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Abstract: Resting-state functional magnetic resonance imaging provides a non-invasive approach to the
study of intrinsic functional brain networks. When applied to the study of brain development, most
studies consist of relatively small samples that are not always representative of the general population.
Descriptions of these networks in the general population offer important insight for clinical studies
examining, for instance, psychopathology or neurological conditions. Thus our goal was to characterize
resting-state networks in a large sample of children using independent component analysis (ICA). The
study further aimed to describe the robustness of these networks by examining which networks occur
frequently after repeated ICA. Resting-state networks were obtained from a sample of 536 6-to-10 year
old children. Distributions of networks were built from repeated subsampling and group ICA analyses,
and meta-ICA was used to construct a representative set of components. Within- and between-network
properties were tested for age-related developmental associations using spatio-temporal regression.
After repeated ICA, many networks were present over 95% of the time suggesting the components are
highly reproducible. Some networks were less robust, and were observed less than 70% of the time.
Age-related associations were also observed in a selection of networks, including the default-mode net-
work, offering further evidence of development in these networks at an early age. ICA-derived resting-
state networks appear to be robust, although some networks should further scrutinized if subjected to
group-level statistical analyses, such as spatiotemporal regression. The final set of ICA-derived networks
and an age-appropriate T1-weighted template are made available to the neuroimaging community,
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INTRODUCTION

Resting-state functional magnetic resonance imaging
(RS-FMRI) relies on a phenomenon referred to as intrin-
sic brain activity, or brain activity that is not induced by
an external stimulus. In the context of RS-FMRI, func-
tional connectivity is explored when temporal fluctua-
tions in blood oxygen level-dependent maps are used to
identify brain regions with high temporal correlation.
Quantifying functional connectivity can be achieved
through various analysis strategies, such as seed-based
analyses, graph theoretical models, and independent
component analyses (ICA) [Cole, et al., 2010]. The ICA of
RS-FMRI data aims to reduce complex data into statisti-
cally distinct components [Beckmann et al., 2005; Cal-
houn et al., 2001]. These distinct components can be
classified to describe either brain RS-FMRI networks
(RSNs, e.g., the default mode network) or noise signals
(e.g., motion, flow artifact, non-neuronal physiological
noise). However, heterogeneity exists in the literature in
terms of the selection (subset) of components reported;
for instance, one study of children reports the executive
control network [Jolles et al., 2011] while another does
not [de Bie et al., 2012]. Further, reports of RSNs from
ICA are limited in young children and are typically
based on relatively small sample sizes.

Studying RSNs in healthy children contributes signifi-
cantly to the literature, both in terms of describing normal
brain development and in comparisons with neurological
and psychiatric problems. To date, three studies have used
a pure ICA approach to examine RSNs in young, typically
developing children [de Bie et al., 2012; Jolles et al., 2011;
Littow et al., 2010]. In a study of 5-to-8 year old children
(n 5 18), de Bie et al. [2012] labeled fourteen components
as RSNs, based on the anatomical locations of the spatial
maps, and the power spectra of the accompanying time
series. Jolles et al. [2011] examined a sample of 11-to-13
year olds (n 5 19) and a group of young adults (n 5 29)
using RS-FMRI. Thirteen components were labeled as
functionally relevant and were further evaluated for age-
related differences. Finally, Littow et al. [2010] examined a
large sample (n 5 168) of healthy adolescents and adults,
categorized into three groups: adolescents, young adults,
and older adults. The authors identified 21 RSNs, some of
which showed differences across the age-groupings, both
in terms of spatial extent of the components and the pow-
er spectra. In addition to the to the above literature in chil-
dren and adolescents, certain resting-state components,
including the default mode network, have also been iden-
tified very early in development [Gao et al., 2009].

In both the adult and pediatric literature, two specific
aspects of ICA analysis deserve mention. First, many com-
mon ICA algorithms available for use with RS-FMRI data
operate under certain assumptions to increase efficiency,
given the computational resources necessary to accommo-
date the magnitude of information in typical FMRI data-
sets. This has been shown to lead to variability in the
resulting components [Franco et al., 2013; Himberg et al.,
2004]. Along similar lines, other unexpected factors that
are algorithm-dependent can influence components result-
ing from ICA, such as subject order [Zhang et al., 2010].
Secondly, in many studies utilizing group ICA, only the
components of interest are commonly reported, meaning
components of non-interest or noise are often neglected.
Thus, there is variability in the literature in terms of the
components that are examined, which may be related to
methodological aspects of ICA analysis, or simply because
of subjectivity in which components are reported. Further,
it is possible that some of these ‘noise’ components, such
as those related to susceptibility artifact or to blood flow
artifact, will be highly consistent across studies, while
others (e.g., thermal or scanner-specific) will not. The pres-
ence or absence of certain components may also be
impacted by the level of “cleaning” or “denoising” applied
to the data, for instance censoring corrupt volumes [Power
et al., 2012] or ICA-based artifact removal [Griffanti et al.,
2014]. This is of particular importance when studying chil-
dren, given their tendency to have higher levels of motion
compared to adults [Satterthwaite et al., 2012].

Within this context, it was the goal of this study to char-
acterize ICA-derived resting-state networks in school-age
children. We utilized a large sample of 6-to-10 year old
children to develop an age-appropriate, standardized set
of RSNs using a subsampling approach to account for
some of the sources of variability. We hypothesized some
networks (for instance those reported frequently in the lit-
erature) would be robust across multiple ICA analyses,
whereas others would be observed less frequently. We
also examine developmental aspects in a subset of compo-
nents by using within- and between-network age-associa-
tions. The present study expands upon the current
literature in multiple ways. First, the only other resting-
state studies in children utilizing ICA are based on rela-
tively small samples. Second, RS-FMRI studies utilizing
ICA typically report only a subset of the components iden-
tified, making more global comparisons across studies dif-
ficult. Lastly, the current study reports on the frequency
different components are identified by ICA, offering future
work a framework for deciding what level of caution to be
used when interpreting results from certain low-frequency
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components. Components robust against repeated subsam-
pling can be regarded as valid in previous studies and
confidently analyzed in future efforts. Components shown
to be more variable should be interpreted carefully, as
they could be the result of a number of factors, including
age-related effects, individual differences, or even artifacts
or methodological issues.

MATERIALS AND METHODS

Participants

The current study is embedded in the Generation R
Study, which is a large, population-based birth cohort in
Rotterdam, the Netherlands [Jaddoe et al., 2012]. One
thousand seventy children, ages 6-to-10 years, were
scanned between September 2009 and July 2013 as part of
a sub-study within the Generation R Study [White et al.,
2013]. General exclusion criteria for the current study
include severe motor or sensory disorders (deafness or
blindness), neurological disorders, moderate to severe
head injuries with loss of consciousness, claustrophobia,
and contraindications to MRI. Informed consent was
obtained from parents, and all procedures were approved
by the Medical Ethics Committee of the Erasmus Medical
Center.

Of the 1,070 children with an MR-scanning session, 964
completed a RS-FMRI scan. Of the children with a RS-
FMRI scan, 652 were characterized as not having behavior-
al problems (see section “Behavioral assessment” below
for assessment of child behavioral problems). Of those 652
data sets, 88 showed excessive motion (described in sec-
tion “Data quality”), and an additional 28 datasets had

problems with pre-processing (e.g., poor registration to
common space) rendering them unfit for post-processing.
Thus, 536 children (mean age 7.9 years, 49% female) were
included in the final sample for data analysis (Table I).

Behavioral Assessment

Behavioral problems in children were assessed through
maternal report using the Child Behavioral Checklist
(CBCL/11=2-5) [Achenbach and Rescorla, 2000] as part of
the age 6 assessment wave [Tiemeier et al., 2012]. The
CBCL is a 99-item inventory that uses a Likert response
format (e.g., “Not True,” “Somewhat True,” “Very True”).
Seven syndrome scales, five DSM-oriented scales, and
three broadband scales are commonly derived summary
measures from the CBCL [Achenbach and Ruffle, 2000;
Tick et al., 2007]. In order to obtain a set of networks that
are not influenced by potentially aberrant networks that
may be present in children with behavioral problems, par-
ticipants who scored higher than the clinical cutoff on any
syndrome scale, DSM-oriented scale, broadband scale, or
total problems score were excluded from analyses. Cutoff
scores used in this study were based on norms from the
Dutch population [Tick et al., 2007]. As mentioned above,
of the 964 children with an RS-FMRI scan, 312 children
with CBCL scores above the clinical cutoff were excluded.

MR Data Acquisition

Magnetic resonance imaging data were acquired on a 3
Tesla scanner (Discovery 750, General Electric, Milwaukee,
WI) using a standard 8-channel, receive-only head coil. A
three-plane localizer was run first and used to position all
subsequent scans. Structural T1-weighted images were
acquired using a fast spoiled gradient-recalled echo
(FSPGR) sequence [TR 5 10.3 ms, TE 5 4.2 ms, TI 5 350 ms,
NEX 5 1, flip angle 5 168, matrix 5 256 3 256, field of view
(FOV) 5 230.4 mm, slice thickness 5 0.9 mm]. Echo planar
imaging was used for the RS-FMRI session with the fol-
lowing parameters: TR 5 2,000 ms, TE 5 30 ms, flip
angle 5 858, matrix 5 64 3 64, FOV 5 230 mm 3 230 mm,
slice thickness 5 4 mm. In order to determine the number
of TRs necessary for functional connectivity analyses, early
acquisitions acquired 250 TRs (acquisition time 5 8 min 20
sec). After it was determined fewer TRs were required for
these analyses, the number of TRs was reduced to 160
(acquisition time 5 5 min 20 sec, see section “MR data
pre-processing” for additional details) [Langeslag et al.,
2012; White et al., 2014]. Children were instructed to stay
awake, keep their eyes closed, and not to think about
anything in particular during the RS-FMRI scan. Further
details on the entire scanning protocol can be found else-
where [White et al., 2013].

TABLE I. Sample characteristics

N 5 536

Child characteristics

General

Age at MRI (years) 7.96 6 0.98
Sex (M/F, %) 51.5/48.5
Non-verbal IQ 103.8 6 14.0
Handedness (right/left, %) 89.9/10.1

Ethnicity

Dutch (%) 75.9
Non-Western (%) 16.6
Other Western (%) 7.5

FMRI motion parameters
Avg. RMS relative (mm) 0.13 6 0.11

Maternal characteristics

Educational level (%)
Primary 5.0
Secondary 40.3
Higher 54.6

Note: Data presented are mean 6 standard deviation, unless other-
wise noted.
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MR Data Processing

MR data pre-processing

Data were first converted from DICOM to Nifti format
using the “dcm2nii” tool from the MRIcro library (http://
www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.
html). Prior to analysis, in cases where 250 RS-FMRI vol-
umes were acquired (see section “MR data acquisition”),
the scans were trimmed to 160 volumes by omitting vol-
umes at the end of the acquisition to ensure full compati-
bility with the other, 160 volume datasets. Data were pre-
processed using the Functional MRI of the Brain (FMRIB)
Software Library (v5.0.5, FSL, http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki) [Jenkinson et al., 2012]. FSL’s FMRI Expert
Analysis Tool (FEAT) was used for preprocessing the
RSFMRI data, which consisted of exclusion of the first four
volumes, motion correction, high-pass temporal filtering
(sigma 5 50), brain extraction, and spatial filtering
(FWHM 5 8 mm). Registration of the RS-FMRI data to an
age-appropriate, standard space, T1-weighted template
(see section “Study-specific, age-appropriate template for
registration” for details) was achieved using a two-step
process. First, the RS-FMRI data were registered to the T1-
weighted anatomical image with the FSL-Linear Registra-
tion Tool (FLIRT), using 6 degrees of freedom (DOF) and
the boundary based registration (BBR) cost function. In the
second stage, the T1-weighted image was registered to the
age-appropriate, standard space T1-weighted template
image using FLIRT with 12 DOF. The two resulting trans-
formation matrices were concatenated and applied to the
preprocessed RS-FMRI data.

Subject-level ICA-based artifact removal

In addition to standard FMRI pre-processing, each data
set was cleaned to remove potential biases resulting from
subject motion, cardiac/respiratory physiology, and scan-
ner noise using the FMRIB ICA-based Xnoiseifier [FIX
v1.06, Griffanti et al., 2014; Salimi-Khorshidi et al., 2014].
With the aid of a training set, FIX automatically classifies
subject-level ICA components as “signal” or “noise,” and
subsequently “denoises” the RS-FMRI data by regressing
out time series classified as noise. A thorough and sophis-
ticated cleaning procedure, such as FIX, is especially rele-
vant in the context of pediatric RS-FMRI, given recent
reports on the impact of motion on functional connectivity
[Power et al., 2012; Satterthwaite et al., 2012]. All RS-FMRI
datasets underwent a single-session ICA using the Multi-
variate Exploratory Linear Optimized Decomposition into
Independent Components (MELODIC, v5.0.5) tool from
FSL, followed by the artifact removal with FIX, including
the removal of motion confounds [Griffanti et al., 2014].
The FIX classifier was trained using manually labeled,
subject-level ICA data from a random sample of 50 sub-
jects with usable data. Briefly, the subject-level ICA data
from these 50 subjects was loaded into the Melview viewer

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Melview), and both
the spatial and temporal (power spectrum and time series)
characteristics were used to classify components as either
“signal” or “noise.” The performance of the training set
was then measured using a leave-one-out cross validation,
where a single subject is excluded from the training set,
which is subsequently used to classify that (left out) sub-
ject’s data. We found the training set to perform well, with
a mean true-positive rate (correctly labeled “signal” com-
ponents) of 93.4% and a true negative rate (correctly
labeled “noise” components) of 85.8%.

Study-specific, age-appropriate template

for registration

Given the age of the sample, it was important to use an
age-appropriate template for registration of the functional
data to standard space. One hundred thirty T1-weighted
images from children without behavioral problems, also
rated as having excellent quality, were used to construct
the structural template for registration. An iterative
approach using both linear and nonlinear algorithms was
used [Sanchez et al., 2012], and is represented graphically
in the supplemental data section (Supporting Information
Fig. I). Briefly, T1-weighted images from each of the 130
subjects were first aligned to the MNI-152 1mm brain
using a linear, 6 degree of freedom approach (FLIRT). All
registered images were then averaged and used as the
template brain for the subsequent step, which was a non-
linear registration (FNIRT). Once again, the result from the
nonlinear registration was averaged and used as the tem-
plate for the subsequent iteration. This routine continued
for a total of five nonlinear iterations, where it has been
shown the template image stabilizes considerably [Sanchez
et al., 2012]. The result of the fifth and final nonlinear reg-
istration was averaged, resampled to 2 mm isotropic reso-
lution, and then used as the standard-space template for
all RS-FMRI datasets. The average age and IQ, and the dis-
tribution of sex and handedness of the subjects used in
creating the template was similar to that of the larger sam-
ple used in RS-FMRI analyses (age 5 7.86 6 0.99, IQ 5

105 6 14.0, sex 5 50.4% Female, 49.6% Male, handedness 5

90.2% Right, 9.8% Left).

Data quality

Data quality was assessed in two steps. First, as the
subject-level ICA de-noising of the data is not sufficient in
datasets severely corrupted by motion, a mean root-mean-
squared relative motion greater than 0.5 mm was used as
a cutoff to exclude data of poor quality (n 5 88). Second,
all standard space registrations were examined using the
middle functional volume from the time-series, and poorly
registered datasets were excluded (n 5 28). Registrations
were checked by merging the middle, three-dimensional
(3D) functional volume from each participant into a single
four-dimensional (4D) nifti file, and scrolling through the
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images, inspecting for gross translational or rotational
shifts from the standard-space template (>1 voxel shift).

Independent component analyses

Two ICA approaches were utilized. For the first
approach, a repeated subsampling was used to generate
distributions of the functional connectivity components
and identify which were robust across multiple ICA runs.

In total, 500 resamples were completed. For a given resam-
ple, 50 datasets were randomly selected from the pool of
536 datasets, and run through the multisession temporal
concatenation method from the MELODIC tool from FSL
(v5.0.5) to generate spatial component maps. Dimensionali-
ty was set to 25 components, as a large number of previ-
ous studies used a similar value and our tests with these
data showed robust networks that correspond with exist-
ing reports in the literature [de Bie et al., 2012; Jolles et al.,

Figure 1.

Axial slices of components 1-to-10 resulting from meta ICA of

500 repeated ICA samples. Components are thresholded at

z 5 3.09 (P< 0.001). Component Labels: 1 5 Default Mode Net-

work I, 2 5 Sensory, 3 5 Right Frontoparietal, 4 5 Sensorimotor,

5 5 Inferior Frontal, 6 5 Lower Brainstem, 7 5 Brainstem,

8 5 Middle Frontal, 9 5 Cerebellar, 10 5 Anterior Visual. [Color

figure can be viewed at wileyonlinelibrary.com]
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2011; Smith et al., 2009]. The decision to use 50 cases per
resample was guided by current, typical sample sizes in
RS-FMRI studies. For the second approach, the compo-
nents resulting from the 500 resamples (25 components 3

500 subsamples 5 12,500 components) were summarized
using a meta-ICA [Biswal et al., 2010], with the dimension-
ality set to 25 to match that of the individual group ICA
runs. Components resulting from the meta-ICA were fur-
ther summarized anatomically by determining overlap

with the Harvard–Oxford anatomical atlases available in
FSL after being registered to the MNI152 brain using a lin-
ear transform [Desikan et al., 2006].

Within- and between-network associations

In order to explore age-related associations with various
ICA-derived networks, the “Dual Regression,” or spatio-
temporal regression, approach from FSL was utilized to

Figure 2.

Axial slices of components 11-to-20 resulting from meta ICA of

500 repeated ICA samples. Components are thresholded at

z 5 3.09 (P< 0.001). Component Labels: 11 5 Precuneus,

12 5 Lateral Frontal, 13 5 Parietal, 14 5 Visual, 15 5 Ventricular,

16 5 Executive Control, 17 5 Left Frontoparietal, 18 5 Default

Mode Network II, 19 5 Cerebellar-Occipital, 20 5 Insular. [Color

figure can be viewed at wileyonlinelibrary.com]
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generate subject-specific time courses and spatial maps for
each component [Filippini et al., 2009]. In the first step of
the Dual Regression, the spatial components resulting
from the above-described meta ICA were regressed on
each subject’s denoised RS-FMRI data to create subject-
specific time courses for each component. Next, these time
courses were regressed on the RS-FMRI data to create
subject-specific spatial maps for each component.

To study within-network associations and limit the
number of tests performed, four networks of interest were
selected (right and left parietofrontal networks, default
mode network, and executive control network) and whole-
brain, voxel-wise statistics were employed on the dual
regression maps using the FSL tool “Randomise” [Winkler
et al., 2014]. The General Linear Model was used, with age
entered as the predictor of interest and sex, ethnicity
(dummy-coded with Dutch as the reference), and total
CBCL behavioral problems entered as covariates. For each
contrast, 10,000 permutations were run, and the threshold-
free cluster enhancement option was utilized [Smith and
Nichols, 2009]. To account for the number of voxel-wise
statistical tests run, P-values were adjusted for Family-
wise error (FWE). Further, given that four networks were
examined, a simple Bonferroni correction was applied to
FWE-corrected p-value maps to indicate significance
(where Pcorrected< 0.05 from this point on is based on
Bonferroni correction due to the four networks, positive
and negative age contrasts, yielding eight tests and
P< 0.00625 applied to FWE corrected maps).

Between-network associations were studied with the
Matlab-based (vR2011B, Mathworks Inc., Natick, MA)

“FSLnets” plugin (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLNets). A 13 3 13 correlation matrix of non-noise net-
works was built by correlating subject-specific time
courses from the dual regression analysis for each compo-
nent of interest, after regressing away components labeled
as noise. Correlation coefficients were then transformed to
z-values, and were subsequently used in statistical analy-
ses with the randomise tool. As above in within-network
analyses, randomise was used to associate age with each
cell in the lower half of the correlation matrix, with sex,
ethinicity, and total CBCL behavioral problems entered as
covariates. Using data from 10,000 permutations, correc-
tion for multiple testing was again attained with FWE
correction.

RESULTS

Meta ICA

The spatial components from the 500 subsamples were
summarized using a meta-ICA and the results are
depicted in Figures 1–3. Numerous components previously
described in adults were observed, including the default-
mode, lateralized frontoparietal, parietal, sensorimotor,
visual networks [Damoiseaux et al., 2006; Smith et al.,
2009]. In addition to true RSNs, networks likely resulting
from noise (physiological, scanner, image processing, etc.)
are also depicted. Table II outlines basic anatomical infor-
mation about the components and also includes the ratio
of summed power above/below 0.1 Hz, averaged across

Figure 3.

Axial slices of components 21–25 resulting from meta ICA of 500 repeated ICA samples.

Components are thresholded at z 5 3.09 (P< 0.001). Component Labels: 21 5 Motor, 22 5 Upper

Brainstem, 23 5 Frontal-temporal-Parietal, 24 5 Lateral Visual, 25 5 Lateral Middle Frontal. [Color

figure can be viewed at wileyonlinelibrary.com]
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TABLE II. Descriptive information of meta-ICA derived components

Component Functional label Anatomical labels 0.1 Hz power ratio

1 DMN-I Precuneus, Cingulate-PD, Lat. Occipital-SD, Cingulate-AD,
Cuneous, Paracingulate, Sup. Parietal, Angular

0.33 6 0.04

2 Sensory Postcentral, Precentral, Sup. Parietal, Supramarginal-AD, Lat.
Occipital-ID, Lat. Occipital-SD, Sup. Frontal,
Supramarginal-PD, Juxtapositional, Mid. Frontal, Mid.
Temporal

0.46 6 0.08

3 R. Frontoparietal Frontal Pole, Mid. Frontal, Lat. Occipital-SD, Sup. Frontal,
Angular, Mid. Temporal-PD, Sup. Parietal, Supramarginal-
PD, Paracingulate, Precentral, Mid. Temporal, Pars
Opercularis, Inf. Temporal, Cingulate-PD, Sup.
Temporal-PD

0.38 6 0.05

4 Sensorimotor Precentral, Postcentral, Juxtapositional, Cingulate-PD, Sup.
Parietal, Precuneus, Sup. Frontal, Parietal Operculum,
Cingulate-AD

0.54 6 0.10

5 Inf. Frontal Frontal Pole, Orbital Frontal, Subcallosal, Med. Frontal,
Paracingulate, Cingulate-AD, L. Putamen, R. Putamen, R.
Caudate, L. Caudate

0.71 6 0.10

6 Lower Brainstem Brainstem, R. Thalamus 0.90 6 0.10
7 Brainstem Brainstem, Insular, Cingulate-AD 0.90 6 0.08
8 Mid. Frontal Frontal Pole, Paracingulate, Cingulate-AD, Cingulate-PD, Sup.

Frontal, Mid. Frontal
0.66 6 0.18

9 Cerebellar Temporal-Occipital Fusiform, Occipital Fusiform, Lingual,
Temporal Fusiform-PD, Inf. Temporal-AD

0.91 6 0.11

10 Ant. Visual Lingual, Precuneus, Intracalcarine, Cuneous, Occipital
Fusiform, Lat. Occipital-SD, Angular, Temporal-Occipital
Fusiform, Supracalcarine, Cingulate-PD, Occipital Pole

0.56 6 0.09

11 Precuneus Precuneus, Angular, Lat. Occipital-SD, Supramarginal-PD,
Mid. Temporal, Sup. Temporal-PD, Lat. Occipital-ID, Mid.
Temporal-PD, Pars Opercularis, Mid. Frontal,
Supramarginal-AD

0.47 6 0.09

12 Lat. Frontal Temporal Pole, Orbital Frontal, Insular, Precentral, Sup.
Temporal-PD, Pars Opercularis, Mid. Temporal-PD, Mid.
Frontal, Sup. Frontal, L. Thalamus, Pars Triangularis,
Supramarginal-PD, Paracingulate, Planum Polare, L.
Putamen, R. Thalamus, Frontal Operculum, Mid.
Temporal-AD, Mid. Temporal, Angular, R. Putamen, Sup.
Temporal-AD, Temporal Fusiform-AD, Juxtapositional,
Central Opercular

0.46 6 0.07

13 Parietal Lat. Occipital-SD, Precuneus, Sup. Parietal, Postcentral, Sup.
Frontal, Mid. Frontal, Frontal Pole

0.45 6 0.07

14 Visual Occipital Pole, Lingual Gyrus, Intracalcarine, Occipital
Fusiform, Lat. Occipital-ID, Frontal Pole, Supramarginal-
AD, Mid. Frontal, Cuneous, Supracalcarine, Lat.
Occipital-SD

0.63 6 0.10

15 Ventricular R. Thalamus, L. Thalamus, L. Lat. Ventricle, R. Lat. Ventricle,
R. Putamen, L. Putamen, R. Caudate, L. Caudate, L.
Pallidum, R. Pallidum, Insular

0.64 6 0.11

16 Executive Control Sup. Frontal, Mid. Frontal, Precentral, Frontal Pole,
Juxtapositional, Paracingulate, Cingulate-AD

0.64 6 0.14

17 L. Frontoparietal Lat. Occipital-SD, Mid. Frontal, Angular, Mid. Temporal-PD,
Sup. Frontal, Supramarginal-PD, Inf. Temporal, Mid.
Temporal, Sup. Parietal, Cingulate-PD, Inf. Temporal-PD,
Supramarginal-AD, Frontal Pole, Paracingulate

0.39 6 0.06

18 DMN-II Precuneus, Lat. Occipital-SD, Cingulate-PD, Lingual,
Paracingulate, Temporal-Occipital Fusiform,
Frontal Pole, Inf. Temporal, Temporal
Fusiform-PD, R. Hippocampus, L. Hippocampus,
Parahippocampal-PD, Intracalcarine

0.33 6 0.06
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the 500 subsamples, for each component. This power ratio
has been indicated in previous work as a useful metric in
classifying components as true RSNs and noise. Intrinsic
functional connectivity is thought to be most represented
in the 0.01–0.10 Hz range, and noise resulting from various
sources is represented at higher frequencies. For instance,
components 6 and 7, both in the brainstem, have a high-
to-low power ratio 2-to-3 times that of true RSNs, such as
the default-mode and frontoparietal networks, indicating
the majority of the represented frequencies are above the
0.10 Hz level.

Distribution of Components from Subsampling

Certain RS-FMRI ICA networks appear in the literature
frequently, while others are less frequently reported. In
addition to defining ICA networks in young children, we
aimed to also describe the frequency of which these com-
ponents appear after repeated subsampling of the data.
Each of 12,500 components resulting from the 500 subsam-
ples was classified as one of the 25 meta-ICA components,
or as a unique component not represented in the 25 meta-
ICA components. To classify the components, set theory
was used to label components based on spatial overlap
[White et al., 2014]. In total, 35 components were identi-
fied; 25 meta-ICA components (Figs. 1–3), plus an

additional 10 components (Supporting Information Fig. II)
that were not in the meta-ICA set. Components repre-
sented in figures are numbered and ordered according to
the times present (%) in resamples, which is depicted in
histogram format in Figure 4. As can be seen, components
1-to-10 were present in 96% or more of the ICA resamples,
components 11-to-14 were present in 91% or more of the
ICA resamples, and components 15-to-22 were present in
77% or more of the ICA resamples. These included compo-
nents frequently reported in the literature, including the
cerebellar, default-mode, executive control, frontoparietal,
parietal, sensorimotor, and visual networks. However, oth-
er components were present in substantially fewer ICA
resamples. Component 24, a visual area component, was
only present in roughly 50% of the resamples. Further,
component 30 (Supporting Information Fig. II), a parietal
component previously reported in the literature, was only
present in 21% of the ICA resamples. Interestingly, in
addition to components often considered true RSNs (e.g.,
the DMN), components with a spatial distribution and
power spectrum likely attributable to noise are still present
in 98% of the subsamples. For example, this is the case in
two brainstem components (components 6 and 7) that are
potentially related to physiological noise. However, some
of these “noise” components occurred less frequently,
including a frontal component indicative of motion

TABLE II. (continued).

Component Functional label Anatomical labels 0.1 Hz power ratio

19 Cerebelum-Occ. Lat. Occipita-ID, Lingual, Occipital Fusiform,
Temporal-Occipital Fusiform, Inf. Temporal, Lat. Occipital-
SD, Mid. Temporal

0.83 6 0.14

20 Insular Central Opercular, Supramarginal-AD, Insular,
Parietal Operculum, Cingulate-AD, Planum
Temporale, Precentral, Supramarginal-PD,
Postcentral, Heschl’s, Juxtapositional, Frontal Operculum,
Paracingulate, Planum Polare, Sup. Temporal-PD,
R. Putamen, L. Putamen, Pars Opercularis.

0.48 6 0.07

21 Motor Precentral, Postcentral, Cent. Opercular, L. Thalamus, R.
Putamen, L. Putamen, R. Thalamus, Insular

0.46 6 0.06

22 Upper Brainstem Brainstem, L. Thalamus, R. Thalamus, Parahippocampal-PD,
Lingual, R. Hippocampus, L. Hippocampus, Frontal Pole,
Paracingulate, Parahippocampal-AD, R. Pallidum, L.
Pallidum, R. Putamen, Temporal Fusiform-PD

0.88 6 0.11

23 Frontal-Temporal-Parietal Mid. Frontal, Frontal Pole, Precentral, Pars
Opercularis, Pars Triangularis, Lat. Occipital-SD, Sup.
Parietal, Orbital Frontal, Frontal Operculum, Inf.
Temporal, Cingulate-AD

0.40 6 0.08

24 Lateral Visual Lat. Occipital-SD, Lat. Occipital-ID, Cuneous,
Occipital Pole, Precuneus, Cingulate-AD

0.59 6 0.10

25 Lat. Mid. Frontal Frontal Pole, Paracingulate, Cingulate-AD,
Poscentral, Insular, Precentral, Frontal
Operculum, L. Caudate, L. Putamen, R. Caudate

0.81 6 0.17

Note: Component numbers correspond to those used in other figures. Anatomical labels are ordered according to their overlap with the
component, in decending order. Abbreviations; AD, anterior division; Inf, inferior; ID, inferior division; Lat, lateral; L, left; Mid, middle;
PD, posterior division; Sup, Superior; SD, superior division; R, right.
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(component 26) and a component related to white matter
signal (component 31, see Supporting Information Fig. II).
Given features of the histogram presented in Figure 4, it is
possible to classify components as robust or variable based
on “drop offs” in the frequencies depicted in the histo-
gram. For instance, components 1 through 9 could be con-
sidered highly robust, and components 10 through 22
could be considered robust. However, given the relatively
steep decrease in observed frequency at component 23,
components 23 through 35 could be considered more
variable.

The spatial variability in components across resamples
was explored using a voxel-wise 1-sample t-test on all
matched components (PFWE< 0.05). Supporting Informa-
tion Figure III illustrates these maps in the 25 meta-ICA
components. As can be seen, there is high overlap in the
center of most nodes of the components across the 500
ICA runs (see corresponding meta-ICA components in
Figs. 1–3). Interestingly, lower overlap across the 500 ICA
runs is apparent in certain nodes of components that split
into separate/distinct components with higher dimension-
ality (e.g., the frontal node of the DMN).

Within-Network Associations with Age

Results from voxel-wise statistics on subject-specific
component maps from Dual Regression are presented in
Figure 5. For the DMN, a negative association with age
was observed in the precuneus/posterior cingulate node.
Similarly, for the executive control network, a negative
correlation was observed in the frontal and anterior cingu-
late aspects of the network. In the right front-parietal net-
work, a positive association with age is observed in the
left hemisphere, mainly in the insula and temporal lobe.
No significant associations were observed between age
and the left frontoparietal network after adjusting for con-
founders and multiple testing.

Between-Network Associations with Age

Regression analyses of between-network connectivity
revealed that the correlation between Component 11 (Pre-
cuneus) and Component 12 (Lateral Frontal) was positive-
ly associated with age (b 5 0.20, PFWE 5 0.0004). Thus, the
correlation between these networks was stronger (becom-
ing more positive) in older children (Fig. 6). Further, the
correlation between Component 3 (Right Frontoparietal)
and Component 13 (Parietal) and was negatively associat-
ed with age (b 5 20.17, PFWE 5 0.0056). In older children,
the correlation between these networks is lower (becoming
more negative, Fig. 6). Lastly, the correlation between
Component 2 (Sensory) and Component 3 (Right Fronto-
parietal) was negatively associated with age (b 5 20.15,
PFWE 5 0.027).

DISCUSSION

The present study examines resting-state FMRI networks
in a large sample of 6-to-10 year old children using inde-
pendent component analyses. A subsampling approach
was used to generate a representative set of components,
and to identify robustness of components across repeated
ICA runs. The subsampling revealed that many compo-
nents commonly reported in the literature show a high
level of stability across repeated sampling. Further, many
of the components that are typically identified in studies
of adults were also found in the current sample of young
children. Interestingly, networks believed to be the result
of noise and/or artifacts were also observed at frequencies
similar to true RSNs after iterative ICA subsampling. Last-
ly, even within a very narrow age-range, the study dem-
onstrated age-related associations with various networks,
suggesting continued refinement of networks is occurring
during childhood.

The subsampling procedure used in the current study
highlights important characteristics of RS-FMRI ICA analy-
ses, namely that many components are quite robust. This
is true for both what is considered RSNs and for “noise”
signals. Previous studies have already discussed issues
surrounding ICA, for example variability related to subject
order or ICA reliability [Franco et al., 2013; Himberg et al.,
2004; Zhang et al., 2010]. In the present study we expand
upon this showing that many components typically char-
acterized in the literature as RSNs were observed frequent-
ly across the repeated ICA runs (e.g., the DMN, sensory,
motor, and frontoparietal networks). While these results
do not give a clear indication of the precise reliability of
the spatial extent of the various components, they do dem-
onstrate that many components from ICA can be

Figure 4.

Frequencies (presence) of components observed after repeated

ICA subsampling. Components observed in only the meta-ICA

(black), and those found in repeated subsamples but not repre-

sented in the meta-ICA (gray) are shown.
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repeatedly extracted from RS-FMRI data in young chil-
dren, despite variability in the sample and algorithm-
dependent variability in ICAs. The data also show that
components suggestive of noise in RS-FMRI data (e.g.,
resulting from hardware, physiological, image analysis,
etc.) can be reliably detected in children using ICA. For
example, components 6 and 7 (both part of the brainstem)
were present in over 98% of the repeated ICA analyses.

However, given that certain components were not
observed as frequently as others (i.e., roughly 55% of the
time or less), it is prudent to critically evaluate these com-
ponents in future studies (for instance, components 29 and

30). This may be especially important in ICA-derived com-
ponents considered to be RSNs and subjected to further
analysis using the myriad of methods available [e.g., spa-
tiotemporal regression, backwards-reconstruction, seed-
based, etc. Calhoun et al., 2008; Filippini et al., 2009; Tian
et al., 2013], to ensure they are not simply artifacts of the
data or image analysis algorithm. It is however interesting
to consider the possibility that some of these less frequent-
ly occurring components are not artifact or algorithm-
dependent, but rather arise from other sources. For
instance, the variability could reflect individual differences
in RS-FMRI networks in typically developing children

Figure 5.

Within-network associations with age using spatiotemporal

regression. Clusters are t-values indicating significant association

at Pcorrected< 0.05, with red indicating a positive association with

age and blue indicating a negative association with age. (a) meta-

ICA component 3/right frontoparietal, (b) meta-ICA component

1/default mode network, and (c) meta-ICA component 16/exec-

utive control network. [Color figure can be viewed at wileyonli-

nelibrary.com]
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[Michael et al., 2014]. If such individual differences exist
and can be observed, those components could offer further
insight into brain development, various neurological or
psychiatric disorders, or in the fields of social or behavior-
al neuroscience. Conversely, while the age-range in the
current study is comparatively narrow compared with
many studies of brain development, it is possible that the
observed variability in components is simply age-related.
For instance, networks not present in all resamples could
be subject to neurodevelopment processes that later stabi-
lize in adulthood. Thus, generalizations to other age-
ranges should be made carefully and similar analyses
should be explored in adolescents and young adults, or
preferably, networks should be tracked using longitudinal
designs.

While not traditionally done in the existing literature,
the current study also presents components that are typi-
cally labeled as “noise” or “other” and discarded from
analyses. Many components that are likely attributable to
noise actually were very robust in repeated sampling. This
suggests that many noise signals are present in different

subject groups and that ICA can reliably detect them. This
information also hopefully gives other groups a point of
reference when examining group ICA components, and
also may help future work in deciding which of these
components are generalizable across studies, and which
are not (i.e., those that are MR-scanner dependent,
sequence dependent, etc.). It is unclear how useful this
information will be across studies, as some of the noise
components were highly variable, and could be related to
the scanner hardware, thermal noise, or even the perfor-
mance of the ICA-based artifact removal. However, while
beyond the scope of the current study, the repeated sub-
sampling results with and without the subject-level ICA
denoising step were run and produced group meta-ICA
results similar to those reported in the current study (Sup-
porting Information Fig. IV). This is particularly interesting
given the increased attention surrounding pediatric imag-
ing with respect to motion confounds. However, while the
cleanup procedure may only marginally influence the
results of group ICA, it has been previously shown to
influence other important aspects of analyses, such as spa-
tiotemporal regression, and thus should not be considered
unnecessary [Mowinckel et al., 2012; Satterthwaite et al.,
2012].

Age-related associations within the DMN revealed the
central, posterior cingulate/precuneus node of the default
mode network to be negatively correlated with age, after
adjusting for sex, behavioral problems, and ethnicity. This
observation was previously only reported in adults, where
a highly similar spatial pattern of aging rather than devel-
opmental effects was observed in individuals 21-to-81
years of age using spatiotemporal regression [Mowinckel
et al., 2012]. We also observed a positive association
between age and the contralateral hemisphere of the right
frontoparietal network, suggesting a potential increase in
interhemispheric communication with age. Lastly, between
network analyses revealed that certain networks (i.e., the
precuneus and lateral frontal) become more strongly con-
nected with increasing age, whereas other networks
become less strongly connected with age (e.g., the right
frontoparietal and sensory). These results taken together
are particularly intriguing, given they demonstrate evi-
dence for maturation of functional connectivity in a very
narrow age-range.

Another aspect worthy of discussion is the study sam-
ple. In the extant literature, it is relatively clear, and occa-
sionally noted, that the labels “typically developing” or
“normal” are at times somewhat misleading. Studies of
normative brain development often times experience selec-
tion bias, including children with higher than average IQ
and social economic status. Further, diversity in ethnic
background tends to be limited, and the prevalence of
behavioral problems in these samples is likely lower than
what would be observed in a true random sampling of the
population. A similar scenario has been considered in the
context of case-control studies [Schwartz and Susser,

Figure 6.

Between-network associations with age. The x-axis reflects age

in years and the y-axis is the pairwise correlations between time

courses of two components, transformed to the Z distribution.

A 5Components 11 and 12, B 5 Components 3 and 13, and

C 5 Components 2 and 3.
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2011]. In the current study, the children were sampled
from a population-based cohort. Importantly, severe
behavioral problems were an exclusion criteria, and thus
the sample is not truly representative at the population
level. However, other aspects of the study sample, includ-
ing non-verbal IQ show close correspondence with the
population average (current study mean 5 103, population
average 5 100). Further, ethnicity in the current sample
was fairly representative of the catchment area, with
roughly 17% of the sample was of non-Western decent.
These factors, when taken together, suggest the current
sample is less representative of a “hyper-normal” group
and more representative of the overall population com-
pared many studies of typical brain development.

In addition to describing RSNs in children, another goal
of the present study was to facilitate replication and gener-
alizability in RS-FMRI data analyses. Thus, the final set of
meta-ICA spatial maps have been made available under a
non-commercial license to the neuroimaging community
via the Neuroimaging Informatics Tools and Resources
Clearinghouse (NITRC) website (http://www.nitrc.org/
projects/genr/). Interested researchers are able to utilize
the components to aid in their research efforts, for exam-
ple, in comparison against those identified in their own
studies, for use in spatial-temporal regression (dual regres-
sion), or as an “atlas” for reference with other RS-FMRI
ICA studies, task-based FMRI studies and structural neu-
roimaging studies. Further, the age-appropriate T1-weight-
ed brain described in section “Study-specific, age-
appropriate template for registration” is also available for
those interested in a pediatric structural brain for
registration.

While the current study has many strengths, some limi-
tations are present and deserve attention. First, the current
study presents independent component analyses of
resting-state data in children, imposing a dimensionality
of 25. While it is highly unlikely 25 components represent
the true set of RSNs in the brain, this number was chosen
because it fits well with the existing literature and gener-
ates a similar set of components to what has been pre-
sented previously in both child, adolescent and adult
studies. With increasing spatial and temporal resolution of
acquired RS-FMRI data, using higher dimensionalities
becomes more feasible, even though it has been observed
that increasing the dimensionality may actually simply
split components into sub-networks [Smith et al., 2009].
There is also interesting evidence from large studies sug-
gesting the brain is organized into a relatively low number
of networks [Yeo et al., 2011]. While noise components are
reported in the current study, and it is likely that some of
them will be generalizable (i.e., replicate) across studies/
research groups, some of these noise components will not
be generalizable. For example, certain components could
be related to a particular MR-scanner profile, which may
or may not even replicate within a given model/manufac-
turer of scanner [Friedman et al., 2008]. However, some of

these components (e.g., those related to respiratory and
cardiac physiology) will most likely be applicable across
site, and it will be interesting to see how they compare to
components other groups observe. Lastly, while the cur-
rent study did investigate the frequency components were
observed after repeated subsampling, it was beyond the
scope of the study to examine the spatial variability of the
components in detail. Future studies may wish to examine
this, perhaps in the context of higher and lower
dimensionality.

The current study presents evidence that many RSNs in
young children are quite robust, occurring frequently
under repeated ICAs, while other RSNs are less frequently
observed and require additional scrutiny when involving
between-group comparisons. Further, these components
demonstrate age-related associations, suggesting they are
sensitive to subtle developmental changes. The final meta-
ICA group components and pediatric T1-weighted struc-
tural template are made available to the neuroimaging
community for research purposes (https://www.nitrc.org/
projects/genr/).
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