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Abstract: While the HTT CAG-repeat expansion mutation causing Huntington’s disease (HD) is highly
correlated with the rate of pathogenesis leading to disease onset, considerable variance in age-at-onset
remains unexplained. Therefore, other factors must influence the pathogenic process. We asked wheth-
er these factors were related to natural biological variation in the sensory-motor system. In 243 partici-
pants (96 premanifest and 35 manifest HD; 112 controls), sensory-motor structural MRI, tractography,
resting-state fMRI, electrophysiology (including SEP amplitudes), motor score ratings, and grip force
as sensory-motor performance were measured. Following individual modality analyses, we used prin-
cipal component analysis (PCA) to identify patterns associated with sensory-motor performance, and
manifest versus premanifest HD discrimination. We did not detect longitudinal differences over 12
months. PCA showed a pattern of loss of caudate, grey and white matter volume, cortical thickness in
premotor and sensory cortex, and disturbed diffusivity in sensory-motor white matter tracts that was
connected to CAG repeat length. Two further major principal components appeared in controls and
HD individuals indicating that they represent natural biological variation unconnected to the HD
mutation. One of these components did not influence HD while the other non-CAG-driven component
of axial versus radial diffusivity contrast in white matter tracts were associated with sensory-motor
performance and manifest HD. The first component reflects the expected CAG expansion effects
on HD pathogenesis. One non-CAG-driven component reveals an independent influence on pathogen-
esis of biological variation in white matter tracts and merits further investigation to delineate the
underlying mechanism and the potential it offers for disease modification. Hum Brain Mapp 37:4615–
4628, 2016. VC 2016 Wiley Periodicals, Inc.

Key words: effective connectivity; cortical thickness; somatosensory evoked potentials; grip force; prin-
cipal component analysis; biological variation; biological trait
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INTRODUCTION

In Huntington’s disease (HD), the length of the expand-
ed CAG tract in HTT explains about half of the variability
of motor age-at-onset and is therefore the main determi-

nant of biological events prior to clinical diagnosis
(GeM-HD Consortium, 2015). The remaining variability is

independent of CAG repeat length and reflects the modi-
fying influence of genetic and environmental factors on
the pathogenic process (GeM-HD Consortium, 2015).

Structural differences in cerebral white and grey matter
may be detectable as far as 15–20 years before onset of
unequivocal signs of HD and have been reported using

VBM (Tabrizi et al., 2013) and DTI (Matsui et al., 2015)
(Aylward, 2007; Georgiou-Karistianis et al., 2013; Rosas

et al., 2008; Thieben et al., 2002). Similar to structural
abnormalities, cross-sectional task-based, or resting-state
functional MRI (fMRI) studies have documented wide-

spread cortical and subcortical changes of brain function
in manifest HD (Wolf, et al., 2014). TRACK-HD, a large
longitudinal study combining clinical and structural imag-

ing data from both premanifest and early manifest HD
participants, showed that clinical measures—e.g., motor
and cognitive tasks—and volumetric imaging tracked dis-

ease evolution were associated with manifest HD (Tabrizi
et al., 2013). PREDICT-HD, a longitudinal study in pre-

manifest HD (preHD), demonstrated that motor and cog-
nitive task performance, and structural imaging (in

particular putamen volume), improved predictions of
motor diagnosis compared with models using HTT CAG
repeat length and age (Paulsen et al., 2014).

Some of the effects reported in TRACK-HD and
PREDICT-HD were independent of HTT CAG repeat
length and age. This indicates that biological variation
exists that is not related to the cause of HD but may be
common in the population and, when present in an indi-
vidual with the HTT CAG-repeat expansion, exerts an
influence on HD pathogenesis. The identification of such
traits could help reveal an interaction between the biology
underlying the biological trait and the pathogenesis or
manifestation of HD. The trait itself or the genetics under-
lying its variation could suggest a route to disease modifi-
cation (genetic or pharmaceutical). Thus, HD-independent
work on mechanisms underlying the trait could provide
specific pathways/processes to be tested as candidates for
HD modification. It remains unresolved which additional
biological factors are associated with task performance and
clinical disease stage. We addressed this question in an a
priori defined neuronal network. We focused on sensory-
motor circuits that involve brain areas for which macro-
(volumetric) and microstructural (DTI) abnormalities have
consistently been reported in HD. These include cortical
somatosensory projections, abnormal in manifest disease
(Jech et al., 2007), the primary sensory cortex, in which
there is evidence of thinning prior to symptom onset (Tab-
rizi et al., 2009), white matter changes assessed using DTI
(Tabrizi et al., 2009; Weaver et al., 2009), and SEPs where
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amplitudes of cortical components were reduced
(Abbruzzese et al., 1990; Lefaucheur et al., 2006; Kuwert
et al., 1993; Topper et al., 1993).

Most previous analyses—including analyses of the
Track-HD data—have examined these measures one at a
time. The fact that differences to controls are expected for
many of these in HD is a premise of this study in which
we investigate the patterns by which they differ. Analyz-
ing data from different modalities one at a time does not
reveal these patterns. We aimed to first describe patterns
of the HTT CAG-repeat expansion associated pathology of
the sensory-motor circuit using multimodal measurements,
i.e., sensory-motor network brain structure (VBM, sensory-
motor cortex thickness and DTI tractography), function
(fMRI and electrophysiology), and sensory-motor task per-
formance (grip force and motor score). We hypothesized
that non-CAG-repeat-driven factors influence the patho-
genic process and thus predict task performance and clini-
cal disease stage and examined whether these factors were
related to natural biological variation in the sensory-motor
system.

METHODS

We investigated sensory-motor clinical measures, and
used neuroimaging and electrophysiological techniques to
investigate macrostructure, microstructure, and network
function. Following independent single modality evalua-
tion, we employed principal component analysis (PCA) as
a descriptive tool to identify data patterns using multi-
modal assessments. Finally, we asked whether those PCA
patterns (1) were associated with pathology that is also
known to be linked to HTT CAG-repeat expansion, (2)
were able to discriminate between controls, preHD and
early HD participants, and (3) were associated with clini-
cal measures of sensory-motor network performance (grip
force and UHDRS motor score).

PARTICIPANTS

All individuals who met baseline eligibility criteria for
the TRACK-HD premanifest cohort in 2008 (for inclusion/
exclusion criteria, see Tabrizi et al., 2009) were eligible to
participate in Track-On regardless of current disease sta-
tus. A premanifest gene carrier was either (a) an existing
premanifest gene carrier previously enrolled in TRACK-
HD or (b) a newly recruited premanifest gene carrier with
CAG repeat length �40 and burden of pathology score
(CAG-35.5) 3 age >250. All participants had to be able to
tolerate MRI, and sample donation, and control partici-
pants were age and gender frequency matched to the pre-
manifest gene carrier group.

Participants were assessed at baseline and 12 months at
four study sites in London (61 participants; 25.1%), Paris
(64; 26.3%), Leiden (60; 24.7%), and Vancouver (58; 23.9%).
The study was approved by local ethical committees, and

written informed consent was obtained from each
participant.

The United Huntington’s Disease Rating Scale (UHDRS)
motor part was administered at both visits. Participants
with a UHDRS diagnostic confidence score of 4 on the
motor scale (criteria for clinical diagnosis of early HD) at
12 months were defined as the early (diagnosed) group.
The remaining HD group was divided into preHD-A (fur-
ther from predicted diagnosis age; �10.8 years at baseline)
and preHD-B (nearer; <10.8 years) based on the survival
analysis formula (Langbehn et al., 2004).

CLINICAL ASSESSMENT AND

ELECTROPHYSIOLOGY

Participants were assessed clinically, including grip
force analysis (Reilmann, et al., 2010) and HTT CAG repeat
length determined as described for the TRACK-HD study
(Tabrizi et al., 2009; Tabrizi et al., 2011; Tabrizi et al.,
2013). At all four sites, somatosensory-evoked potentials
(SEP) were recorded following median nerve stimulation
with surface electrodes, and at three sites, transcranial
magnetic stimulation (TMS) was done as previously
described using established techniques (Fischer and Orth,
2011; Orth and Rothwell, 2004). The protocol included M.
abductor pollicis brevis (APB) hot-spot and motor thresh-
old determination, motor-evoked potential latencies and
amplitudes, input/output curves at rest (110%, 130%,
150% resting motor threshold) and with preactivation
(125%, 150%, 175% active motor threshold), and silent
period determination.

NEUROIMAGING

Voxel-Based Morphometry

Voxel-based morphometry data were acquired using
previously validated protocols for multisite use on two
different 3 T MRI scanner systems (Philips Achieva at Lei-
den and Vancouver and Siemens TIM Trio at London and
Paris). Cortical thickness measures were generated for
each participant using Freesurfer version 5.3.0 applying
default parameters and optimized for 3 T data (Fischl and
Dale, 2000). Measures were extracted from Brodmann
areas: BA4a/4b (motor cortex, M1); BA6 (premotor cortex,
PMC); and BA3a/3b, BA1, BA2 (somatosensory cortex, S1)
https://surfer.nmr.mgh.harvard.edu/fswiki/BrodmannAr-
eaMaps. All segmentations were visually inspected for
accuracy, blind to participant status.

Diffusion Tensor Imaging

Diffusion-weighted images with 42 unique gradient
directions (b 5 1,000 s/mm2) were acquired from both Sie-
mens and Phillips scanners. Eight images with no diffu-
sion weighting (b 5 0 s/mm2) and one image with no
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diffusion weighting (b 5 0 s/mm2) were acquired from the
Siemens and Philips scanners respectively. For the Siemens
scanners, TE 5 88 ms and TR 5 13 s; for the Phillips scan-
ners, TE 5 56 ms and TR 5 11 s. Voxel size for the Siemens
scanners was 2 3 2 3 2 mm and for the Phillips scanners
1.96 3 1.96 3 2. 75 slices were collected for each diffusion-
weighted and non-diffusion-weighted volume. The diffu-
sion data were preprocessed using standard FSL pipelines
(Smith et al., 2004). Data were corrected for eddy current
distortions, diffusion tensors fitted using DTFIT, and all
metrics derived.

For DTI, the no-gradient (B0) image was then skull-
stripped using the Brain Extraction Tool (BET) and was
manually examined and corrected. (For Siemens data B0
images were merged to create a mean.) Diffusion tensors
were then fit to the corrected data using dtifit. FA, AD,
and RD values were derived from the tensors. For registra-
tion, we first created a high-quality T1 brain mask by com-
bining and dilating a thresholded segmented image
(created using the VBM toolbox http://www.neuro.uni-
jena.de/vbm/) with an eroded T1 mask from BET. The
mask was then applied to the original, brain-extracted, T1
image. The resultant T1 image was then registered to the
B0 image using FLIRT (Jenkinson and Smith, 2001).
Within-voxel crossing fibers were modeled using a Bayes-
ian probabilistic method implemented in Bedpostx (Beh-
rens, et al., 2007).

For fiber-tracking, pathways selected were between S1
and somatosensory thalamus; M1 and motor thalamus;
PMC and the motor thalamus and the corticospinal tract
(CST), connecting M1 and the cerebral peduncle. For all
regions except the cerebral peduncle, we used a region of
interest (ROI) approach. The main advantage in using a
single voxel is that the signal measured fully represents
the activity or structure within that voxel and is not
impacted by the signal in neighboring voxels. However, it
is widely accepted that neighboring voxels are likely to
have a similar signal, be it resting-state activity or white
matter microstructure. In fact, averaging over an ROI can
significantly increase the signal-to-noise ratio (SNR) com-
pared to that of a single voxel. A single voxel, for example,
may be heavily impacted by the presence of other tissues
or non-neuronal noise which would lower the SNR and
the quality of the extracted signal. The location of a single
voxel can also vary considerably between individuals.
Using a cluster of voxels rather than an individual voxel
within a region would provide greater confidence that the
“nodes” used in the analyses were located in the anatomi-
cal or functional ROI. Furthermore, when defining a
“node” based on the literature or a previous study, it is
possible to use both standardized atlases or masks to cre-
ate an ROI. This ensures across-participant consistency in
terms of location. It is important to note, however, that for
instance for DTI, effects can be masked or diluted by
reverse-sense changes in different voxels within a single
ROI. There is evidence that, for example, FA can increase

in some voxels due to selective degradation of one of two
fiber populations, but decreases due to the same effect in
neighboring voxels that contain only one fiber population
(Groeschel et al, 2014). In averaging over an ROI, it is,
therefore, possible to mix voxels with differing effects,
which may be partially cancelled out on averaging. Final-
ly, for DCM (see below), the timeseries extraction was
based on a principal components approach. Instead of sig-
nal averaging, we therefore extracted the signal that
explains the majority of the variance in that ROI. For the
tractography analyses, all metrics are weighted to ensure
that those streamlines or fibers which contribute most
toward the formation of a tract are most represented.

ROIs were created using the Anatomy Toolbox; thalamic
regions for DTI and DCM analyses were therefore identi-
cal. The cortical regions were, however, different from
those used in the DCM analyses as larger regions were
more suitable for fiber-tracking. The cerebral peduncle
region was created using the FSL Montreal Neurological
Institute template and the Johns Hopkins University White
Matter Labels atlas. All regions were defined in standard
space and warped into native space for each participant
using the inverse deformation parameters that were out-
putted from the DARTEL registration for the resting-state
fMRI images (see resting-state fMRI methods section).
Masks were used to exclude any streamlines that tracked
via the contralateral hemisphere or posteriorly to the thala-
mus and peduncle and to ensure tracts did not extend
beyond the white matter into grey matter, CSF, or dura.

For each participant, and each set of tracts, probabilistic
tractography was then performed using probtrackx (Beh-
rens et al., 2003). Connectivity distributions were generat-
ed from our seed regions in native space. The resulting
tract images were then warped into diffusion space using
the FLIRT tool and overlaid onto the B0 image for quality
checking. FA, AD, and RD values were extracted for each
participant for each tract.

Resting-State Functional MRI

Resting-state fMRI data were collected using 48 continu-
ously acquired ascending axial slices covering the whole
cortex and cerebellum (slice thickness: 2.8 mm, gap:
1.5 mm, in plane resolution 3.3 3 3.3 mm, field of view
(FOV) 212 mm) with a T2*-weighted echo-planar imaging
(EPI) sequence (repetition time (TR) 3,000 ms, echo time
(TE) 30 ms, flip angle (FA) 808). One hundred and sixty-
five volumes were acquired in a single 8:20 min run.
Preprocessing and subsequent statistical analyses were
performed using SPM8 (Wellcome Trust Centre for Neuro-
imaging, http://www.fil.ion.ucl.ac.uk/spm). Dynamic
Causal Modelling (DCM) using a stochastic framework,
which models the randomness inherent within resting-
state brain activity, was then employed to investigate caus-
al interactions between five regions within the sensorimo-
tor network (Friston et al., 2003; Friston et al., 2011).
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Model specification and estimation were conducted using
DCM10 (SPM12bWellcome Trust Centre for Neuroimag-
ing) and all connectivity parameters extracted for further
analysis.

For resting-state fMRI, the first four EPI images were
discarded to allow for steady-state equilibrium. The T1
scan was segmented into grey and white matter using the
VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) and
deformation parameters extracted using DARTEL (Ash-
burner, 2007). The segmented images were used to create
an improved anatomical scan for coregistration. Functional
images were first realigned and field maps used for inho-
mogeneity correction. EPI images were then co-registered
to the new anatomical image and normalized using the
DARTEL deformation parameters. Finally the data were
smoothed using a 6mm full-width at half-maximum
Gaussian kernel. Using a first-level design consisting of
smoothed images only, the principal eigenvariate of the
white matter and CSF time series were extracted from a
single voxel located within the pons (0, 224, 233) or later-
al ventricle (21, 45, 3) respectively. The white matter and
CSF signals were then included with movement regressors
as nuisance covariates in a second general linear model
(GLM) at the individual level. The timeseries for each
region within our model was then extracted using this
GLM. The model consisted of five regions within the sen-
sory and motor networks within the left hemisphere (dom-
inant). Cortical regions were derived using coordinates
from previous Track-HD studies: S1 (240, 234, 61); M1
(240, 218, 60); and the PMC (224, 0, 54). For the thalamic
regions, see DTI methods. For cortical regions, timeseries
were extracted by placing an 8 mm sphere around the
specified coordinates, localized to the nearest local maxi-
mum for peak activity, within a regional anatomical mask
generated by either the WFUPickatlas (Eickhoff, et al.,
2005) or the Anatomy Toolbox (Maldjian, et al., 2003). For
the thalamic ROIs, the principal eigenvariate of the times-
eries was extracted from the predefined mask. Connections
between and within all regions were modeled except the
bidirectional connections between the two thalamic
regions, the cortical motor regions and the sensory thalam-
ic region and the S1 and the motor thalamic composite
region; this totaled 17 connections. DCM specification and
estimation was carried out with DCM10 in SPM software
(SPM12b; Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm) and connectivity
parameters for each participant were extracted. The DCM
estimation and model convergence were examined using
SPM-derived quality assurance.

STATISTICAL ANALYSIS

We first inspected all data for implausible outliers
(between 0% and 2% of data, depending on the measure),
which were either corrected or discarded after joint review
with the subject-matter investigators. We used log or

square root transforms when appropriate to achieve
approximate residual normality, as is assumed by infer-
ence procedures.

For modeling group differences in outcomes among ear-
ly HD, preHD-B, preHD-A, and controls, we used general
weighted least square (GWLS) regression with restricted
maximum likelihood estimation (Diggle, et al., 1994). The
method accounts for repeated measure correlations among
participants with measures at two visits (Tabrizi et al.,
2013). Participants with only one observation were also
included however. This increases statistical power and
ensures unbiased longitudinal analyses if visit 2 data is
missing at random.

Individual measures from the various modalities were
treated, one-at-a-time, as outcome variables. The main
effects of interest were the above HD groups and their
potential interaction with time between visits (“time”).
Longitudinal group effects were tested via the time inter-
actions with group.

The “cross-sectional” effects of interest were mean
group values, averaged over both visits. These were esti-
mated by a linear combination of main effects of group
and group-by-time interaction, such that estimated base-
line and 12 month values were given equal weight. These
averaged cross-sectional comparisons reduce statistical
noise due to factors such as measurement error and accu-
rate but irrelevant measurement of short term (e.g., day-
to-day) fluctuations, leading to smaller standard errors for
group comparisons.

Because we also attempted to measure longitudinal
change over 1 year, one might question the validity of
using both the baseline and follow-up measures for a
mean cross-sectional analysis. The justification is empirical
and due to the slow evolution of most HD phenomena.
Even for measures that exhibit statistically significant lon-
gitudinal changes over 1 year, the magnitude of change is
quite small in comparison to the cross-sectional changes
exhibited between HD groups and controls. This cross-
sectional difference is the net result of many years of lon-
gitudinal change (Tabrizi et al., 2009; Tabrizi et al., 2013).
We also note that this is an observational study. Within
the broad ranges defined by our groupings, the time of the
baseline measurement is arbitrary. For measures that are
not subject to practice effects, there is no reason to prefer
time 1 or time 2 as representative of premanifest or control
states.

We controlled for age at study entry, gender, study site
(scanner), and education level, as well as their interaction
with time. For TMS thresholds, we additionally controlled
for main effects of skull to cortex (M1) distance and for
Freesurfer measures of mean cortical thickness in the left
Brodmann areas B4a and B4b (the cortical areas stimulat-
ed). Some models also controlled for underlying HD pro-
gression risk determined by CAG repeat length and age
via the cumulative probability of onset (CPO) statistic
from a survival analysis of onset ages (Tabrizi et al., 2013;
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Langbehn et al., 2004). Because variance of outcome mea-
sures sometimes changes notably in early HD versus
preHD versus controls, separate residual covariance was
estimated for each group. We used the Kenward–Rogers
correction to estimate denominator degrees of freedom
(Kenward and Roger, 1997). All models were fit using
Proc Mixed from SAS 9.4 (Littell et al., 2006). Within
modalities (electrophysiology, DTI, DCM, etc.), we also
calculated false discovery rates (FDR), abbreviated by q,
using the Benjamini and Hochberg method (Benjamini and
Hochberg, 1995).

We created a composite grip force motor score from the
sum of sample-standardized orientation and position indi-
ces, collected while grip force heavy-load task was per-
formed with the dominant hand.

For the final steps of the statistical regression analyses,
which involved composite scores created from multiple
variables, we addressed the issue of missing data by use
of multiple imputation (Schafer, 1997) done separately for
cases and controls. MI was based on outcome measures at
baseline and follow-up (treated as separate variables)
along with all demographic covariates, including HD
group and study site interactions with time. Five imputa-
tions were generated using Proc MI and subsequent model
inferences were adjusted using Proc MIAnalyze (SAS 9.4).

PCA was performed on outcome variables of interest as
identified by their between-group differences in the GWLS
regressions. The PCA input was the maximum likelihood
estimate of the correlation matrix, derived during the mul-
tiple imputation procedure. Nonrotated component scores
were then used in to model the relationships to grip force,
UHDRS motor score (Pearson correlations and linear mod-
els), and manifest versus premanifest HD discrimination
(logistic discrimination).

For the PCA, we selected measures from each of the
modalities. We were guided by the results of individual
modality analyses, i.e., we chose measures with the great-
est difference between controls and HD. Some of the mea-
sures within a given modality were highly correlated, for
instance, the DTI measures from all tracts or cortical thick-
ness from all regions. Hence we only included for instance
diffusivity measures from 2 of the 4 tracts in the multimo-
del PCA. Overall, we included only 15 variables within
the multimodal PCA to ensure representation of the differ-
ent modalities was roughly equal. We included VBM data

(volumes of white matter, grey matter, and caudate), corti-
cal thickness data (BA6 (premotor cortex), BA3a 1 2
(somatosensory cortex)), diffusion metrics from tractogra-
phy (AD and RD of S1–thalamus and PMC–thalamus
tracts), effective connectivity parameters from DCM
(PMC–thalamus and PMC–PMC connections), and SEPs
(N20/P25 amplitude and N20 latency) into the PCA (mul-
timodal-PCA). In a second PCA that focused solely on
DTI, we included RD and AD measures from all 4 avail-
able DTI tracts. We were interested in the question of
whether patterns in HD participants differed from those in
controls or were similar. For this reason, we did the PCAs
separately in HD and healthy controls.

RESULTS

The total Track-On cohort comprised 131 HD (101 for-
mer TRACK-HD and 30 new premanifest) and 112 con-
trols (79 former TRACK-HD and 33 new) recruited
between April 16, 2012 and December 10, 2012 (Table I).
At the 12 month follow-up visit, 11 participants from the
HD group and 7 from the control group did not take part.
The most common reasons for withdrawal were intoler-
ance to MRI, personal time constraints, and the burden of
the study day.

We defined a priori a total of 53 measures for analysis
(17 DCM, 3 brain volume, 7 cortical thickness, 12 DTI, and
14 electrophysiology; Supporting Information, Table 1).
First we asked if there was detectable change in any of the
measures from baseline to the 12 month visit. Longitudinal
change was small and not statistically significant (data not
shown). In contrast, cross-sectional differences among the
groups, averaged over time, were evident and are pre-
sented in Table II.

PCA was performed on all gene-carrier participants
(combined HD and preHD), and, independently, in con-
trols because we were interested in comparing indepen-
dently derived descriptive patterns between the HD and
the control groups.

In the combined HD group, multimodal-PCA reduced
the dimensionality of the data to three important dimen-
sions or principal components (PCs) based on their eigen-
values (Table II; Supporting Information, Table 2). In HD,
the first multimodal-PC explained 21% of the variance in

TABLE I. Demographic and clinical characteristics of study participants by subgroup

Variable Control N 5 112 preHD A N 5 41 preHD B N 5 55 preHD all N 5 96 Early HD N 5 35

Gender N (%F) 67 (59.8) 24 (58.5) 26 (47.3) 50 (52.1) 19 (54.3)
Age 48.1 (10.7) 40.4 (8.8) 44.0 (9.0) 42.4 (9.0) 45.3 (8.4)
Education 3.9 (1.0) 4.0 (1.0) 4.0 (1.0) 4.0 (1.0) 3.9 (0.9)
CAG repeat length – 42.3 (2.2) 43.4 (2.3) 42.9 (2.3) 43.5 (2.5)
Disease burden – 257.2 (30.7) 330.0 (39.8) 298.9 (51.1) 348.2 (61.6)
Motorscore 1.3 (1.6) 5.4 (3.3) 5.0 (3.8) 5.2 (3.6) 12.6 (7.1)
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the data. In the multimodal-PC1 dimension, lower cau-
date, grey, and white matter volumes, and lower BA6 and
BA1 and 2 cortical thickness were associated with higher
AD and RD of S1-thalamus and PMC-thalamus tracts (Fig.
1A). The first PC was the only multimodal-PC that corre-
lated significantly with the age-CAG cumulative probabili-
ty of onset (r 5 20.58, P< 0.0001, Fig. 1B). Furthermore,
this first multimodal-PC showed association with sensory-
motor network specific performance (grip force orientation
and position index; Fig. 1C and Table III). Multimodal-PC1
substantially mediated, and improved upon, the predictive
effect of age-CAG on grip force (P 5 0.006) such that there
was no residual association of age-CAG (P 5 0.468) after
this PC was included in the model. Multimodal-PC1 was
also associated with clinical motor score (P 5 0.041), and
probability of manifest versus preHD status (P 5 0.003, Fig.
1D and Table III). However, unlike for grip force associa-
tions, the influence of age-CAG on clinical motor score or
HD status remained significant, though weaker, when the
first PC was included in the model. This indicates that the
first multimodal-PC does not completely mediate the
age–CAG relationship to motor score.

The second multimodal-PC in HD explained 15% of
data variance (Fig. 1A). Higher AD was correlated with
smaller SEP amplitudes and greater cortical thickness.
Multimodal-PC2 was not predicted by age and CAG
length (r 5 0.12, P 5 0.178), nor was it associated with HD
outcomes (data not shown). This second PC may represent
an element of biological variation unrelated to HD, an
interpretation supported by partial similarity to the first
multimodal-PC in an independent PCA in healthy con-
trols. The patterns were similar except that volumes of
grey and white matter and caudate also correlated with
the component in controls but not HD (Fig. 1A; Support-
ing Information, Table 3). Consistent with their known

central role in the illness, these volumes instead contribut-
ed substantially to the first principal component of varia-
tion among the HD groups.

The third multimodal-PC in HD, explaining 11% of data
variance, revealed a dimension of contrast between AD
and RD (Fig. 1A). The third PC was a substantial addition-
al predictor of grip force score (P 5 0.036), of UHDRS
motor score (P 5 0.007) and of diagnosis (P 5 0.021, Fig. 1E
and Table III). Caudate, grey, and white matter volumes
contributed very little to this third multimodal-PC, and its
values were not predicted by age and CAG length
(r 5 0.04; P 5 0.643). By definition, this AD versus RD com-
ponent is uncorrelated with the more general brain struc-
tural effects of the first multimodal-PC, which are driven
by genetic HD load. Furthermore, multimodal-PCA of the
normal controls revealed a similar AD versus RD contrast-
ing component that accounted for 12% of the variance
within the control group (Supporting Information, Table
3). Therefore, higher AD compared to RD is associated
with HD pathogenesis in the presence of a CAG expansion
mutation, but is also observed as natural variation in
healthy controls. It is independent of the unique HD brain
structural effects that are related to HTT CAG repeat
length.

We then asked if the relationship of AD and RD extend-
ed to the other white matter tracts that we had measured
but excluded from the initial PCA. There was a very high
correlation of AD, and RD, values among the four tracts.
The finding was consistent in separate analyses of the con-
trols (Fig. 2A,B) and the HD group (Fig. 2D,E). This was
further reflected in a PCA restricted to AD and RD values
from all 4 tracts (ADRD-PCA) and performed indepen-
dently in healthy controls and HD participants. Two
dimensions (illustrated for controls in Fig. 2C and for HD
in Fig. 2F) explained 94% of the variability in controls and

TABLE II. Principal component analysis with data from all modalities

HD Controls

PC Eigenvalue % Variance explained Cumulative Eigenvalue % Variance explained Cumulative

1 3.102 20.7 20.7 3.432 22.9 22.9
2 2.267 15.1 35.8 2.353 15.7 38.6
3 1.703 11.3 47.1 1.850 12.3 50.9
4 1.442 9.7 56.8 1.103 7.4 58.2
5 1.084 7.2 64.0 1.081 7.2 65.5
6 0.995 6.6 70.6 0.968 6.5 71.9
7 0.891 6.0 76.6 0.901 6.0 77.9
8 0.795 5.3 81.9 0.829 5.5 83.4
9 0.704 4.7 86.6 0.706 4.7 88.2
10 0.531 3.5 90.1 0.581 3.9 92.0
11 0.522 3.5 93.6 0.446 3.0 95.0
12 0.468 3.1 96.7 0.335 2.2 97.2
13 0.211 1.4 98.1 0.229 1.5 98.8
14 0.161 1.1 99.2 0.128 0.9 99.6
15 0.125 0.8 100 0.059 0.4 100
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90% of variability in HD participants (Fig. 2G). ADRD-PC1
contains a dimension of common correlation among all
diffusivity measures while ADRD-PC2, consistent with the

multimodal PCA, reflects the contrast between AD and
RD values (Fig. 2G and Table IV). AD measures were sig-
nificantly correlated with grip force, but the RD measures

Figure 1.

Multimodal principal component analysis. (A) Heat map of correla-

tion coefficients of each modality with dimensions derived from

principal component analysis done independently in healthy con-

trols and HD participants. The first multimodal principal compo-

nent (PC) in HD contains higher axial (AD) and radial diffusivity

(RD) in S1-Thalamus (Thal) and PMC-Thalamus tracts; less cortical

thickness in the PMC (BA6) and S1 (BA3a; BA2); and less total brain

grey matter (GM), white matter (WM), and caudate volume.

Multimodal-PC3 in HD reflects the difference between axial and

radial diffusivity. Multimodal-PC2 in HD and PC1 in controls show a

similar pattern of thicker cortex, higher axial diffusivity, and lower

SEP amplitudes. (B) HD multimodal-PC1 scores negatively corre-

late with cumulative probability of onset (CPO) and grip force ori-

entation and position index (C; pre HD blue dots, manifest HD red

dots). (D) Multimodal-PC1 scores distinguish manifest HD (red

dots) from preHD participants (blue dots; the Y-axis just separates

HD and controls). (E) Multimodal-PC3 is a substantial additional

predictor of manifest HD (P 5 0.021) improving the separation of

manifest HD (red dots) and preHD participants (blue dots). Abbre-

viations: PMC-ThM, effective connectivity PMC to motor thalamus

parcellation; PMC-PMC, effective connectivity PMC to PMC; S1-

M1, effective connectivity S1 to motor cortex.
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were not (Fig. 2H and Table V). There was no correlation
between age and grip force performance in controls, and
correlation of AD and RD with grip force was not signifi-
cantly affected if controlled for age. In HD participants,
the patterns were similar to controls. The correlation of
both ADRD-PC1 and AD with grip force was stronger,
and the relationship of ADRD-PC2 and grip force was
slightly stronger than in controls (Fig. 2I and Table V).

DISCUSSION

In this study, we went beyond the analysis of data from
single modalities one at a time to investigate data patterns
reflecting the structural and functional state of an a priori

defined sensory-motor circuit that is relevant for motor con-
trol. We aimed to delineate CAG-repeat-length-dependent

and -independent patterns that influence the pathogenic
process before disease onset. We did not detect longitudinal
differences over 12 months. Cross-sectionally, in HD,
dimension reduction using PCAs revealed one dimension
specific to its cause, i.e., HTT CAG repeat-length expansion,
that included a correlated loss of caudate, grey, and white
matter volume, cortical thickness, and disturbed diffusivity
in white matter tracts. Within our data, this component pre-
dicted sensory-motor performance and a diagnosis of mani-
fest HD. Two further dimensions were not unique to HD
but were also present in controls. The first of these dimen-
sions represented natural variation in axonal diffusivity,
cortical thickness, and SEP amplitude but did not influence
HD. The second non-CAG dimension consisting of an AD
versus RD contrast in white matter tracts did influence HD
in that it was an additional predictor of sensory-motor per-
formance in HD and controls, and a clinical diagnosis of

TABLE III. PCA (on data from all modalities) multivariate model of grip force position and orientation composite

score, UHDRS motor score, and diagnosis status, i.e., premanifest versus manifest Huntington’s disease

Regression coefficient Standard error T value CPO mediated (%) P

Grip force

CPO only (a)

Intercept 20.3831 0.1560 22.46 0.015
CPO (a) 20.1462 0.0498 2.93 0.004
PC1 added

Intercept 20.1156 0.1812 20.64 0.525
CPO (a) 20.0442 0.0606 0.73 75.1 0.468
PC1 (b) 20.1742 0.0614 22.84 0.006
PC3 added

Intercept 20.0939 0.1767 20.53 0.596
CPO (a) 20.0357 0.0602 0.59 79.9 0.555
PC1 20.1805 0.0617 22.93 0.005
PC3 20.1519 0.0700 22.17 0.036
UHDRS motor score

CPO only (a)

Intercept 1.853 0.154 12.02 <0.0001
CPO (a) 20.273 0.049 5.55 <0.0001
PC1 added

Intercept 2.043 0.178 11.46 <0.0001
CPO (a) 20.201 0.060 3.35 39.6 0.001
PC1 (b) 20.124 0.060 22.06 0.041
PC3 added

Intercept 2.068 0.173 11.95 <0.0001
CPO (a) 20.191 0.059 3.25 41.4 0.002
PC1 20.131 0.058 22.24 0.027
PC3 20.180 0.065 22.77 0.007
Premanifest versus manifest Huntington’s disease

CPO only (a) ln(OR)

0.679 0.147 4.61 <0.0001
PC1 added

CPO (a) 0.422 0.172 2.54 44.9 0.011
PC1 (b) 0.627 0.211 2.98 0.003
PC3 added

CPO (a) 0.444 0.172 2.58 44.0 0.010
PC1 0.653 0.206 3.17 0.002
PC3 0.496 0.214 2.32 0.021
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Figure 2.

Principal component analysis with axial and radial diffusivity

(ADRD-PCA). In controls, (A) axial diffusivity values or (B)

radial diffusivity values from different tracts are highly correlated.

(C). ADRD principal component (PC) 1 reflects that greater, or

smaller, axial diffusivity is associated with greater, or smaller,

radial diffusivity. There is additional variability in the relationship

of axial and radial diffusivity, which is reflected in ADRD-PC2. In

HD participants, the relationship between (D) axial diffusivity

(AD) or (E) radial diffusivity (RD) in the two tracts is similar to

controls. (F) Manifest HD participants (red dots) have higher

than average axial and radial diffusivity values and higher axial

relative to radial diffusivity values (grey triangle) than preHD

(blue dots). (G) A principal component analysis with axial and

radial diffusivity values from all 4 tracts done independently in

healthy controls and HD participants reveals that PC1 and PC2

explain 94% of data variability in controls and 90% in HD partici-

pants. Heat maps of correlation coefficients show that in con-

trols and HD participants in PC1 axial and radial diffusivity are

positively correlated while PC2 reflects the difference between

axial and radial diffusivity. In (H) controls and (I) HD partici-

pants, higher axial diffusivity is associated with higher grip force

orientation and position index scores. NB. C and F contain

approximate representations of the PCs relative to paired,

observed AD and RD measures. Abbreviations: M1: motor cor-

tex; S1: somatosensory cortex; CST: cortico-spinal tract; PMC:

premotor cortex.
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HD. This pattern of diffusivity is consistent with naturally
occurring variability in a biological trait that influences HD
manifestations.

The HTT mutation is the main determinant of pathogen-
esis that leads to the structural and functional neurodegen-
eration that underlies HD and the emergence of
unequivocal clinical signs. We examined this pathogenic
process in that we investigated the structural and function-
al state in an a priori defined sensory-motor circuit relevant
for motor control. Presumably owing to the slow progres-
sion of HD and perhaps also the sensitivity limits of the
methods employed, there was no detectable change in any
of the sensory-motor modalities within the 12 month
observation period. This may appear inconsistent with the
findings in the original TRACK-HD study at 12 months
(Tabrizi et al., 2011). It is important to note, though, that
many of the measures that we used in this study were not
part of TRACK-HD. It is therefore possible that, e.g., elec-
trophysiological measures or DTI are less suitable for the
detection of change over 12 months because either net-
work brain function or white matter microstructure do not
change much or because measurement error for these

measures is large relative to the change that happens. In
addition, in TRACK-HD, most detectable changes were
observed only in the diagnosed, early HD group, which
was both substantially larger and more advanced in dis-
ease than in our newly diagnosed HD subgroup. It is
therefore conceivable that the ability to detect change over
time depends on the measurements themselves, on the
time that elapsed between measurements, and also on the
stage of HD. Cross-sectionally, however, our data con-
firmed that, compared with controls, in HTT gene expan-
sion carriers white and grey matter brain structure is
diminished, and sensory afferent signal transmission is
concomitantly slower and less efficient. Furthermore, these
differences were measurable before unequivocal motor
signs of HD emerged. Brain structure and electrophysiolo-
gy remained abnormal following the emergence of diag-
nostic motor signs. Further, in early HD, in addition to
RD, AD was substantially worse and effective connectivity
from PMC to thalamus reduced. The analyses used to
examine differences at the individual modality level the
patterns by which the data differ across modalities. We
therefore next employed multivariate analysis using PCA
to reveal such data patterns. PCA reduced data to two
dimensions that were relevant for HD and one that repre-
sents natural variation that does not influence HD. The
first dimension relevant to HD contained a correlated loss
of caudate, grey and white matter volume, cortical thick-
ness, and disturbed diffusivity in white matter tracts.
These changes increased with an increase of the age-CAG-
length HD risk, indicating that structural abnormalities
relate to the primary cause of pathogenesis. For perfor-
mance that is related to the sensory-motor network, we
show that the current structure of white and grey matter
within the network is a more relevant (and presumably
more proximal) predictor than the key HD biological vari-
ables, age, and CAG repeat length. Our data indicate that
structural changes in white and grey matter are relevant
for sensory-motor task performance and are an integral
part of HD biology.

TABLE IV. Correlations of observed axial and radial

diffusivity in independent PCAs in controls and

Huntington’s disease participants

Controls

Huntington’s

Disease

Variable PC1 PC2 PC1 PC2

M1 – Thal AD 0.785 20.598 0.793 20.577
S1 – Thal AD 0.812 20.531 0.784 20.548
CST AD 0.797 20.544 0.782 20.542
PMC – Thal AD 0.747 20.625 0.770 20.581
M1 – Thal RD 0.749 0.631 0.706 0.666
S1 – Thal RD 0.770 0.562 0.626 0.662
CST RD 0.741 0.595 0.644 0.702
PMC – Thal RD 0.634 0.718 0.619 0.684

TABLE V. Correlations of grip force with axial (AD) and radial diffusivity (RD) in independent principal component

analyses (PCAs) in controls and Huntington’s disease participants

Grip force correlation

Controls Huntington

Correlation coefficient P Correlation coefficient P

PCA1 mean 0.273 0.0065 0.381 <0.0001
PCA2 mean 20.168 0.0978 20.201 0.0352
M1 – Thalamus AD 0.342 0.0006 0.420 <0.0001
S1 – Thalamus AD 0.338 0.0007 0.407 <0.0001
CST AD 0.277 0.0058 0.408 <0.0001
PMC – Thalamus AD 0.291 0.0036 0.410 <0.0001
M1 – Thalamus RD 0.087 0.3946 0.136 0.1577
S1 – Thalamus RD 0.136 0.1825 0.077 0.422
CST RD 0.070 0.4921 0.127 0.1857
PMC – Thalamus RD 0.075 0.4629 0.103 0.2864
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We then examined whether we could identify biological
variation that was independent of genetic risk but still
associated with sensory-motor performance and clinical
category, i.e., preHD versus manifest HD. PCA identified
two dimensions not connected to CAG repeat length in
which data variance was similar in controls and HD par-
ticipants. One of these dimensions was not associated with
clinical status. It contrasted more AD with smaller SEP
amplitudes and greater cortical thickness, and, in controls,
increased grey matter volume as well. In HD participants,
this dimension was not related to age-CAG repeat length.
The dimension seems to capture an element of natural bio-
logical variation unrelated to HD.

Axonal damage is known to be associated with a loss of
amplitude of evoked potentials so that it is conceivable
that variation of axonal microstructure relates to SEP
amplitude. In addition, the distance between the soma of
the cell receiving sensory afferent inputs within S1 and the
recording electrode on the scalp can also influence SEP
amplitude. With a thicker cortex that distance may be
slightly greater, and subsequently the SEP amplitude
smaller.

A second dimension unrelated to age-CAG repeat length
in both controls and HD participants revealed differences
between AD and RD in white matter tracts. This dimen-
sion was also, by definition, uncorrelated with either the
previous non-CAG-repeat dimension or with the primary
dimension related to CAG-repeat length found only in
HD. This axial–radial DTI dimension was independently
associated with sensory-motor performance and a clinical
diagnosis of HD. Somewhat surprisingly, it was also asso-
ciated with task performance in controls. The diffusivity
contrast was evident in all the tracts we analyzed, and,
thus, is not specific to a single white matter tract. There-
fore, the diffusivity patterns constitute a quantitative phe-
notype that reflects naturally occurring variability in white
matter tract biology.

AD reflects water movement in tracts parallel to the
main fiber organization while RD measures water move-
ment perpendicular to this organization.

In animal models, there is evidence suggesting that AD
reflects axonal integrity and RD myelin integrity (Song
et al., 2002; Song et al., 2003; Tobin et al., 2011). Myelin-
producing glial cells and neurons form a unit in which
axon integrity depends on intact myelin and axons help
maintain that myelin (Bremer et al., 2010; Nave, 2010). In
diseases primarily affecting white matter myelin, such as
multiple sclerosis, clinical signs seem to manifest when
axonal damage arises from the loss of myelin trophic sup-
port (Nave, 2010). Naturally occurring variability in the
axon–myelin unit in itself does not cause disease. Howev-
er, with a genetically sensitized background such as in HD
or in other diseases naturally occurring variability in the
make-up of the axon–myelin unit may influence onset and
the course of the disease. DTI diffusivity patterns need to
be interpreted with caution, as we cannot infer with

confidence the anatomical significance based on the diffu-
sivity changes we observed in our participants. Nonethe-
less, given the prominent involvement of white matter in
HD (Tabrizi et al., 2009), and since mutant huntingtin has
been implicated in oligodendrocyte function and axonal
transport (Huang et al., 2015; Li and Conforti, 2013), our
observational data suggest that it is worth exploring the
role of the differential loss of myelin and axons in HD
pathogenesis further.

In contrast to brain structure, sensory-motor functional
measures such as effective connectivity or SEPs did not
contribute significantly to models of clinical status. While
some functional measures differed significantly between
preHD or early HD versus controls, task performance, and
clinical status. One possible explanation could be the use
of resting-state measures. Brain activity differs substantial-
ly when performing a task compared to when at rest even
within our carefully chosen sensory-motor network model.
It is also possible that the precision of functional measure-
ments is inadequate to reliably detect relevant underlying
phenomena.

In summary, we went beyond the analysis of single
modality data one at a time to assess patterns of struc-
tural and functional properties of the sensory-motor sys-
tem in HD and healthy controls using multivariate
analysis. While there was very little, if any, change in
these modalities over 12 months, the cross-sectional anal-
ysis revealed a dimension of white and grey matter loss
attributable to HD biology that is associated with
network-specific task performance and clinical diagnosis.
Our data suggest that the microstructural anatomy
influencing water diffusivity perpendicular to white mat-
ter tracts, e.g., myelin, is already changed in preHD. In
contrast, the anatomical compartment that determines
water diffusivity parallel to the tracts, e.g., the axon, is
not substantially affected until early HD. Although these
patterns are amplified with HD, we also show that these
measures of white matter organization consistently vary
among healthy controls across different white matter
tracts. Given the absence of an age–CAG correlation, this
indicates that naturally occurring variability in white
matter tract microanatomy may represent a biological
trait with a disease modifying influence on the pathogen-
esis of HD. These findings need to be confirmed, e.g.,
examining more tracts with DTI in conjunction with
more task performance outcomes.

No disease-modifying treatment is known that can
delay the onset or slow the progression of HD, although
there are several promising approaches about to reach
clinical testing (Wild and Tabrizi, 2014). These approaches
directly target the production or regulation of the hun-
tingtin protein. However, there is still a need to identify
other important disease-modifying biological factors in
HD as these may eventually provide additional drug
development targets for this devastating disease (GeM-
HD Consortium, 2015).

r Orth et al. r

r 4626 r



ACKNOWLEDGMENTS

The authors thank the Track-On study participants and
their families; the CHDI/High Q Foundation, a not-for-
profit organization dedicated to finding treatments for
HD; and Richard Frackowiak, Christian Wolf, Christoph
Kaller, Karl Friston, Nikolaus Weiskopf, Daniel S. O’Leary,
and Stephane Lehericy for helpful advice. We thank Ray
Young for his assistance with artwork.

AUTHOR CONTRIBUTIONS

Conception and design of the study: MO, AD, RACR,
BRL, GBL, RR, BB, LB, RIS, SK, GR, JCR, DL, and SJT.

Acquisition and analysis of data: MO, ISMM, SG, KKS,
LM, RIS, GR, and DL.

Drafting of the manuscript, tables, and figures: MO and
SG.

All co-authors reviewed and critiqued the manuscript.
TRACK-ON investigators: Canada: Kate Brown, Joji

Decolongon, Mannie Fan, Tamara Koren, and Terri Patkau
(University of British Columbia, Vancouver, Canada).
France: Celine Jauffret, Sabine Meunier, and Traian Popa
(ICM Institute, Paris). Germany: Christian Sass and Natha-
lia Weber (GHI, M€unster). Netherlands: Omar Odish and
Anne Schoonderbeek (Leiden University Medical Center,
Leiden). UK: Claire Berna, Helen Crawford, Mahaleskshmi
Desikan, Davina J Hensman Moss, Nicola Z Hobbs, Eilea-
noir Johnson, Gail Owen, Adeel Razi, Joy Read, and Gio-
nata Strigaro (University College London, London). USA:
Hans Johnson and Jim Mills (University of Iowa, Iowa).

CONFLICTS OF INTEREST AND

FINANCIAL DISCLOSURES

The authors have no conflicts of interest in relation to
the material presented in this article.

REFERENCES

Abbruzzese G, Dall’Agata D, Morena M, Reni L, Favale E (1990):

Abnormalities of parietal and prerolandic somatosensory

evoked potentials in Huntington’s disease. Electroencephalogr

Clin Neurophysiol 77:340–346.
Ashburner J (2007): A fast diffeomorphic image registration algo-

rithm. NeuroImage 38:95–113.
Aylward EH (2007): Change in MRI striatal volumes as a bio-

marker in preclinical Huntington’s disease. Brain Res Bull,

72(2-3):152–158.
Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW

(2007): Probabilistic diffusion tractography with multiple fibre

orientations: What can we gain? NeuroImage 34:144–155.
Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes

RG, Clare S, Matthews PM, Brady JM, Smith SM (2003): Char-

acterization and propagation of uncertainty in diffusion-

weighted MR imaging. Magn Reson Med 50:1077–1088.

Benjamini Y, Hochberg Y (1995): Controlling the false discovery

rate: A practical and powerful approach to multiple testing.

J R Stat Soc B 57:289–300.
Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P,

Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010): Axo-

nal prion protein is required for peripheral myelin mainte-

nance. Nat Neurosci 13:310–318.
Diggle PJ, Liang K-Y, Zeger SL (1994): Analysis of Longitudinal

Data. Oxford: Clarendon Press.
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR,

Amunts K, Zilles K (2005): A new SPM toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging

data. NeuroImage 25:1325–1335.
Fischer M, Orth M (2011): Short-latency sensory afferent inhibi-

tion: Conditioning stimulus intensity, recording site, and

effects of 1 Hz repetitive TMS. Brain Stimulation 4:202–209.
Fischl B, Dale AM (2000): Measuring the thickness of the human

cerebral cortex from magnetic resonance images. Proc Natl

Acad Sci USA 97:11050–11055.
Friston KJ, Harrison L, Penny W (2003): Dynamic causal model-

ling. NeuroImage 19:1273–1302.
Friston KJ, Li B, Daunizeau J, Stephan KE (2011): Network discov-

ery with DCM. NeuroImage 56:1202–1221.
Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium

(2015): Identification of genetic factors that modify clinical

onset of Huntington’s disease. Cell 162:516–526.
Georgiou-Karistianis N, Scahill R, Tabrizi SJ, Squitieri F, Aylward

E (2013): Structural MRI in Huntington’s disease and recom-

mendations for its potential use in clinical trials. Neurosci Bio-

behav Rev 37:480–490.
Groeschel S, Tournier JD, Northam GB, Baldeweg T, Wyatt J,

Vollmer B, Connelly A (2014): Identification and interpretation

of microstructural abnormalities in motor pathways in adoles-

cents born preterm. Neuroimage 87:209–219.
Huang B, Wei W, Wang G, Gaertig MA, Feng Y, Wang W, Li XJ,

Li S (2015): Mutant huntingtin downregulates myelin regulato-

ry factor-mediated myelin gene expression and affects mature

oligodendrocytes. Neuron 85:1212–1226.
Jech R, Klempir J, Vymazal J, Zidovska J, Klempirova O, Ruzicka

E, Roth J (2007): Variation of selective gray and white matter

atrophy in Huntington’s disease. Mov Disord 22:1783–1789.
Jenkinson M, Smith S (2001): A global optimisation method for robust

affine registration of brain images. Med Image Anal 5:143–156.
Kenward MG, Roger JH (1997): Small sample inference for fixed

effects from restricted maximum likelihood. Biometrics 53:

983–997.
Kuwert T, Noth J, Scholz D, Schwarz M, Lange HW, Topper R,

Herzog H, Aulich A, Feinendegen LE (1993): Comparison of

somatosensory evoked potentials with striatal glucose con-

sumption measured by positron emission tomography in the

early diagnosis of Huntington’s disease. Mov Disord 8:

98–106.
Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR

(2004): A new model for prediction of the age of onset and

penetrance for Huntington’s disease based on CAG length.

Clin Genet 65:267–277.
Lefaucheur JP, Menard-Lefaucheur I, Maison P, Baudic S, Cesaro

P, Peschanski M, Bachoud-Levi AC (2006): Electrophysiological

deterioration over time in patients with Huntington’s disease.

Mov Disord 21:1350–1354.
Li JY, Conforti L (2013): Axonopathy in Huntington’s disease. Exp

Neurol 246:62–71.

r Natural Variation Influences HD Manifestations r

r 4627 r



Littell RC, Milliken GA, Stroup WW, Wolfinger RD,
Schabenberger O (2006): SAS for Mixed Models. Cary, NC:
SAS Institute Inc.

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003): An auto-
mated method for neuroanatomic and cytoarchitectonic atlas-
based interrogation of fMRI data sets. NeuroImage 19:
1233–1239.

Matsui JT, Vaidya JG, Wassermann D, Kim RE, Magnotta VA,
Johnson HJ, Paulsen JS, Investigators, P.-H., Coordinators of
the Huntington Study, G (2015): Prefrontal cortex white matter
tracts in prodromal Huntington disease. Hum Brain Mapp 36:
3717–3732.

Nave KA (2010): Myelination and the trophic support of long
axons. Nat Rev Neurosci 11:275–283.

Orth M, Rothwell JC (2004): The cortical silent period: Intrinsic
variability and relation to the waveform of the transcranial
magnetic stimulation pulse. Clin Neurophysiol 115:1076–1082.

Paulsen JS, Long JD, Ross CA, Harrington DL, Erwin CJ, Williams
JK, Westervelt HJ, Johnson HJ, Aylward EH, Zhang Y,
Bockholt HJ, Barker RA (2014): Prediction of manifest Hunting-
ton’s disease with clinical and imaging measures: A prospec-
tive observational study. Lancet Neurol 13:1193–1201.

Reilmann R, Bohlen S, Klopstock T, Bender A, Weindl A,
Saemann P, Auer DP, Ringelstein EB, Lange HW (2010):
Grasping premanifest Huntington’s disease - shaping new
endpoints for new trials. Mov Disord 25:2858–2862.

Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, Greve
D, Hevelone N, Hersch SM (2008): Cerebral cortex and the
clinical expression of Huntington’s disease: Complexity and
heterogeneity. Brain 131:1057–1068.

Schafer JL (1997): Analysis of Incomplete Multivariate Data. New
York: Chapman & Hall.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,
Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De
Stefano N, Brady JM, Matthews PM (2004): Advances in func-
tional and structural MR image analysis and implementation
as FSL. NeuroImage 23:S208–S219.

Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003):
Diffusion tensor imaging detects and differentiates axon and
myelin degeneration in mouse optic nerve after retinal ische-
mia. NeuroImage 20:1714–1722.

Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH
(2002): Dysmyelination revealed through MRI as increased

radial (but unchanged axial) diffusion of water. NeuroImage
17:1429–1436.

Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd
D, Kennard C, Hicks SL, Fox NC, Scahill RI, Borowsky B,
Tobin AJ, Rosas HD, Johnson H, Reilmann R, Landwehrmeyer
B, Stout JC (2009): Biological and clinical manifestations of
Huntington’s disease in the longitudinal TRACK-HD study:
Cross-sectional analysis of baseline data. Lancet Neurol 8:
791–801.

Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R,
Landwehrmeyer GB, Fox NC, Johnson H, Hicks SL, Kennard
C, Craufurd D, Frost C, Langbehn DR, Reilmann R, Stout JC,
TRACK-HD Investigators (2011): Biological and clinical
changes in premanifest and early stage Huntington’s disease
in the TRACK-HD study: The 12-month longitudinal analysis.
Lancet Neurol 10:31–42.

Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA,
Borowsky B, Landwehrmeyer B, Frost C, Johnson H, Craufurd
D, Reilmann R, Stout JC, Langbehn DR (2013): Predictors of phe-
notypic progression and disease onset in premanifest and early-
stage Huntington’s disease in the TRACK-HD study: Analysis of
36-month observational data. Lancet Neurol 12:637–649.

Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N,
Richards F, McCusker E, Frackowiak RS (2002): The distribu-
tion of structural neuropathology in pre-clinical Huntington’s
disease. Brain 125:1815–1828.

Tobin JE, Xie M, Le TQ, Song SK, Armstrong RC (2011): Reduced
axonopathy and enhanced remyelination after chronic demye-
lination in fibroblast growth factor 2 (Fgf2)-null mice: Differen-
tial detection with diffusion tensor imaging. J Neuropathol
Exp Neurol 70:157–165.

Topper R, Schwarz M, Podoll K, Domges F, Noth J (1993):
Absence of frontal somatosensory evoked potentials in Hun-
tington’s disease. Brain 116:87–101.

Weaver KE, Richards TL, Liang O, Laurino MY, Samii A,
Aylward EH (2009): Longitudinal diffusion tensor imaging in
Huntington’s Disease. Exp Neurol 216:525–529.

Wild EJ, Tabrizi SJ (2014): Targets for future clinical trials in Hun-
tington’s disease: What’s in the pipeline? Mov Disord 29:
1434–1445.

Wolf RC, Sambataro F, Vasic N, Depping MS, Thomann PA,
Landwehrmeyer GB, Sussmuth SD, Orth M (2014): Abnormal
resting-state connectivity of motor and cognitive networks in ear-
ly manifest Huntington’s disease. Psychol Med 44:3341–3356.

r Orth et al. r

r 4628 r


