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Abstract: Functional interactions in the brain are constrained by the underlying anatomical architec-
ture, and structural and functional networks share network features such as modularity. Accordingly,
age-related changes of structural connectivity (SC) may be paralleled by changes in functional connec-
tivity (FC). We provide a detailed qualitative and quantitative characterization of the SC–FC coupling
in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic reso-
nance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18–82.
We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct
age-dependency of regionwise SC–FC coupling and network-level SC–FC relations. A specific pattern
of SC–FC coupling predicts age more reliably than does regionwise SC or FC alone (r 5 0.73, 95%
CI 5 [0.7093, 0.8522]). Hence, our data propose that regionwise SC–FC coupling can be used to charac-
terize brain changes in aging. Hum Brain Mapp 37:2645–2661, 2016. VC 2016 Wiley Periodicals, Inc.

Key words: aging; brain connectivity; structure; function; resting-state network

r r

INTRODUCTION

The overwhelming majority of the brain’s energy is con-
sumed by intrinsic neuronal activity, which is present in
the absence of an explicit task, during the so-called
“resting state” [Biswal et al., 1995]. Intrinsic activity may
facilitate the transfer of information, and aid in task per-
formance [Raichle and Mintun, 2006]. Resting-state func-
tional connectivity (rsFC) represents the degree to which
intrinsic activity is correlated between region pairs across
time. Changes in rsFC have been found among older
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adults [Damoiseaux et al., 2007], individuals with mild
cognitive impairment [Sorg et al., 2007], and Alzheimer’s
disease [Greicius et al., 2004; Jones et al., 2011]. It has been
suggested that such age-related changes in FC are a prod-
uct of changes in structural connectivity (SC) [Andrews-
Hanna et al., 2007]. SC quantifies the strength of long-
range interaction on the basis of diffusion imaging.
Indeed, reductions in tract strength have been documented
during aging [O’Sullivan et al., 2001], and are related to
poorer performance across a range of motor and cognitive
tasks in old age [Wen et al., 2011].

SC–FC correspondence has previously been investigated
at a regionwise and whole-brain network level. At a region-
wise level, SC between individual regions is highly, but not
perfectly, correlated with rsFC between corresponding
regions [Hermundstad et al., 2013; Honey et al., 2007, 2009;
Koch et al., 2002; Skudlarski et al., 2008; van den Heuvel
et al., 2009]. At a network level, SC is also known to support
the functional network organization: The modular nature of
functional networks emerges from the underlying SC [Gray-
son et al., 2014; Shen et al., 2012; van den Heuvel and
Sporns, 2013a), and SC underlies a number of functional
network graph properties [Betzel et al., 2014; Honey et al.,
2007; Misic et al., 2015; Ponce-Alvarez et al., 2015].

The relationship between regionwise SC and FC has
been shown to persist in old age [Davis et al., 2012; Ford
and Kensinger, 2014; Romero-Garcia et al., 2014] and is
also present in older adults with mild cognitive impair-
ments [Teipel et al., 2009]. However, the structure–function
relations on a whole-brain network level, that is, the net-
work properties as described by graph theoretical meas-
ures remain largely uninvestigated in aging. Maturational
research suggests different effects of age on structure and
function [Supekar et al., 2010].

A new body of research has suggested that the region-
wise structure–function relationship may actually change
with age. For instance, it has been shown that regionwise
structure–function coupling increases during development
[Hagmann et al., 2010; Supekar et al., 2010; van den Heu-
vel et al., 2014]. SC–FC correspondence may change in
some regions depending on interactions between age and
emotional valence [Ford and Kensinger, 2014]. Moreover,
under task conditions, regionwise SC–FC coupling may be
stronger among older adults, suggesting that a healthy
structural architecture prevents decline in cognitive func-
tion by maintaining communication between regions
[Davis et al., 2012]. FC changes more with age at polysy-
naptic structural pathways than where SC is direct, that is,
monosynaptic [Betzel et al., 2014]. Decoupling in disease,
such as schizophrenia [Cocchi et al., 2014; Skudlarski
et al., 2010] and epilepsy [Zhang et al., 2011], has also
been shown. The potential predictive value of SC–FC cou-
pling was suggested in one study of epilepsy patients,
where this measure was more closely related to long-term
symptom duration than changes in the structural or func-
tional network alone [Zhang et al., 2011].

Network-level structure–function relations in aging are
largely unknown. Although structural [Wu et al., 2013] and
functional [Meunier et al., 2009] topology has been shown to
vary with age, little is known about how SC supports the
functional organization in aging. One study compares the
structural and functional topology in development, showing
age-related changes in rich-club organization only in the
functional, but not the structural network [Grayson et al.,
2014]. In aging, decreasing SC parallels the functional reor-
ganization [Betzel et al., 2014]; however, whether these two
measures were directly related was not investigated.

In aging, regionwise and network structural and func-
tional changes have been asserted; however, our under-
standing of structure–function relationship dynamics in the
latter part of the lifespan is still incomplete. Previous studies
have emphasized the potential value of a SC–FC coupling
measure; however, its merit in aging research has not been
investigated. Network-level SC–FC relations remain
unknown. The objective of this study is to provide a
detailed characterization of regionwise and network-level
SC–FC relations from young adulthood to old age by com-
paring dwMRI-derived SC between individual regions with
rsFC of those connections across participants ranging from
18 to 80 years of age. Specifically, we test these hypotheses:
(1) Regionwise SC–FC coupling uniquely predicts age with
higher reliability than SC or FC do individually. (2) SC
upholds network-level functional modular organization in
changing ways across age. First clusters in individuals’
functional networks are tightly linked to their underlying
structure. Second, due to the nature of their architecture,
i.e., high embeddedness, hub regions play an important role
in altered network-level SC–FC relations during aging.

MATERIALS AND METHODS

Sample

Forty-seven healthy subjects between the ages of 18 and
80 (mean age 6 SD, 41.49 6 18.36; 19 male/28 female) were
recruited as volunteers (see Supporting Information, Fig. S1

for age distribution). Subjects with a self-reported history of
neurological, cognitive, or psychiatric conditions were
excluded from the experiment. Research was performed in
compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written informed
consent was provided by all subjects with an understanding
of the study prior to data collection, and was approved by
the local ethics committee in accordance with the institu-
tional guidelines at Charit�e Hospital, Berlin. Acquisition
procedures for this data were previously reported [Ritter
et al., 2013]. They are briefly described below.

Magnetic Resonance Acquisition Procedure

Functional (functional magnetic resonance imaging,
fMRI) and structural image acquisition was performed on
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a 3 T Siemens Tim Trio Scanner MR equipped with a 12-
channel Siemens head coil. After anatomical and dwMRI
measurements, subjects were removed from the scanner
and again put in later for the functional measurements. It
is also important to note that subjects had an EEG cap on
their heads during functional measurements, i.e., EEG-
fMRI. Data were obtained from subjects at resting state;
subjects were asked to close their eyes, relax, and avoid
falling asleep. High-resolution (1 3 1 3 1 mm) T1-
weighted anatomical images were acquired with an
MPRAGE sequence (1900 ms repetition time (TR), 2.25 ms
echo time (TE), 98 flip angle, 256 mm field of view (FoV),
256 matrix, 192 sagittal slices, 1 mm slice thickness). Func-
tional image acquisition was performed in a single run
with an echo-planar T2*-weighted imaging sequence for a
duration of 22 min. Each of the 661 volumes acquired con-
sisted of 32 transversal (3 mm thick) slices (1940 ms TR, 30
ms TE, 788 flip angle, 192 mm FoV, 64 matrix, 3 3 3 3

3 mm voxel size). The run was preceded by five dummy
scans, which we discarded to allow for stabilization of the
blood oxygen-level dependent (BOLD) signal. Diffusion-
weighted image acquisition was performed using echopla-
nar imaging with 61 transversal (2 mm thick) slices (7500
ms TR, 86 ms TE, 220 mm FoV, 96 matrix, 2.3 3 2.3 3

2.3 mm voxel size). We used 64 diffusion gradient direc-
tions with b-values of 1000 s/mm2.

dwMRI Data Preprocessing and Tractography

Anatomical and diffusion images were preprocessed
using a fully automated open-source pipeline for extrac-
tion of functional and structural connectomes [Schirner
et al., 2015]. The pipeline performed the following steps.
Using the FreeSurfer software toolbox (http://surfer.nmr.
mgh.harvard.edu/), anatomical T1-weighted images were
motion corrected and intensity normalized, nonbrain tissue
was removed, and a brain mask was generated. White
matter and subcortical segmentation was performed, and a
cortical parcellation based on the probabilistic Desikan–
Killiany Freesurfer atlas divided the gray matter into 68
ROIs (regions of interest, 34 per hemisphere) [Desikan
et al., 2006]. Refer to Supporting Information, Table SI (in
Supplementary Material) for a list of cortical regions and
abbreviations.

The diffusion data were corrected for head movement
and eddy current distortions, and the b0 image linearly
registered to the subject’s anatomical T1-weighted image
using the FSL toolbox. Each subject’s high-resolution ana-
tomical mask volumes (with cortical parcellations) was
transferred to the subject’s diffusion space, in which fiber
tracking was performed. Probabilistic fiber tracking based
on constrained spherical deconvolution was performed
using MRTrix streamtrack algorithm, which is a method
that can identify crossing fibers [Tournier et al., 2012]. A
0.1 FA threshold was used in MRTrix. The maximum

length constraint for fiber tracking was 300 mm and the
maximum radius of curvature was 1 mm.

The interface between gray matter and white matter was
exhaustively sampled by generating up to 200,000 stream-
lines per 1mm voxel. If no track was found, we set the
weight to 0. If the algorithm reaches a count of 200 valid
tracks it will stop before 200,000 tracks are generated. If a
connection was found (regardless of the strength), we con-
sidered it a “one” connection strength. (See Discussion for
a differentiation between the identification of a pathway
and the estimation of connection strength.) For each sub-
ject, we aggregated these binary connections for each pair
of regions, and derived a 68 3 68 ROI SC matrix repre-
senting the distinct connections found by the tracking. In
other words, the SC weights are the number of voxels
between a pair of ROIs with at least one track found
between them.

We eliminate tracking biases by weighting SC according
to surface area to avoid age-related differences in ROI
size. Note that connection pairs where no SC was
observed were taken as 0. Note that individual SCs were
not corrected compared to group SCs; studies that conduct
analyses on average SC matrices [Honey et al., 2009] often
set connections in an average SC to 0 when a certain num-
ber of subjects have absent connections in that place; how-
ever, all of our analysis were conducted on unchanged
individual matrices. We corrected for SC distances by
regressing mean tract length (of fibers connecting each
pair of regions) from individual SC weights matrices, and
using the residuals for analysis. Because tract lengths may
have an effect on structure–function relations in aging
[Romero-Garcia et al., 2014], we speculated that this might
influence some of our age-related findings. However,
because our results were robust when SC tract lengths
were corrected for, the reported analyses were performed
on the original SC weights matrices. Moreover, results
were also robust when SCs were logarithmized, or
resampled to a Gaussian distribution. Thus original SC
values were used throughout.

Quality control performed on SC matrices is described
in Schirner et al. [2015]. Briefly, we demonstrated almost
perfect test–retest intrasubject reliability of the resulting
SC matrices from 3 dwMRI acquisitions per subject. Intra-
subject similarity (r 5 0.97–0.99) was greater than intersub-
ject similarity, and highest compared to previous
approaches. Because test–retest reliability across multiple
dwMRI scans was so high, the connectome analyses were
conducted on a single dwMRI scan per subject.

fMRI Data Preprocessing

The fMRI resting-state preprocessing was performed
using the FEAT (fMRI Expert Analysis Tool) Version 6.0
first-level analysis software tool from the FMRIB (Func-
tional MRI of the Brain) Software Library (www.fmrib.ox.
ac.uk). We used MCFLIRT motion correction to adjust for
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head movement [Jenkinson et al., 2002]. Nuisance varia-
bles were regressed from the BOLD signal, including the
six motion parameters, mean white matter, and CSF sig-
nals. Regression of global mean was not performed. BET
brain extraction was used to remove nonbrain tissue
[Smith, 2002], correction for motion outliers using interpo-
lation (FD cutoff 5 0.5mm), and high-pass filtering (cutoff
at 100 s) was performed to adjust for baseline drift of the
signal. Subjects’ functional data were registered to their
individual high-resolution anatomical T1-weighted images
using FSL flirt (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FLIRT). Thus, the anatomical high-resolution parcellation
is mapped onto the functional data. Slice-timing difference
correction, smoothing, and normalization of BOLD inten-
sities were not performed [Wu et al., 2011].

Temporal signal-to-noise ratio (tSNR) maps were
derived for the functional data to ensure consistent quality
of the BOLD signal across ROIs and subjects. TSNR is con-
sidered a reliable technique for investigating noise in
resting-state fMRI data [Welvaert and Rosseel, 2013]. We
calculated tSNR by dividing the mean signal of the fMRI
time series of a voxel by the standard deviation [Chen and
Yao, 2004; Nan and Nowak, 1999]. In addition, visual
inspection of individual participants’ T1 was performed to
ensure alignment to the subject’s ROI template.

Computation of Matrices for Analysis

Functional images were registered to anatomical images,
and the parcellation defined for the anatomical images
was applied to functional images. For each subject, a
weighted average of the time series of all voxels in a given
ROI was calculated to avoid partial volume biases and
adjust for variations in ROI size. Voxels were weighted
based on the probability that they were located within the
ROI, so that voxels in the center of a region were given
more weight than those along the boundary [Shen et al.,
2012]. For each subject, a 68 3 68 FC matrix was derived
by computing Pearson’s correlations between the time
series of each pair of ROIs.

Using each subject’s SC matrix, we computed the aver-
age connection strength for each region, so that a subject’s
68 3 68 SC matrix is reduced to a 1 3 68 vector by com-
puting column-wise average values. The resulting vectors
are stacked into a matrix with the dimensions n 3 m
(n 5 47 being the number of subjects and m 5 68 being the
number of regions); rows were sorted according to age.
The same procedure was performed for FC matrices; how-
ever, here we first conducted a Fisher’s r to z transform
before taking the regionwise mean. We also computed an
SC–FC correlation matrix for all subjects; we did this by
correlating a region’s SC vector with its FC vector for each
subject (Spearman’s correlation), and stacking resulting
vectors into a matrix, again of dimensions n 3 m, and sort-
ing rows according to subject’s age. Thus SC, FC and SC–
FC matrices were each of dimensions n 3 m (n 5 47 sub-

jects and m 5 68 regions). SC, FC and SC–FC matrices
were then stacked above one another to produce a matrix
(3n 5 3 3 47, m 5 68) for input to partial least squares
(PLS) statistical analysis. PLS then treats each type of con-
nectivity (i.e., SC, FC, and SC–FC) as a condition [Krishnan
et al., 2011]. Note that these SC and FC connectivities are
essentially weighted degree, and those of the SC–FC cou-
pling are regionwise correlations of these weighted
degrees. This is a distinction from previous work that uses
individual connections weights (see Discussion for more
detail).

Statistical Analysis

We used behavior PLS correlations [Krishnan et al.,
2011] to investigate how SC, FC, and SC–FC coupling is
related to age of the individuals as a continuous variable.
PLS is a multivariate analysis method very similar to
Canonical Correlation Analysis (CCA), in that it computes
latent variables (LV) that identify the maximum least-
squares relation between two datasets.

We use a behavior PLS to decompose the correlation
between brain connectivity (SC, FC, and SC–FC) and
behavior (age) into sets of orthogonal LVs, each of which
captures an aspect of that relation. LVs are assessed for
significance using permutation tests on the full multivari-
ate pattern, complemented by bootstrap resampling to
assess the reliability of each connectivity estimate to the
LV. Bootstrap estimation provides a standard error, is
used to calculate a ratio of the individual ROI’s weight
over its estimated standard error, and can be treated as a
confidence interval [McIntosh and Lobaugh, 2004]. A
region with a high, positive bootstrap ratio means that the
region contributes positively and reliably to the age–con-
nectivity relationship identified by the latent variable cor-
relation. Conversely, a region with a high negative
bootstrap ratio means that the region contributes nega-
tively and reliably to the age–connectivity relationship
identified by the latent variable correlation. Resampling
statistics (permutation and bootstrap) do not require the
assumption of normality of the data (i.e., of age and con-
nectivity) as with traditional parametric statistics. Boot-
strapping also guards against the influence of outliers in
the dataset with the emphasis on reliability rather than
null hypothesis testing.

To further investigate structural and functional network
organization, we used the Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/) and the Network
Community Toolbox (http://commdetect.weebly.com). For
each subject, we identified the modular partitioning of the
functional matrix. A network’s modularity strength (Q) is
determined by comparing the observed within-module
connection density to the expected within-module connec-
tion density [Newman and Girvan, 2004; Sporns and Bet-
zel, 2015]. We used a Louvain optimization algorithm, a
fast greedy algorithm that may recover planted modules
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(“modularity_louvian_und_sign” Brain Connectivity Tool-
box function) [Blondel et al., 2008; Lancichinetti and Fortu-
nato, 2009; Rubinov and Sporns, 2011]. Similar to other
modularity maximization algorithms, the Louvain function
maximizes the modularity quality function, Q (i.e.,
observed within-module connection density is maximal
compared to the expected within-module density), by iter-
atively searching the network for all possible partitions.
The partitioning of the matrix allows us to identify the
regions belonging to particular modules. High Q scores
are associated with highly modular networks (with segre-
gated modules and fewer intermodular connections),
whereas low Q scores represent networks that are less seg-
regated [Sporns and Betzel, 2015]. Because the Louvain
algorithm is not deterministic, and the maximum modular-
ity partitions may be misrepresentative (i.e., the optimal
partition may be hidden among a great number of very
different, but also highly modular, partitioning options)
[Good et al., 2010], the modularity algorithm was run 100
times. The partitions were fairly consistent across the 100
algorithm runs. An optimal representative partition was
determined with an iterative consensus clustering algo-
rithm (consensus_iterative from the Network Community
Toolbox), [Bassett et al., 2013], based on similarities in the
100 near-optimal community partitions generated using
the BCT. The qpc, quality of consensus was 0, suggesting
a robust representative partition. The network partitioning
was validated with known partitioning.

Moreover, 1000 weighted functional null models with
preserved weight and degree distributions, and approxi-
mated strength distributions, were generated for compari-
son for each subject (“null_model_und_sign” Brain
Connectivity Toolbox function). In addition, we also used
a second type of null model, generated using the Hirsch-
berger–Qi–Steuer (H–Q–S) algorithm to check that our
observed networks are significantly modular compared to
null networks that preserve the network’s transitive struc-
ture [Hirschberger et al., 2004; Zalesky et al., 2012]. We
transformed our correlation matrices to covariance matri-
ces (input to H–Q–S) by normalizing with regard to the
standard deviations. The H–Q–S generated null correlation
networks are considered realistic in that they have similar
distributional properties (connection density and thresh-
old) to the observed matrix.

We examined the SC among regions within functionally
defined modules according to the methodology introduced
by Shen et al. [2012]. For each subject, the entire anatomi-
cal network was partitioned into modules corresponding
to those functional modules defined previously using the
Brain Connectivity Toolbox. To quantify how the anatomi-
cal connectivity supports the functional modular organiza-
tion, we first calculated the density of each region. Density
is the number of anatomical connections that a region has
relative to the number of all possible anatomical connec-
tions. We then obtained a within-module density index
(WMDI) for each region, which is defined as the difference

between the density of the region within its functionally
defined module and density across the entire structural
network. Thus, a region with a positive WMDI has stron-
ger structural connections within its functionally defined
module than it does throughout the network, whereby a
negative WMDI suggests stronger structural connections
across functional modules. We also generated 1000 struc-
tural null models with preserved weight (the density of
links connected to the node) and degree (number of links
connected to the node) distributions, and approximated
strength (sum of weights of links connected to the node)
distributions for comparison for each subject
(“null_model_und_sign” Brain Connectivity Toolbox func-
tion). We also examined WMDI on SCs corrected for dis-
tance, as modularity measures may be particularly
sensitive to tract length; in particular, we wanted to rule
out the possibility that the higher density within functional
modules (WMDI) is not driven by the greater number of
short-distance connections being captured by tractography
methods. We corrected for distance in two ways: (1) by
calculating WMDI on residuals of distance regressed SCs
and (2) by imposing functional modules on SC matrices
thresholded for distances above 30 mm; WMDIs were
found to be significant compared to randomized thresh-
olded SCs. As both methods of correcting for distances
showed that WMDI remained significantly higher than
chance, the reported analyses were performed on the origi-
nal SC weights matrices.

Note that the WMDI is not comparable to Q. Q is one
measure for the whole network, and describes either the
structural network modularity or the functional network
modularity. WMDI is one measure for each region, and
describes how the functional network modularity is
related to the underlying structural connection density. In
other words, for each region, we define to which func-
tional module the region belongs, and examine whether
SC from that region is denser to other regions within that
functional module (i.e., structure supports functional mod-
ularity), or if it is denser going to other regions outside of
that functional module. In other words, while Q describes
a network depending on whether its within-module den-
sity of connections are greater or lesser than the expected
within-module density of connections [Sporns and Betzel,
2015], WMDI examines the observed density of structural
connections within functional modules. High WMDI means
there are very dense structural connections within func-
tional modules.

WMDIs were compared using a PLS behavior correlation
across ages to investigate whether structural architecture
defines functional modularity to the same extent across the
age range. We examined whether the structural core
increasingly supports the functional modular organization
with age in regions that are hubs. We used a measure of
hubness introduced by Guimera and Nunes Amaral [2005],
whereby hubs are first identified as those with a high
within-module degree z score, and their intermodular
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“hubness” is then quantified with the participation coeffi-
cient. We identified hubs as those regions with a within-
module degree z score (“module_degree_zscore” Brain Connec-
tivity Toolbox function) >2.5 [Guimera and Nunes Amaral,
2005], and then correlated their participation coefficients
(“participation coef” Brain Connectivity Toolbox function)
with the regionwise weights that describe how WMDIs
change with age.

The within-module degree z score is a measure of how
connected the region is to other regions within its module
(intramodular connectivity), and regions with large mod-
ule degree z scores (i.e., >2.5) are considered hubs. The
participation coefficient is a measure of the degree to
which a region is anatomically connected outside of its
structural module (intermodular connectivity). A participa-
tion coefficient approaching 1 indicates that a region is
very interconnected across modules and would be consid-
ered a connector hub, while a participation coefficient of 0
indicates that a region is connected exclusively within its
own module.

The regionwise weights that describe how WMDIs
change with age are the PLS output of the previous analy-
sis: a region with a positive weight means that WMDIs
increase with age in that region (thus the SC from that
region strengthens within its functional module as
opposed to across the rest of the network with age). A
region with a negative weight means that WMDIs decrease
with age in that region (thus SC from that region weakens
within its functional module as opposed to the rest of the
network with age).

Thus, a high correspondence between weights represent-
ing how WMDIs change with age, and the hub measures
(within-module degree z score and structural participation

coefficient) would suggest that regions where the SC
strengthens within functional modules throughout aging
are regions that are also highly structurally interconnected
(high within-module degree z score and structural partici-
pation coefficient). In other words, the structural architec-
ture increasingly supports functional modular organization
throughout aging in connector hubs.

RESULTS

FC between the 68 (34 per hemisphere; Supporting
Information, Table SI) regional BOLD time series ranged
between 20.65 and 0.98 across all individual subjects (95%
of these correlations were positive). Figure 1(A,B) depicts
the SC and FC matrices, respectively, for a single exem-
plary subject. FC was slightly skewed (Kolmogorov–Smir-
nov: p 5 0.05), while structural data was slightly weighted
toward the 0s in the matrix. PLS uses resampling methods,
so this was not a problem in our analysis.

First, we were interested in verifying that there indeed
was a relationship between SC and FC. Examining all con-
nections (whole-matrix agreement), we found that FC var-
ied with the strength of SC where SC was present
(Spearman correlation, r 5 0.19–0.36 for individual subjects
(mean correlation 6 SD, 0.27 6 0.04), p< 0.001 for all sub-
jects). Moreover, although mean FC was significantly
stronger where SC was present (M 5 0.48 on averaged par-
ticipant) than not (Kruskall–Wallis test, p< 0.001 for all
subjects), FC existed even in the absence of direct SC
(M 5 0.25 on averaged participant). We also examined
regionwise SC–FC correlations, as this was the focus of
our aging analyses. These ranged from r 5 20.40 to 0.66

Figure 1.

Connectivity matrices with 68 ROIs, a single exemplary subject. (A) Structural connectivity

matrix of logged connection strength. Refer to “Materials and Methods” and “Results” for

details. (B) Resting-state BOLD fMRI FC matrix. Region labels corresponding to the order of

regions in the matrices above can be found in Supporting Information, Table SI. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(mean correlation 6 SD, 0.27 6 0.13) across all regions and
subjects.

Regionwise Structure–Function Relations

in Aging

The focus of our regionwise structure–function aging
analysis was to determine whether SC–FC coupling pre-
dicts age above and beyond structure or function alone.
We first show a univariate summary of our results (Fig. 2),
whereby almost all regions show decreasing SC and FC
with age, and SC–FC coupling is more variable across the
cortex.

We then conducted a behavior PLS analysis, which adds
information to these univariate summaries by providing a
multivariate assessment of the correlations with age. Using
a behavior PLS analysis, we determined two significant
latent variables. These latent variables extract the patterns
of greatest covariance of age with SC, FC, and SC–FC.

Latent Variable 1 (Fig. 3; p 5 0.03) revealed that SC, FC,
and SC–FC coupling were all reliably predictive of age. It
revealed a set of brain regions where increasing age was
associated with decreases in connectivity (Fig. 3A,B). This
correlation was strongest (r 5 20.53) for SC but still reli-
able for FC (r 5 20.29) and SC–FC coupling (r 5 20.22)
(Fig. 3C,D). Confidence intervals in Figure 3C demarcate
the reliability of these correlations.

Latent Variable 2 (Fig. 4) was particularly interesting; it
revealed that there is a pattern of SC–FC coupling that
uniquely predicts age (p< 0.01). Here, SC–FC coupling
was the only measure that reliably predicted age (r 5 0.73).
The confidence intervals of the correlations in Figure 4C
demonstrate this. See also Figure 4D for scatterplots of
these correlations (SC with age, FC with age, and SC–FC
with age). Note, however, that only SC–FC coupling is
reliably predictive of age.

In other words, Latent Variable 2 represents a set of
regions whose combined SC–FC coupling predicts age. For
this set of regions, SC does not predict age, and FC does
not predict age. In some of these regions, such as the L
and R precentral and the L and R superior temporal,
where the bootstrap ratios (Fig. 4A,B) are positive, SC–FC
coupling strengthens with age. In other regions, such as
the L inferior temporal and the L and R pars orbitalis,
where bootstrap ratios are negative (Fig. 4A,B), SC–FC
coupling weakens with age.

We also conducted a separate SC with age, FC with age,
and SC–FC with age analysis to understand how these
change in isolation. These results were consistent with the
previous research, and with the correlations with age
found in Latent Variable 1. That is, SC and FC decreased
in the majority of regions with age. SC–FC coupling was
reliably correlated with age, and the direction of change
was region-dependent.

Whole-Brain Structural Architecture Supports

Region-Specific Functional Modular Organization

in Aging

The goal of our network structure–function analysis was
to investigate how SC supports functional modular organi-
zation in age. First, we showed that SC is stronger within
functional modules in general (notwithstanding of age). To
this end, we partitioned the anatomical network according
to the functionally defined modular structure and exam-
ined whether there are more anatomical tracts within func-
tional modules than across functional modules. Functional
modularity was significant compared to 1000 null models
for each participant (p< 0.01 for all participants; Q 5 0.71

Figure 2.

Univariate summary of regionwise connectivity with aging. The

first, second, and third columns demonstrate regionwise SC cor-

relations with age, FC with age, and SC–FC with age, respec-

tively. The 68 Desikan Killiany regions along the y-axis are in the

order described in Supporting Information, Table SI: 34 left

hemisphere regions first, and 34 right hemisphere regions sec-

ond. SC (column 1) and FC (column 2) decrease with age,

whereas SC–FC coupling (column 3) changes in variable ways

during aging, depending on region. This correlation matrix is

then analyzed in PLS to obtain the two patterns described in

Figures 3 and 4 that characterize the relationship between brain

connectivity and age. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

Regionwise weights for Latent Variable 1; this latent variable

represents regions where SC, FC, and SC–FC coupling together

predict age. Notably, all three decrease with increasing age in

the majority of regions. (A) PLS bootstrap ratios are shown.

Left-hemisphere regions are shown first (top half), and right-

hemisphere regions are in the bottom half of the figure. Regions

below the threshold (23.2) have reliable age-related reductions

in SC, FC, and SC–FC coupling. (B) Regions with reliable age-

related reductions in SC, FC, and SC–FC coupling are shown in

blue. (C) Bar graph showing the correlation between SC and

age, FC and age, and SC–FC coupling and age on Latent Variable

1, confidence intervals on each of these correlations are shown.

There is a reliable relationship between each of these and age.

(D) Scatterplots visualizing the correlations between SC brain

scores and age, FC brain scores and age, and SC–FC brain

scores and age on Latent Variable 1. These scatterplots show

the same correlations and information as in C. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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Figure 4.

Regionwise weights for Latent Variable 2; this latent variable

represents how SC–FC coupling uniquely predicts age. (A) PLS

bootstrap ratios are shown. Left-hemisphere regions are shown

first (top half), right-hemisphere regions are in the bottom half

of the figure. Regions below the threshold (22.39) show reliable

age-related reductions in SC–FC coupling. Regions above the

threshold (2.39) show reliable age-related increases in SC–FC

coupling. (B) Regions with reliable age-related reductions SC–FC

coupling are shown in blue, increases are shown in red. (C) Bar

graph showing the correlation between SC and age, FC and age,

and SC–FC coupling and age on Latent Variable 2, confidence

intervals on each of these correlations are shown. Notably, only

the SC–FC coupling predicts age on Latent Variable 2, the confi-

dence intervals for the age–SC and the age–FC correlation cross

0. (D) Scatterplots visualizing the correlations between SC brain

scores and age, FC brain scores and age, and SC–FC brain

scores and age on Latent Variable 2. These scatterplots show

the same correlations and information as in C. Only SC–FC reli-

ably predicted age on this Latent Variable. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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vs 0.56 6 0.04 for the averaged participant), based on the
BCT null_model_und_sign (note that strength distribution
of null networks approximated the strength distribution of
the real networks: mean r 5 0.99), and also on the H-Q-S
null model (p< 0.01 for all participants).

We examined WMDIs of each node to quantify how
structurally connected a region is within its functionally

defined module as opposed to across the entire functional
network (refer to methods). The WMDIs were significantly
>0 (t-tests, p< 0.05 for 39 of 47 subjects), indicating that
regions were more densely structurally connected within
their functionally defined module than across the rest of
the network. WMDIs were significantly greater than
WMDIs of 1000 structural null models per participant

Figure 5.

Regionwise within module density index (WMDI) changes with

age. (A) PLS bootstrap ratios are shown. Regions below the

threshold (21.96) have decreasing WMDIs (decreasing SC den-

sity in functional modules) with age. Regions above the thresh-

old (1.96) have increasing WMDIs (increasing SC density in

functional modules) with age. (B) Age-related WMDI increases

are shown in red, whereas decreases in blue. Only regions with

bootstrap ratios above the 1.96 threshold (and below 21.96)

are colored. (C) Scatterplots visualizing the latent variable cor-

relation between WMDI brain scores and age, significance of

correlation is assessed with confidence intervals. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]

r Zimmermann et al. r

r 2654 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


(t-tests, 70% of WMDIs were significant compared to 1000
null models for each participant, p< 0.05). Four to five
functional modules were found across subjects, irrespec-
tive of age. These modules were consistent with network
partitioning in previous literature [Fair et al., 2009; He
et al., 2009]. See Supporting Information, Figure S2 for a
topographic brain map of the spatial distribution of the
modules.

Having shown that SC significantly links to functional
modular organization, we were interested in whether this
varies with age. Indeed, a behavioral PLS analysis
revealed that there is a significant and reliable correlation
between age and the degree to which the structural archi-
tecture supports functional modular organization (defined
by WMDI) (r 5 0.67, p< 0.01, CI 5 [0.67, 0.83]). In a subset
of regions (i.e., the precuneus and the posterior cingulate
cortex), WMDIs increased with age. In other words, the
strength of SC connections within functional modules as
opposed to across functional modules increased with age.
In other regions (lateral occipital cortex and the lingual
gyrus), SC connection strength decreased within functional
modules as opposed to across functional modules with
age (Fig. 5). Note that WMDI is already normalized with
respect to network density, thus age-related changes in
density did not affect our results.

Having found that the SC strength within functional
modules changes with age, we tested the hypothesis that
this is the case particularly in hub regions. Hubs were
identified as regions with a within-module degree z score-
> 2.5, and a high regional participation coefficient. Interest-
ingly, we did find that the anatomical framework
increasingly underpins the functional modular segregation
with age in these hub regions (see Methods, r 5 0.27,
p< 0.001). That is, we found that regions that have a high
within-module degree z score (a region highly connected
within its own module), and a high participation coeffi-
cient (a region highly connected across all modules) also
had a reliable WMDI increase with age (reliable increase
in how SC upholds functional modularity). These regions
included for instance Default Mode Network hubs such as
the L posterior cingulate and precuneus [van den Heuvel
and Sporns, 2013b). In other words, in highly intercon-
nected regions, older participants have a stronger struc-
tural basis to their functional community structure than
younger individuals do, suggesting that hubs play a spe-
cial role in upholding the network organization as we age.
To investigate whether this age effect is driven by age-
related changes in partitioning or changes in the configu-
ration of connections within age-consistent partitioning,
we conduct a follow-up analysis using a group-average
partitioning (community affiliation vector based on an SC
averaged across subjects) on our individual SCs. Our
results hold: We observe that the anatomical framework
increasingly underpins the functional modular segregation
with age in these hub regions. This suggests that this effect
is driven by age-related changes in the configuration of

connections rather than a change in the partitions
themselves.

Discussion

In this study, we investigated structure–function rela-
tions at a regionwise and network level. We found two
sets of regions that have a connectivity pattern that pre-
dicts age. The first set (Latent Variable 1) confirms previ-
ous studies that have shown the predictive ability of SC
[de Boer et al., 2011] and FC on age [Dosenbach et al.,
2010]. More interestingly, the second set of regions (Latent
Variable 2) has an SC–FC coupling that predicts age while
SC and FC does not. The predictive ability of SC–FC cou-
pling on age has only been shown in two developmental
studies [Hagmann et al., 2010; van den Heuvel et al.,
2014]; however, the unique predictive value of this metric
(above and beyond SC and FC) during the entire adult-
hood age spectrum has not been investigated until now.
At a network level, we found that SC links to the func-
tional network in changing ways across age. With age, SC
strengthens within as opposed to across functional mod-
ules the most in structural hub regions. Regionwise and
network findings will be discussed separately below.

Regionwise Structure–Function Relations

in Aging

We first verified that SC (inferred from dwMRI tractog-
raphy) is related to rsFC using whole networks as well as
regionwise vectors to verify the usefulness of an SC–FC
metric. Indeed, we found that the presence of SC predicted
stronger FC, with a moderate correspondence between
whole network (all connections) as well as regionwise
(individual region connectivity vectors) SC and FC. This
SC–FC coupling was variable across the age range. SC–FC
correlation values were consistent with that in previous
research (r 5 0.30–0.46, high-resolution r 5 0.36; low-
resolution r 5 0.66, r 5 0.33, respectively) [Hagmann et al.,
2010; Honey et al., 2009; Khalsa et al., 2014]. Imperfect cor-
relations can occur due to non-neuronal noise [Shmueli
et al., 2007], or rsFC can be present even without direct
SC. More importantly, how FC emerges from SC is still
not well understood. We did find that FC may occur
between regions where there is no direct structural link.
This is in line with research that suggests that FC may
also be supported by indirect anatomical links [Honey
et al., 2009; Koch et al., 2002; Skudlarski et al., 2008], or
common afferent and efferent pathways [Adachi et al.,
2012].

The main focus of our regionwise SC–FC analysis was
to find whether this measure can predict age beyond SC
and FC alone. We found two patterns that describe the
association between SC, FC, SC–FC coupling, and age. The
first revealed how SC, FC and SC–FC coupling together
predict age, whereby we found that connectivity decreased
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across the majority of the cortex with increasing age. On
this first latent variable, we found a moderate correlation
(r 5 0.53) between SC and age, a modest correlation
(r 5 0.29) between FC and age, and a modest correlation
(r 5 0.22) between SC–FC coupling and age—with the
majority of regions contributing negatively to this relation-
ship (so that SC, FC, and SC–FC coupling decreases in
most regions with age). These findings are consistent with
previous research, which reports age-related SC [Pfeffer-
baum and Sullivan, 2003; Salat et al., 2005] and FC [Betzel
et al., 2014; Onoda et al., 2012; Onoda and Yamaguchi,
2013] decreases within resting state networks of similar
magnitude. Reductions in fractional anisotropy indicate
white matter tract volume integrity decline [Chenevert
et al., 1990]. Additional age-related physical changes in the
brain, such as changing tract lengths and brain volume
may influence SC measurements across age. On the other
hand, reductions in rsFC may reflect a decrease in syn-
chronization of intrinsic networks with age [Madhyastha
and Grabowski, 2014]. The age-related FC decreases that
we report may be a result of the changing anatomical
architecture.

We verified that our findings were not related to age-
related changes in brain volume. We used FSL FAST for
tissue segmentation to derive partial volume maps, and
obtained total brain volume by summing the GM and WM
tissue volumes. Total brain volume across subjects was
then correlated with regionwise SC (r 5 0.22, p 5 0.14), FC
(r 5 0.17, p 5 0.31), SC–FC (r 5 0.11, p 5 0.45), and WMDI
(r 5 20.02, p 5 0.90); we found no effect.

Particular regions that contributed to the overall connec-
tivity decrease in the first Latent Variable were of interest.
For example, the Precuneus (L and R), a well-known struc-
tural hub of the DMN also involved in higher order func-
tions such as memory [Buckner et al., 2008], had one of
the largest weights in describing connectivity decreases
with age. The region of structural deterioration may
indeed be related to the area of cognitive decline [Ziegler
et al., 2010]. Other DMN hubs, such as the inferior parietal
and posterior cingulate, also showed age-related overall
connectivity decreases on the first Latent Variable, consist-
ent with the recent interest in DMN functional decline in
the latter part of the lifespan [Andrews-Hanna et al.,
2007]. However, these regions do not show age-related
decline in SC–FC coupling on Latent Variable 2, suggest-
ing the importance of considering SC and FC in addition
to the coupling measure in aging research.

The second pattern that we found was particularly inter-
esting; it revealed that there is an aspect of SC–FC cou-
pling that is highly predictive for age. Expressed in the
second latent variable, this pattern shows that SC–FC cou-
pling uniquely predicts age (r 5 0.73), while SC and FC do
not. The regional reliability to this relationship varies: In
some regions (L and R precentral, L and R superior tem-
poral, L entorhinal), SC–FC coupling strengthens with age.
In other regions (L inferior temporal, L and R parsorbita-

lis, R parstriangularis), SC–FC coupling weakens with age.
These regions often did not reliably contribute to the over-
all connectivity decrease pattern expressed in Latent Vari-
able 1. Similarly, Skudlarski et al. [2010] showed that
decoupling of structure and function in disease was local-
ized to particular networks, and these regions did not nec-
essarily correspond regions for which SC and FC was
affected.

There are a number of perspectives offered by the exist-
ing literature on the mechanistic explanations of SC–FC
changes. For instance, it has previously been shown that
SC–FC coupling is driven by structural topology (e.g.,
modularity) [Messe et al., 2014]. Indeed, structural net-
work modularity strength changes with age in this study
(r 5 0.33, p< 0.05), pointing to a potential means of SC–FC
coupling alterations. The causal mechanisms may be com-
plex however, as SC–FC coupling changes with age are
highly dependent on the region, and SC modularity is
defined for the whole network. Note that we also exam-
ined age-related structural modularity while correcting for
SC total density, whereby we performed a partial correla-
tion between age and Q structural modularity strength
while controlling for total SC network density, and found
that age and structural modularity remain significantly
related (r 5 0.25, p< 0.05). Age-related structural modular-
ity also remains significant correcting for total weight of
the SC network. In another vein, Horn et al. [2014] specu-
lates that more direct anatomical connections lead to
higher functional activity, which in turn results in higher
SC–FC correspondence. The directness of SC’s does
indeed affect SC–FC in older adults [Romero-Garcia et al.,
2014].

The predictive value of an SC–FC coupling measure has
previously been suggested in studies of development
[Hagmann et al., 2010; van den Heuvel et al., 2014], and
disease [Zhang et al., 2011]. These studies defined SC–FC
coupling as the correlation between individual subjects’
SC and FC matrices. Zhang et al. [2011] showed that with
epilepsy patients, SC–FC coupling identified neural dam-
age predictive of symptom duration better than structure
or function alone. Hagmann et al. [2010] and van den
Heuvel et al. [2014] found progressively stronger SC–FC
coupling as children mature. Here, we emphasize the pre-
dictive value of a SC–FC coupling measure for age. Future
studies will reveal if SC–FC coupling qualifies as a bio-
marker for aging related cognitive decline or other neuro-
psychiatric changes. SC–FC coupling has also been demon-
strated to be an indicator of task performance in older (but
not younger) adults [Davis et al., 2012], which supports its
possible suitability as a biomarker for cognitive aging.

In this study, we used a novel regionwise approach to
investigate connectivity changes. Previous studies investi-
gating SC–FC relations have examined connectivity at a
whole-network level [Honey et al., 2009; Horn et al., 2014],
correlating individual connection weights. Typically, this
involves correlating all functional connections with all
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structural connections (i.e., whole matrix). We reduced
connectivity to the nodal level by using a measure of aver-
age weighted degree (see Methods), and then used PLS to
identify how connectivity within sets of regions is predic-
tive of age. We were interested in how the number and
weight of functional and structural connections for each
region co-vary together.

Aging effects are not uniform across the brain [Ferreira
and Busatto, 2013; Salat et al., 2005], thus a regionwise
analysis may elucidate novel patterns. We found variable
relationships between age and SC–FC coupling in different
regions. This regional variation is consistent with similar
previous research with children, where significant changes
in coupling were also reported only in some of the areas
investigated [Skudlarski et al., 2010; Supekar et al., 2010].
Together, these findings and ours may indicate that struc-
ture and function each follow different, regionally specific,
age-related trajectories of change [Burzynska et al., 2010;
Zuo et al., 2010]. The pattern of structural degeneration
may not match the trajectory of functional decline for
some regions, resulting in a variable age-related correspon-
dence between the two modalities.

Regional differences in structure–function correspon-
dence with age may stem from a number of factors. For
instance, regional [Devonshire et al., 2012] and age-related
[D’Esposito et al., 2003] differences in the hemodynamic
response to neuronal activity may occur in parallel with
variable structural changes. Age-related changes in the cer-
ebral vasculature suggest the possibility that the BOLD
signal may be altered. Moreover, region-specific FC
changes may also stem from variable neurotransmitter
receptor densities across the cortex [Zilles et al., 2004], or
region-specific gray matter volume declines with age [Ter-
ribilli et al., 2011]. In contrast, region-specific SC changes
may stem from variable age-related demylenation, Waller-
ian degeneration, gliosis, and reduction of the number of
fiber tracts [Burzynska et al., 2010].

Note that track counts that are commonly used in the
literature [Hagmann et al., 2010; Honey et al., 2009] are
biased because the shortest, simplest, and straightest path-
ways receive the highest track counts regardless of
whether this actually reflects underlying anatomy and real
tract strength [Jones, 2010]. The tractography pipeline we
opted for [Schirner et al., 2015] counters this issue by dif-
ferentiating between the (a) identification of a pathway
and (b) the connection strength from tractogrophy. The SC
metric used considers whether a pathway exists without
making assumptions about the strength of connections.
However, it is important to note that diffusion MRI has
many limitations, and depends on a number of anatomical
properties, such that for instance a high tractography
count for a particular pathway does not mean that the
tract is thick, nor even that it has a high probability of
existence, but rather that it is likely to be discovered with
the probabilistic algorithm [Jbabdi and Johansen-Berg,
2011; Jones et al., 2013]. In addition to tract width, crossing

fibers may affect tractography outcomes. The MRtrix
streamtrack algorithm we use [Smith et al., 2012] can iden-
tify crossing fibers. Moreover, macaque studies demon-
strate the lack of validity of diffusion measures by
comparing against known axonal projections from tracer
studies [Azadbakht et al., 2015; Thomas et al., 2014].

The relevance of SC–FC correspondence to cognitive or
physical functioning in old age was not examined. How-
ever, in light of the cognitive implications of connectivity
changes in both structural [Wen et al., 2011] and functional
[Onoda and Yamaguchi, 2013] networks, as well as the
unique predictive value of SC–FC coupling for age in this
study, and for epilepsy duration in a patient population
[Zhang et al., 2011], we propose the investigation of SC–
FC coupling as a new predictive measure.

Network-Level Structure–Function Relations

in Aging

We examined how the structure (SC) relates to the seg-
regation of the functional network into modules, and
whether this relation changes with age. A number of
papers have found important roles of SC in shaping FC
[Deco et al., 2011; Goni et al., 2014; Hermundstad et al.,
2013; Honey et al., 2009; Koch et al., 2002] and several
functional network graph properties [Betzel et al., 2014;
Honey et al., 2007; Misic et al., 2015; Ponce-Alvarez et al.,
2015]; however, to our knowledge, only van den Heuvel
and Sporns [2013a] have investigated specifically how SC
underlies the community partitioning of the functional net-
work. Age-related changes in how SC underlies the segre-
gation of the functional network into modules are a novel
contribution of this study.

The current analyses were performed on individual sub-
jects’ structural and functional matrices to account for
individual and age-related differences in network parti-
tioning, as functional modularity has been shown to vary
across the age range [Geerligs et al., 2015; Meunier et al.,
2009; Onoda and Yamaguchi, 2013]. We found denser
structural connections within individuals’ functional mod-
ules than across the individuals’ entire functional network,
suggesting that the segregation of information in the func-
tional network is constrained by the underlying anatomical
architecture. This finding is consistent with a parallel
macaque study [Shen et al., 2012] that used similar meth-
odology and WMDI measure, as well as recent human
research demonstrating how the anatomical rich-club core
forms the substrate of functional network organization
[Grayson et al., 2014; van den Heuvel and Sporns, 2013a).

Importantly, we observed an age-related change in the
strength of SC within functional modules. Depending on
the region from which the SC originates, the structure may
uphold its functional partition more strongly with age
(WMDI increases with age), or become sparser within its
functional partition (WMDI decreases with age). In the for-
mer case (WMDI increases with age), the structural
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connections from these regions were increasingly more
prevalent within functional modules (rather than across
modules) with progressive age. The current findings indi-
cate that the SC from these regions becomes especially
important (supportive) in upholding the functional parti-
tioning in older age, and that these regions drive func-
tional segregation. Examples of such regions are the left
posterior cingulate and precuneus cortex. Conversely, in
the latter case (WMDI decreases with age), structure
becomes less supportive of the individual functional parti-
tioning with age, which indicates that through their struc-
ture, these regions drive progressive network integration.
Examples of such regions are the lateral occipital and the
lingual gyrus.

Age-related changes in functional network segregation
and integration have previously been reported [Geerligs
et al., 2015; Onoda and Yamaguchi, 2013]. In this study,
we suggest that the evolving functional topology may be
driven by the underlying SC. Work by Grayson et al.
[2014] provides preliminary evidence that structural and
functional rich-club organization may change in different
ways during maturation. By combining structure and func-
tional network-level organization in this study, rather than
studying each in isolation, we gain a better understanding
of these network relationships.

Special Role of Hub Regions

We were particularly interested in the special role that hub
regions play in age-varying structure–function relations. It
has previously been shown that the hubness of a region is a
strong predictor of structure–function coupling among older
adults [Romero-Garcia et al., 2014], and special aging effects
on hub regions have been revealed in several studies [Betzel
et al., 2014; Yang et al., 2014]. In this study, we found there
was an age-related increase in hub regions’ SC within their
respective functional module (rather than across modules).

Structural hubs in this study were consistent with hubs
previously identified [van den Heuvel and Sporns, 2013b).
The greatest age-related increase in SC within functional
modules (as opposed to across modules) was observed in
the right precuneus, with large increases also in the left
precuneus. The precuneus is an important hub region in
the Default Mode Network that has been found to
undergo prominent age-related changes in previous
research [Yang et al., 2014]. Significant age-related
increases in structure–function correspondence in hub
regions is consistent with the study by Andrews-Hanna
et al. [2007], where hub regions such as the posterior cin-
gulate and medial prefrontal cortex show a strong struc-
tural basis to FC among a sample of older participants.
This is also in line with Romero-Garcia’s [2014] findings
that emphasize the importance of hubness to structure–
function coupling in a sample of older subjects. These
studies did not investigate network-level functional orga-
nization however. In this study, the strengthening of struc-

tural hub connectivity within functional modules (as
opposed to across modules) throughout aging that we
found suggests that structural hubs are increasingly
important determinants of the functional organization.

Our finding seems to suggest that structural hub regions
act to support increased functional segregation in old age.
By definition, structural hub regions have high connectivity
to many modules across the network. Interestingly, we
show that with increasing age, structural hub regions’ con-
nectivity to regions within their own functional modules is
increasingly greater than to regions outside their functional
modules. Thus, in old age, structural hubs do not fulfill
their potential to support a highly integrated cross-modular
functional network. Rather, in old age, these hubs become
more important within their own functional module.

Betzel et al. [2014] makes a similar argument in their
investigation of how communication efficiency relates to
hubness in aging. They suggest that a region’s “hubness”
predicts whether communication efficiency is compro-
mised in aging. Betzel et al.’s [2014] measure of communi-
cation efficiency represents the path efficiency between
structural nodes. We use WMDI to examine this in terms
of a region’s SC communication within the functional net-
work. Since hub region’s intrafunctional-module SC partic-
ipation becomes greater with age, we conclude that a
region’s hubness predicts how interfunctional-modular
communication is compromised in aging.

FUTURE DIRECTIONS AND LIMITATIONS

Follow-up studies will validate our results with different
parcellation schemes. However, Honey et al. [2009], for
example, has shown that SC–FC relationships hold while
using two different, one fine and one coarse, parcellation
schemes. We expect that although there would likely be
changes in the magnitude of SC–FC relations [Honey
et al., 2009] and graph measures [Wang et al., 2009] with
finer parcellations (due to regional mapping across indi-
viduals, etc.), the proposed age-dependency of regionwise
and global SC–FC measures are of interest regardless of
the parcellation. Indeed, age-dependency of network meas-
ures has proved consistent across various parcellation
schemes [Cao et al., 2014].

One weakness of our subject sample is a lack of detailed
evaluation of cognitive status beyond self-reports. While
there is no way to be absolutely certain that all of our par-
ticipants have normal cognitive function for their age, the
self-report is a reasonable coarse screen to at least deal
with extreme cases. The resampling statistics done for our
PLS analysis guards against any effects of outliers that
would be expected if there was heterogeneity in our sam-
ple because of abnormal cognitive decline.

In summary, we have shown that age-related alterations
in structure–function coupling occur at a regionwise and
network level (SC strength within functional modules). We
conclude (1) that regionwise structure–function coupling
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can predict age better than structure or function alone; (2)
that SC is stronger within functional modules (compared
to the rest of the network); (3) that this changes with age;
and (4) that SC from hub regions increases within func-
tional modules (rather than across modules) with age. We
demonstrate that a comprehensive account of the brain
that captures subtle neurological changes during aging
requires the integration of structure and function, and pro-
pose that the combination of the two modalities can be
used as a new marker of altered brain function and cogni-
tion in the future.
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