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Abstract: Dynamic functional brain connectivity analysis is a fast expanding field in computational
neuroscience research with the promise of elucidating brain network interactions. Sliding temporal
window based approaches are commonly used in order to explore dynamic behavior of brain networks
in task-free functional magnetic resonance imaging (fMRI) data. However, the low effective temporal
resolution of sliding window methods fail to capture the full dynamics of brain activity at each time
point. These also require subjective decisions regarding window size and window overlap. In this
study, we introduce dynamic regional phase synchrony (DRePS), a novel analysis approach that meas-
ures mean local instantaneous phase coherence within adjacent fMRI voxels. We evaluate the DRePS
framework on simulated data showing that the proposed measure is able to estimate synchrony at
higher temporal resolution than sliding windows of local connectivity. We applied DRePS analysis to
task-free fMRI data of 20 control subjects, revealing ultra-slow dynamics of local connectivity in differ-
ent brain areas. Spatial clustering based on the DRePS feature time series reveals biologically congru-
ent local phase synchrony networks (LPSNs). Taken together, our results demonstrate three main
findings. Firstly, DRePS has increased temporal sensitivity compared to sliding window correlation
analysis in capturing locally synchronous events. Secondly, DRePS of task-free fMRI reveals ultra-slow
fluctuations of �0.002–0.02 Hz. Lastly, LPSNs provide plausible spatial information about time-varying
brain local phase synchrony. With the DRePS method, we introduce a framework for interrogating
brain local connectivity, which can potentially provide biomarkers of human brain function in health
and disease. Hum Brain Mapp 37:1970–1985, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The human brain can be modeled as a collection of com-
plex functional networks containing interconnected
“nodes” that are dynamically interacting with each other
on local and global scales [Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010; Sporns, 2011]. Non-invasive
neuroimaging methods including functional magnetic res-
onance imaging (fMRI) have been used to understand
such brain network interactions. In this context, task-free
fMRI is a functional brain imaging technique with high
spatial resolution, measuring blood oxygenation level
dependent (BOLD) changes in response to spontaneous
neural activity [Biswal et al., 1995]. The temporal resolu-
tion of fMRI data is determined by its repetition time (TR)
parameter associated with the time interval between suc-
cessive excitation pulse sequences applied to the same
brain slice. This is the optimal time accuracy which one
can reach to investigate the dynamics of brain functional-
ity through BOLD changes.

Improving our knowledge of local network behaviour at
a macroscopic level is important for conceptualizing the
human brain as a complex dynamic system. The organiza-
tion of brain networks are both modular and hierarchical
[Park and Friston, 2013]. This hierarchical/modular configu-
ration constitutes a potential ground for integrating local
neuronal functions at the global level. From this perspec-
tive, brain functionality may be viewed as “global integra-
tion of local integrators” where short-range connections are
the fundament of specialized functional processing, whilst
long-range connections are generally responsible for higher
level cognition [Park and Friston, 2013; Sepulcre et al.,

2010]. Brain interactions are also known to be of dynamic
nature [Bullmore and Sporns, 2009; Rubinov and Sporns,
2010; Sporns, 2011]. Therefore, it is fair to speculate time-
varying spatial distributions of local functional units for
brain networks. Similarity assessment of adjacent brain
regions during transient spontaneous brain activity at the
spatial resolution of fMRI data may aid our understanding
of these functional dynamics [Jiang and Zuo, 2015].

Local network properties of task-free fMRI can be exam-
ined through different methodologies. Integrated local cor-
relation [Deshpande et al., 2009] is a voxel-wise measure
of local coherence in fMRI time series which is applied
over the entire length of data. Local functional connectivity
density mapping [Tomasi et al., 2014] is another time-
constant voxel-wise methodology which searches for the
Pearson correlation-based functional connections of a
given fMRI voxel until the connectivity edges become
lower than a certain threshold. The cross-correlation coeffi-
cients of spontaneous low frequency fluctuations index [Li
et al., 2002] is a local measure of fMRI connectivity which
computes the average cross-correlation between spontane-
ous low-frequency components of fMRI time series within
a region of interest over the scanning time period.
Regional homogeneity (ReHo) is based on the Kendall’s
coefficient of concordance (KCC-ReHo) [Zang et al., 2004],
and evaluates the mean correlation between the fMRI time
series at a given voxel and its neighboring voxels. The
coherence-based version of KCC-ReHo (cohe-ReHo) [Liu
et al., 2010] has also been developed which considers the
coherence values of the time series in the frequency
domain instead of their temporal correlation (see [Zuo
et al., 2013] for more details).

Among the aforementioned methods, KCC-ReHo has
found wide acceptance in brain functional connectivity
research, as it is a non-parametric data-driven measure
with no requirement for Gaussianity of fMRI data, it is
computationally fast with minimal parameter settings and
is robust to noise [Zuo et al., 2013]. The main limitation of
ReHo is the assumption that the dynamics within the
brain’s functional networks remains stationary over time.
However, there is increasing evidence that dynamics of
brain functional connectivity during a task-free situation is
nonstationary [Damaraju et al., 2014; Handwerker et al.,
2012; Liu and Duyn, 2013; Tailby et al., 2015; Waites et al.,
2005; Yu et al., 2015; Zalesky et al., 2014]. In order to miti-
gate this limitation for KCC-ReHo, a sliding window ver-
sion (SW-ReHo) has been utilized, requiring the
assumption of stationarity in the BOLD signal over only
short time periods [Hudetz et al., 2015]. In this approach,
the KCC-ReHo measure is successively computed on the
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BOLD Blood oxygenation level dependent
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DRePS Dynamic regional phase synchrony
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segmented BOLD signal, or on the segmented time
courses of spatial independent components. This method-
ology, however, is subject to the Uncertainty Principle,
where high temporal resolution can be achieved only at
the cost of poor spectral resolution and vice versa [Boa-
shash, 2016].

In this article, we introduce a time-varying measure of
local fMRI connectivity, which alleviates some inherent
limitations of using short-time sliding segments. The pro-
posed method requires minimal parameter tuning with the
benefit of not having to define a window length. Dynamic
Regional Phase Synchrony (DRePS) maps are obtained as
the (spatial) mean of the instantaneous phase coherence
within a local neighborhood of fMRI voxels (e.g., within a
spatial extent akin to that used in the ReHo method). We
show, through simulation, that DRePS achieves higher
temporal resolution than the SW-ReHo approach and
investigate its properties within different frequency bands.
We also apply DRePS to task-free fMRI data from 20
healthy controls, and test the hypothesis that dynamic
local functional connectivity is associated with local phase
synchrony networks (LPSNs), within spatially distributed
brain areas.

MATERIALS AND METHODS

We begin with a description of the existing SW-ReHo
method, as the approach we subsequently describe shares
some features, and we will be comparing results of our
framework to those of SW-ReHo.

Exploring Dynamic Local Connectivity in

Task-Free fMRI Data Using SW-ReHo

Regional characteristics of task-free fMRI data have been
successfully investigated using the ReHo measure [Liu
et al., 2008; Tang et al., 2014; Wang et al., 2012; Zang et al.,
2004; Zuo et al., 2013]. ReHo computes average Kendall’s
coefficient of concordance between the fMRI time series at
each voxel and its adjacent voxels within a surrounding
3D cube [Zang et al., 2004]. It returns values from 0 to 1
with higher values implying stronger local connectivity.
ReHo can be extended to a nonstationary version using a
sliding window approach, SW-ReHo. Sliding window
analysis is a widely used way of characterizing variations
of spatio-temporal connectivity in BOLD data, as it is easy
to implement and interpret [Hutchison et al., 2013]. SW-
ReHo is based on shifting a set number of data points in
time with a pre-defined overlap while extracting ReHo
from each segment. This leads to a series of time-varying
features over time. Accuracy of SW-ReHo strongly
depends on the choices of window size, window shape
and overlapping length. Short-length rectangular windows
(i.e., low number of time points) may increase temporal
resolution of the feature time series, but it can negatively
affect the reliability of ReHo, and reduce the spectral reso-

lution within that window [Zuo et al., 2013]. Overlapping
between successive windows can multiply the number of
feature points, but the overlapping length nevertheless
introduces temporal smoothing to the feature time series.
Therefore, development of a time-varying local connectiv-
ity measure for task-free fMRI data at TR-resolution can
improve the temporal precision of brain functionality stud-
ies. In the following section, we outline an alternative
framework to SW-ReHo based on the concept of instanta-
neous phase, which evaluates nonstationary local connec-
tivity of BOLD signal changes at TR-level with no need for
window parameter settings.

Instantaneous Phase of fMRI Time Series

We propose that instantaneous mean phase coherence
between time series of neighboring fMRI voxels can be
used as a time-varying measure of brain local connectivity.
To this end, we employed the concept of analytic associ-
ates based on the Hilbert transform [Sun and Small, 2009]
to extract the phase information of fMRI time series.
Despite the important role of band-pass filtering in phase
synchrony analysis of task-free fMRI data, its theoretical
aspects have not yet been systematically investigated in
the fMRI literature. The frequency band of 0.03–0.07 Hz
has been used in two previous studies of task-free fMRI
instantaneous phase synchrony analysis, but its justifica-
tion has been mainly based on practical considerations of
minimizing artifact and noise in the data [Glerean et al.,
2012; Ponce-Alvarez et al., 2015]. We take this concept fur-
ther and discuss the requirements needed for extracting
meaningful phase information from nonstationary signals.

A real-valued signal x n½ � can be defined without ambi-
guity based on its instantaneous amplitude and instantane-
ous phase as follows [Picinbono, 1997]:

x n½ �5ax n½ �cos ux n½ �ð Þ; (1)

where ax n½ � and ux n½ � denote the instantaneous amplitude
and phase of x n½ �, respectively. In order to obtain the
phase information ux n½ �, we have to convert the real-
valued presentation of Eq. (1) into a complex form. This
can be done by estimating zx n½ �, i.e., the complex analytic
associate of x n½ � using the Hilbert transform [Picinbono,
1997; Sun and Small, 2009]:

zx n½ �5x n½ �1j~x n½ � (2a)

5ax n½ �cos ux n½ �ð Þ1jH ax n½ �cos ux n½ �ð Þf g; (2b)

where j5
ffiffiffiffi
-1
p

and H :f g means the Hilbert transform. The
complex nature of zx n½ � in the time domain arises from its
asymmetric power spectral density (PSD) function having
no negative frequency components [Picinbono, 1997].
Extraction of the instantaneous phase signal ux n½ � from zx
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n½ � is straightforward by re-writing Eq. (2a) into the follow-
ing quadrature form:

zx n½ �5ax n½ �ejux n½ �: (3a)

5ax n½ �cos ux n½ �ð Þ1jax n½ �sin ux n½ �ð Þ; (3b)

This is, however, only possible if the following relation-
ship is satisfied:

H ax n½ �cos ux n½ �ð Þf g5ax n½ �sin ux n½ �ð Þ: (4)

This condition can be examined by using the Bedrosian
theorem [Bedrosian, 1963], which deals with the Hilbert
transform of the product of two real-valued signals in the
time domain. The Bedrosian’s requirement states that if
two functions FLP n½ � and FHP n½ � have non-overlapping fre-
quency spectra, and the support of the spectrum of FLP n½ �
is lower than that of FHP n½ �, then:

H FLP n½ �FHP n½ �f g5FLP n½ �H FHP n½ �f g: (5)

In other words, the low-frequency envelope of the prod-
uct FLP n½ �FHP n½ � can be extracted from its Hilbert trans-
form, but only if FLP n½ � and FHP n½ � meet the Bedrosian’s
requirement. Eq. (5) is also known as Bedrosian identity
[Venouziou and Zhang, 2008].

As a direct application of the Bedrosian theorem, the left
side of Eq. (4) can be split into a pair of slow and fast
terms, if the amplitude envelope ax n½ � is low-pass, the
phase signal cos ux n½ �ð Þ is high-pass, and their frequency
spectra are distinct [Picinbono, 1997]:

H ax n½ �cos ux n½ �ð Þf g5ax n½ �H cos ux n½ �ð Þf g: (6)

On the other hand, we know from the Hilbert transform
properties that H cos n½ �f g is equal to sin n½ � over an infinite
time interval [Picinbono, 1997]. However, Eq. (6) is not
necessarily equivalent with the following equation [Picin-
bono, 1997] for real-world signals due to their finite-
length:

H cos ux n½ �ð Þf g5sin ux n½ �ð Þ: (7)

Consequently, we still cannot infer the quadrature form
of Eq. (3a) from Eq. (2a) for practical signals, even if they
satisfy the Bedrosian’s requirement. This implies that for a
rigorous evaluation of the credibility of the extracted
phase information, one must check both Bedrosian theo-
rem as well as Eq. (7) for the underlying signal. To this
end, we computed an error signal e n½ � based on Eq. (7) as
an accuracy indicator of instantaneous phase [Picinbono,
1997]:

e n½ �5cos2 ux n½ �ð Þ1 H cos ux n½ �ð Þf gð Þ2: (8)

In an ideal case of perfect analytic associates, the error
signal e n½ � will be equal to 1.

Dynamic Regional Phase Synchrony (DRePS) of

Task-Free fMRI

Let ux n½ � and uy n½ � be the instantaneous phases of sig-
nals x n½ � and y n½ �, respectively. The two signals are phase-
locked of order 1:1 if [Mormann et al., 2000]:

jux n½ �-uy n½ �j � 0: (9)

Phase synchronization between x n½ � and y n½ � can then be
quantified using the mean phase coherence Rx;y given by
[Lachaux et al., 1999; Mormann et al., 2000]:

Rx;y5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos ux-uy

� �
i

2
1hsin ux-uy

� �
i

2
r

: (10)

where h:i represents the mean operator. Rx;y is restricted to
the interval [0,1] where Rx;y51 reflects no random phase
difference between x and y, whilst Rx;y approaches zero
when the instantaneous phase difference between the two
signals increases.

Now, assume ux n½ � and uyi
n½ � are the instantaneous

phase functions of a band-pass filtered fMRI time series
with Bedrosian identity consisting of T time-points
(n51; . . . ;T) at a given voxel x and its neighboring voxels
yi (i51; . . . ;M-1) where M is the entire number of non-zero
voxels within a 3D cube centered at x. The DRePS measure
associated with the voxel x is then computed as:

wx n½ �5 1

M-1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM-1

i51

cos ux n½ �-uyi
n½ �

� �( )2

1
XM-1

i51

sin ux n½ �-uyi
n½ �

� �( )2
vuut :

(11)

The function wx n½ � quantifies the instantaneous mean
phase coherence between x and all of its adjacent neigh-
bors within its associated 3D space. In this study, we con-
sidered two sizes of 6 and 26 immediate neighboring
voxels with respect to the central voxel, in analogy to the
ReHo method [Zang et al., 2004]. This calculation was
repeated for every gray-matter voxel after exclusion of all
zero-value voxels from the neighboring cube. Figure 1
illustrates the schematic procedure of DRePS extraction
from a typical 3D cube of size 27.

The DRePS function extracted from a 4D task-free fMRI
data will be another 4D map with the same single-TR tem-
poral resolution. The DRePS time series at each voxel rep-
resents its simultaneous relationship with the nearest
neighbors. With a gray matter mask containing 51603 vox-
els and a fMRI data including 200 volumes, our MATLAB
implementation of DRePS takes approximately 40 seconds
using a GNU/Linux-based PC of 2.66 GHz Intel Quad
Core i7 CPU and 8 GB of RAM.

Analysis of DRePS: Two Scenarios

We developed two separate scenarios for inspecting the
DRePS maps:
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Scenario A: In the first scenario (Fig. 2A), we aimed to
assess how particular brain regions, segmented a priori,
were locally “engaged” (highly synchronous) or
“disengaged” (weakly synchronous) over time. The DRePS
time series were directly analyzed using a time-dependent
thresholding approach. For each time point, the associated
3D DRePS map was thresholded at the ath percentile
(here, a595) of its histogram over all voxels (very high
regional synchrony). This provided a binary 3D map of
voxels surviving the high local connectivity threshold. The
3D binary map was parcellated using an automated ana-
tomical labeling (AAL) atlas [Tzourio-Mazoyer et al., 2002]
with 90 regions of interest (ROIs) excluding cerebellum.
The percentage of suprathreshold voxels within each ROI
(i.e., ratio of ones over the ROI size) was then calculated.
A spatio-temporal DRePS percentage plot DP

a% was
obtained for each subject, where the x-axis was associated
with the fMRI volume timing (in TR) and the y-axis repre-
sented the ROI indices (Fig. 2A). Each row in DP

a%
reflects the time-varying quota of a given ROI with high
DRePS values.

The significance testing for the DP
a% maps was done

through the surrogate data method by generating 1000
random realizations of the null hypothesis based on the

original DRePS time series. To this end, all time series
inside the gray matter mask of each subject-specific 4D
DRePS map were re-arranged into a 2D matrix, so that
each row was associated with a DRePS time series at a cer-
tain voxel. The voxels were then parcellated using the
AAL atlas. Each ROI was spatially concatenated over sub-
jects. The concatenated ROIs underwent a permutation
testing procedure. At each run, voxels of each concaten-
ated ROI were shuffled and the first set of random voxels
with the same size of the underlying ROI was taken. It led
to a permuted DRePS map in which the voxels of each
ROI and their associated DRePS time series were ran-
domly selected from the group of subjects. This was done
to preserve the inherent characteristics of the brain by
keeping the same anatomical mask at each permutation,
while randomizing the dynamic local network properties
over the entire group. The shuffled 4D DRePS maps were
subjected to the process of obtaining the DP

a% maps
where each element in the time-space domain was associ-
ated with a null distribution of 1000 values. A 2D spatio-
temporal map with the same size of DP

a% was obtained
via significance thresholding at the 95th percentile of these
distributions. The resulting surrogate map was finally
used to threshold the subject-specific percentage maps.

Figure 1.

A schematic example of extracting the DRePS measure wx n½ � from

a typical moving 3 3 3 3 3 cube of fMRI voxels including a central

voxel x (red voxel) and its neighboring voxels yi, i 5 1; . . . ; 26

(blue voxels). The DRePS time series wx n½ � is obtained by taking

the mean of instantaneous phase coherence between the central

voxel x and its adjacent non-zero neighbors at different time

points. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Scenario B: In the second scenario (Fig. 2B), we hypothe-
sized that communities of locally synchronous oscillators
within the brain are linked to functional brain activity. There-
fore, dimensions of maximal variance in the DRePS data may
convey meaningful information about local dynamics of task-
free fMRI data, and one could use this information to seg-
ment the brain a posteriori into functionally related regions.
From this perspective, each DRePS time series (one per voxel)
was treated as a feature vector. A two-step dimension reduc-
tion using principal component analysis (PCA) was con-
ducted. The first step was done at the subject level where the
DRePS temporal dimension was reduced from 200 (number
of volumes for each subject) to 30. After dimensionality
reduction of each individual’s 4D DRePS map, they were
temporally concatenated over the group of subjects and fed
into another PCA with a further reduction to 30 dimensions.
The number of principal components was chosen by check-
ing the cumulative sum of eigenvalues. In order to determine
the intrinsic grouping in the reduced ‘DRePS feature vectors’,
a clustering procedure was applied to the data using Gaus-
sian mixture modeling (GMM) [McLachlan and Peel, 2000].

With GMM, we assume that the data points are generated
from a mixture of multi-dimensional Gaussian distributions
whose unknown parameters could be estimated using the
iterative Expectation-Maximization algorithm [McLachlan
and Peel, 2000]. GMM was performed over a range of model
orders (i.e., number of Gaussians) for which the goodness-of-
fit was evaluated using Bayes Information Criterion (BIC).
The optimum order was then selected as the model order
with minimal BIC. The GMM procedure resulted in spatial
clusters of voxels with similar DRePS characteristics called
local phase synchrony networks (LPSNs).

In order to evaluate spatial overlap between LPSNs and
commonly reported resting state networks (RSNs) in fMRI
data of healthy subjects, we compared the LPSNs (25, as
determined by BIC) obtained from within the frequency
band of 0.03–0.07 Hz and cube size of 27 with 21 RSNs
provided by another independent study in the same space
(i.e., MNI1) [Smith et al., 2012]. Since selecting the RSNs

Figure 2.

Two scenarios for analysis of DRePS maps: (A) voxels with the most significant DRePS values within

each 3D ROI were counted leading to a spatio-temporal DRePS percentage map, (B) reduced

DRePS feature vectors were spatially clustered using Gaussian Mixture Modeling (GMM) resulting in

communities of local oscillators in fMRI data called local phase synchrony networks (LPSNs). [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

1Montreal Neurological Institute
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through independent component analysis of our own
cohort would be a fairly subjective procedure, we chose to
use a set of publicly available and reliable RSNs in our
study for the sake of objective and reproducible compari-
son. The RSNs were acquired from 42 10-minute fMRI
datasets of 5 subjects in 7 sessions2. Each RSN was binar-
ized by thresholding values above two standard deviations
of its voxel values. Pair-wise Jaccard indices were then
computed between the LPSNs and binarized RSNs to
quantify the similarity and diversity of spatial patterns
among them.

Simulation

We created a 3D simulated data representing random
phase relationships between synthetic voxels as well as
random patterns of phase synchrony with time-varying
attributes in order to:

1. Evaluate the capability of DRePS for tracking local
phase synchrony changes at sample-rate resolution,

2. Compare the temporal resolution of instantaneous
features generated by DRePS, and window-based
dynamic features obtained by SW-ReHo for represen-
tation of sudden changes in local phase synchrony,

3. Investigate the effects of the number of adjacent voxels
and band pass filtering used in the DRePS calculation.

To this end, we generated a 4D array of size 11 3 11 3 11
3 600 including an inner compartment of size 5 3 535 3

600 where the first three dimensions represent a spatial vol-
ume (Fig. 3A) and the fourth dimension is time (in TR, here
3 s). The time series at each voxel i outside of the inner cube
was made of pure background activity bi n½ �. Each voxel j in
the inner cube was associated with a time series xj n½ � consist-
ing of two components: background activity bj n½ � and syn-
chronous activity sj n½ � masked by M n½ � (Fig. 3B) and elevated
by the factor of 2 to resemble amplitude changes. The signals
bi n½ �, si n½ � and xi n½ � are defined as follows:

bi n½ �5sin 2pf b
i n1/b

i n½ �
� �

1h n½ �; f b
i 2 0 0:16½ � Hz;

2p < /b
i n½ � < p

si n½ �52 3 sin 2pfcnð Þ1h n½ �; fc50:05 Hz

xi n½ �5bi n½ �1si n½ �3M n½ �; n 5 1; . . . ; 600 in TRð Þ

8>>>>>>><
>>>>>>>:

(12)

where h n½ � is additive uniform noise between 0 and 1, f b
i is

a normally distributed random frequency within the range

Figure 3.

Simulated data: (A) 3D arrangement of voxels in the simulated data. The inner compartment of

time series with phase synchrony pattern has been highlighted with greater opacity. The central

voxel has been shown in red, (B) phase synchrony pattern M n½ �, C) four representative time-

series extracted from the inner cube. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

2Publicly available at: http://www.fmrib.ox.ac.uk/analysis/TFMs/
sICA22_RSN21.nii.gz. Data were made available by the WU-Minn
Human Connectome Project (1U54MH091657), funded by the 16
NIH Institutes and Centers that Support the NIH Blueprint for Neu-
roscience Research.
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of 0 to 1= 2TRð Þ � 0:16 Hz, /b
i n½ � is time-varying random

phase with maximum variation over the unit circle and fc

is a voxel-independent central frequency locked to
0:05 Hz. Intuitively, voxels inside the inner cube follow a
synchronous pattern governed by M n½ �, while the phase
entrainment between voxels outside of the inner cube is
purely random. Figure 3C illustrates an example of four
representative time series extracted from the inner cube.
In the figure, the phase synchrony mask M n½ � represents
a block of five equidistance single-TR events distributing
over t 5 330 s to t 5 570 s, an individual event starting
at t 5 1035 s and a single-TR event at t 5 1650 s.

The simulated data was examined by DRePS and SW-
ReHo methods within a wide frequency band of 0.01–0.09
Hz and a narrow frequency band of 0.03–0.07 Hz as well
as two moving cubes of 6 and 26 neighboring voxels. The
generated data may not necessarily represent the same
natural signatures of real fMRI data, but it intends to
show the basic idea behind the DRePS analysis
procedure.

Subjects and fMRI Scanning Procedure

fMRI data of 20 healthy controls (mean age: 32.4 6 10 y,
6 female) were used in this study. All subjects were
scanned with Siemens (Erlangen, Germany) 3T Trio/Skyra
scanners while not performing any specific mental task
with eyes closed, and were asked to remain awake. Func-
tional data were acquired using an EPI sequence with 44
interleaved 3 mm slices, TR5 3 s, TE 5 30 ms, flip
angle 5 858, voxel size of 3 3 3 3 3 mm3 and an acquisi-
tion matrix of 72 3 72. T1 weighted images were also
acquired following the functional scans. A total of 200 vol-
umes of task-free fMRI data were used for all subjects.
The study was approved by the Austin Health Human
Research Ethics Committee and all subjects gave written
informed consent to participate in the study.

fMRI Data Preprocessing

In the preprocessing pipeline we used SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/) and DPARSF
[Chao-Gan and Yu-Feng, 2010] in MATLAB R2013b (Math-
Works Inc., Natick, Massachusetts, United States). Steps
included slice timing correction, re-alignment, coregistration
to subject’s own T1 weighted images followed by spatial
normalization to the standard MNI space (152-brain aver-
age template). The linear trend was removed and white
matter and cerebrospinal fluid signals were regressed out
from the data. To compensate for head movement inside
the MRI scanner, 24 motion re-alignment parameters were
linearly regressed out of the data [Friston et al., 1996]. All
volumes with head movement above 0.5 mm were omitted
and replaced by time points derived using cubic spline tem-
poral interpolation in order to ensure continuous temporal
data for all subjects.

Task-free BOLD data of each subject were band-pass fil-
tered within four ranges of 0.01–0.09 Hz, 0.03–0.07 Hz,
0.05–0.09 Hz and 0.03–0.11 Hz. All bands were used for
analysis of instantaneous phase (see “Assessing Phase
Synchrony Analysis Requirements”) and spectral analysis
of DRePS (see “Scenario A: Direct Analysis of DRePS
Applied to Real-World fMRI Data”). However, the fre-
quency interval of 0.03–0.07 Hz was chosen for extracting
LPSNs when evaluating DRePS as a nonstationary feature
of the brain’s dynamic local connectivity (see “Scenario B:
DRePS as a Nonstationary Feature of the Brain’s Dynamic
Local Connectivity”). These frequency bands were chosen
to cover different bandwidths (0.04 Hz and 0.08 Hz) and
central frequencies (0.05 Hz and 0.07 Hz) relevant to the
task-free fMRI spectral content.

RESULTS

Assessing Phase Synchrony Analysis

Requirements

Prior to the DRePS analysis, we examined the Bedro-
sian’s requirement and error signal e n½ � for the filtered
fMRI time series by assessing the low-band and high-band
components of their analytic associates (i.e., jF ax n½ �f gj and
jF cos ux n½ �ð Þf gj in Eq. (1), respectively where F :f g means
the Fourier transform and j:j is the magnitude operator).
Also, we computed voxel-wise temporal average of the
root mean squared (RMS) of the deviations of e n½ � around
1 and its distribution over all voxels for each band-pass fil-
tered fMRI dataset as a quality indicator of the instantane-
ous phase signals. Figure 4A illustrates the bandwidths of
the z-scored low-pass and high-pass components of ana-
lytic associates averaged over voxels for each subject. The
grand mean spectra are also overlaid on the subject-
specific curves. Although the narrower bands (i.e., 0.03–
0.07 Hz and 0.05–0.09 Hz) represent larger separation of
the low-pass/high-pass components, a fairly clear distinc-
tion can also be observed for wider bands of 0.01–0.09 Hz
and 0.03–0.11 Hz. In other words, the Bedrosian’s require-
ment is still relatively retained after applying a wider fil-
tering to the task-free fMRI data in the DRePS framework.
This observation is again verified by estimating the error
signals of four band-pass filters illustrated in Fig. 4B,
where e n½ � is roughly fluctuating around 1 for the bands
0.01–0.09 Hz and 0.03–0.11 Hz with RMS error percentages
below 20%. The relevance of these frequency bands for
DRePS analysis of task-free fMRI data, considering the
majority of BOLD information within 0.01–0.1 Hz [Biswal
et al., 1995], is also shown in “Scenario A: Direct Analysis
of DRePS Applied to Real-World fMRI Data”.

Simulation Results

Figure 5 illustrates the spatio-temporal local connectivity
maps of time series of the inner cube within the simulated
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data obtained by DRePS (Fig. 5A) and SW-ReHo approach
using a rectangular sliding window of length 20TR’s (Fig.
5B). For both methods, a moving cube of 26 neighboring
voxels (i.e., 27 voxels in total) and band-pass filtering of
0.03–0.07 Hz were used. In both maps, the y-axis has been
sorted based on the Euclidian distance between non-
central voxels within the inner cube and the central voxel
(red voxel in Fig. 3A) where 0 represents the central voxel
and symmetric positive/negative values are associated
with equidistant voxels to the center. The rectangular pat-
terns in the SW-ReHo time series of Fig. 5B reflect the
impact of windowing on the short-time local connectivity

estimates: all events shorter than a window length are
treated as if they have the same temporal attribute (e.g.,
last two single events in the map). Also, adjacent events
cannot be differentiated temporally if they are close to
each other, as seen for the block of events in Fig. 5B. Fur-
thermore, the sliding window approach fails to provide
dynamic connectivity information for half the window
width each at the beginning and end of the entire time
span due to the window length. In contrast, the spatio-
temporal DRePS map of Fig. 5A demonstrates TR-resolu-
tion accuracy in tracking phase synchrony changes among
voxels. The salt-and-pepper noise over the connectivity

Figure 4.

(A) Bandwidths of the low-pass and high-pass components of ana-

lytic associates [see Eq. (1)] averaged over voxels of each subject.

Each subject-specific curve is illustrated with a single color and

the grand mean spectra are shown in bold. The y-label zscor-

e(|FFT|) means the magnitude of the Fourier transform converted

into the z-score over frequency bins (zero mean and unit var-

iance). Whilst the wider bands exhibit a smaller separation

between the low-pass and high-pass components compared to

the narrower bands, Bedrosian’s requirement still remains satis-

fied. (B) Subject-specific averages of the error signal e n½ � over all

voxels for the analytic associates of fMRI data within four fre-

quency bands (top row) and their corresponding distributions of

the RMS of their deviation from one (bottom row). In all panels,

each subject-specific curve is illustrated with a unique color.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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map obtained by the SW-ReHo approach is more noticea-
ble than DRePS due to its inherent temporal averaging.
For both SW-ReHo and DRePS, a fading pattern is
observed in the vertical profile (along the y-axis projection)
from the central voxel towards the inner cube boundaries.
This is expected because of the decrease in the number of
synchronous time series within the moving cube of 3 3 3
33 adjacent voxels in both methods when shifting towards
the boundaries, resulting in a reduction in the local con-
nectivity estimates.

The effect of band-pass filtering and internal smoothing
(governed by the number of neighboring voxels in the
moving cube) on DRePS/SW-ReHo was also investigated
through simulations. As Supporting Information Fig. S1
demonstrates, the neighboring size of 6 introduces wide-
spread noise over the whole time-space domain in both
DRePS and SW-ReHo maps. Also, switching between nar-
rowband filtering of 0.03–0.07 Hz and wideband filtering
of 0.01–0.09 Hz does not impose a significant change on
the spatio-temporal maps of the simulated data. Due to
the mitigating effect of internal smoothing on the noise

level of DRePS spatio-temporal maps, we chose the neigh-
boring size of 26 for task-free fMRI analysis in the follow-
ing sections.

Scenario A: Direct Analysis of DRePS

Applied to Real-World fMRI Data

We evaluated the first analysis pipeline delineated in
Fig. 2A by applying it to the DRePS 4D maps of 20 healthy
control subjects. Figure 6A,B illustrate the DP

95% plots of
a typical subject within two frequency bands of 0.03–07
Hz and 0.01–0.09 Hz after statistical testing, where the
insignificant data-points have been blacked out. All sub-
jects’ thresholded percentage plots can be found in the
Supporting Information as a .mat file. The spatio-temporal
maps suggest that the highest values in the DP

95% map
are associated with precuneus, occipital and parietal areas
(see the horizontal ribbon of high values in Fig. 6A,B).

Figure 6D demonstrates the grand mean spatio-spectral
distribution of DRePS time series obtained by averaging
subject-specific PSDs over the entire frequency interval

Figure 5.

Simulation results: spatio-temporal local connectivity maps asso-

ciated with the voxels inside the inner cube of simulated data

(Fig. 3A) obtained from the DRePS method (A) and the SW-

ReHo method (B) using the band-pass filtering of 0.03–0.07 Hz

and neighboring size of 26. For each map, the horizontal profile

(i.e., averaging over voxels) is presented at the bottom. DRePS

provides far superior temporal resolution than SW-ReHo. The

phase synchrony mask M n½ � (see Fig. 3) is given on top of each

map for comparison purposes. See also Supporting Information

Fig. S1 for simulation results with other choices of band-pass fil-

tering and neighboring size. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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0 Fs=2½ � Hz where Fs51=3 Hz. The individual PSDs (thin
curves in Fig. 6C) were normalized to z-scores over the fre-
quency bins for easier comparison between subjects. In Fig.
6C, thin curves represent whole-brain mean spatial fre-
quency for each subject. Spatial patterns consistent with
the DP

95% maps (Fig. 6A,B) are also observed in the
spatio-spectral distribution of DRePS with higher frequency
fluctuations in the visual and parietal areas and lower fre-
quency fluctuations in sub-cortical brain regions (Fig. 6D).
There is a consistent peak of ultra-slow DRePS activity
within 0.002–0.02 Hz for all subjects as shown in Fig. 6C
which is clearly distinct from the frequency band of the fil-
tered BOLD data (i.e., 0.03–0.07 Hz). This ultra-slow signa-
ture can be observed for all of the four pass-bands, though

its power decreases by widening the band-pass filter in the
DRePS framework (the left column of Fig. 6C vs. the right
column). The closely similar spectral properties of DRePS
time series within different frequency bands (Fig. 6C) can
also be verified by checking the grand mean PSD spatial
map of 0.03–0.07 Hz in Fig. 6C and the other correspond-
ing maps in Supporting Information Fig. S2.

Scenario B: DRePS as a Nonstationary Feature

of the Brain’s Dynamic Local Connectivity

The results of the GMM clustering analysis for DRePS
maps obtained through the band-pass filtering of 0.03–0.07

Figure 6.

(A,B) Analysis of DRePS time series over the control group:

Spatio-temporal DRePS percentage plot associated with the voxels

above the 95th percentile (DP
95%) obtained from band-pass filter-

ing of A) 0.03–0.07 Hz and (B) 0.01–0.09 Hz, after permutation

testing, shown for a typical subject. The insignificant values have

been blacked out. (C) Mean PSD of DRePS time series across all

voxels for each subject (colored traces), and grand mean over all

subjects (black bold line). The PSD values were normalized to

z-scores at the individual level for easier comparison between sub-

jects, (D) Mean power of DRePS time series (band-pass filtering of

0.03–0.07 Hz, neighboring size of 26) across the entire frequency,

up to the Nyquist rate of 0.16 Hz for each voxel, then z-scored

and averaged across all subjects. See also Supporting Information

Fig. S2 for the grand mean PSD spatial maps with other choices of

band-pass filtering. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Hz and cube size of 27 are summarized in Fig. 7. Compo-
nents associated with the minimum of normalized BIC
curves suggested a range of 7.1 6 3.4 clusters at the indi-
vidual level (Fig. 7A), while this number varied within the
range of 20–30 for the group level (Fig. 7B). In order to
improve the statistical power of the spatial DRePS clusters,
GMM was only applied to the group data. According to
the BIC curve of Fig. 7B, after roughly 25 Gaussian compo-
nents for the group GMM clustering, BIC changes became
relatively stable as denoted by a plateau. Therefore, 25
spatial clusters of brain voxels with normally distributed
DRePS characteristics were extracted. In Fig. 7C, eight
exemplary clusters out of 25 are shown, all with biologi-
cally meaningful brain regions. The clusters can be consid-
ered as spatial networks of adjacent/remote brain
locations with similar local phase synchrony properties.
We call these synchronous networks as LPSNs. The
selected components also overlap with commonly reported
“long-range” RSNs [Hoff et al., 2013]. These include a
wide range of networks important in task-free states (pre-
cuneus), task-positive states, salient task-switching, visual
areas and cortical motor behavior. It may establish a link
between networks in which amplitude modulation is typi-
cally associated with an active task, and locally synchro-
nous fluctuations of the task-free fMRI data. The full set of
25 LPSNs can be found in Supporting Information as a 4D
NIfTI-1 data format file.

Figure 7E demonstrates the pair-wise Jaccard indices
between the LPSNs and binarized RSNs [Smith et al.,
2012] to quantify the similarity and diversity of spatial pat-
terns in two brain network families. As the similarity
matrix suggests, RSNs and LPSNs may overlap across dif-
ferent areas. However, the highest overlap is associated
with the primary visual area (RSN1 vs. LPSN11), posterior
cingulate cortex (RSN3 vs. LPSN14) and motor areas
(RSN5 vs. LPSN20) illustrated in Fig. 7D.

DISCUSSION

Brain functional connectivity is intrinsically
nonstationary [Chang and Glover, 2010; Damaraju et al.,
2014; Handwerker et al., 2012; Liu and Duyn, 2013; Yu
et al., 2015; Zalesky et al., 2014], and this property is
revealed locally at high temporal resolution by DRePS.
This important aspect of brain dynamics may be partly
ignored if stationary signal processing tools are employed
in fMRI connectivity studies. A common way of address-
ing nonstationarity in fMRI connectivity analysis is to
temporally segment it using a fixed-length sliding win-
dow. A window has to be short enough to satisfy the
assumption of stationarity, but narrow segments fail to
provide acceptable localization in the frequency domain.
In addition, the window shape can have a non-trivial
influence on the spectral signature of functional connectiv-
ity results. For example, a rectangular window can intro-
duce a spectral leak to the frequency content of the

segmented BOLD changes and indirectly affect fMRI con-
nectivity metrics. These issues, along with the issue of
overlapping length between successive windows, have led
to a semi-arbitrary parameter selection paradigm for the
sliding window approach in the literature (e.g., see [Allen
et al., 2012; Li et al., 2014; Shirer et al., 2011; Yu et al.,
2015; Zalesky et al., 2014]). Furthermore, the sliding win-
dow approach fails to provide dynamic connectivity infor-
mation for half the window width each at the beginning
and end of the entire time span due to the window length.
In contrast to the sliding window approach, the proposed
DRePS analysis framework in this article characterizes
instantaneous dynamic properties of time-varying local
fMRI connectivity at each time point. Based on the simula-
tion results in Fig. 5, temporal resolution of DRePS time
series in capturing the number of synchronous events and
their time intervals is higher than time-varying ReHo esti-
mates obtained by the sliding window approach. It is note-
worthy that brain dynamic connectivity may also be
examined by other approaches such as adaptive window
length methods or wavelet analysis at wide frequency and
temporal scales. These techniques may bring different
insight into brain function in contrast to the narrow spec-
tral view of DRePS within short frequency bands. Compar-
ison between the DRePS approach and wide-band
dynamic local connectivity methods on the same task-free
fMRI data may be an informative avenue of future
research. Also, incorporating a non-uniform sampling
approach such as point process analysis [Tagliazucchi
et al., 2012] to the DRePS framework may act as a data
reduction step to further facilitate analysis of time-varying
changes of local connectivity in fMRI data.

There is evidence that local neuronal activity and long-
range functional connectivity in the human brain are
related to each other [Park and Friston, 2013; Riedl et al.,
2014]. This finding suggests that brain function may be
supported by dynamically organizing “local
neighborhoods” that transiently share synchronized BOLD
activity, and are also synchronized with other distant com-
munities to form large-scale networks [Zang et al., 2004].
This view on local brain connectivity was a motivation for
developing DRePS, which quantifies instantaneous
regional phase synchronization of BOLD data in a data-
driven and model-free way. We hypothesize that dynamic
information extracted from DRePS time series may reflect
spatial clusters of local oscillators in the brain (Fig. 7C). It
remains for further research to examine biological relation-
ships between local neighborhoods and large communities
in BOLD changes observed in DRePS maps.

Local cortical connectivity of DRePS was most promi-
nent in primary visual cortex and default mode network
areas. This observation may be explained due to the high
metabolic demands of these brain regions in the healthy
brain [Spetsieris et al., 2015]. Low values of dynamic local
functional connectivity were mainly observed within deep
sub-cortical brain regions, including the hippocampus and
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Figure 7.

Analysis results of DRePS maps treated as dynamic feature vec-

tors of the brain’s local functional connectivity, (A) BIC curves

at the individual level obtained after running GMM for different

number of Gaussian clusters, (B) the BIC curve at the group

level after running GMM for a range of Gaussian clusters, (C)

eight exemplary LPSNs obtained from this study, (D) the most

similar spatial patterns between RSNs and LPSNs based on the

Jaccard similarity matrix, (E) The Jaccard similarity matrix

between the RSNs provided by [Smith et al., 2012] and the

LPSNs obtained as the outcome of GMM at the group level.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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amygdala (Fig. 6A). Indeed, this suggests that neuronal
activity in these regions may not fluctuate synchronously
within the frequency band to which DRePS analysis was
performed. Song et al. (2014) hypothesized that complex
and diverse neural activity occurs even within small vol-
umes, particularly in subcortical areas, and this cannot be
captured by local connectivity methods such as ReHo (and
possibly, the DRePS method presented here). This is in
stark contrast to cortical local connectivity of primary vis-
ual cortex and “default-mode” brain nodes. Whether these
differences in local connectivity across cortical and sub-
cortical brain regions are an effect of frequencies studied
for functional connectivity analysis, or a “neurobiological
trait,” requires further attention. This may also originate
from a limitation of the DRePS method where the cortical
curvatures are ignored by averaging phase difference val-
ues over a moving cube of �1 cm3. However the DRePS
approach is not inherently restricted to cube-shaped vol-
umes. For example, following additional validation, it
might potentially be applied to regions with anatomical
constraints derived from structural imaging measures. Fur-
ther task-free fMRI connectivity studies are needed for
explaining the precise biological underpinnings of tempo-
ral local synchrony features.

We believe that LPSNs and RSNs (see Fig. 7D) repre-
sent distinct neural processes, in part due to their pro-
pensity to detect ‘local’ and ‘global’ connectivity,
respectively. Whilst RSNs are associated with large-scale
functional brain networks, we interpret each LPSN as a
population of local oscillators in task-free fMRI data. This
may be explained based on the difference between GMM
clustering used for generating LPSNs and independent
component analysis used for extracting RSNs [Smith
et al., 2012]. In contrast to group independent component
analysis as a method of extracting “temporally independ-
ent sources” of functional connectivity in fMRI data,
GMM-based clustering of DRePS resembles a functional
parcellation of the brain using voxel-wise DRePS feature
vectors. It estimates the similarity (i.e., dependence to the
same Gaussian distribution) between reduced DRePS fea-
ture vectors, and then all voxels with similar distribution
form a cluster.

Ultra-slow fluctuations are an important property of
dynamic local connectivity in the normal brain. A recent
study has shown nonstationary evolution of global syn-
chronization patterns between the BOLD activities of dif-
ferent brain areas oscillating on an ultra-slow (<0.01 Hz)
time scale [Ponce-Alvarez et al., 2015]. Our study, in con-
trast, considers spatial distributions of local phase syn-
chrony with statistically similar dynamics. Nevertheless,
the dominant frequency content of the DRePS time series
over all subjects remains proximate to that which has
been reported previously using global functional connec-
tivity (0.002–0.02 Hz, see Fig. 6C). Emergence and dissolu-
tion of high DRePS values (for example, across parts of
the default mode network, visual and parietal areas as

shown in Fig. 6A) at very slow time scale may be linked
to the concept of ultra-slow connectivity states as dis-
cussed in the previous brain connectivity studies [Allen
et al., 2012; Cribben et al., 2012; Shirer et al., 2011; Yu
et al., 2015]. It means that the DRePS variations are hardly
random, but represent structured clusters of connectivity
over time.

An important assessment step prior to any Hilbert trans-
form based instantaneous phase analysis study (including
DRePS) would be to evaluate Bedrosian identity and error
signal e n½ � (see “Instantaneous Phase of fMRI Time
Series”) for the underlying data. Another factor to consider
here would be possible dependence between phase infor-
mation and amplitude changes in finite-length signals
such as fMRI time series. This is reflected in similar pat-
terns of phase synchrony obtained by DRePS and SW-
ReHo (as a solely dependent method to signal amplitude)
in Fig. 5 and Supporting Information Fig. S1. However,
the main advantage of DRePS over amplitude-based meth-
ods such as SW-ReHo stems from its higher temporal reso-
lution, as shown in the simulation results. Note that the
impact of amplitude changes on phase information is not
only relevant to DRePS, but also applies to all other phase
synchrony analysis techniques dealing with finite-length
signals. The amplitude variations in task-free fMRI data
may originate from genuine “local phase synchrony” and/
or confounding factors such as physiological artifacts,
movement etc. In this study, we tried to alleviate these
problematic confounds through multiple preprocessing
steps as much as possible. Also, internal spatial smoothing
of the DRePS framework, inherited from ReHo [Zuo et al.,
2013], may enhance signal-to-noise ratio, as reflected in the
difference between the simulation results of 27 (strong
smoothing) and 7 (weaker smoothing) cube sizes in Sup-
porting Information Fig. S1. However, there is still a
chance that different physiological variations such as
pseudo-cyclic respiratory and cardiac changes are aliased
into the narrow low frequency band of 0.03–0.07 Hz given
the TR of 3 seconds in our study. This aliasing may result
in an overlap between non-neural fluctuations and real
dynamic functional connectivity within the applied fre-
quency band. Thus effective minimization of physiological
confounds in data acquisition and preprocessing is impor-
tant in DRePS just as it is important in other fMRI connec-
tivity approaches.

We have shown in Fig. 6 and Supporting Information
Fig. S2 that wide-band filtering may have negligible
impact on the analysis outcome of the proposed DRePS
methodology. However, excessive expansion of the band-
pass filter can potentially cause considerable standard
deviations in the error signal fluctuations. For example,
one can see in Fig. 4 that the subject-specific error signal
averages and their corresponding RMS distributions within
0.03–0.07 Hz and 0.05–0.09 Hz are larger than 0.01–0.09 Hz
and 0.03–0.11 Hz. This limitation may hamper extension to
wider band filtering that may be of interest given recent
evidence of BOLD contribution above 0.1 Hz [Chen and
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Glover, 2015]. A possible solution may be to decompose
the BOLD dynamics into frequency bands of interest in
order to make the band-pass filter as restricted as possible
[Bajaj et al., 2013; Xue et al., 2014; Zuo et al., 2010].

Non-stationarity characteristics of task-free functional
connectivity may not be efficiently captured using low
temporal resolution fMRI datasets. Indeed, recent fast EPI
imaging techniques with sub-second whole-brain scanning
time hold promise for deeper investigation of non-linear
and nonstationary patterns of brain dynamics [Paton et al.,
2013]. From this perspective, the maximal capacity of the
DRePS analysis framework is most likely to be exploited
when studying brain functional connectivity in fast EPI
images.

CONCLUSION

The current study introduces the instantaneous measure
of Dynamic Regional Phase Synchrony (DRePS), based on
time-varying mean phase coherence among neighboring
voxels in fMRI data. In contrast to sliding window
approaches, DRePS provides single-TR resolution with no
loss of time points and no temporal smoothing. We
observed that time-varying DRePS changes are associated
with spatially clustered brain areas, called local phase syn-
chrony networks (LPSNs). Although evaluation of phase
synchrony is not the only approach available to interrogate
dynamic behavior of brain interactions, we propose that in
the emerging field of dynamic functional connectivity,
DRePS has the ability to provide new insights into normal
and abnormal brain function.
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