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Abstract: Expert performance constitutes the endpoint of skill acquisition and is accompanied by wide-
spread neuroplastic changes. To reveal common mechanisms of reorganization associated with long-
term expertise in a cognitive domain (mental calculation, chess, language, memory, music without
motor involvement), we used activation likelihood estimation meta-analysis and compared brain acti-
vation of experts to nonexperts. Twenty-six studies matched inclusion criteria, most of which reported
an increase and not a decrease of activation foci in experts. Increased activation occurred in the left
rolandic operculum (OP 4) and left primary auditory cortex and in bilateral premotor cortex in studies
that used auditory stimulation. In studies with visual stimulation, experts showed enhanced activation
in the right inferior parietal cortex (area PGp) and the right lingual gyrus. Experts’ brain activation
patterns seem to be characterized by enhanced or additional activity in domain-specific primary, asso-
ciation, and motor structures, confirming that learning is localized and very specialized. Hum Brain
Mapp 37:262–272, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Expert performance is characterized by the consistent
performance at a superior level in a cognitive, artistic,
motor, or other domain such as chess, mathematics, music,
and sports [Ericsson and Lehmann, 1996]. It constitutes
the endpoint of skill acquisition, during which perform-
ance improves as a power function of practice and

becomes faster and more accurate [Logan, 1992; Newell
and Rosenbloom, 1981]. With long-term practice, qualita-
tive changes occur and skills develop from a controlled,
effortful, attention demanding to a more automatic, rapid,
and effortless mode of processing [Schneider and Shiffrin,
1977]. This process goes along with a redistribution of
neural resources that may imply a decreased demand of
control or attentional processes (reduced activation) as
well as “true” reorganization (change in the location of
activation) that is indicative of different tasks being per-
formed at the beginning and end of training [Kelly and
Garavan, 2005; Patel, et al., 2013]. Expertise-related neuro-
plastic changes are widespread and concern multiple sen-
sory, cognitive, motor, and affective networks of the brain
[Harel, et al., 2013]. Generally, sensory and motor tasks
that involve topographical cortical representation provoke
different reorganizational mechanisms than higher cogni-
tive tasks [Kelly and Garavan, 2005]. Further, reorganiza-
tional changes depend on the stage in the acquisition of a
skill with a training of minutes or days resulting in a
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different outcome than a training of years. However, even
after long-lasting training, there is a considerable variabili-
ty among people with regard to the level of skill they
achieve, because high expertise does not naturally arise
together with automaticity [Debarnot, et al., 2014; Ericsson,
2006]; for a review on the respective roles of practice versus
ability for expertise, see special issue on “Acquiring exper-
tise: ability, practice, and other influences, Intelligence, 45,
2014”). In order to clarify the neural mechanisms underly-
ing high expertise, several functional imaging studies com-
pared experts in different domains to a nonexpert control
group [expert vs novice paradigm, Campitelli and Speel-
man, 2013]. Domains varied between music and sports as
relatively frequent domains of expertise [for a qualitative
review, see Chang, 2014], to more exclusive skills as mental
arithmetic [e.g., Fehr, et al., 2010], or chess [e.g., Bilalic,
et al., 2011b], to very particular skills related to special
career groups, such as sommeliers [Castriota-Scanderbeg,
et al., 2005], perfumers [Plailly, et al., 2012], or architects
[Kirk, et al., 2009]. Depending on the skill investigated, the
number of available experts was limited and group sizes
rather small. To date, there are no quantitative reviews that
may summarize the neural effects of long-lasting training in
the cognitive domain and that compared experts to nonex-
perts. Thus the goal of the current activation likelihood
estimation (ALE) meta-analysis was to integrate studies
investigating neuroplastic reorganization that underlies cog-
nitive expertise based on many years of training. We aimed
to consider expertise in cognitive domains to the exclusion
of any motor or vocational expertise that may rely on very
different reorganizational processes [see Kelly and Garavan,
2005; for a recent ALE meta-analysis on motor learning, see
Hardwick et al., 2013]. In this study, expert and nonexpert
brain activation patterns were considered in contrast to each
other, but not separately. By this, we intended to isolate
long-term expert-specific plasticity processes across different
domains. The following general reorganizational mecha-
nisms were considered possible: (1) In concordance with the
notion of redistribution of brain activity, there may be a
decreased demand on attentional and control [“scaffolding,”
Petersen, et al., 1998] processes, e.g., in the prefrontal cortex,
the anterior cingulate, and posterior parietal cortex, and an
increased demand on storage and processing in task-specific
areas in experts [Kelly and Garavan, 2005]. (2) Perceptual
expertise that sometimes goes along with cognitive exper-
tise, e.g., in chess [Gobet and Simon, 1996], has been shown
to activate the fusiform face area on the lateral side of the
fusiform gyrus [Bilalic, et al., 2011b; Gauthier, et al., 2000].
(3) Experts have been found to develop a special memory
function that implies the setup of knowledge structures or
templates in long-term memory and their availability by
retrieval cues in working memory [Ericsson and Kintsch,
1995; Gobet and Simon, 1996]. Activation of long-term mem-
ory structures, such as the hippocampus and adjacent
medial temporal areas, may be indicative of these processes.
(4) Caudate nucleus activity has been demonstrated in

implicit, automatic, and intuitive information processing,
e.g., in Japanese chess professionals during quick, automatic
generation of the next best move [Wan et al., 2011], in
simultaneous interpreters [Hervais-Adelman, et al., 2015],
and in professional writers [Erhard et al., 2014]. Generally,
increases in the subcortical striatum have been reported
after training in motor and cognitive tasks (for a review, see
Patel et al., 2013).

In sum, the objective of this study was to elucidate gen-
eral reorganizational mechanisms of long-term expertise
across different cognitive domains. We hypothesized a
decrease of attentional and control processing in the pre-
frontal cortex and an increase of activity in task-specific
areas, as well as a possible increase of activation in the
fusiform face area, long-term memory medial temporal
structures, and the striatum.

METHODS

Literature Search and Study Selection

A systematic literature research was conducted to identify
neuroimaging studies of expertise for inclusion in the meta-
analysis. Relevant papers were retrieved by searching
Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) using the
following terms: (fMRI OR “positron emission tomography”)
AND (expertise). There were 745 results in Pubmed (May
2015). After screening these articles and applying the exclu-
sion criteria as described below, we obtained the following
categories for cognitive expertise: mental calculation, chess,
language, memory, and music. We then continued searching
within different domains by entering the keyword of the
respective domain (e.g., (music) AND (expert OR expertise
OR professional OR prodigy) AND (fMRI OR “positron emis-
sion tomography”). We obtained 10 results for mental calcu-
lation, 13 for chess, 148 for memory, 131 for language, and 99
for music. We again applied the exclusion criteria and
checked the literature sections of the respective articles look-
ing for additional publications.

Inclusion and Exclusion Criteria

To be included in the analysis, studies needed to have
imaged and analyzed the whole head and reported coordi-
nates in standard stereotaxic space. We did not include
studies investigating structural brain differences or func-
tional connectivity. As described in the introduction, we
were interested in functional differences between experts
with long-term training and nonexperts. Thus only studies
that investigated an adult nonclinical expert group in com-
parison to a nonexpert control group were included, and
training studies that investigated longitudinal within-
group training effects as well as expert studies without
control groups were discarded. Experts had to have many
years of training to qualify as an expert in any domain.
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Since we were interested in cognitive but not other types
of expertise, all studies investigating motor and action exper-
tise, motor imagery, or emotional processing in experts were
excluded. Due to its motor involvement, studies implying
singing during scanning were not included, as well as expert
studies on meditation, acupuncture, and special career
groups, such as architects, medical doctors, or sommeliers
(no clearly defined cognitive training). Finally, since we
intended to investigate aspects of convergent rather than
divergent thinking, studies that examined creativity or musi-
cal improvisation were excluded. Finally, there were 26 stud-
ies included, 4 investigating expertise in mental arithmetic, 5
in chess, 1 in memory, 15 in music, and 1 in language and
music (Table I). The designation of a study as visual or audi-
tory is indicated in Table I. All the studies reported results
for the contrast “expert > nonexpert”, but the reverse con-
trast “nonexpert > expert” did not yield significant effects,
except in two studies [Krawczyk, et al., 2011; Schulze, et al.,
2011b]. We chose contrasts in a way that the control condi-
tion was always subtracted from the mental task condition.
Thus we do not report potential deactivations of brain areas.

ALE Meta-Analysis

All meta-analyses were carried out using the revised ALE
algorithm for coordinate-based meta-analysis of neuroimag-
ing results [Eickhoff, et al., 2009; Turkeltaub, et al., 2012].
This algorithm aims to identify areas with a convergence of
reported coordinates across experiments that are higher than
the expected from a random spatial association. Reported
foci are treated as centers of 3D Gaussian probability distri-
butions capturing the spatial uncertainty associated with
each focus [Eickhoff, et al., 2009]. Here, the between-subject
variance is weighted by the number of participants per study
since larger sample sizes should provide more reliable
approximations of the “true” activation effect and should
therefore be modeled by “narrower” Gaussian distributions.

Subsequently, probabilities of all foci reported of a given
experiment were combined for each voxel, yielding a mod-
eled activation (MA) map [Turkeltaub, et al., 2012]. Voxel-
wise ALE scores (union across these MA maps) then quan-
tified the convergence across experiments at each location
in the brain. To distinguish “true” from random conver-
gence, ALE scores were compared to an empirical null dis-
tribution reflecting a random spatial association among all
MA maps. The resulting random-effects inference focuses
on the above-chance convergence across studies rather
than the clustering within a particular study [Eickhoff,
et al., 2009]. This null hypothesis was derived by comput-
ing the distribution that would be obtained when sam-
pling a voxel at random from each of the MA maps and
taking the union of these values in the same manner as for
the (spatially contingent) voxels in the original analysis
[Eickhoff et al., 2012]. The P value of a “true” ALE score
was then given by the proportion of equal or higher val-
ues obtained under the null distribution. The resulting

nonparametric P values were then assessed at a family-
wise error (FWE) corrected threshold of P < 0.05 on clus-
ter level (cluster-forming threshold: P < 0.001 at voxel
level, cf., [Eickhoff, et al., 2012]) and transformed into Z
scores for display.

To reveal common mechanisms of reorganization after
long-term training in experts, an ALE meta-analysis was con-
ducted across all expertise studies. Further, to show possible
modality-specific effects of expertise, separate ALE analyses
were calculated for studies that used visual and auditory
stimulation. Since the ALE algorithm requires a minimum of
nine studies, different areas of expertise could not be ana-
lyzed separately with the exception of music (16 studies
including music and language). For the same reason, the
ALE meta-analysis of the contrast “nonexperts > experts”
could not be calculated. Since musical expertise studies
dominated the overall analysis of expertise studies, we con-
ducted another ALE meta-analysis across all expertise stud-
ies to the exclusion of music studies.

Anatomical Labelling

Resulting brain regions were macroanatomically labeled
by reference to the probabilistic Harvard–Oxford atlas (Desi-
kan, et al., 2006) included with FSLView v3.1 (http://www.
fmrib.ox.ac.uk/fsl/fslview/index.html). For a more precise
allocation, we made use of cytoarchitectonic maps of the
human brain provided by the SPM Anatomy Toolbox
[Eickhoff, et al., 2006b; Eickhoff, et al., 2007b; Eickhoff, et al.,
2005]. Hereby, activations and deactivations were assigned to
the most probable histologically defined area at the respec-
tive location. This probabilistic and histology-based anatomi-
cal labeling is reported in Table II; references to details of the
cytoarchitecture are given in the results section.

RESULTS

The meta-analysis of expertise studies that used audi-
tory stimulation (13 studies, 365 participants) computed
three activation clusters with altogether seven maxima
(Table II). Cluster I comprised the left rolandic operculum
[OP 4, Eickhoff, et al., 2006a; Eickhoff, et al., 2007a] and
the left superior temporal gyrus [TE 1.2, Morosan, et al.,
2001]. Cluster II showed two maxima in the left precentral
gyrus (Area 6, adjacent to Area 44). Cluster III comprised
the right precentral gyrus (Area 6) extending to the right
middle frontal gyrus [Area 6, Geyer, 2004] (Fig. 1).

The meta-analysis of investigations that used visual
stimulation (13 studies, 261 participants) yielded a single
activation cluster in the right inferior parietal cortex [PGp,
Caspers, et al., 2006] (Fig. 2).

The meta-analysis of all expertise studies computed two
activation clusters with one maximum in the left precen-
tral gyrus (Area 6) and two maxima in the left rolandic
operculum and the left superior temporal gyrus (TE 1.2)
(Fig. 3a).
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The meta-analysis of music studies calculated two acti-
vation clusters with one cluster in the left precentral gyrus
(Area 6) and the second cluster with two maxima in the
left rolandic operculum and the left superior temporal
gyrus (TE 1.2).

The meta-analysis of expertise excluding music studies
(10 experiments, 172 participants) resulted in two clusters
located in the right inferior parietal cortex (PGp), and the
right lingual gyrus, [area 17, Amunts, et al., 2000] (Fig. 3b).

DISCUSSION

The current ALE meta-analysis was conducted to high-
light cerebral regions that show reorganization in response
to long-term training in a cognitive skill. Twenty-six stud-
ies were identified that had investigated an expert group
in comparison to a nonexpert control group in the do-
mains of mental arithmetic, chess, language, memory, and
music (without motor involvement). All studies found
brain regions that showed larger activations in experts
than in nonexperts, but only two provided results in the
reverse direction. We may thus conclude that in the cogni-
tive domain, experts’ brains show larger activation magni-
tudes or activation in additional areas in contrast to the
motor domain where brain activation patterns tend to be
reduced and more focused in experts [J€ancke, et al., 2000;
Lotze, et al., 2003; Picard, et al., 2013]. In detail, increased
activation in experts occurred in the left rolandic opercu-
lum and left primary auditory cortex [TE 1.2, Morosan,
et al., 2001] and in bilateral premotor cortex (area 6, left
extending to area 44) in studies that used auditory stimu-
lation. The same activation pattern was evident when sep-
arate ALE analyses were calculated across music studies
and across all expertise studies combined, however, with-
out the activation cluster in the right premotor cortex. In
studies with visual stimulation, experts showed enhanced
activation in the right inferior parietal cortex [area PGp,
Caspers, et al., 2006]. When calculating a meta-analysis of
all studies excluding music, there was a comparable acti-
vation pattern as in studies with visual stimulation, how-
ever, with an additional cluster in the right lingual gyrus
[Area 17, Amunts, et al., 2000]. Thus, across modalities
and designs, brain activation patterns in experts were
characterized by an enhanced activity in primary and
association areas for the respective modality and motor
associated regions.

Enhanced Activity in Experts in the Left Rolandic

Operculum and Bilateral Premotor Cortex in

Paradigms with Auditory Stimulation

Studies with auditory stimulation converged in an acti-
vation cluster in the left rolandic operculum (OP4) extend-
ing to the left primary auditory cortex [TE 1.2, Morosan,
et al., 2001] and a co-activation of the bilateral premotor
cortex. The OP 4 of the human parietal operculum is a
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part of the secondary somatosensory cortex and represents
the human analog of primate area PV [Eickhoff, et al.,
2007a]. It has been associated with integrating functional
coupling of primary sensory and motor regions [Eickhoff,
et al., 2010]. In a recent functional network analysis of lan-
guage areas, the OP 4 has been found a key structure
connecting the primary auditory and motor regions respon-
sible for language [Sepulcre, 2015]. In the context of music,
the bilateral activity in the Rolandic operculum was inter-
preted as reflecting mechanisms of perception–execution
matching during the perception of vocalizable auditory
(e.g., musical) information [Koelsch, et al., 2006]. The same

conclusion came from a meta-analysis investigating
language-related networks that located the Rolandic opercu-
lum within a phonological network concerned with
sensory-motor coordination [Vigneau, et al., 2006]. Addi-
tionally, the Rolandic operculum includes the ventral part
of the larynx motor cortex in the left hemisphere [Bouchard,
et al., 2013; Conant, et al., 2014]. Together with the dorsal
part that is located at the dorsolateral motor/premotor cor-
tex [area 4p and 6, Brown and Martinez, 2007; Brown,
et al., 2008; Loucks, et al., 2007], it regulates the production
of pitch and voicing. Thus enhanced activation of experts in
the left rolandic operculum together with the coactivation

Figure 1.

Convergent brain activation of expertise studies with auditory stimulation (colors represent z-

values between 3.1 (red) and 4.68 (yellow)). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

TABLE II. Coordinates of peak activations, experts > nonexperts

Cluster Foci Z-value Coordinates (MNI)
Probability for

areas (%) Anatomically assigned to

x y z

A: Main effect: auditory
I (148 voxel) 1 4.68 258 28 12 60 L. rolandic operculum, OP 4

2 3.68 258 28 6 30 L. superior temporal gyrus, TE 1.2
II (124 voxel) 1 4.24 252 2 44 50 L. precentral gyrus, Area 6

2 3.80 252 6 36 10 L. precentral gyrus, Area 6
III (95 voxel) 1 3.82 56 26 46 80 R. precentral gyrus, Area 6

2 3.67 48 22 56 30 R. middle frontal gyrus, Area 6
3 3.64 50 24 54 60 R. middle frontal gyrus, Area 6

B: Main effect: visual
I (117 voxel) 1 5.05 48 268 16 40 R. inferior parietal cortex (PGp)

C: Main effect: expertise (auditory & visual)
I (170 voxel) 1 4.80 252 4 40 30 L. precentral gyrus, Area 6
II (87 voxel) 1 4.24 258 28 12 60 L. rolandic operculum, OP 4

2 3.47 258 28 6 30 L. superior temporal gyrus, TE 1.2
D: Main effect: music

I (71 voxel) 1 4.89 252 6 40 20 L. precentral gyrus, Area 6
II (164 voxel) 1 4.44 258 28 12 60 L. rolandic operculum, OP 4

2 3.65 258 28 6 30 L. superior temporal gyrus, TE 1.2
E: Main effect: expertise without music

I (141 voxel) 1 5.49 48 268 16 40 R. inferior parietal cortex (PGp)
II (89 voxel) 1 4.56 14 252 6 20 R. lingual gyrus, area 17

L.: left; R.: right.
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of the premotor cortex in this study may represent the two
parts of the larynx motor cortex in the left hemisphere.
Generally, premotor activation in the absence of any move-
ment has been connected to the automatic access to a
highly trained movement pattern [Rijntjes, et al., 1999] or
movement imagery [Binkofski, et al., 2000]. The cluster of
our meta-analysis extended to Area 44 that has been
described as belonging to an execution–observation match-
ing system [mirror neuron system; Gallese et al., 1996; Riz-
zolatti et al., 1996] in the human cortex [Binkofski and

Buccino, 2006]. Automatic cross-modal transfer and coacti-
vation of auditory and motor areas in musicians has been
described in previous studies [Bangert, et al., 2006; Engel,
et al., 2012; Lotze, et al., 2003] and is characteristic of expert
behavior in the auditory, especially music domain. The
results of this study may additionally suggest that musical
expertise involves having greater activation in the pitch-
producing centers of the brain. Subvocal articulatory activ-
ity has been reported in studies investigating auditory/
musical imagery [Smith, et al., 1995] and notational

Figure 3.

Convergent brain activation of expertise studies (a) including music studies (z-values between

3.01 (red) and 4.8 (yellow)) and (b) excluding music studies (z-values between 3.01 (red) and

5.49 (yellow)). [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 2.

Convergent brain activation of expertise studies with visual stimulation (colors represent z-val-

ues between 3.1 (red) and 5.05 (yellow)). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

r Neumann et al. r

r 268 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


audiation [the ability to “hear” music one is reading, Brod-
sky, et al., 2003; Brodsky, et al., 2008]. Subvocal repetition
or imagery may be also present in musical experts across a
diversity of tasks.

Enhanced Activity in Experts in the Right

Inferior Parietal Cortex (Area PGp, Caspers,

et al., 2006) in Paradigms with Visual Stimulation

Across visual paradigms including primarily mental
arithmetic and chess studies, there was one significant acti-
vation cluster in the right inferior parietal cortex. In the
context of chess expertise, the right parieto-occipito-
temporal junction was connected to superiority of experts
in chess specific object recognition [Bartlett, et al., 2013;
Bilalic, et al., 2010; Bilalic, et al., 2012] and was discussed
in terms of a qualitatively different way of processing with
the additional recruitment of right homologue areas in
experts [Bilalic, et al., 2010]. This activation pattern was
also observed in abacus experts during calculation
[Hanakawa, et al., 2003] and a mental calculation prodigy
[Pesenti, et al., 2001] in line with the notion of true func-
tional reorganization [Kelly and Garavan, 2005]. Our clus-
ter extended to region PGp of the right angular gyrus that
has been linked to mathematical cognition [Wu, et al.,
2009], however, as a deactivation correlated with poorer
accuracy in the calculation task. Deactivation of the right
angular gyrus, however in the more anterior region PGa,
was also evident in chess grandmasters during a Chinese
chess solving task [Duan, et al., 2012]. In contrast right
area PGp was active in Bilalic et al. (2011a) (named poste-
rior occipito-temporal junction), with deactivation occur-
ring only in control persons during a chess piece identity
task. These inconsistent findings may be reconciled taking
into account that deactivation in that area has been shown
to go along with increasing task difficulty [Greicius and
Menon, 2004; Wu, et al., 2009]. Thus in study paradigms
that were quite demanding [e.g., Duan, et al., 2012], the
right angular gyrus may show more deactivation than in
easy tasks presented to chess experts in Bilalic et al.
(2011a).

Enhanced Activation of Primary Visual and

Auditory Cortices Across Different Domains of

Expertise

Taking into account music studies, the ALE meta-
analysis across all studies pointed to the left primary audi-
tory cortex (in addition to motor-related areas) as differen-
tiating expert from non-experts. Without music studies,
there was a cluster in the medial part of the right lingual
gyrus, assigned to area 17 that has been related to pattern
recognition processes [Bilalic, et al., 2012] going along with
enhanced parafoveal vision in chess experts [Bilalic, et al.,
2010]. In the learning literature it has been frequently
described, that perceptual learning occurs at the location

where a specific aspect of perception is processed, i.e. all
along the processing stream [Karni, 1996]. Providing that,
it is not surprising that expertise also develops in brain
areas connected to the earlier information processing of
stimuli in question. Furthermore, the primary auditory
cortex is not confined to the analysis of sound, but is also
involved in auditory learning, memory and even problem
solving [for a review see Weinberger, 2012]. Likewise, the
right lingual gyrus has been shown to participate in cogni-
tive tasks, such as working memory [possibly due to vis-
ual strategies applied; Gerton, et al., 2004], visual imagery
[Kosslyn, et al., 1999], and perceptual learning [Maertens
and Pollmann, 2005]. Early low-level information process-
ing has been suggested to contribute to outstanding skills
observed in savants [Snyder and Mitchell, 1999] as well as
other prodigies [Birbaumer, 1999]. Thus expertise, even if
widely distributed in the brain [Harel, et al., 2013], may
start with alterations in primary sensory areas.

Apart from bottom-up mechanisms, top- down modula-
tion may also explain enhanced primary sensory cortex
activation in experts. Experts show enhanced engagement
with their area of expertise and pay more attention to
expertise-related objects [Golan, et al., 2014; Hershler and
Hochstein, 2009], what is reflected by an enhanced activity
in early visual areas [Harel, et al., 2010]. Likewise, top-
down modulatory effects can be observed in audition
[Tervaniemi, et al., 2009].

Methodological Constraints

In the current meta-analysis, we included 26 studies
investigating very different areas of cognitive expertise.
Although the number of studies included is within the
normal range for meta-analyses, common mechanisms
across these studies may be difficult to capture. In a recent
ALE analysis about within-group training effects across a
range of cognitive and motor tasks, the authors found
domain-general effects regardless of the different para-
digms included (Patel, et al., 2013). One reason why we
did not find these effects may be the generally lower
power in between-subject designs. Another explanation
may be that in most studies, experts conducted so-called
“contrived” tasks [Chi, 2006], i.e. tasks that were con-
structed in a way that both experts and non-experts can
complete them. There are several advantages of contrived
tasks, however, one disadvantage is that they may lack
ecological validity. Thus in the current meta-analysis we
may have missed some expert-specific mechanisms (e.g.
long-term working memory), because the tasks did not
require to engage them.

Summary and Conclusions

In the current meta-analysis of cognitive expertise, brain
activation patterns in experts (in comparison to nonexperts)
were characterized by an enhanced or additional activity in
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primary and association areas for the respective modality,
and motor-associated regions. With regard to our hypothe-
ses specified in the introduction, there were no domain-
general mechanisms evident, such as a reduction of activity
in the control network as observed in short-term practice
studies [Kelly and Garavan, 2005; Patel, et al., 2013], nor
expert-specific information processing in long-term working
memory structures, the fusiform gyrus, or the striatum.
Instead, there was an enhanced activity in domain-specific
structures related to the tasks performed (hypothesis 1b),
confirming that learning is localized and very specialized
[Hill and Schneider, 2006]. Indeed, there is a considerable
behavioral evidence that superior performance of experts is
due to their extensive experience with domain-related pat-
terns and configurations, e.g., in chess [Reingold, et al.,
2001; Reingold and Sheridan, 2011]. We were not able to
confirm large networks of expertise, as suggested by Harel
et al. (2013), what may be due to the variety of expertise
studies included. Most of the studies reported an increase
and not a decrease of activation foci in contrast to the non-
expert group. Thus true functional reorganization, possibly
connected to enhanced tissue in cortical areas devoted to
the task, can be observed after long periods of training.
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