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Abstract: Few studies have examined the neural correlates of emotion regulation across adolescence
and young adulthood. Existing studies of cognitive reappraisal indicate that improvements in regula-
tory efficiency may develop linearly across this period, in accordance with maturation of prefrontal
cortical systems. However, there is also evidence for adolescent differences in reappraisal specific to
the activation of “social-information processing network” regions, including the amygdala and
temporal-occipital cortices. Here, we use fMRI to examine the neural correlates of emotional reactivity
and reappraisal in response to aversive social imagery in a group of 78 adolescents and young adults
aged 15–25 years. Within the group, younger participants exhibited greater activation of temporal-
occipital brain regions during reappraisal in combination with weaker suppression of amygdala reac-
tivity—the latter being a general correlate of successful reappraisal. Further analyses demonstrated
that these age-related influences on amygdala reactivity were specifically mediated by activation of the
fusiform face area. Overall, these findings suggest that enhanced processing of salient social cues (i.e.,
faces) increases reactivity of the amygdala during reappraisal and that this relationship is stronger in
younger adolescents. How these relationships contribute to well-known vulnerabilities of emotion reg-
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ulation during this developmental period will be an important topic for ongoing research. Hum Brain
Mapp 37:7–19, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Adolescents’ emotional lives differ from those of chil-
dren or adults: they experience frequent and intense nega-
tive emotions in daily life [Larson et al., 1980, 2002; Larson
and Lampman-Petraitis, 1989], encounter unstable peer
and romantic relationships [Brown, 2004; Collins et al.,
2009; Hardy et al., 2002], and are at greater risk of mental
health issues marked by emotional dysfunction [Arnett,
1999; Dahl and Gunnar, 2009]. These issues are thought to
stem largely from an immaturity in adolescents’ emotion
regulation abilities underpinned by a “still developing”
neural architecture [Casey et al., 2010; Silk et al., 2003].
Specifically, neuroscientific research suggests that such
immaturity may result from the combination of (a) an
intensification of “bottom-up” social-affective processing,
reflecting the heightened engagement of subcortical brain
regions, such as the amygdala, to socially relevant stimuli,
and (b) immaturity of prefrontal cortical systems responsi-
ble for generating “top-down” regulatory control [Casey
et al., 2008; Somerville et al., 2010; Steinberg, 2008]. While
both are clearly relevant, some have argued that the for-
mer neural changes (i.e., subcortical changes that facilitate
intensified social-engagement) and also changes to a
broader network of social-brain regions, may be relatively
more important for understanding emotion-related vulner-
abilities during the middle adolescent period [Blakemore,
2008; Crone and Dahl, 2012].

In adult populations, the neural basis of emotion regula-
tion has been extensively examined [Carter, 2009; Kanske
et al., 2011; Phillips et al., 2008]. Most studies have focused
on the regulation of emotion via cognitive reappraisal, a
highly adaptive technique that involves cognitively chal-
lenging one’s initial negative interpretation of an aversive
stimulus in order to reduce negative emotion [Ochsner
et al., 2002]. During reappraisal, the generation of new
appraisals consistently activates a distributed network of
prefrontal and parietal cortical brain regions [Kalisch,
2009; Ochsner and Gross, 2008], which in turn modulates
(or “down-regulates”) neural indicators of affective
responding, such as functional activation in the amygdala
[Goldin et al., 2008; McRae et al., 2008; Schaefer et al.,
2002].

Neurodevelopmentally, there is evidence to suggest that
reappraisal ability improves linearly across the adolescent
period [McRae et al., 2012; Pitskel et al., 2011]. This notion
was endorsed by Pitskel et al.’s [2011] study of children
and adolescents (aged 10–17), which reported that younger
participants had reduced suppression of amygdala and

visual cortical responses to disgust-inducing images, indic-
ative of poorer reappraisal. In a subsequent study of 10- to
22-year-old participants, McRae et al. [2012] reported a sig-
nificant linear relationship between age and reappraisal
success that was accompanied by linearly increased activa-
tion of the left ventrolateral prefrontal cortex. McRae et al.
also observed significant non-linear age effects in the acti-
vation of midline and temporal cortical regions (posterior
cingulate, dorsomedial prefrontal cortex, temporal pole
and superior temporal sulcus), broadly linked to social-
affective processes, including mental state attribution and
self-other perspective taking [Carrington and Bailey, 2009;
Frith and Frith, 2006; Singer, 2006]. Compared to children
and young adults, adolescents (aged 14–17 years) demon-
strated lower emotional reactivity-related activation of
these regions when looking at aversive (vs. neutral)
imagery, but higher reappraisal-related activation, raising
the possibility that they engage qualitatively distinct
social-affective processes during reappraisal tasks. Thus, in
addition to observed improvements in reappraisal effi-
ciency across adolescence and young adulthood, neurobio-
logical research to date suggests that functional changes to
the “social-information processing network” [Nelson et al.,
2005]—including amygdala, medial, and temporal-occipital
regions—may be critical to understanding the develop-
mental trajectory of reappraisal ability.

The aim of the current investigation was to build on
these two previous imaging studies by examining the neu-
rodevelopment of emotional reactivity and reappraisal in a
large sample of adolescents and young adults (aged 15–25
years). In particular, our study focused on the neurodeve-
lopmental aspects of reappraisal in response to social-
affective stimuli. That is, while previous reappraisal
studies have intermixed social (e.g., funeral scenes) and
non-social imagery (e.g., snakes), we used only social-
affective imagery in recognition of the heightened salience
of interpersonal events during the adolescent period
[Davey et al., 2008]. Specifically, we sought to investigate
reappraisal of human emotions and intentions as conveyed
by sad/distressed individuals in complex social scenes.
Social stimuli are by far the most salient form of informa-
tion to young people and the ability to regulate negative
social information is particularly important to mental
health outcomes during this period [Brown, 2004; Larson
and Richards,1994; Prinstein and Aikins, 2004].

Further, unlike previous developmental studies of reap-
praisal, which have included children, we intentionally
focused our enquiry on post-pubescent adolescence. Our
motive was to characterize a period synonymous with
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social change and heightened incidence of a number of
affective disorders, including depression [Hecht et al.,
1998; Monroe and Harkness, 2005; Rao et al., 1995].
Finally, neuroimaging studies of human brain develop-
ment have consistently shown that maturation of prefron-
tal and lateral temporal regions continues well into early
adulthood and thus developmental studies of emotion reg-
ulation abilities should ideally extend into this period
[Gogtay et al., 2004; Pujol et al., 1993; Sowell et al., 2003].

Our hypotheses were twofold. Firstly, we anticipated
developmentally mediated linear improvements in the effi-
ciency of reappraisal, either in the form of age-related
increases in prefrontal cortical engagement [McRae et al.,
2012] and/or age-related increases in the down-regulation
of amygdala activity [Pitskel et al., 2011]. Secondly, as ado-
lescence is a period of dramatic social-emotional change
that is associated with ongoing development of large-scale
neural networks, we hypothesized developmental effects
in a broader network of neural regions, particularly
regions within the “social-information processing
network,” that are associated with social processing and
attention to biologically salient visual imagery [Burnett
et al., 2011; Scherf et al., 2012].

METHODS AND MATERIALS

Participants

Ninety-six adolescents and young adults (15–25 years)
were recruited for the current study. Participants were
recruited via multiple channels including advertisements
on websites, social media, university and hospital notice
boards, and via community newspapers. Participants were
considered eligible if they were (i) without current or past
diagnosis of an Axis I psychiatric, substance use, or neuro-
logical disorder (SCID-non patient version; [First et al.,
1997]), (ii) native English speakers, (iii) not taking psycho-
active medication, (iv) not pregnant, and (v) had no fur-
ther contraindications to magnetic resonance imaging
(MRI). Participants (or their parents if under 18 years of
age) provided their informed consent to participate in the
study, which was approved by the Melbourne Health
Human Research Ethics Committee, Victoria, Australia.
All participants were compensated for their time and
travel expenses. Of the 96 participants who completed the
full study protocol, 5 were subsequently excluded due to
excessive head movement during scanning (see Image
Acquisition and Pre-Processing section); 10 due to an
inability to cognitively reappraise (see Behavioral Analysis
section); and 3 due to incidental neurological findings on
MRI. The final composition of the sample was 78 partici-
pants (44 females), with a mean age of 19.91 years
(SD 5 2.78; range 15–25, see Supporting Information Fig.
1). Additional sample characteristics have been summar-
ized in Supporting Information Table 1.

Experimental Task

We developed a blocked-design cognitive reappraisal
task that emulated the general features of many previously
published tasks [Phan et al., 2005]. Consistent with such
prior studies, the task involved three conditions—“look-
neutral,” “look-negative,” and “reappraise”—presented in
an ABC design with eight blocks per condition (i.e., a total
of 8 3 3 5 24 blocks). At the beginning of each block, a
word appeared for 2 s in the middle of the screen (see
below for details) instructing participants to either
“reappraise” or “look.” If the instruction was to “look,”
the images that followed were either negative or neutral in
content (depending on the condition), and participants
were required to simply attend to these images without
trying to alter their affective response. If the instruction
was to “reappraise,” the images were always negative and
participants were instructed to reduce the intensity of their
negative affect using the reappraisal strategies described
below. All blocks consisted of four consecutive images
(each image was presented on screen for 6 s, no inter-
stimulus interval), immediately followed by a prompt to
rate negative affect (cue: “How bad do you feel?”), to
which participants responded by pressing 1 to 4 (1 5 not
at all bad; 4 5 very bad) with their dominant hand. The
task blocks were interspersed with rest periods in which
participants viewed a fixation cross (10 s).

Stimuli

The task was presented with Paradigm software
(http://www.paradigmexperiments.com), running on a
Dell computer. The LCD screen that presented stimuli was
visible via a reverse mirror mounted to the participants’
head coil and behavioral responses were captured using a
button-box. Picture stimuli contained complex imagery of
people and were taken from the International Affective
Picture System (IAPS) [Lang et al., 2008], the Empathy Pic-
ture System database [Geday et al., 2003], and online sour-
ces. To ensure comparability of pictures selected from
different sources, individual images were independently
rated (n 5 10) for valence and arousal using a standardized
9-point Self-Assessment Manikin Scale (1 5 most unpleas-
ant/least arousing and 9 5 most pleasant/most arousing).
A total of 64 negative and 32 neutral pictures were
selected based on these ratings (see Supporting Informa-
tion Table 2). An analysis of variance (ANOVA) confirmed
that negative pictures were significantly more arousing
than neutral pictures (M = 5.74 (SD 5 0.72) vs. M 5 3.73
(SD 5 0.46); F1,94 5 204.33, P< 0.001) and valence ratings
revealed they were significantly more aversive (M = 2.10
(SD 5 0.66) vs. M 5 4.98 (SD 5 0.30); F1,94 5 556.56,
P< 0.001). Negative picture stimuli were divided into two
picture-sets that were assigned to the aversive stimulus
conditions (i.e., “look-negative” and “reappraise”). These
picture-sets were matched for valence and arousal (t tests,
P> 0.23), and their assignment to the “look-negative” and
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“reappraise” conditions was counterbalanced across partic-
ipants. Picture stimuli (both negative picture-sets and neu-
tral pictures) were also selected to match for general
content (including number of faces and figures) and differ-
ences in luminance and complexity were kept minimal.

Reappraisal Training

In the hour prior to scanning, participants familiarized
themselves with reappraisal strategies. Specifically, in a
training protocol adapted from the work by McRae et al.
[2012], they were prompted to reappraise several practice
images (not appearing in the experiment) by narrating
aloud their re-interpretation of each image. Three types of
re-interpretations were suggested: (i) it is not real (e.g., it
is just a scene from a movie); (ii) things will improve with
time (e.g. whatever is going wrong will resolve over time);
and (iii) things are not as bad as they appear to be (e.g.,
the situation looks worse than it is, it could be a lot worse,
or at least it is not me in that situation). If a participant’s
responses indicated that they were using a non-cognitive
strategy (such as looking away or attending to non-
emotional aspects of the picture), the participant was re-
directed to the three example strategies mentioned above.
Once the experimenter determined from a participant’s
narration that they could utilize appropriate reappraisal
strategies within the desired time (i.e., 6 s per image), the
participant independently completed several practice
blocks of the experimental task in preparation for the scan.

Compliance with reappraisal strategies during the fMRI-
task was subsequently confirmed using a brief post-scan
questionnaire. Our post-scan questionnaire was designed
to assess both participants’ perceived frequency of reap-
praisal strategy use, as well as their use of avoidance strat-
egies (i.e., only looking at the non-emotional aspects of the
picture, looking away or closing their eyes), which partici-
pants rated on a scale from 1 to 5 (1 5 Never, to
5 5 Always). While the occasional use of other strategies
was not considered an exclusion criterion over and above
reappraisal success, avoidance strategies are known to
confound the results of fMRI visual provocation studies
and thus were of interest. In particular, we sought to
determine whether individual variation in use of avoid-
ance strategies during reappraisal was predicated by age
or associated with any activation effects observed during
fMRI.

Image Acquisition and Pre-Processing

A 3T General Electric Signa Excite system equipped
with an 8-channel phased-array head coil was used in
combination with ASSET parallel imaging (Sunshine Hos-
pital, Western Health, Melbourne). The functional
sequence consisted of a single shot gradient recalled EPI
sequence in the steady state (repetition time, 2,000 ms;
echo time, 35 ms; and pulse angle, 908) in a 23-cm field of

view, with a 64 3 64-pixel matrix and a slice thickness of
3.5 mm (no gap). Thirty-six interleaved slices were
acquired parallel to the anterior–posterior commissure line
with a 208 anterior tilt to achieve more optimal coverage of
ventral prefrontal cortical brain regions. The total sequence
time was 16 min, corresponding to 485 whole brain echo-
planar imaging volumes. The first four volumes from each
run were discarded to allow for T1 equilibration effects.
Additionally, a T1-weighted high-resolution anatomical
image was also acquired for each participant to assist with
functional time-series co-registration using the following
3D BRAVO sequence: 140 contiguous slices; repetition
time, 7,900 ms; echo time, 3,000 ms; flip angle, 138; in a
25.6-cm field of view, with a 256 3 256 pixel matrix and a
slice thickness of 1 mm (no gap). To assist with noise
reduction, all participants used foam insert earplugs. To
assist with head immobility, foam-padding inserts were
placed around the participants’ head inside the coil.

Imaging data were transferred and processed on a Linux
platform running MATLAB version 8.2 (The MathWorks
Inc., Natick, MA). Pre-processing was performed with Sta-
tistical Parametric Mapping software (SPM8; Wellcome
Trust Centre for Neuroimaging, UK). Motion correction
was performed by aligning each participant’s time series
to the first image using least squares minimization and a
six-parameter (rigid body) spatial transformation. Partici-
pants’ data were excluded if movement in the translational
or rotational planes exceeded 3 mm or 38, respectively.
These realigned functional images were then co-registered
to each participant’s respective T1 anatomical scan, which
were segmented and spatially normalized to the Interna-
tional Consortium for Brain Mapping template using the
unified segmentation approach (re-sliced to 2 mm isotropic
resolution). Functional images were smoothed with a 6-
mm (full-width, half maximum) Gaussian filter.

Behavioral Analysis

In-scanner mean negative affect ratings were derived for
each participant corresponding to the “look-negative,”
“look-neutral,” and “reappraise” conditions. Emotional
reactivity and reappraisal success scores were estimated
for each participant by computing simple differences
between mean condition ratings (“look-negative minus
look-neutral,” and “look-negative minus reappraise,”
respectively). If a participant’s reappraisal difference score
indicated that they were unable to reduce negative affect
with reappraisal (i.e., difference score< 0), they were
excluded from the current analyses (as stated above). The
10 participants excluded due to reappraisal ability were no
different from the remaining sample in terms of age
(t86 5 0.18, P 5 0.22) or gender (v2 (1, N 5 88) 5 0.05,
P 5 0.83). To assess the relationship between age and
behavioral indices of emotional reactivity and reappraisal
success, difference scores were regressed against age
effects using multiple regression models in Statistical
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Package for the Social Sciences (SPSS; Chicago, IL; version
20). We also examined for any potential relationships
between age and avoidance strategies (e.g., looking away).

Imaging Analysis

For each participant, the primary task conditions (“look-
negative,” “look-neutral,” “reappraise”) were specified as
individual predictors in an SPM8 “first-level” time-series
analysis, in addition to specifying conditions of no interest
(fixation, cue, and affect rating periods). The resulting
model was convolved with a canonical hemodynamic
response function with 1/128 s high-pass filter applied in
order to remove low-frequency noise. Maximum likelihood
parameter estimates were calculated at each voxel using
the general linear model and an AR(1) model of serial
autocorrelations.

First-level contrast-images were estimated for the fol-
lowing primary effects of interest: (i) “look-
negative> look-neutral” to identify brain regions associ-
ated with emotional reactivity to aversive social-affective
images; (ii) “reappraise> look-negative” to identify brain
regions activated during reappraisal; and (iii) “look-
negative> reappraise” to identify brain regions that were
significantly down-regulated during reappraisal. Contrast
images for each participant were then carried forward to
the “second level” using the summary statistics approach
to random-effects analyses (one-sample t tests). The result-
ing group statistical parametric maps were thresholded
using a false-discovery rate error-correction of PFDR < 0.05
across the whole-brain volume with a minimum cluster
extent of 10 contiguous voxels (KE,� 10 voxels). To iden-
tify brain regions that were specifically down-regulated by
reappraisal, the group level results corresponding to the
“look-negative> reappraise” contrast were inclusively
masked to include only those voxels identified as signifi-
cantly activated by the aversive imagery (i.e., as deter-
mined by the “look-negative> look-neutral” contrast), at
PFDR < 0.05 (KE,� 10 voxels, whole-brain corrected). We
also investigated within subjects the extent to which reap-
praisal success significantly predicted down-regulation of
amygdala activation reported for the primary study con-
trast “reappraise> look-negative”. To do so, participants’
reappraisal success scores were entered as a regressor in
the corresponding second-level analysis thresholded at
PFDR < 0.05 (KE,� 10 voxels, whole-brain corrected).”

The relationship between age and brain activation was
assessed by repeating the above group level analyses with
linear and quadratic age effects as covariates of interest.
We examined age associations within regions identified in
the former analyses as significantly activated across the
entire group. For example, to identify the influence of age
on brain activation associated with the “reappraise> look-
negative” contrast, we inclusively masked age analyses by
the estimated “reappraise> look-negative” main effect.

Significant age-modulated effects are reported if they sur-
vived PFDR < 0.05 (KE,� 10 voxels, whole-brain corrected).

RESULTS

Behavioral Ratings

As expected, negative affect was significantly higher in
the “look-negative,” as compared to the “look-neutral”
condition, indicative of significant emotional reactivity
within subjects (M = 2.81 (SD 5 0.69) vs. M 5 1.03
(SD 5 0.10); t77 5 22.77, P< 0.001). Importantly, negative
affect was significantly lower in the “reappraise,” as com-
pared to the “look-negative” condition, indicative of suc-
cessful reappraisal within subjects (M = 1.97 (SD 5 0.53);
t77 5 14.01, P< 0.001). There was no significant influence of
gender on emotional reactivity to aversive stimuli
(t76 5 0.55, P 5 0.88), or reappraisal success (t76 5 21.13,
P 5 0.79) as indicated by the negative affect difference
scores (“look-negative minus look-neutral” and “look-
negative minus reappraise,” respectively). With regard to
the modulatory effects of age, there was no significant
relationship between age and reappraisal success
(b 5 20.08, P 5 0.46), however, there was a tendency
toward reducing emotional reactivity with age (b 5 20.1,
P 5 0.09). Finally, there was no relationship between age
and reported use of reappraisal and avoidance strategies
as assessed by our post-scan measure.

fMRI Analyses

For the “look-negative> look-neutral” contrast, signifi-
cant activation was observed bilaterally across a large
expanse of visual association cortex, including the fusiform
gyrus and lateral occipital cortex, extended hippocampus-
amygdala complex, dorsal midbrain (�periaqueductal
gray), hypothalamus, medial thalamus, caudate head, ven-
tral anterior insular cortex, pre-supplementary and lateral
premotor cortices, dorsomedial and dorsolateral prefrontal
cortex, and the intraparietal sulcus extending to primary
somatosensory cortex (Fig. 1A, Supporting Information
Table 3).

For the “reappraise> look-negative” contrast, significant
activation was observed in predominantly left-lateralized
regions including the left pre-supplementary area extend-
ing to the cingulofrontal cortex (at the junction of dorsal
anterior cingulate cortex and dorsomedial frontal cortex),
dorsal premotor cortex extending to dorsolateral prefrontal
cortex, frontal operculum and ventral anterior insular cor-
tex, left caudate body, bilateral angular gyrus, posterior-
superior temporal gyrus, and fusiform gyrus (Fig. 1B, Sup-
porting Information Table 3).

Examination of the “look-negative> reappraise” contrast
revealed that reappraisal led to significant reductions in
activation (i.e., down-regulation) of brain regions previ-
ously identified as responsive to the aversive social-
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affective imagery. This included the left and right primary
somatosensory cortex (area 2 and 3b); right dorsal amyg-
dala extending to ventral pallidum and putamen; and sec-
ondary visual cortex (Fig. 2, Supporting Information Table
3). Examination of brain–behavioral associations within
subjects revealed no significant relationship between
down-regulation of the amygdala during reappraisal and
behavioral indices of reappraisal success.

We did not observe any significant effects of age on the
activation of brain regions previously identified in the
“look-negative> look-neutral” contrast. However, we
observed a significant effect of age on brain regions acti-
vated by reappraisal. Activation of temporal and parietal
cortical regions, lateral occipital cortex, and bilateral fusi-
form gyrus were significantly linearly modulated by age in
the “reappraise> look-negative” contrast (Table I, Fig. 3A),
with younger age predicting greater activation of these
regions. No significant quadratic associations between age
and brain activation were observed for the “look-
negative> look-neutral” or “reappraise> look-negative”
contrast.

The magnitude of right amygdala down-regulation dur-
ing reappraisal (as identified with the “look-
negative> reappraise” contrast) was also significantly line-
arly modulated by age (Fig. 3B,C, Table I). Specifically,
younger age was associated with significantly weaker
down-regulation of amygdala activity during reappraisal
(as compared to look-negative). No other regions identi-
fied for the “look-negative> reappraise” contrast were sig-
nificantly modulated by age, nor were there any
significant quadratic associations with age.

To assess whether age-related effects in the right amyg-
dala were associated with age-related differences in reap-
praisal success or strategy use (including avoidance), we
next correlated peak activation of this region with behav-

ioral variables assessed online and with our post-scan
questionnaire. No significant associations were observed in
relation to these measures.

fMRI Mediation Analysis

As reported above, we observed developmental varia-
tion in the extent to which amygdala activity was effec-
tively down-regulated during reappraisal, but no
developmental changes in reappraisal-related prefrontal
cortical activation. Therefore, in further analyses, we
sought to characterize whether developmental changes in
other brain regions might partly explain the observed
amygdala findings. To do so, we utilized Mediation Effect
Parametric Mapping [Wager et al., 2008]. MEPM allowed
us to identify, on a voxel-wise basis, any brain region(s)
activated during reappraisal that also satisfied formal crite-
ria for mediators in a standard three-variable path-model-
ing framework. In our model, Path a signifies the
relationship between age (X) and brain regions activated

Figure 1.

A: Activation corresponding to emotional reactivity (“look-negative> look-neutral”) and (B)

reappraisal (“reappraise> look-negative”) within subjects. C: Amygdala activation for emotional

reactivity (top-right) and reappraisal (bottom-right).

Figure 2.

Regions down-regulated during reappraisal (i.e., look-negati-

ve> reappraise) within subjects.

r Stephanou et al. r

r 12 r



during reappraisal (M). Path b signifies the relationship
between brain regions activated during reappraisal (M)
and corresponding level of amygdala activity (Y), control-
ling for age (X). Finally, Path a3b signifies the test of
mediation, that is, whether the direct XfiY relationship is
significantly reduced by including M in the path model.
For brain regions to be considered significant mediators,
we required that they reach statistical significance in each
of the three tests comprising the path model (Paths a, b,
a3b). The false positive rate was controlled using a voxel-
wise FDR at q< 0.05 across all estimated effects in the
path model (a, b, a3b), which corresponded to minimum
P 5 0.001 and at least three contiguous voxels [Wager
et al., 2008]. Regional path effects from this analysis are

reported as significant if surviving P uncorrected< 0.001.
For both analysis approaches, statistical significance of the
peak voxel path effects were computed via a bootstrap test
(10,000 permutations), as described by Wager et al. [2008].

Our MEPM analysis identified left fusiform gyrus acti-
vation as a significant neural mediator of age-related
changes in amygdala reactivity during reappraisal. As
depicted in Figure 4, fusiform gyrus activation demon-
strated a significant negative path coefficient for Path a
(r 5 20.46) and a significant positive coefficient for Path b
(r 5 0.57). That is, reduced modulation of amygdala activa-
tion during reappraisal in younger participants was
explained by a greater relative engagement of the left fusi-
form gyrus (a 5 20.04 (0.01), Z 5 23.58; b 5 0.46 (0.07),

Figure 3.

Negative linear associations between age and brain activation during reappraisal

(“reappraise> look-negative”): (A) younger participants showed enhanced activation of

reappraisal-related regions and (B) reduced down-regulation of the amygdala during reappraisal.

C: Scatterplot of linear association between age and amygdala activation during reappraisal.

TABLE I. Linear effects of age on reappraisal activation. Younger age predicted greater neural activation in both

regions whose activation increases (left) and decreases (right) during reappraisal (vs. look negative) within subjects

Reap>Look Neg
Anatomy Stats

Look Neg>Reap
Anatomy Stats

x y z KE Z BA x y z KE Z BA

Inferior temporal gyrus 248 252 212 2146 4.69 37 Amygdala/ 14 22 218 102 4.67 28
Lateral occipital cortex 224 288 2 4.33 18 Parahippocampal

gyrus
Fusiform gyrus 234 278 218 4.04 19
Fusiform gyrus 34 272 220 222 3.81 19
Lateral occipital cortex 32 286 210 3.61 19
Fusiform gyrus 30 274 26 3.53 19
Superior parietal lobe 224 270 60 39 3.77 7
Middle temporal gyrus 52 212 214 34 3.63 20
Middle temporal gyrus 254 210 212 22 3.60 22
Temporal pole 44 20 232 14 3.43 38
Middle temporal gyrus 54 270 12 36 3.57 37
Angular Gyrus 242 268 26 11 3.54 39

Anatomical co-ordinates (x, y, z) are given in MNI space (mm). Magnitude and extent statistics correspond to a minimum threshold of
PFDR < 0.05, KE,� 10 voxels. Upper-case Z values correspond to SPM Z-score statistics. BA5 approximate Brodmann Area.
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Z 5 3.72; a3b 5 20.02 (0.01), Z 5 23.30, q< 0.05 FDR).
Alternatively stated, linear reductions in activation of the
left fusiform gyrus across mid-adolescence to young adult-
hood predicted observed improvements in amygdala
down-regulation during reappraisal.

PPI Analysis

To further explore the age-related changes in the amyg-
dala, we sought to confirm whether our activation effects,
including the mediating influence of the fusiform gyrus,
might be related to changes in functional coupling of these
regions across development (i.e., “functional con-
nectivity”). Given the lack of influence of age on activation
of the prefrontal cortex, we were also interested to confirm
this finding by assessing whether any age-related changes
in functional connectivity between the amygdala and pre-
frontal cortex were observed. To do so we performed a
psychophysiological interactions (PPI) analysis in SPM8
[Friston et al. 1997] to assess task-related changes
(“reappraise> look-negative”) in the functional connectiv-
ity of the amygdala as our primary “seed” region of inter-
est (ROI) and the fusiform gyrus and dorsolateral
prefrontal cortex as our “target” ROIs. For an extended
description of the PPI analysis and uncorrected whole-
brain results, see Supporting Information Materials (Sup-
porting Information Tables 4 and 5). Briefly, the placement
of the seed amygdala ROI was informed by the age effects
reported for the “reappraise> look-negative” contrast (x, y,
z 5 14, 22, 218). The placement of the target ROIs corre-

sponded to the left fusiform gyrus cluster also identified
from the age-analysis (“reappraise> look negative”; x, y,
z 5 248, 252, 212, KE, 5 2,217 voxels) and the left dorso-
lateral prefrontal cortex (dlPFC) cluster identified from
main-effects analysis (“reappraise> look negative”; x, y,
z 5 28, 10, 62, KE, 5 10,555 voxels).

Task-dependent increases in functional connectivity
strength were observed between the right amygdala and
the left fusiform gyrus (PFDR< 0.05, Z 5 3.32, (x, y, z 5 236,
268, 214); KE, 5 45 voxels, small-volume corrected) during
“look-negative> reappraise”. In other words, reappraisal
was associated with significant functional decoupling
between amygdala and fusiform activity compared to
when viewing negative images. We observed that this rela-
tionship was significantly influenced by age (PFDR< 0.05,
Z 5 3.07, (x, y, z 5 246, 276, 28); KE, 5 231 voxels, small-
volume corrected) with younger age associated with less
amygdala-fusiform decoupling during reappraisal (see
Supporting Information Figure 2). No significant changes
in functional connectivity were observed between the
amygdala and left dlPFC during reappraisal, nor was this
relationship significantly influenced by age.

DISCUSSION

The use of social-affective imagery to examine the neu-
romaturational underpinnings of emotional reactivity and
reappraisal in adolescents and young adults generated
several key findings. First, we observed no significant
influence of age on brain responses associated with emo-
tional reactivity to aversive social-affective stimuli. Second,
in relation to the reappraisal of aversive social-affective
stimuli, we observed significant linear associations with
age, including greater activation of the amygdala among
younger participants. Third, we observed that left fusiform
gyrus activation significantly accounted for age-related
changes in amygdala activation across adolescence and
young adulthood—with greater activation of this region
predicting greater amygdala activation during reappraisal.
Finally, our findings were corroborated by the results of a
functional connectivity analysis, which also revealed sig-
nificantly greater fusiform-amygdala coupling among
younger participants for the “reappraise> look-negative”
contrast.

In reappraisal studies, the amygdala has been identified
as the brain region most frequently modulated by reap-
praisal [see recent meta-analyses, Buhle et al., 2014; Frank
et al., 2014]. This observation is generally consistent with
the hypothesized role of the amygdala in bottom-up
encoding and generation of responses to salient stimuli
[Anderson and Phelps, 2001; Cunningham and Brosch,
2012; Fitzgerald et al., 2006; Sergerie et al., 2008]. It has
been theorized that reappraisal alters the signaling proper-
ties of aversive stimuli, thereby modulating emotional
responding in the amygdala accordingly [Diekhof et al.,
2011; Ochsner and Gross, 2005; Ray et al., 2005].

Figure 4.

Path diagram showing the relationships between variables in the

path model. Age (bottom-left) predicts increased activation in

the fusiform face area (FFA, top; a path), which acts as a media-

tor of the relationship between age and amygdala activation. The

lines are labeled with path coefficients and standard errors are

shown in parentheses. The mediator’s connection to amygdala

activation (right) is denoted by the b path, calculated controlling

for age. ***P< 0.001 two tailed. The direct path is the c0 path,

and this is calculated controlling for the mediator.
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Conversely, poorer down-regulation of the amygdala dur-
ing reappraisal (or greater amygdala activation) typically
reflects poorer ability to modify salience-related processing
and thus reduce negative affect [Johnstone et al., 2007;
Ochsner et al., 2004; Urry et al., 2006]. The observed rela-
tionship between age and amygdala responding in the cur-
rent study is therefore compelling, as it indicates that
efficiency in modulation of the amygdala (via reappraisal),
and thus, related flexibility in modulating internal repre-
sentations of social-affective stimuli, may improve linearly
across adolescence and young adulthood.

In the context of this study, enhanced amygdala activa-
tion among younger adolescents during reappraisal may
reflect greater sensitivity to emotive social cues. This fits
with a body of work suggesting that mid-adolescence is
associated with a general intensification of affective proc-
essing, particularly for social stimuli [Davey et al., 2008;
Somerville et al., 2010]. Consistent with this notion, activa-
tion within visual sensory, temporal, and parietal regions
implicated in social-affective processing was also greater
among younger adolescents during reappraisal. This
included both regions implicated in the encoding of per-
ceptual features of social stimuli (fusiform gyrus, inferior
occipital) [Gauthier et al., 2000; Haxby et al., 2002] and
also those involved in social perception, including thinking
about another’s mental state (superior temporal sulcus, lat-
eral temporal regions, angular gyrus, and the temporal
poles) [Allison et al., 2000; Olson et al., 2007; Van Over-
walle and Baetens, 2009; Vigneau et al., 2006; Young et al.,
2010]. Importantly, recent work has indicated that tempo-
ral cortical regions, as identified in our age-related analy-
sis, might be particularly important to transformations of
stimulus meaning that enable emotional change [Buhle
et al., 2014; Ochsner et al., 2012]. Thus, it may be that per-
ceptual and semantic encoding of social-cues, which is
essential to constructing alternative internal representa-
tions of stimuli [Buhle et al., 2014], is enhanced among
younger adolescents. Reappraisal-related developmental
change within perceptual and semantic systems is also
consistent with ongoing development of the “social-
information processing network,” and in particular, the
protracted structural development of lateral temporal
regions [Giedd et al., 1999; Nelson et al., 2005]. Whether
our age-related effects in activation of temporal and occipi-
tal cortical regions reflect differences in neural efficiency of
reappraisal processes, or differences in the ability to
appropriately modulate attention to social-affective stimuli
is a question that warrants further enquiry.

Given the established role of the amygdala in reap-
praisal processes, determining the precise region(s) that
mediated age-related changes in amygdala activation was
of particular interest. Thus, a notable finding in our study
is that left fusiform gyrus activity significantly mediated
the relationship between age and right amygdala activa-
tion during reappraisal. That is, age-dependent amygdala
reactivity during reappraisal was significantly accounted

for by age-dependent changes in left fusiform gyrus acti-
vation, such that in younger participants, heightened fusi-
form activation accounted for reduced amygdala down-
regulation. The association between fusiform and amyg-
dala activation is consistent with results from emotional
face tasks, which suggest that the fusiform face area is an
important feed-forward modulator of amygdala respond-
ing [Fairhall and Ishai, 2007; Pujol et al., 2009]. Indeed, the
strength of functional coupling of these regions during
reappraisal (versus look-negative) was found to be nega-
tively associated with age, highlighting the possibility that
such feed-forward modulation may be greater among
younger participants. The role of the fusiform gyrus in
reappraisal is also consistent with the use of complex
social images in our task, which overwhelmingly con-
tained human faces [Kawasaki et al., 2012; Monroe et al.,
2013; Vrtička et al., 2011].

While age effects in the fusiform gyrus were bilateral,
only the left fusiform was found to significantly mediate
activation in the amygdala. This result is interesting as
past research suggests that activation of the left, but not
the right fusiform gyrus may require attention to be proxi-
mal to placement of facial stimuli, implicating a role for
attention in activation of this region [Vuilleumier et al.,
2001]. If this is the case, age-related differences in fusiform
gyrus activity could reflect differential attention to
emotion-relevant features that are essential for triggering
one’s emotions. This hypothesis is consistent with other
work showing that, compared to adults, adolescents show
less ability to modulate affective brain regions like the
amygdala during face processing in accordance with atten-
tional instructions [Monk et al., 2003].

One possible interpretation of the observed effect in the
left fusiform gyrus is that younger adolescents, relative to
older adolescents and young adults, may experience social
material (faces in particular) as more perceptually salient
during reappraisal—potentially interfering with the cogni-
tive modulation of the amygdala. Such observations may
reflect developmental differences in strategies used to
reappraise. For example, while younger adolescents may
demonstrate greater reliance on elaborating social percep-
tual cues when thinking about alternative interpretations
of stimulus depictions, older adolescents may be more
practiced at referencing stored semantic information
(regarding the causes and outcomes of certain situations),
and therefore may be less reliant on stimulus-driven rein-
terpretations. Importantly, while this study acquired addi-
tional self-reported data on avoidance-type strategy use
(i.e., looking away, looking at non-emotional features of
the stimuli, or closing one’s eyes), we identified no evi-
dence of developmental differences in use of such strat-
egies, suggesting that any age-related attentional
differences during reappraisal are likely to be subtle.

It is of interest that age-related reductions in amygdala
activation were observed for reappraisal, but were not
associated with general emotional reactivity to aversive
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social-affective stimuli. This is inconsistent with numerous
studies that have reported heightened amygdala activation
among adolescents, versus adults, to facial expressions
[Gee et al., 2013; Guyer et al., 2008; Hare et al., 2008; Kill-
gore et al., 2001; Monk et al., 2003] and IAPS images [Vasa
et al., 2011; Vink et al., 2014]. However, unlike the majority
of these studies, we used a paradigm designed to distin-
guish developmental changes in emotional reactivity from
developmental changes in reappraisal. We achieved this
by explicitly instructing participants to either attend to
stimuli (and not alter their emotions in any way), or to
deliberately cognitively reappraise their emotional
response. The only other study of reappraisal to observe
an age-effect in the amygdala, similarly found this to be
evident when participants were attempting reappraise, but
not in association with emotional reactivity to aversive
stimuli [Pitskel et al., 2011]. While further work is needed
to corroborate our findings, it appears that age-related dif-
ferences in amygdala reactivity and “bottom-up” neural
processing may become particularly evident when partici-
pants attempt to cognitively regulate emotions. This sug-
gestion is broadly consistent with evidence indicating that
adolescents’ vulnerability to negative emotional states is
often perpetuated by failures of emotional regulation
rather than emotional reactivity [Silk et al., 2003; Silvers
et al., 2012; Yap et al., 2010].

Our experimental design also differs from the protocol
of a past developmental study of reappraisal that found
age-related increases in prefrontal cortical activity [McRae
et al., 2012]. Differences between our results and those of
McRae et al. may be due to methodological factors. For
example, while McRae et al. focused on the age period
between childhood and young adulthood, we focused on
post-pubertal adolescence to young adulthood, during
which time changes in prefrontal regulatory control associ-
ated with task performance may be less pronounced
[Adleman et al., 2002; Crone et al., 2006; O’Hare et al.,
2008]. In addition, our task contained shorter trial dura-
tions and a greater number of trials, which may have
influenced the nature of cognitive processes engaged, or
cognitive load accordingly. Differences may also be attrib-
uted to our sole use of social-affective stimuli, as com-
pared with work that has intermixed social and non-
social-affective stimuli. In general, the impact of inclusion
of social stimuli on age-related differences in prefrontal
engagement remain remarkably understudied [Geier et al.,
2009; Silvers et al., 2012].

The present study is not without limitations. First, the
study was cross-sectional, meaning that longitudinal vali-
dation of our age-related finding is desirable. Second, our
study did not employ eye-tracking during fMRI. As such,
we cannot confirm how gaze and attentional deployment
may have contributed to our age effects in the fusiform
gyrus and amygdala [Manera et al., 2014; van Reekum
et al., 2007]. Finally, due to social-desirability bias associ-
ated with self-report, our study may have been limited in

its ability to detect important age-related differences in
reappraisal success. As such, future studies may benefit
from the addition of more objective measures of reappraisal
success, such as indicators of arousal obtained from physio-
logical recordings (i.e., skin conductance, heart rate).

In summary, we observed heightened amygdala activa-
tion in younger participants during attempts to reappraise.
Interestingly, enhanced amygdala activation among
younger participants during reappraisal occurred in the
absence of functional deficits in assumed prefrontal corti-
cal control. Rather, these developmental differences were
mediated by age-related activation of the fusiform gyrus.
Thus, our study provides evidence for the notion that
regions important to encoding of social-affective stimuli
may have an influence on reappraisal processes during
adolescence in a manner that is independent from prefron-
tal cortical immaturity. Our finding that amygdala and
fusiform gyrus modulation improves across adolescence
and young adulthood may have important implications
for understanding adolescent affective vulnerabilities. Spe-
cifically, while activation in the amygdala and fusiform
gyrus may reflect adaptive engagement with salient social
stimuli, it also creates a perceptual bias toward aversive
social stimuli that may overwhelmingly increase propen-
sity for negative affective experiences [Barrett et al., 2007].
Importantly, reduced ability to modulate these regions
during reappraisal may be problematic, as it indicates a
reduced ability to disengage from processing aversive
stimuli when required. Difficulty disengaging processing
of negative social information is a feature of many psychi-
atric disorders [Cardoner et al., 2011; Mathews et al., 1996;
Monk et al., 2008], including social anxiety disorder,
whereby individuals demonstrate heightened amygdala
and fusiform responses to aversive emotional faces [Camp-
bell et al., 2007]. Thus, for individuals with a pre-existing
perceptual bias toward negative information, the transi-
tional period from adolescence to young adulthood may
represent a significant period of neural vulnerability to
emotion dysregulation. This hypothesis is consistent with
the rapid increase in mood and affective disorders seen in
adolescence [Insel and Fenton, 2005; Paus et al., 2008] and
aligns with growing evidence that points to the impor-
tance of changes in social-affective processing, as crucial to
understanding emergent adolescent vulnerabilities [Crone
and Dahl, 2012; Nelson et al., 2005].
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