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Abstract: The influential competition between verbal and implicit systems (COVIS) model proposes that
category learning is driven by two competing neural systems—an explicit, verbal, system, and a
procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive,
rule-based (RB), category structure that is believed to engage the explicit system, or an information-
integration category structure that is thought to preferentially recruit the implicit system. The RB and
information-integration category structures were matched for participant error rate, the number of relevant
stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain acti-
vation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB
and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal
lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active
in the information-integration condition than in the RB condition. No regions were more activated in RB
than information-integration category learning. The implications of these results for theories of category
learning are discussed. Hum Brain Mapp 37:3557–3574, 2016. VC 2016 Wiley Periodicals, Inc.
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date nucleus
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INTRODUCTION

Category learning is an essential cognitive process nec-
essary for daily functioning. Without the ability to catego-
rize an object as a threat, for instance, our survival
chances would be severely impeded. But how do we learn
novel categories? For example, how does a student driver
learn to categorize the symbols on the road? Poldrack and
Foerde [2008] regard the concept of multiple memory sys-
tems as one of the most important contributions to neuro-
science in the past quarter century, and one increasingly
prominent line of research within this broader field is the
idea that there are multiple systems of category learning
[Ashby and Maddox, 2011]. Perhaps the most influential
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multiple systems account is the dual-process, neurobiologi-
cally inspired, competition between verbal and implicit
systems (COVIS) model of category learning [Ashby et al.,
1998] which is the focus of the current study.

COVIS hypothesizes that there are two neurally and
functionally dissociable category learning systems [Ashby
et al., 1998]. The explicit system requires considerable use
of working memory and executive functioning to test the
effectiveness of rules that are generated. This learning sys-
tem, consequently, works best at learning rule-based (RB)
category structures where the decision boundary separat-
ing the categories can be easily verbalized. The most com-
mon examples in the literature are unidimensional rules
such as “short lines belong in Category A; long lines
belong in Category B” (see Fig. 1a), or conjunctive rules
such as “short, upright, lines belong in Category A; any-
thing else belongs in Category B” (see Fig. 1b). Conversely,
in the implicit, procedural-based, system, learning occurs
by combining information from two or more unrelated
stimulus dimensions predecisionally through reliance on
immediate feedback to create stimulus-response associa-
tions [Ashby et al., 1998]. The implicit system is usually
tested using information-integration (II) categories (see Fig.
1c) where the optimal decision boundary is typically con-
sidered difficult or impossible to verbalize.

One notable aspect of COVIS that distinguishes it from
other multiple system accounts of category learning (e.g.,
ATRIUM) [Erickson and Kruschke, 1998] (RULEX) [Nosof-
sky et al., 1994] is the detailed neurobiological predictions
that it makes regarding the brain regions that underlie the
different learning systems. In the explicit system, rule gen-
eration and hypothesis testing requires working memory
and executive functioning which takes place predomi-
nately in the prefrontal cortex [Ashby and Valentin, 2005].
The particular rule to use is selected via the anterior cin-
gulate [Maddox and Ashby, 2004], while the head of the
caudate nucleus is responsible for mediating the switch to
a different rule. Successful rules are stored in the medial

temporal lobes (MTL) for future use [Ashby and Valentin,
2005]. The MTL is also hypothesized to store representa-
tions of the decision boundaries used to separate the stim-
uli into categories [Nomura and Reber, 2008].

In contrast, the implicit system procedurally acquires
the stimulus-response associations necessary for learning
II categories [Ashby et al., 1998]. The body and tail of the
caudate nucleus receive representations of the visual stim-
ulus perceived [Ashby and Valentin, 2005] and these cells
project to the supplementary motor area via the globus
pallidus and the thalamus [Maddox and Ashby, 2004].
When feedback indicates a correct response has been
made, the substantia nigra releases dopamine which
strengthens the association of the stimulus to the correct
response [Ashby and Valentin, 2005]. The putamen has
also recently been proposed by Waldschmidt and Ashby
[2011] to play a key role in the implicit system, as it is
assumed to provide information to the motor regions [but
see Ell et al., 2011] (who found that focal putamen lesions
impaired RB but not II learning).

These neurobiological underpinnings of COVIS have
motivated a large number of predictions about how RB
and II learning will be differentially affected by behavioral
manipulations [for reviews see Ashby and Maddox, 2011;
Maddox and Ashby, 2004]. The numerous behavioral dis-
sociations arising out of this work have contributed a great
deal to the influence of COVIS. For example, RB learning
is impaired by the imposition of a concurrent working
memory load while II learning is not, supporting the idea
that working memory is more critical for RB than II learn-
ing [Waldron and Ashby, 2001; Zeithamova and Maddox,
2006]. Similarly, II learning is disrupted by changing the
appropriate response buttons while RB learning is not, in
line with the prediction that II learning relies on stimulus-
response procedural associations [Ashby et al., 2003]. Fur-
thermore, delaying feedback for a few seconds [Maddox
and Ing, 2005; Maddox et al., 2003], deferring feedback to
the end of a block of six trials [Smith et al., 2014],

Figure 1.

Examples of unidimensional, conjunction, and information-integration category structures. Each

open circle represents one member of Category A; each filled square represents one member of

Category B. Figure adapted from Wills et al. [2013] and Zeithamova and Maddox [2006].
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providing the category label prior to making the response
[Ashby et al., 2002], and using stimuli which contain both
auditory and visual information [Maddox et al., 2006]
have all been claimed to impair II but not RB learning.
Similarly, some studies have suggested that increasing the
number of categories [Maddox et al., 2004c] or reducing
the time available to process the feedback [Maddox et al.,
2004a] disrupts RB but not II learning.

However, in recent years there have been a growing
number of studies that cast doubt on COVIS’s interpreta-
tion of these behavioral dissociations and posit that the
results can be explained by a single, explicit, system [e.g.,
Newell et al., 2010, 2011, 2013; Nosofsky and Kruschke,
2002; Stanton and Nosofsky, 2007, 2013]. One such exam-
ple is a study conducted by Lewandowsky et al. [2012]
who reconsidered the finding noted above that RB learn-
ing relies on working memory to a greater extent than II
learning. Specifically, Lewandowsky et al. directly meas-
ured the working memory capacity of participants using a
battery of both verbal and spatial tasks and used structural
equation modeling to reveal a strong relationship between
working memory capacity and both RB and II learning,
consistent with their proposal that both tasks require the
use of working memory. The behavioral evidence as it cur-
rently stands, therefore, provides equivocal support for
COVIS. An alternative approach to resolving this dispute
is to focus directly on the neurobiological predictions of
COVIS where it has been argued that single-system
accounts cannot explain the evidence that separable neural
systems are engaged during different types of category
learning [Worthy et al., 2013].

This neurobiological evidence is currently surprisingly
limited, however, as there has been a paucity of studies
directly comparing the brain systems involved in RB and
II category learning. Perhaps the most prominent study to
examine this, although, was by Nomura et al. [2007]. Par-
ticipants completed either an RB or an II category learning
task inside an MRI scanner. The RB category structure was
an easy to verbalize unidimensional rule (e.g., Fig. 1a),
while the II structure was based on that shown in Figure
1c. Nomura et al. considered their results to be in line
with COVIS—dissociable neural activation was found,
with the MTL more activated in RB compared with II
learning, and the caudate body more activated in II than
RB learning. Further evidence of separable systems was
found in a reanalysis of Nomura et al.’s data which mod-
eled participants’ decision strategies [Nomura and Reber,
2008]. Participants using RB learning strategies showed
greater right PFC activity than those using II strategies,
and those utilizing II strategies had greater right occipital
activation.

More recently, Soto et al. [2013; see also Helie et al.,
2010; Waldschmidt and Ashby, 2011] directly contrasted
RB and II learning in a multivoxel pattern analysis. While
the study had multiple training sessions, the first scanning
session (Training Session 1 for the RB task and Training

Session 2, following 600 training trials in Session 1, for the
II task), prior to the development of automaticity, is most
pertinent for the current issue. While there was common
activation between RB and II learning (e.g., in the globus
pallidus and the extrastriate visual cortex), there were
some differences in activation. For instance, consistent
with Nomura et al. [2007], the head of the caudate was
activated more in RB learning, while activation in the cau-
date body/tail also differed between the RB and II tasks.
However, it is difficult to know whether these neural dif-
ferences were due to the engagement of separate systems
in RB and II learning or whether they are due to partici-
pants in the II condition having already received 600 train-
ing trials previous to the scanning session while
participants in the RB condition had no prior training
(brain activation alters over a relatively limited number of
trials) [e.g., Koenig et al., 2005; Milton and Pothos, 2011].
While this issue was not the sole focus of Soto et al.’s
study it does, nevertheless, compromise any direct com-
parisons in brain activation between II and RB learning
prior to automaticity developing.

Milton and Pothos [2011] found a different pattern of
results to Nomura et al. [2007], observing extensive over-
lap in activation between a Unidimensional RB structure
and a complex category structure assumed to have many
of the properties of II categories (e.g., optimal decision
bounds that were difficult to verbalize). In contrast to
Nomura et al., neural differences between the II and RB
conditions were minimal and restricted to greater activa-
tion in a small region of the left superior frontal lobe in
the complex condition relative to the RB condition. While
intriguing, one should not draw too strong an inference
about these findings with regard to COVIS due to the dif-
ferences in the stimuli that Milton and Pothos used com-
pared to those traditionally administered in COVIS
research. For instance, there were only 18 unique stimuli,
with dimensions that were commensurable (rectangle
height and ellipse width) and a decision bound that was
arguably easier to verbalize than the II structures typically
employed (e.g., Fig. 1c). Nevertheless, these findings indi-
cate that further direct comparison of the neural correlates
of RB and II category learning is needed.

The aim of the present study, therefore, is to re-examine
Nomura et al.’s [2007] conclusion that there is a differen-
tial pattern of brain activation for RB and II categories in
line with the predictions of COVIS. The critical difference
between the RB and II category structures is often
assumed to be that the RB structure is easily verbalizable
but the II structure is not. While the RB and II category
structures used by Nomura et al. (see Fig. 1a,c) differ con-
vincingly in this factor, there are also nonessential differ-
ences between them that may potentially be driving the
differences in activation. For instance, the RB structure has
only one relevant dimension while the II structure has two
relevant dimensions which means that selective attention
is required for the RB condition but not for the II condition
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[Nosofsky and Kruschke, 2002]. This is a concern that has
been acknowledged by some COVIS theorists [e.g.,
Nomura and Reber, 2008; Xie et al., 2015; Zeithamova and
Maddox, 2006]. On a different note, multidimensional cate-
gorizations are typically more complex and require greater
cognitive resources than one-dimensional categorizations
[e.g., Milton et al., 2008; Wills et al., 2015]. This could
potentially be driving the more pronounced caudate body
activation in the II than the RB condition, particularly
given that the involvement of the basal ganglia is thought
to be greater for more complex structures [e.g., Ell et al.,
2010; Filoteo et al., 2005a,b]. As the II structure is often
more difficult to learn than the RB structure [e.g., Ashby
et al., 2002, Maddox et al., 2003], Nomura et al. reduced
the category separation (i.e., the mean distance between
category items as plotted in stimulus space divided by the
within-category variance along the direction of the com-
parison) in the RB condition relative to the II condition to
minimize any performance differences between conditions
[see also Lewandowsky et al., 2012 for a discussion of this
issue]. While this successfully matched learning rates, it
effectively replaces one confound with another because the
optimal decision bound is more difficult to perceptually
discriminate in the RB than the II condition [Stanton and
Nosofsky, 2007]. This confound is potentially critical given
that COVIS assumes that the MTL is responsible for stor-
ing the precise placement of the decision bound [Nomura
and Reber, 2008]. The greater activation in the MTL for the
RB condition compared to the II condition could, therefore,
be due to this difference in category separation.

To draw strong comparisons about brain activation in
RB and II category learning, it is therefore necessary to
control for these nonessential differences between the cate-
gory structures. This has been achieved in previous COVIS
related research [e.g., Filoteo et al., 2010; Zeithamova and
Maddox, 2006]—but in no previous imaging study—by
comparing the II category structure to a conjunctive, RB
category structure (see Fig. 1b). The II and the conjunctive
category structures both possess two relevant dimensions,
have a similar error rate [Filoteo et al., 2010] and are
closely matched for category separation.

A study by Edmunds et al. [2015] underscores the
importance of controlling for these extraneous variables
when comparing RB and II category learning. Edmunds
et al. re-examined Ashby et al.’s [2002] finding that trial-
by-trial feedback training leads to better categorization
performance than observational training for an II structure
but not for a unidimensional RB structure. Edmunds et al.
argued that Ashby et al.’s dissociation could have been
driven by one of the nonessential differences between
these category structures highlighted above. In particular,
Edmunds et al. posited that the increased difficulty of
learning a multidimensional (II) classification compared to
a unidimensional classification could have been causing
the effect—feedback training may be of greater benefit
than observational training more generally but this

advantage increases as the problem difficulty rises. To
investigate this, Edmunds et al. compared learning of con-
junctive and II category structures under both observatio-
nal and feedback training. Edmunds et al. confirmed that
participants are better able to verbalize the conjunctive,
RB, structure than the II structure. However, the dissocia-
tion predicted by COVIS failed to emerge. Instead, feed-
back learning was superior to observational learning for
both category structures.

The importance of controlling important extraneous var-
iables has also been highlighted in a recent fMRI study
conducted by Nosofsky et al. [2012] who reconsidered the
classic finding of Reber et al. [1998] that old-new recogni-
tion of dot patterns evokes a different pattern of brain acti-
vation to categorization of dot patterns. Nosofsky et al.
used the same stimuli across conditions (whereas in Reber
et al. the stimuli differed) and more closely equated the
task goals of recognition and categorization (normally rec-
ognition requires an exact match with the studied item
while stimuli can be endorsed as a category member if
they are merely similar to previous exemplars) by asking
them to adopt a lax criterion for the recognition judg-
ment—participants were told it was important not to miss
any old items. Under these conditions, there was little evi-
dence for dissociable systems and the results from both
tasks could be accommodated by a single exemplar-based
process.

Another notable aspect of Nomura et al.’s [2007] study
is their use of incorrect trials as the baseline comparison to
correct responses. While this is a convenient baseline to
use and has been employed in other categorization
research [e.g., Milton and Pothos, 2011] it may not be the
most effective due to difficulties in interpreting what is
driving the incorrect response. First, participants may have
been using the correct general strategy but had not identi-
fied the relevant dimension/precise category structure; for
example, participants used a RB strategy but categorized
by orientation rather than line length. Second, participants
might have used the appropriate dimension but placed the
decision bound in the incorrect place. Third, and less com-
monly, participants may have classified correctly but
pressed the wrong button. Fourth, participants may have
been guessing or not fully engaged on the trial and fifth,
participants could have used a completely different strat-
egy to what was appropriate. It is likely that the errors are
a combination of these (and potentially other) mistakes but
it is not possible at the individual trial level to determine
the source of the error. The first three of these error types
appear particularly problematic as they would result in
similar activation to correct trials meaning that this is
unlikely to be a sensitive baseline. Furthermore, comparing
correct and incorrect trials is likely to be confounded with
degree of learning as there will be more incorrect trials
early in training than later in training. This is particularly
an issue when wishing to make inferences across the
whole of training as is typically the case. While we present
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the key analyses with this “incorrect” baseline to aid com-
parison of our results with Nomura et al.’s, an “odd-or-
even” task will be our principal baseline. This type of con-
trol is increasingly being used in imaging studies of cate-
gorization [e.g., Davis et al., 2012a,b,] and while it may
superficially seem similar to a RB task (albeit one that is
highly automated and engages limited neural resources)
[Stark and Squire, 2001] its main advantage is that it is
well-established that it does not recruit the MTL or indeed
the frontal lobes [Stark and Squire, 2001], the pivotal
regions of COVIS’s RB system. Equally, activation in the
striatum, the key site of COVIS’s implicit system, is also
readily identified with an odd-or-even baseline task [Zink
et al., 2006]. This baseline should, therefore, provide a
clear measure of the regions engaged in both RB and II
categorization without the involvement of key regions
being obscured by their activation in the baseline task as
well.

According to how COVIS is often conceptualized [e.g.,
Nomura et al., 2007], one might predict greater activation
in the caudate head, the anterior cingulate, prefrontal cor-
tex, and the MTL (and in particular the hippocampus) for
learning a conjunctive RB structure compared to learning
an II structure [Ashby and Valentin, 2005]. In contrast,
greater activation should be found in the body/tail of the
caudate, the putamen and the substantia nigra for the II
condition compared to the RB condition [Ashby and Val-
entin, 2005]. Conversely, if Nomura et al.’s [2007] results
were driven by one of the nonessential differences
between the RB and II structures outlined above then,
when these variables have been better controlled, one
might expect that these neural differences would disap-
pear leaving an extensive overlap of activation. Further,
given that the II structure is harder to verbalize than the
RB structure and yet categorization accuracy is the same
[Filoteo et al., 2010], greater activation might be expected
in the prefrontal cortex for the II compared to the RB con-
dition to reflect the greater processing demands of finding
and applying a less easy to verbalize rule. Alternatively,
or perhaps additionally, there may be greater activation in
the MTL in the II condition than the RB condition if the
lower levels of verbalizability lead to an increase in mem-
ory demands to store exceptions in decision space to the
rule that is utilized [Davis et al., 2012a].

METHOD

Participants and Design

Forty five-right-handed University of Exeter students (26
female, 19 male) with normal or corrected vision com-
pleted the experiment for £5 remuneration. Participants
were randomly allocated to one of two between-subject
conditions (RB and II). One participant from the RB condi-
tion was excluded for failing to reach 50% (chance) accu-
racy in the final run (although the inclusion of this

participant does not alter any of the conclusions of this
study), leaving 22 participants in each condition. Partici-
pants gave informed consent according to procedures
approved by the University of Exeter’s School of Psychol-
ogy Ethics Committee.

Stimuli

The stimuli (see Fig. 2) were a subset of the two-
dimensional II stimuli and conjunctive stimuli (where
short, upright lines belong in Category A, and the rest in
Category B) employed by Filoteo et al. [2010]. In the origi-
nal dataset there were 600 stimuli in both conditions; in
the present imaging study, 320 of these stimuli were ran-
domly selected (160 stimuli in each category) for each cate-
gory structure. This number of stimuli was the same as
used by Nomura et al. [2007]. Each stimulus was a black

Figure 2.

The category structures used for the present study (a) The con-

junctive RB condition; (b) The II condition. Solid lines indicate

the decision boundary separating Category A (unfilled circles)

and Category B (filled squares).
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line varying on two dimensions: length and orientation.
As in Filoteo et al. [2010], there was 5% overlap between
the categories so that the maximum accuracy attainable
was 95%.

fMRI Imaging

A 1.5-T Phillips Gyroscan magnet, equipped with a
Sense coil, was used to collect images from each partici-
pant in one scanning Session. A T2*-weighted echo planar
sequence (TR 5 3,000 ms, TE 5 45 ms, flip angle 5 908, 36
transverse slices, 3.5 3 2.5 3 2.5 mm) was used. On enter-
ing the scanner, the participant’s head was secured in
place with foam pillows inside the coil to prevent exces-
sive head movement. Participants completed four runs,
each containing 205 scans. Five “dummy scans” were com-
pleted before every run prior to presentation of the first
trial. After the functional scans, standard volumetric ana-
tomical MRI was completed using a 3-D T1-weighted
pulse sequence (TR 5 25 ms, TE 5 4.1 ms, flip angle 5 308,
160 axial slices, 1.6 3 0.9 3 0.9 mm).

Procedure

In each scanning run, participants performed two inter-
leaved tasks—the category learning task and an “odd-or-
even” baseline task. Each run began with 15 odd-or-even
trials, followed by two blocks of 40 categorization trials.
Each run then concluded with another block of 15 odd-or-
even trials. After each block there was a blank screen of
8,000 ms during which time participants were asked to
rest. In total, there were 320 category learning trials, pre-
sented in a random order, and 120 odd-or-even trials. The
stimuli were presented on a back-projection screen posi-
tioned at the foot end of the MRI scanner and viewed via
a mirror mounted on a head coil. Responses were meas-
ured using a fiber-optic button box held in the partici-
pants’ left and right hands. E-Prime [Psychological
Software Tools, 2002] was used for the presentation and
timing of stimuli and collection of response data.

In the category learning task, participants were informed
that they had to learn into which of two categories a series
of stimuli belonged. The trial-by-trial procedure for the RB
and II conditions was identical. Each trial began with a
blank screen lasting a variable interval between 500 ms
and 4,000 ms, followed immediately by a black fixation
cross presented in the center of the screen for 250 ms. A
stimulus then appeared in the middle of the screen for
2,000 ms during which time participants were required to
respond by pressing the far right button on the button box
with their right hand if they thought the item belonged to
Category A or the far left button with their left hand if
they thought the item was a member of Category B. Feed-
back (“correct” or “incorrect”) was then displayed for 500
ms. If participants did not respond in time the message

“Time out!!!” appeared on the screen for 500 ms instead.
The next trial then immediately began.

The odd-or-even task was closely modeled on that used by
Stark and Squire [2001; see also Davis et al., 2012a] and
had a similar trial-by-trial structure to the category learn-
ing task. Each trial began with a blank screen lasting
between 500 ms and 4,000 ms, followed by a black fixation
cross for 250 ms. A randomly generated number from one
to nine then appeared in the middle of the screen for 2,000
ms during which time participants had to press the left-
most button if the number was even or the right-most but-
ton if it was odd. Following this, feedback (“correct” or
“incorrect”) was presented for 500 ms or if participants
did not respond in time a message saying “Time out!!”
appeared during this interval.

fMRI Data Analysis

Data analysis was performed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm). Functional images were corrected
for acquisition order, realigned to the mean image, and
resliced to correct for motion artifacts. The realigned
images were coregistered with the structural T1 volume
and the structural volumes were spatially normalized. The
spatial transformation was applied to the T2* volumes
which were spatially smoothed using a Gaussian Kernel of
8 mm full-width half maximum. Data were high-pass fil-
tered (128 s) to account for low frequency drifts.

Random effects whole-brain analyses were completed
using the general linear model with a combined statistical
threshold of P< 0.001 (uncorrected) and a voxel threshold
of 27 contiguous voxels, which together produce an overall
corrected threshold of P< 0.05, according to AlphaSim, as
implemented in the REST toolbox (Version 1.8) [Song
et al., 2011]. Correct trials, incorrect trials, and timeouts
were all included as separate regressors in the model. A
canonical hemodynamic response function (HRF) together
with temporal and dispersion derivatives was used to
model the blood oxygen level-dependent response and the
six head movement parameters were included as covari-
ates. Our analyses focused on comparing correct categori-
zation trials (for the RB and II groups separately) to the
odd-or-even baseline task (although for the principal anal-
yses we also compare correct categorization trials to incor-
rect trials). In addition, to measure common activation
between the RB—baseline contrast and the II—baseline
contrast, a conjunction analysis was performed. The con-
trasts were combined using a logical “and” function
through the minimum statistic to the conjunction null
hypothesis (MS/CN) [Nichols et al., 2005] technique
implemented in SPM8. Both these contrasts were again
conducted with a combined threshold of P< 0.001 (uncor-
rected) and a cluster threshold of 27; note that this
approach is highly conservative because it reveals only
those regions significantly activated for both the RB
(P< 0.05, corrected) and the II (P< 0.05, corrected)
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conditions. Normalized MNI space coordinates were trans-
formed to Talairach space (http://imaging.mrccbu.cam.ac.
uk/imaging/MniTalairach) to establish activation sites as
per the atlas of Talairach and Tournoux [1988].

RESULTS

Behavioral Analysis

The mean categorization accuracy across all runs for
both the RB and II conditions is displayed in Figure 3. A 4
3 2 mixed-design analysis of variance (ANOVA) was con-
ducted; the within-subjects factor was Run (4 levels) and
the between-subjects factor was Categorization task (RB/
II). There was a highly significant effect of Run,
F(3,126)512.47, P< 0.001, 5 0.229, indicating that perform-
ance improved with practice. There was, however, no sig-
nificant difference between the II and RB conditions in
accuracy F(1,42) 5 0.14, P 5 0.708, 5 0.003, BF 5 1.04, and
no significant interaction between run and categorization
task (II or RB), F(3,126) 5 1.71, P 5 0.169, .5 0.039,
BF 5 2.00.1

Imaging Analysis—“Odd or Even?” Baseline

Measure

All blocks analysis

Whole-brain activation across all runs of the category
learning task was first analysed for participants in the RB
and II conditions separately. Correct RB categorizations
led to an extensive pattern of activation (Fig. 4a) including
diverse areas of the frontal cortex (including BA’s 6, 8, 10,
45, 46, 47), the anterior cingulate, posterior cingulate, the
MTL, the bilateral caudate head/body, the putamen, the
bilateral inferior and superior parietal lobes, the right
superior temporal gyrus, bilateral inferior temporal gyrus,
and the bilateral occipital lobes. II category learning also
activated these same brain regions (Fig. 4b).

We also examined whether there were any changes in
activation across time for both RB and II learning. To
assess this, we directly compared activation in the first
half of the experiment (Runs 1 and 2) to in the second half

(Runs 3 and 4) for the RB and II conditions separately. No
brain regions were more activated in the first half of train-
ing compared with the second half of training in either
condition. No brain areas were activated more in the sec-
ond half of training than the first half in the RB condition
either. However, in the II condition several regions includ-
ing the right parahippocampal gyrus (BA 30; see Table I)
were activated more in Runs 3 and 4 than in Runs 1 and
2.

The striking overlap in activation between the tasks was
confirmed in a conjunction analysis, looking at common
activation across the correct RB—odd-or-even contrast and
the correct II—odd-or-even contrast (both with thresholds
of P< 0.001 and 27 contiguous voxels; Fig. 4c). Areas acti-
vated included key regions of both COVIS’s explicit and
implicit systems. Regions linked to the explicit system that
were recruited were the MTL, the bilateral caudate head,
diverse bilateral areas of the prefrontal cortex (including
BA’s 6, 8, 10, 46, and 47) and the bilateral anterior cingu-
late (right BA 25, left BA 33). Areas implicated in the
implicit system that were engaged included the bilateral
caudate body and the bilateral putamen. When contrasting
incorrect trials to the odd-or-even task, a similar, if some-
what less extensive, pattern of activation was found
including the right caudate body, right putamen, and
bilateral caudate head (Supporting Information Fig. 1).

Next, we directly contrasted activation in the RB and II
conditions to examine whether there was evidence for the
neural dissociations observed by Nomura et al. [2007]. No
regions were more active in the RB condition than the II
condition (calculated by subtracting correct RB trials—the
odd-or-even trials from correct II trials—the odd-or-even
trials). However, diverse regions were more active in the
II condition than the RB condition (calculated by subtract-
ing correct II trials—the odd-or-even trials from correct RB
trials—the odd-or-even trials; see Table II, Fig. 5a). Crit-
ically, this included extensive activation in the left MTL
(hippocampus/posterior parahippocampal gyrus; 131 vox-
els; see Fig. 5b for areas of the MTL engaged, with non-
MTL regions masked). The results of these analyses are
contrary to the predictions of COVIS, where the MTL is

Figure 3.

Mean performance across runs in the RB and II conditions.

Error bars show standard error.

1Bayes Factor analysis requires an estimate of the mean expected dif-
ference under the experimental hypothesis; we estimated this from
Filoteo et al’s [2005a] study, which used the same stimuli and cate-
gory structures, using plot digitizer (https://sourceforge.net/proj-
ects/plotdigitizer/). Following Dienes [2011], the expected
difference was modeled as a two-tailed normal distribution with a
standard deviation equal to half the mean. By convention, a Bayes
factor of over three is interpreted as providing substantial evidence
for the experimental hypothesis [Jeffreys, 1961], while a Bayes factor
below a third provides substantial evidence for the null [Dienes,
2011]. A value in between a third and three is indeterminate, provid-
ing no clear evidence either for the null or the experimental
hypothesis.
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thought to be more critical for RB rather than II learning
[e.g., Ashby and Valentin, 2005; Nomura et al., 2007].

However, in spite of the generally greater activation in
the II condition than the RB condition, no regions associ-
ated with COVIS’s implicit system were identified in this
analysis. Of course, it is possible that, even though we had

almost double the number of participants that Nomura
et al. [2007] used (they had 13 in their II condition and 12
in their RB condition), this activation might have been
present but below our a priori statistical thresholds. To
provide greater sensitivity we, therefore, conducted a
region of interest (ROI) analysis using the WFU Pickatlas

Figure 4.

Whole brain analyses on all runs of the study for: (a) areas of

activation in the RB condition; (b) areas of activation in the II

condition; (c) a conjunction analysis showing areas commonly

activated in the RB and II conditions. All analyses are thresholded

at P< 0.001 and 27 contiguous voxels. The coordinates indicate

the origin for the image displayed. Lighter colors indicate higher

z-scores. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

TABLE I. Brain regions activated more in the last runs of the study (Runs 3 and 4) than the first runs of the study

(Runs 1 and 2) in the II condition

Talairach coordinates

Region Cluster size BA x y z z-score

Right Precentral Gyrus 30 4 26 225 53 3.84
Right Posterior Parahippocampal Gyrus 36 30 16 243 4 3.80
Right Thalamus 52 — 18 221 21 3.78

Right Substantia Nigra — 16 218 28 3.71
Left Paracentral Lobule 36 3 218 238 55 3.56

Left Postcentral Gyrus 5 220 241 65 3.48

Note that indented rows indicate voxels in the same cluster as the nonindented row above.
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[Maldjian et al., 2003] comprising the caudate body, the
putamen, and the substantia nigra with the more liberal
thresholds of P< 0.005 and 10 contiguous voxels (the same
thresholds we have used in previous ROI analyses we
have conducted) [c.f., Milton et al., 2011, 2012]. We again
found no evidence for greater activation in the II condition
than the RB condition in these regions. To further confirm
this conclusion we examined the relative percent signal
change of correct RB and II responding in the caudate
body based on the peak right (x 5 17, y 5 211, z 5 28) and
left (x 5 220, y 5 214, z 5 29) caudate body activations
reported by Nomura et al. [2007]. These percent signal
change values were obtained using the Anatomy toolbox

[Eickhoff et al., 2007] (Version 2.2). Using independent
samples t-tests, we found no difference between conditions
for either the right caudate body, t(42)51.05, P 5 0.300, d5

0.32, BF 5 0.84, or for the left caudate body, t(42)51.00,
P 5 0.323, d 5 0.3, BF 5 0.91.2

TABLE II. Brain regions activated more in the II condition than the RB condition in all runs

Talairach coordinates

Region Cluster size BA x y z z-score

Left Hippocampus 212 — 222 239 21 4.02
Left Parahippocampal Gyrus 36 226 239 25 3.78
Left Posterior Cingulate 29 214 246 10 3.30

Left Superior Temporal Gyrus 41 21 252 26 211 3.61
Left Precuneus 80 31 218 247 32 3.91

Left Cingulate Gyrus 31 216 243 34 3.70
Left Thalamus 56 — 214 228 16 3.57

Note that indented rows indicate voxels in the same cluster as the nonindented row above.

Figure 5.

Analyses of areas activated in all runs of the study (a) Whole-

brain analysis of areas more active in the II condition compared

with the RB condition; (b) Regions of the MTL more active in

the II condition compared with the RB condition; non-MTL

regions were masked in this analysis but the thresholds

remained P< 0.001 and 27 contiguous voxels. The coordinates

indicate the origin for the image displayed. Lighter colors indi-

cate higher z-scores. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

2The percent signal change in the right caudate body for the RB and
II conditions in Nomura et al.’s [2008] study (shown in their Figure
4d) was used to calculate the prior (these values were estimated using
plot digitizer https://sourceforge.net/projects/plotdigitizer/). The
expected difference was modeled as a two-tailed normal distribution
with a standard deviation equal to half the mean [Dienes, 2011].
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Analysis of Runs 3 and 4 only

COVIS can potentially explain this pattern of findings by
assuming that for the II condition as well as the RB condi-
tion the verbal system dominates initially and participants
in the II group only switch to the implicit system once there
has been sufficient time for the RB system to be proven
ineffective [e.g., Filoteo et al., 2010]. Including the initial tri-
als in the analysis could therefore be obscuring the neural
differences that emerge later in learning. To investigate this
possibility, we analyzed Runs 3 and 4 alone which, accord-
ing to the results of previous studies [e.g., Filoteo et al.,
2010], should provide a sufficient number of trials for par-
ticipants to switch to the implicit system in the II condition.

A conjunction analysis, using the same thresholds as
before, again revealed extensive activation overlap
between the RB and II conditions. This included the bilat-
eral putamen, the bilateral caudate body as well as the
bilateral caudate head, the prefrontal cortex and the right
MTL (Supporting Information Fig. 2). No regions were
again more activated in the RB condition than the II condi-
tion. However, as before, a number of regions were more
activated in the II condition than the RB condition (Sup-
porting Information Table I; Fig. 6a); most prominent
amongst these was activation in the bilateral hippocam-
pus/posterior parahippocampal gyrus (left: 207 voxels;

right: 44 voxels, Fig. 6b). However, as before, in spite of
this generally elevated activation in the II condition com-
pared to the RB condition, there was no evidence for acti-
vation of regions linked to COVIS’s implicit system. We
again conducted a follow-up ROI analysis comprising the
caudate body, the putamen, and the substantia nigra with
a threshold of P< 0.005 and a voxel threshold of 10 but no
regions were activated in this analysis.

Model-based analysis

The predictions made by COVIS are, of course, depend-
ent on the assumption that more participants in the RB
condition are using the explicit system than are partici-
pants in the II condition and that a greater number of par-
ticipants in the II condition are using the implicit system
than are participants in the RB condition. If participants in
the II condition persist with the verbal system throughout
(or alternatively if participants in the RB condition as well
as the II condition use the implicit system) then this might
explain why our results appear inconsistent with the pre-
dictions of COVIS. It is harder, although, from a COVIS
perspective to explain why participants in the II condition
engaged the MTL, a critical region of the explicit system
[Ashby and Valentin, 2005; Nomura and Reber, 2008],

Figure 6.

Analysis of Blocks 3 and 4 for: (a) Areas more activated in the II

condition than the RB condition. (b) Regions of the MTL more

active in the II condition compared with the RB condition; non-

MTL regions were masked in this analysis but the thresholds

remained at P< 0.001 and 27 contiguous voxels. The coordi-

nates indicate the origin for the image displayed. Lighter colors

indicate higher z-scores. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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more than participants in the RB condition unless one
assumes that the II category structure was more effective
than the RB structure at engaging the explicit system.
While this may seem unlikely, it can be tested using
model-based analysis based on general recognition theory
(GRT) [Ashby and Gott, 1988] as is commonly carried out
in COVIS related studies [e.g., Ashby et al., 2002; Filoteo
et al., 2010; Nomura and Reber, 2008].

For each participant, the GRT analysis determines the
decision boundary (from a set of pre-defined alternatives)
that provides the best account of that participant’s
responses. Each participant is then assigned a strategy
type (e.g., “conjunctive”) on the basis of the best-fitting
model.

The unidimensional models assume that the participant
determines a criterion along either the orientation or
length dimension. As an example, for length, this corre-
sponds to a rule such as: “Assign to Category A if the

stimulus is long, or Category B if short.” The unidimen-
sional models have two parameters: the value of the crite-
rion and the variance of internal (criterial and perceptual)
noise.

The conjunctive model assumes that the participants
make two judgments, one for each stimulus dimension,
and then combine these to make a judgment about cate-
gory membership. The conjunctive rule in the current anal-
ysis was: “Assign the stimulus to Category A if it is short
and upright, otherwise assign to Category B.” The con-
junctive model has three parameters: the two criterion val-
ues and internal noise.

The general linear classifier (GLC) model assumes that
the decision boundary can be described by a straight line
that can vary in gradient and intercept. The unidimen-
sional models are therefore special cases of the GLC
model. The GLC model has three parameters: the intercept
and slope of the decision bound, plus internal noise.

The random model assumes that participants are
responding randomly; it has no parameters.

For each participant, the best fit of each of these models
was calculated, and the best-fitting model selected using
Akaike’s information criterion [Akaike, 1974]. The results
from this analysis, which was performed using the GRT
package in the R environment [Matsuki, 2014], are
reported in Table III. Within the COVIS framework, the
unidimensional and conjunctive models are considered to
represent explicit, RB strategies, while the GLC represents
an implicit, information-integration strategy.

TABLE III. Proportion of participants using the

information-integration (II), conjunctive (CJ),

unidimensional (UD), or random (RND)

strategies in the RB and II conditions

II CJ UD RND

Rule-based 0.22 0.55 0.18 0.05
Information-Integration 0.59 0.18 0.23 0.00

Figure 7.

Analysis of participants who were shown by the modeling analy-

sis to use the optimal learning strategy overall for all runs of the

study: (a) Areas commonly activated in the RB condition and

the II condition (with thresholds of P< 0.001 and 27 contiguous

voxels); (b) A ROI analysis of areas of the MTL more activated

in the II condition compared with the RB condition (with

thresholds of P< 0.05 and 79 contiguous voxels). The right

most image represents the brain from the bottom. The coordi-

nates indicate the origin for the image displayed. Lighter colors

indicate higher z-scores. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r COVIS and Category Learning r

r 3567 r

http://wileyonlinelibrary.com


The results, displayed in Table III, are generally consist-
ent with previous work indicating that more participants
used a conjunctive strategy in the RB condition than in the
II condition and that more participants in the II condition
used a GLC strategy than in the RB condition. This is the
pattern expected and obtained in previous COVIS studies
[e.g., Ashby et al., 2002]; therefore, the modeling analyses
seem to rule out the possibility (at least within the COVIS
framework) that our results were driven by participants
not using the intended strategy for their condition. How-
ever, the GRT modeling results, as usual, indicate that not
all participants are adopting the expected strategy, so we
took those participants in the RB condition whose
responses were best fit by a conjunctive strategy (12 partic-
ipants) and compared their brain activation to those partic-
ipants in the II condition whose responses were best fit by
the optimal GLC model (13 participants). Note, the selec-

tion of a subset of participants on the basis of their GRT
modeling results has seldom previously been carried out
in COVIS related studies, perhaps because there are limits
to the accuracy of these modeling results [see Donkin
et al., 2015; Edmunds et al., 2015, for a discussion] so this
analysis should be taken with some caution. Nevertheless,
given the nature of our results, these supplementary anal-
yses appear valuable.

A conjunction analysis, using, as before, thresholds of
P< 0.001 and 27 contiguous voxels, again revealed an
extensive overlap of activation between the RB and II con-
ditions in similar regions to those found in the whole-
group analyses (Fig. 7a). Regions activated included the
left MTL, bilateral caudate head, as well as the bilateral
caudate body and right putamen. As in the all-participant
analyses, no areas were more active in the RB than in the
II condition. No regions were activated more in the II than

TABLE IV. Brain regions commonly activated in the RB and II conditions in all runs when using incorrect trials as

the baseline

Talairach
coordinate

Region Clustersize BA x y z z-score

Left Medial Frontal Gyrus 693 11 26 50 29 5.54
Right Medial Frontal Gyrus 10 10 50 28 4.81
Left Anterior Cingulate 32 216 37 22 3.61

Left Middle Temporal Gyrus 677 39 252 265 22 4.36
Left Angular Gyrus 39 242 274 31 4.29
Left Inferior Parietal Lobule 39 246 268 38 3.79

Right Putamen 70 — 18 9 29 4.29
Left Superior Parietal Lobule 363 7 220 252 58 4.26

Left Postcentral Gyrus 3 220 223 47 4.13
Left Precentral Gyurs 4 214 224 64 3.92

Right Parahippocampal Gyrus 132 28 16 25 213 4.25
Left Putamen 74 — 214 9 29 4.20
Right Cuneus 67 18 26 277 17 4.15

Right Middle Occipital Gyrus 19 24 285 12 3.29
Right Precuneus 361 7 18 244 56 4.13

Right Sub-Gyral 40 24 238 55 3.97
Right Precentral Gyrus 4 18 219 58 3.78

Right Middle Temporal Gyrus 193 37 54 266 5 4.10
Right Superior Temporal Gyrus 263 42 63 221 12 4.10

Right Postcentral Gyrus 40 65 220 21 3.69
Left Superior Frontal Gyrus 288 8 216 39 42 4.02

Left Medial Frontal Gyrus 9 220 33 30 3.95
Left Middle Frontal Gyrus 8 228 27 39 3.76

Left Caudate Body 43 — 220 11 22 3.96
Right Middle Frontal Gyrus 163 11 24 28 215 3.94
Left Cingulate Gyrus 186 31 212 241 33 3.90

Right Cingulate Gyrus 31 8 241 33 3.80
Left Precuneus 52 31 214 257 25 3.87

Left Posterior Cingulate 23 28 254 16 3.27
Left Inferior Frontal Gyrus 47 47 224 33 210 3.76
Left Middle Occipital Gyrus 112 19 232 281 8 3.71
Left Middle Temporal Gyrus 62 21 254 247 23 3.53

Note that indented rows indicate voxels in the same cluster as the nonindented row above.
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the RB condition either and, in particular, the prominent
MTL activation in the all-participant analyses did not
emerge. One potential reason for this is simply that the
smaller number of participants in this model-based analy-
sis reduced our ability to detect this activation. We there-
fore conducted a post hoc ROI analysis of the MTL (using
the WFU Pickatlas) [Maldjian et al., 2003] with a threshold
of P< 0.05 (uncorrected) and a cluster threshold of 79
(which combined produce a corrected threshold of P< 0.05
according to AlphaSim). This revealed activation in the
same left hippocampus/parahippocampal gyrus region
(cluster size: 115; Fig. 7b) as previously identified.

We again found no activation in regions linked to COV-
IS’s implicit system in the II—RB analysis. We therefore
conducted another post hoc ROI analysis comprising the
caudate body, substantia nigra, and the putamen in the
same manner as for the MTL ROI analysis with cluster
thresholds of P< 0.05 (uncorrected) and 41 contiguous
voxels (which corresponded to P< 0.05, corrected accord-
ing to AlphaSim). This also did not produce any signifi-
cant activation. An additional ROI analysis with these
regions using alternative thresholds of P< 0.005 and 10
voxels also yielded no activation. Finally, we repeated
these modeling analyses with Runs 3 and 4 alone. These
produced the same pattern of results as the all-run analy-
ses—there was considerable common activation (see Sup-
porting Information Table II) with no regions more
activated in the RB compared with the II condition (RB –
II). There was, although, as in the corresponding all-
participants analysis, evidence of left MTL activation in a
post hoc ROI analysis of the II—RB contrast with thresh-
olds of P< 0.05 and 79 contiguous voxels (cluster size: 157,
peak voxel: x 5 212, y 5 241, z 5 4), and no evidence for
COVIS’s implicit system in either the whole-brain or ROI
analyses.

Correct–Incorrect Trials

To complement the analyses just described we also ran
the principal ones using incorrect trials as the baseline. For
the all-blocks analysis, consistent with previous work [e.g.,
Cincotta and Seger, 2007; Filoteo et al., 2005a,b], we found
that the left caudate head was more active on correct trials
than incorrect trials (with thresholds of P< 0.001 and 27
contiguous voxels) for both the RB (peak voxel: x 5 216,
y 5 20, z 5 5) and II (peak voxel: x 5 28, y 5 13, z 5 26)
groups. We again identified, using the same conjunction
analysis approach as before, large overlap of activation
between the II and RB conditions including bilateral puta-
men, left caudate body, right MTL, and frontal lobe
(including BA 8, 9, 10, and 11; Table IV). We did not, how-
ever, detect any differences between II and RB learning. A
similar pattern emerged when considering all blocks in the
modeling analysis with activation overlap in the conjunc-
tion analysis, but no differences detected between II and
RB learning.

Looking at Blocks 3 and 4 alone, there was again com-
mon activation in the frontal, parietal and temporal lobes
(Supporting Information Table III) and no differences
between RB and II learning in whole-brain analyses. How-
ever, in a similar ROI MTL analysis to before (thresholds
P 5 0.05 and 79 contiguous voxels, corresponding to
P< 0.05, corrected), we observed greater activation in the
II condition than the RB condition in two right hippocam-
pus/parahippocampal gyrus regions (cluster size 215,
peak coordinate: x 5 24, y 5 27, z 5 213; cluster size 180,
peak coordinate: x 5 34, y 5 234, z 5 212; Supporting
Information Fig. 3), with the posterior cluster being in the
same area as observed in the corresponding odd-or-even
comparison. There was, although, again no evidence for
activation in regions associated with COVIS’s implicit sys-
tem even when the analogous ROI analyses to those previ-
ously conducted were performed. This same pattern
emerged when considering Blocks 3 and 4 alone in the
modeling analysis.

DISCUSSION

Previous work has found that there is differential brain
activity in the learning of RB and II categories with the
MTL preferentially recruited for RB compared to II learn-
ing while the caudate body is engaged more for II than RB
learning [Nomura et al., 2007]. However, we found no evi-
dence for this pattern of dissociable neural activation. In
particular, our most noteworthy finding was that the hip-
pocampus/posterior parahippocampal gyrus was signifi-
cantly more activated in the II condition than the RB
condition. In addition, there was a striking overlap of acti-
vation between RB and II category learning emphasizing
the extensive common neural processes that are engaged
in learning both category structures. Common activation
included regions thought to be engaged both in the
explicit system such as the prefrontal cortex (including
BA’s 8, 10, 46, and 47), the anterior cingulate, the caudate
head, and the MTL, and regions implicated in the implicit
system including the posterior caudate, the putamen, and
the substantia nigra. This pattern persisted, and indeed
became more pronounced, when the second half of train-
ing was analyzed alone. We also observed the same basic
findings when including only those participants who had
used the intended strategy as indicated by GRT modeling
analyses.

The striking overlap in activation between RB and II
learning is consistent with the idea that RB and II category
learning require similar neural processes. Of course, some
of this activation is likely to be related to processes not
specific to the act of categorization itself but common func-
tions shared by the tasks such as stimulus processing,
response selection, feedback monitoring, uncertainty, and
attentional demands to name a few possibilities.

A somewhat related way of looking at this common acti-
vation is that the behavioral dissociations in past work
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[e.g., Ashby and Maddox, 2011, but see also Newell et al.,
2011] may reflect true differences in the learning system
engaged in RB and II categorization but that the functions
of these systems share similar neural pathways. For exam-
ple, Duncan [2010] proposed that there is a multiple-
demand brain network, comprising regions of the prefron-
tal and parietal cortex, that is responsible for integrating
and coordinating the processing of task specific brain areas
through dividing the task goal into subtasks, generating
the rules to achieve each subgoal and transferring informa-
tion from one task to another. If such a system organized
the specific separable processes needed for learning in the
RB or II condition then neural activation overlap (such as
in the frontal lobes) between these tasks would be appa-
rent as seen in the present study.

Nevertheless, what is particularly striking about our
results and a challenge to COVIS, as it is currently formal-
ized, is that we found extensive regions of the hippocam-
pus/posterior parahippocampal gyrus were activated more
in the II condition than the RB condition when COVIS
appears to make the reverse prediction that there should
be less activation in the II condition than the RB condition
in this region.

One important question, therefore, is why we observed
a markedly different pattern of results from Nomura et al.
[2007]? It appears unlikely that this is due primarily to our
choice of the odd-or-even task as our primary baseline
measure because the same basic pattern of results was
observed when we used incorrect trials as the baseline
(albeit less pronounced, perhaps for the reasons outlined
in the introduction). It, therefore, appears more likely that
it is the choice of the RB category structure employed with
which to compare the II structure that is driving the quali-
tatively different pattern of results between studies.
Nomura et al. used a unidimensional category structure
while we used a conjunctive structure.

Although both conjunctive and unidimensional struc-
tures effectively manipulate the relative verbalizability of
the optimal decision bound [Edmunds et al., 2015], the
advantage of using the conjunctive structure is that it con-
trols for extraneous differences that are present between
the unidimensional and the II structure that have been
shown in previous work to have an important impact on
categorization [e.g., Edmunds et al., 2015; Stanton and
Nosofsky, 2007; Wills et al., 2013]. Specifically, the unidi-
mensional structure has only one relevant dimension but
the II structure has two relevant dimensions. This means
that selective attention is necessary in the RB condition but
would be detrimental in the II condition [Nosofsky and
Kruschke, 2002]. In addition, multidimensional categoriza-
tions are typically more complex and require greater levels
of cognitive resources than unidimensional categorizations
[Milton et al., 2008; Pothos and Close, 2008; Wills et al.,
2013, 2015]. This is likely to lead to greater activation more
generally in the II condition than the RB condition and
perhaps particularly in the basal ganglia which has been

argued to be involved in the learning of more complex cat-
egory structures [e.g., Ell et al., 2010; Filoteo et al., 2005a].

Related to this, because unidimensional classifications
are generally easier to learn than multidimensional classifi-
cations [e.g., Ashby et al., 2002; Maddox et al., 2003],
Nomura et al. reduced the category separation of the uni-
dimensional structure compared to the II structure. While
this enabled error rates to be successfully matched
between conditions, this manipulation effectively replaced
one confound with another [Stanton and Nosofsky, 2007].
The MTL is assumed to be critical for storing the precise
location of the decision bound [Nomura and Reber, 2008]
and it seems plausible that this would be more demanding
in Nomura et al.’s unidimensional structure, where the
decision boundary is more difficult to perceptually dis-
criminate than the II structure which could have been
driving the differential activation in this region.

While it may be possible to question our interpretation
of these differences, our general point—that controlling
between category structures for extraneous factors that
have been shown to have a strong influence on categoriza-
tion allows stronger inferences to be drawn—appears rela-
tively uncontroversial. One might, of course, respond to
this by arguing that behavioral dissociations predicted by
COVIS have also emerged when using the same category
structures as we employed in the present study [e.g., Filo-
teo et al., 2010; Zeithamova and Maddox, 2006]. However,
these behavioral dissociations have already come under
detailed critique [e.g., Newell et al., 2010, 2013]; in this
regard, our results extend these concerns to previous
imaging data. While COVIS has undeniably had a positive
impact on the field of categorization by motivating new
lines of research and is groundbreaking in terms of the
precise neurobiological predictions it makes, our results
indicate that it may be in need of revision to accommodate
the greater level of MTL activation in II categorization
compared to RB categorization that we observed.

Another notable feature of our results is the extensive
MTL activation found in the RB and, in particular, the II
condition. The precise role that the MTL plays in category
learning has been contentious. Some research implicates
this region in RB or explicit learning alone [e.g., Nomura
et al., 2007; Poldrack et al., 2001], other research shows
that the MTL can also be found during II-like learning
[Cincotta and Seger, 2007; Milton and Pothos, 2011], yet
further research shows the hippocampus decreases in acti-
vation after initial category learning [Seger and Cincotta,
2006], while other studies found no activation at all [e.g.,
Lopez-Paniagua and Seger, 2011; Milton et al., 2009; Seger
and Cincotta, 2002; Tracy et al., 2003]. While these discrep-
ancies may, of course, relate to the very different categori-
zation tasks used, another possible reason is the choice of
the baseline task. It is well established that a resting base-
line (such as viewing a fixation cross or a blank screen)
leads to activation of the default network which is known
to engage the MTL [Buckner et al., 2008]. It is, therefore,
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possible that the frequent choice of a resting baseline in
categorization studies [e.g., Milton et al., 2009; Seger and
Cincotta, 2002, 2005; Tracy et al., 2003] may have led to an
underestimation of the involvement of the MTL in some
past category learning studies.

Having said this, several theories have been proposed
with regards the function of the MTL in category learning.
For example, Seger et al. [2011] suggested that the anterior
hippocampus is necessary for encoding the relationship
between a stimulus and a particular response [see also
Chua et al., 2007] while the posterior hippocampus is
required for the retrieval of the context in which a stimu-
lus has previously been encountered (e.g., retrieving the
stimulus-response mapping). Similar to this, Love and
Gureckis [2007] emphasized that the MTL (and specifically
the hippocampus) is particularly important for forming
abstract codes (known as clusters) which represent stimu-
lus configurations [Davis et al., 2012a, Staresina and Dava-
chi, 2009]. New stimuli that are similar to previously seen
configurations will be “captured” by a pre-existing cluster,
but if a stimulus is sufficiently novel, the MTL creates a
new cluster for it [Love and Gureckis, 2007]. Inspired by
this account, Davis et al. [2012a] [for a related study see
also Davis et al., 2012b] conducted an experiment in which
the stimuli (schematic beetles) could typically be classified
by a single-property rule but in which there were a few
stimuli that were exceptions to that rule. Davis et al.
[2012a] found that the MTL was more activated for these
exception stimuli than the rule consistent items, and
hypothesised that this was due to it being involved in the
creation of new clusters to represent the exceptions. Our
results seem entirely consistent with these views. Specifi-
cally, the MTL activation observed in both the II and RB
conditions may reflect that both category structures
require the formation of clusters and perhaps in particular
the need to encode and retrieve the category label with
which a stimulus was associated. The greater MTL activa-
tion we observed in the II condition than the RB condition
may reflect that the II structure is likely to evoke a greater
number of exceptions to the applied rule, requiring the
creation of additional clusters. The greater posterior para-
hippocampal gyrus activation in the second half of train-
ing compared to in the first half of training would also be
consistent with the idea that the number of clusters
increases as exceptions to any rule employed increase.

Our results are consistent with the growing body of evi-
dence that the basal ganglia plays an important role in cat-
egory learning [for a review see Seger, 2008]. Previous
work has found that the caudate head is important for the
processing of positive feedback [Cincotta and Seger, 2007;
Filoteo et al., 2005a,b; Seger and Cincotta, 2002]. Our find-
ing of activation in the head of the caudate for both RB
and II category learning during correct categorization trials
compared with incorrect trials further underscores the
important role this region has in the processing of positive
feedback [Cincotta and Seger, 2007; Filoteo et al., 2005b;

Seger and Cincotta, 2002]. The body and tail of the cau-
date, as well as being linked to COVIS’s implicit system,
have been shown to activate more for good learners than
poor learners in a rule learning task [Seger and Cincotta,
2006]. Additionally, Lopez-Paniagua and Seger [2011]
linked the body and tail of the caudate to stimulus-
response processing. Similarly, the activation in the puta-
men we observed for RB and II learning may reflect motor
planning demands [Cincotta and Seger, 2007]. While there
are clearly differences in the procedures used in these
studies and ours, it is plausible that these regions serve
the same role in RB and II learning. If this is the case then
our results would also be consistent with Nosofsky and
Stanton’s [2005] claim that RB categorization as well as II
categorization has a procedural component.

We also found greater activation in the medial prefron-
tal cortex for correct compared to incorrect responses in
both the RB and II conditions. This finding is analogous to
the results of Schnyer et al. [2009] who found that patients
with ventromedial prefrontal cortex (VMPFC) lesions had
impaired learning for both RB and II tasks compared to
controls. Schnyer et al. suggested that the VMPFC is
responsible for feedback processing in both RB and II
learning and is involved in the selection and maintenance
of the optimal learning strategies. Our imaging results
therefore provide converging support for this previous
neuropsychological evidence.

While fMRI provides excellent spatial resolution, it is
well known to have limited temporal resolution. One con-
sequence of this is that our study, like Nomura et al.’s
[2007], and virtually all extant imaging studies of categori-
zation cannot determine whether the activation identified
is driven during the response or feedback processing
stages. While the greater activation in the MTL for the II
than the RB condition appears unexpected from COVIS’s
perspective regardless of when it occurs in the category
learning process it would, nonetheless, be valuable in
follow-up studies to understand at what stage in the pro-
cess this difference is occurring. One possibility might be
to have a subset of trials where no feedback is provided to
examine the relative activation of feedback versus no feed-
back trials. Another option would be to include an extra
variable ITI after the response has been made to identify
activation differences between the response and feedback
stages [see Lopez-Paniagua and Seger, 2011, for an exam-
ple of where this has been done). Both approaches have
challenges—for instance, in no feedback trials participants
may self-generate internal feedback, particularly when
they have acquired a strong understanding of the category
structure. Equally, one consequence of adding an extra ITI
is that it would increase the delay between making a
response and receiving feedback which has been sug-
gested to disrupt learning in COVIS’s implicit system
[Maddox and Ing, 2005; Maddox et al., 2003]. Neverthe-
less, exploring this issue appears a fruitful area for future
research.
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Another limitation of fMRI is that it is not possible to
establish whether all of the diverse areas activated are nec-
essary for the learning of the II and RB structures. For
example, it is possible that the activation in the MTL was
not essential for the category learning that occurred. While
this is plausible, it is still difficult although to explain from
this perspective why the MTL activates more for the II
condition than the RB condition; in contrast, this difference
is readily compatible with the idea that II learning requires
greater memory demands to compensate for the absence
of an easily verbalizable rule. Nevertheless, to test our
explanation for this result, it would be valuable in future
to investigate patients with MTL lesions to see if they, as
we would predict from our theory, perform worse in
acquiring II categories than RB categories. A further pre-
diction derivable from our hypothesis is that people
should have enhanced memory for instances after II cate-
gory learning than after RB learning. As far as we are
aware, the former hypothesis has not yet been investi-
gated; however, the latter hypothesis is the subject of
ongoing behavioral work in our laboratory.

Finally, there is a temptation to consider our data in the
context of whether it is more supportive of single-system
or dual-system accounts. For instance, the extensive over-
lap of activation between the RB and II conditions is con-
sistent with the idea that these category structures are
learned by the same neural system. According to this
view, the greater activation in the II condition relative to
the RB condition may just reflect that participants in the II
condition, who were learning a more difficult to verbalize
decision boundary, had to recruit greater neural resources
to reach the same level of performance. Of course, an
alternative way of explaining our results is in terms of a
dual-process model such as ATRIUM [Erickson and
Kruschke, 1998]. In ATRIUM, one system is RB and is con-
ceptually similar to COVIS’s verbal system. The other sys-
tem is also assumed to be explicit but is exemplar-based
and is responsible for learning when rules are not easily
applicable. One possibility, therefore, is that participants
were utilizing a suboptimal rule but were supplementing
this with an exemplar-based process for the items in a
region of decision space which did not fit into the rules
that they were utilizing. The results of Davis et al. [2012a],
who found that the MTL was more engaged for exception
items than those stimuli which followed a simple rule,
would be consistent with this explanation. While our
results could, therefore, be conceptualized in either of
these ways, we would generally concur with the view of
Davis et al. [2012a] who note that given that the criteria
for establishing truly qualitatively separable systems are
often underspecified, a more profitable way of viewing
category learning may be to link brain function to particu-
lar processes required. For instance, the prefrontal cortex
may be involved in hypothesis generation and rule selec-
tion, the caudate head in feedback processing, the caudate
body and tail for stimulus-response associations, and the

MTL in storing decision bounds and/or memory for par-
ticular exemplars. In this latter example, as discussed
previously, the MTL may be an important region for cate-
gory learning in general but its role could have a greater
emphasis in II learning where there are less verbalizable
rules than in RB learning which may encourage more spe-
cific storage of exemplars [Nosofsky et al., 2012] to supple-
ment any rules that are applied.

CONCLUSION

The present study aimed to build on the limited amount
of research that has directly compared the neural regions
involved in RB and II category learning. We found that
when we controlled for category separation, number of rel-
evant dimensions, and error rates, extensive neural overlap
in the learning of RB and II categories emerged and there
was no evidence for the pattern of results predicted by
COVIS. In particular, we found increased activation in the
MTL, long considered critical for explicit memory [e.g., Sco-
ville and Milner, 1957; Squire et al., 2004], for the II condi-
tion, which is assumed by COVIS to preferentially recruit
the implicit system, compared to the RB condition. Our
findings, therefore, extend our understanding of the neural
processes that underlie RB and II learning and pose a chal-
lenge for COVIS as it is currently instantiated.
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