cognitive strategies needed to do well in both
designs and sequence digit span seemed to also be relevant
for acquiring novel associations quickly. By using PCA and
correlation analysis, we quantified the relationship between
neuropsychological tests and task-related performance.

Analysis of the normative data and the neuroimaging
findings were necessary for understanding differences
between fast and slow performers during associative learn-
ing from both a cognitive and a neural perspective. Fast
learners likely have better visuospatial memory (higher cor-
relations with learning rate, Fig. 4b, bottom right) and are
thus able to remember which scene was presented on a
given trial with incorrect feedback. Not only are fast per-
formers able to retrace their steps after feedback, they also
understand that there is a conditional association between
the scene and color, as determined from the debriefing
interview. Slow learners try many other strategies before
they realize there is a conditional relationship and this
could be in part due to the limits of their visuospatial mem-
ory (lower correlations with learning rate).

Cognitive Ability and Dynamic Network

Organization

A final brain–behavior analysis was performed to link
visuospatial memory ability and time-dependent network
connectivity. This analysis was performed by taking cogni-
tive scores from the third principal component and corre-
lating them with brain scores from the functional
connectivity analysis. Results revealed that connectivity
within the posterior memory network was positively
related to cognitive scores on visuospatial working mem-
ory subtests which were in turn positively correlated with
learning rate. In other words, faster learning of novel asso-

ciations could be predicted from better visuospatial ability
and early engagement of posterior regions.

Surprisingly, there were no statistically reliable cognitive
predictors of online behavioral performance or time-
dependent changes in the associative memory network. It
may be the case that the visuospatial scores captured by
the neuropsychological subtests administered here were
not sufficient for capturing features of the associative
memory network. By increasing the variety of cognitive
tests and the data sample, maybe such relationships can
be delineated in future studies.

CONCLUSIONS

Here, we used MEG to examine network dynamics at fast
timescales (millisecond resolution) and their links to behav-
ioral outcomes across a learning session (minute resolution).
By applying a fully data-driven multivariate approach, we
obtained comprehensive measures of network-level interac-
tions, behavioral performance and cognitive ability. This
study extends previous amplitude-based findings in several
ways. First, it shows that large-scale networks interact at mul-
tiple time scales and can support individual differences in
learning (fast and slow) by mitigating the temporal order, the
strength, and the direction of their connections. Second, typi-
cally, empirical studies relate neural activity patterns without
temporal specificity (within a trial or across the learning ses-
sion) to behavioral data from neuropsychological tests. Here,
we show that the timing and connectivity within subnet-
works relate uniquely to cognitive skills assessed using these
tests. Last, interindividual differences in the timing of net-
work interactions are largely ignored in experiments that
emphasize group averages. These temporal changes in learn-
ing may be critical for understanding variability in neural,
cognitive, and behavioral responses across people.

At present, large databases that conglomerate information
about neuropsychological tests, behavioral performance dur-
ing different tasks, and neurophysiological data are becom-
ing increasingly popular [Van Horn et al., 2005]. However,
in clinical practice, neuropsychological assessments still
remain the gold standard for assessing cognitive deficits
[Harvey, 2012]. The data-driven approaches described here
can potentially be employed in mining neuroimaging data-
bases to find unique clusters of individuals that have defin-
ing attributes in several domains: cognitive, behavior, and
neural network organization. Eventually, this information
can take the form of normative databases that can classify
new individuals in terms of pre-existing cognitive and neu-
ral profiles. Such normative databases can perhaps change
the landscape of rehabilitative medicine by systematically
catering to individual differences in cognitive abilities.
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