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Abstract: Disease-specific patterns of gray matter atrophy in Alzheimer’s disease (AD) and behavioral
variant frontotemporal dementia (bvFTD) overlap with distinct structural covariance networks (SCNs)
in cognitively healthy controls. This suggests that both types of dementia target specific structural net-
works. Here, we study SCNs in AD and bvFTD. We used structural magnetic resonance imaging data
of 31 AD patients, 24 bvFTD patients, and 30 controls from two centers specialized in dementia. Ten
SCNs were defined based on structural covariance of gray matter density using independent compo-
nent analysis. We studied group differences in SCNs using F-tests, with Bonferroni corrected t-tests,
adjusted for age, gender, and study center. Associations with cognitive performance were studied
using linear regression analyses. Cross-sectional group differences were found in three SCNs (all
P< 0.0025). In bvFTD, we observed decreased anterior cingulate network integrity compared with AD
and controls. Patients with AD showed decreased precuneal network integrity compared with bvFTD
and controls, and decreased hippocampal network and anterior cingulate network integrity compared
with controls. In AD, we found an association between precuneal network integrity and global cogni-
tive performance (P 5 0.0043). Our findings show that AD and bvFTD target different SCNs. The com-
parison of both types of dementia showed decreased precuneal (i.e., default mode) network integrity
in AD and decreased anterior cingulate (i.e., salience) network integrity in bvFTD. This confirms the
hypothesis that AD and bvFTD have distinct anatomical networks of degeneration and shows that
structural covariance gives valuable insights in the understanding of network pathology in dementia.
Hum Brain Mapp 37:978–988, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The most common types of early-onset dementia are Alz-
heimer’s disease (AD) and behavioral variant frontotempo-
ral dementia (bvFTD) [Ratnavalli et al., 2002]. Patients with
AD typically present with deficits in episodic and working

memory [McKhann, 2011], whereas bvFTD is mainly char-
acterized by changes in behavior [Rascovsky et al., 2011].

Both types of dementia are associated with gray matter
loss [Krueger et al., 2010]. In AD, gray matter atrophy is
most often found in the hippocampus, precuneus, poste-
rior cingulate cortex, parietal, and occipital brain regions
[Buckner et al., 2005; Krueger et al., 2010; Seeley et al.,
2009]. Patients with bvFTD show atrophy most prominent
in the anterior cingulate cortex, frontoinsula, and frontal
brain regions [Krueger et al., 2010; Seeley et al., 2009].

These disease-specific patterns of gray matter atrophy
spatially overlap with distinct structural covariance net-
works (SCNs) based on covariance of gray matter density
[Seeley et al., 2009]. Studying anatomical networks allows
us to investigate inter-regional dependencies, which might
provide additional valuable information to the common
analyses that consider voxels separately. Network
approaches have the potential to give more insights in
dementia pathology than voxel-based approaches that
focus on local gray matter atrophy, since brain disorders
appear not to be localized in one specific brain area, but
rather in networks of a multitude of brain regions [Evans,
2013; Fornito et al., 2015].

Abbreviations

AD Alzheimer’s disease
ANCOVA Analysis of covariance
bvFTD Behavioral variant frontotemporal dementia
CDR Clinical Dementia Rating scale
FAB Frontal assessment battery
FSL Functional magnetic resonance imaging of the brain

software library
FWE Family-Wise Error
GDS Geriatric depression scale
ICA Independent component analysis
MMSE Mini mental state examination
MNI Montreal neurological institute
MRI Magnetic resonance imaging
SCN Structural covariance network
TFCE Threshold-free cluster enhancement
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Here, we used structural magnetic resonance imaging
(MRI) to study whether SCNs differ between AD and
bvFTD. The typical atrophy pattern in AD shows overlap
with the default mode SCN in cognitively healthy controls
and gray matter atrophy in bvFTD shows overlap with the
salience SCN in controls [Seeley et al., 2009]. This spatial
colocalization of atrophy and anatomical brain networks
suggests that both types of dementia target specific ana-
tomical networks. The aim of this study was to test this
hypothesis that both types of dementia have distinct ana-
tomical networks of degeneration (i.e., the default mode
anatomical network in AD and the salience anatomical
network in bvFTD).

MATERIALS AND METHODS

Participants

We included 31 patients with probable AD, 24 patients
with probable bvFTD, and 30 control participants (Table
I). All subjects were recruited from two Dutch centers spe-
cialized in dementia: the Alzheimer Center of the VU Uni-
versity Medical Center Amsterdam, and the Alzheimer
Center of the Erasmus University Medical Center Rotter-
dam, as described previously [Hafkemeijer et al., 2015].

All patients underwent a standardized dementia screen-
ing including medical history, informant-based history,
physical and neurological examination, blood tests, exten-
sive neuropsychological assessment, and an MRI of the
brain. Diagnoses were established in a multidisciplinary
consensus meeting according to the core clinical criteria of
the National Institute on Aging and the Alzheimer’s Asso-
ciation workgroup for probable AD [McKhann, 2011] and

according to the clinical diagnostic criteria for bvFTD [Ras-
covsky et al., 2011]. Cerebral spinal fluid measures of amy-
loid beta, total tau, and phosphorylated tau were available
to gain diagnostic certainty. To minimize center effects, all
diagnoses were re-evaluated in a panel including clinicians
from both Alzheimer centers.

The control participants were screened to exclude mem-
ory complaints, drugs- or alcohol abuse, major psychiatric
disorder, and neurological or cerebrovascular diseases.
They underwent an assessment including medical history,
physical examination, extensive neuropsychological assess-
ment, and an MRI of the brain, comparable to the work-
up of the patients.

This study was performed in compliance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). Ethical approval was obtained from the local
ethics committees [VU University Medical Center Amster-
dam (CWO-nr 11-04, METC-nr 2011/55) and Leiden Uni-
versity Medical Center (2011/55 P11.146)]. Written
informed consent from all participants was obtained.

Data Acquisition

All participants underwent an MRI of the brain on a 3
Tesla scanner either in the VU University Medical Center
(Signa HDxt, GE Healthcare, Milwaukee, WI), or in the
Leiden University Medical Center (Achieva, Philips Medi-
cal Systems, Best, The Netherlands), using a standard
eight-channel head coil.

For each participant, a three-dimensional T1-weighted
anatomical image was acquired. Imaging parameters in
the VU University Medical Center were: TR 5 7.8 msec,

TABLE I. Characteristics of the study population

Characteristic bvFTD (n524) AD (n531) HC (n530)

Age (years) 61.5 (7.3) 65.3 (7.0) 62.8 (5.0)
Gender (male/female) 18/6 19/12 18/12
Study center (VUMC/LUMC)a 16/8 20/11 17/13
Level of educationb 5.1 (1.6) 4.9 (1.3) 5.4 (1.2)
Duration of symptoms (months) 50.2 (49.2) 41.9 (30.7) n/a
CSF Total Tau (ng/L) 321.1 (125.5) 668.1 (385.3) n/a
CSF Phospho Tau (ng/L) 41.3 (14.2) 84.7 (35.7) n/a
CSF Amyloid Beta (ng/L) 1019.9 (231.9) 478.7 (121.2) n/a
MMSE (max score: 30) 24.6 (3.6) 22.7 (2.8) 28.7 (1.6)
FAB (max score: 18) 14.1 (2.5) 13.3 (3.4) 17.4 (1.0)
CDR (max score: 3) 0.7 (0.4) 0.8 (0.3) 0.0 (0.0)
GDS (max score: 15) 3.8 (3.3) 2.8 (2.9) 1.2 (1.4)

Abbreviations: bvFTD 5 behavioral variant frontotemporal dementia; AD 5 Alzheimer’s disease; HC 5 healthy controls; CSF 5 Cerebro-
spinal Fluid; MMSE 5 Mini-Mental State Examination; FAB 5 Frontal Assessment Battery; CDR 5 Clinical Dementia Rating Scale;
GDS 5 Geriatric Depression Scale.
Values are means (standard deviation) for continuous variables or numbers for dichotomous variables.
aImaging was performed either in the Alzheimer Center of the VU University Medical center (VUMC) or in the Leiden University Med-
ical Center (LUMC) in the Netherlands.
bLevel of education was determined on a Dutch 7-point scale ranging from 1 (less than elementary school) to 7 (university or technical
college).

AQ1
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TE 5 3 msec, flip angle 5 12�, 180 slices, resulting in a
voxel size of 0.98 3 0.98 3 1.00 mm. Imaging parameters
in the Leiden University Medical Center were: TR 5 9.8
msec, TE 5 4.6 msec, flip angle 5 88, 140 slices, resulting in
a voxel size of 0.88 3 0.88 3 1.20 mm.

Data Analysis

Before analysis, all MRI scans were submitted to a vis-
ual quality control check to ensure that no gross artifacts
were present in the data. Data analysis was performed
with Functional Magnetic Resonance Imaging of the Brain
Software Library (FSL 5.0.1, Oxford, United Kingdom)
[Smith et al., 2004].

Preprocessing

The SCNs analyses were performed as described in our
previous work [Hafkemeijer et al., 2014]. First, nonbrain
tissue (e.g. scalp) was removed from the T1-weighted
images using the brain extraction tool as implemented in
FSL [Smith, 2002]. Next, tissue-type segmentation was per-
formed using the voxel-based morphometry tool [Ash-
burner and Friston, 2000]. We performed a control check
after each preprocessing step to ensure appropriate brain
extraction and tissue-type segmentation. To correct for the
partial volume effect (i.e., voxels “containing” more than
one tissue type), the tissue-type segmentation was carried
out with partial volume estimation. For each partial vol-
ume voxel, the proportion of each tissue type is estimated,
that is, a partial volume vector is formed, with each ele-
ment being a “fraction” of a specific tissue type and hav-
ing a sum of one [Zhang et al., 2001]. The segmented
images have values that indicate the probability of a given
tissue type.

The gray matter partial volume images were aligned to
the gray matter MNI 152 standard space image (Montreal
Neurological Institute, Montreal, QC, Canada) [Jenkinson
et al., 2002], followed by nonlinear registration [Andersson
et al., 2007]. The resulting images were averaged to create
a study-specific gray matter template, to which the native
gray matter segmented images were nonlinearly re-
registered [Ashburner and Friston, 2000; Good et al., 2001].
As a result of nonlinear spatial registration, the volume of
some brain structures may grow, whereas others may
shrink. To correct for these enlargements and contractions,
a further processing step (modulation) was applied, as rec-
ommended [Ashburner and Friston, 2000; Good et al.,
2001]. In this additional step, each voxel of each registered
gray matter image was multiplied by the Jacobian of the
warp field, which defines the direction (larger or smaller)
and the amount of modulation. The modulated segmented
images were finally spatially smoothed with an isotropic
Gaussian kernel with a sigma of 3 mm.

Gray Matter Volume

To study group differences in local voxel-based gray
matter volume between patient groups, a general linear
model approach using two-sample t-tests was applied,
including age, gender, and study center as covariate in the
statistical model. Voxel-wise non-parametric permutation
testing [Nichols and Holmes, 2001] with 5,000 permuta-
tions was performed using FSL randomise correcting for
multiple comparisons across space (statistical threshold
was set at P< 0.05, Family-Wise Error (FWE) corrected),
using the threshold-free cluster enhancement (TFCE) tech-
nique [Smith and Nichols, 2009].

Structural Covariance Networks

The modulated gray matter images in MNI space were
concatenated into a four dimensional data set on which an
independent component analysis (ICA) was applied using
the multivariate exploratory linear optimised decomposi-
tion into independent components tool [Beckmann et al.,
2005]. To avoid bias towards any particular group, net-
works were defined on gray matter images of three groups
of equal size (i.e., 24 bvFTD patients, 24 AD patients (ran-
domly selected), and 24 controls (randomly selected)), bal-
anced between centers. ICA is a statistical technique that
decomposes a set of signals into spatial component maps
of maximal statistical independence [Beckmann and Smith,
2004]. When applied on gray matter images of different
subjects, this method defines spatial components based on
the structural covariance of gray matter density among
subjects (i.e., SCNs) [Douaud et al., 2014; Hafkemeijer
et al., 2014], without a priori selected regions of interest.
Structural covariance and resting state functional networks
are in general investigated using eight to ten components
[Beckmann et al., 2005; Damoiseaux et al., 2006; Segall
et al., 2012; Smith et al., 2009; Zielinski et al., 2012]. There-
fore, in this study the ICA output was restricted to ten
components.

A mixture model was used to assign significance to
individual voxels within a spatial map, using a standard
threshold level of 0.5 [Beckmann and Smith, 2004]. This
indicates that a voxel “survives” thresholding as soon as
the probability of being in the ‘nonbackground’ class
exceeds the probability of being in the ‘background’ noise
class. A threshold of 0.5 indicates that an equal loss is
placed on false positives and false negatives. Anatomical
regions of the SCNs were determined using the Harvard-
Oxford cortical and subcortical structures atlas integrated
in FSL.

Statistical Analysis

The ICA approach provides for the 24 bvFTD patients,
24 AD patients, and 24 controls an index that reflects the
degree to which each subject expresses the identified net-
work pattern (i.e., SCN integrity score) [Segall et al., 2012].

r Structural Covariance in FTD and AD r
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We want to study cross-sectional group differences in
SCN integrity using data of all participants (i.e., 31 AD
patients, 24 bvFTD patients, and 30 controls). Therefore,
an additional step was performed to obtain the SCN integ-
rity scores of these participants. Individual SCN integrity
was calculated using the four-dimensional data set of gray
matter images in a spatial regression against the ten SCN
probability maps (general linear model approach inte-
grated in FSL) [Filippini et al., 2009]. This procedure gives
for all subjects the SCN integrity scores, i.e., the beta
weights of the regression analysis, which can be negative
or positive. The higher the score, the stronger the expres-
sion of the identified SCN. Group differences in SCN
integrity were studied using analysis of covariance
(ANCOVA), adjusted for age, gender, and study center,
with post hoc Bonferroni corrected t-tests (IBM SPSS Sta-
tistics Version 20, IBM Corp., Somers, NY, USA). To fur-
ther correct for multiple network testing, the statistical
threshold was set at P< 0.0025 (5 0.05/20, based on 10 3

2 5 20 comparisons (ten networks, two-tailed)).

Associations with Cognitive Performance

We investigated the possible associations between SCN
integrity and global cognitive performance, mini mental
state examination (MMSE) score [Folstein et al., 1975] in
AD and frontal assessment battery (FAB) score [Dubois
et al., 2000] in bvFTD, using linear regression analyses
(IBM SPSS Statistics Version 20, IBM Corp., Somers, NY,

USA), adjusted for age, gender, and study center (statisti-
cal threshold was set at P< 0.05).

RESULTS

Demographic Characteristics

Demographic data for all participants are summarized
in Table I. There were no significant differences between
the groups with regard to age, gender, study center distri-
bution, level of education, or duration of symptoms (all
P> 0.05). As expected, both dementia groups performed
worse on cognitive tests compared with controls (all
P< 0.05). Patients with AD performed worse on MMSE
compared with bvFTD patients (P 5 0.037). FAB
(P 5 0.367), Clinical Dementia Rating Scale (CDR,
P 5 0.455), and Geriatric Depression Scale (GDS, P 5 0.279)
scores did not differ significantly between AD and bvFTD.

Regional Gray Matter Volume

The regional voxel-based gray matter analysis revealed
group differences in gray matter volume (Fig. 1). Patients
with AD showed less gray matter compared with bvFTD
in precuneal and posterior cingulate cortex (Fig. 1A).
Patients with bvFTD had less gray matter compared with
AD in insular cortex (Fig. 1B).

Structural Covariance Networks

Ten SCNs were defined based on gray matter structural
covariance (Fig. 2A, Table II): (a) anterior cingulate net-
work, (b) precuneal network, (c) parahippocampal net-
work, (d) hippocampal network, (e) subcortical network,
(f) lateral occipital network, (g) precentral network, (h–j)
cerebellar networks.

SCN Group Differences

Cross-sectional group differences were found in three
SCNs: the anterior cingulate network (SCN a), the precu-
neal network (SCN b), and the hippocampal network
(SCN d) (Fig. 2B). The results of post hoc testing showed
decreased anterior cingulate network (SCN a) integrity in
bvFTD compared with AD (P 5 0.0002) and compared
with controls (P< 0.0001). Patients with AD showed
decreased precuneal network (SCN b) integrity compared
with bvFTD (P 5 0.0002) and compared with controls
(P< 0.0001), and decreased anterior cingulate network
(SCN a) and hippocampal network (SCN d) integrity com-
pared with controls (P 5 0.0006, P 5 0.0022). No cross-
sectional group differences were found in the other seven
networks (SCNs c, e-j).

Figure 1.

Group differences in regional voxel-based gray matter volume.

Differences in gray matter volume between behavioral variant

frontotemporal dementia (FTD) and Alzheimer’s disease (AD)

(TFCE, FWE-corrected). (A) Local gray matter was decreased in

patients with AD compared with patients with bvFTD in precu-

neal and posterior cingulate cortex (yellow). (B) Local gray mat-

ter was decreased in patients with bvFTD compared with AD in

insular cortex (blue).
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Figure 2.

Group differences in structural covariance networks. (A) Over-

view of SCNs defined on gray matter structural covariance.

Networks are overlaid on the most informative sagittal, coronal,

and transverse slices of the MNI-152 standard anatomical image

(x, y, and z coordinates of each slice are given). (B) Bar graphs

show SCN integrity in patients with behavioral variant fronto-

temporal dementia (FTD, red), patients with Alzheimer’s disease

(AD, blue), and healthy controls (HC, green) (6 standard error).

Group differences were found in anterior cingulate network (a),

precuneal network (b), and hippocampal network (d) (indicated

with asterisks, Bonferroni corrected, adjusted for age, gender,

and study center).



TABLE II. Brain clusters of the structural covariance networks

Brain clustera

MNI coordinates

x y z

Network a Anterior cingulate cortex 22 34 214
cluster also contains insular

cortex, paracingulate
gyrus, and frontal medial cortex

(Inferior temporal gyrus) 46 26 250
Paracingulate gyrus 26 8 46
(Middle frontal gyrus) 224 22 48
(Superior frontal gyrus) 20 32 36

Network b Precuneal cortex 28 252 34
cluster also contains posterior

cingulate cortex
Lateral occipital cortex 52 274 22
Lingual gyrus 222 260 210
(Inferior temporal gyrus) 48 222 218
(Middle frontal gyrus) 236 20 24

Network c Parahippocampal gyrus 224 28 238
cluster also contains hippocampus,

temporal fusiform
cortex, inferior temporal gyrus, and
temporal pole

(Cuneal cortex) 2 288 30
Cerebellum 0 286 234

Network d Hippocampus 36 226 214
cluster also contains temporal

fusiform cortex and
temporal pole 0 292 210

Occipital pole 42 14 56
(Middle frontal gyrus) 26 60 26
(Frontal pole) 230 274 20
Lateral occipital cortex

Network e Nucleus accumbens 210 14 28
cluster also contains caudate

nucleus, putamen, and
thalamus

Frontal pole 4 62 212
Precentral gyrus 24 210 54
(Intracalcarine cortex) 8 274 4
Inferior frontal gyrus 56 10 4

Network f Lateral occipital cortex 236 284 28
Supramarginal gyrus 56 230 46
(Superior parietal lobule) 218 254 74

Network g Precentral gyrus 0 228 72
cluster also contains precuneal cortex and middle

frontal gyrus 258 24 232
(Middle temporal gyrus) 214 274 238
(Cerebellum) 218 42 34
(Frontal pole)

Network h Cerebellum 218 262 256
Amygdala 220 26 218
(Putamen) 34 214 210

Network i Cerebellum 34 274 222
cluster also contains lateral occipital cortex
Middle frontal gyrus 32 28 46
(Frontal pole) 232 52 22

r Hafkemeijer et al. r
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Associations with Global Cognitive Performance

We found a positive association between SCN integrity
and MMSE score in the precuneal network (SCN b) in AD
(P 5 0.0043, R2 5 0.316, Beta 5 0.508). No associations
between SCN integrity and FAB scores were found
(P> 0.05).

DISCUSSION

This is the first study that compares networks of struc-
tural covariance between patients with AD and patients
with bvFTD. Our results show that AD and bvFTD are
associated with different networks of degeneration. The
comparison of both types of dementia showed decreased
anterior cingulate network integrity in bvFTD and
decreased precuneal network integrity in AD.

We used structural MRI data to study anatomical net-
works based on structural covariance of gray matter den-
sity. Until now structural covariance had not been
compared between patients with AD and patients with
bvFTD. However, the spatial colocalization of local gray
matter atrophy in AD and bvFTD with the topography of
SCNs in cognitively healthy elderly [Seeley et al., 2009],
suggests that both types of dementia target different SCNs
(i.e., the default mode network in AD and the salience net-
work in bvFTD).

In bvFTD, we found decreased anterior cingulate net-
work integrity compared with AD and controls. This SCN
includes the anterior cingulate cortex, insular cortex, para-
cingulate gyrus, and frontal medial cortex. These brain
areas show typical bvFTD pathology [Krueger et al., 2010;
Seeley et al., 2009], with more severe gray matter atrophy
in the anterior cingulate cortex and insula in bvFTD com-
pared with AD [Rabinovici et al., 2008]. Deficits in social-
emotional functioning, which are common in bvFTD, rely
on structures including the anterior cingulate cortex and
insula [Broe et al., 2003; Rosen et al., 2002]. In general,
SCNs show spatial overlap with functional connectivity
networks [Segall et al., 2012]. Visual inspection of our data
shows overlap between the anterior cingulate SCN and the
salience functional connectivity network, which is related

to social-emotional processing [Seeley et al., 2007].
Decreased functional connectivity within the salience net-
work has been observed in bvFTD [Agosta et al., 2013;
Borroni et al., 2012; Farb et al., 2013; Filippi et al., 2013;
Rytty et al., 2013; Zhou et al., 2010].

In AD, we found decreased precuneal network integrity
compared with bvFTD and controls. This SCN includes
the precuneal cortex, posterior cingulate cortex, lateral
occipital cortex, and lingual gyrus, which are brain areas
that typically show AD pathology [Buckner et al., 2005;
Krueger et al., 2010; Seeley et al., 2009]. Our findings are
in line with the observations of decreased network integ-
rity [Montembeault et al., 2015; Spreng and Turner, 2013;
Tijms et al., 2013] and cortical shrinking [He et al., 2008;
Reid and Evans, 2013] in this network in AD compared
with controls. Visual inspection shows overlap between
the precuneal SCN and the default mode functional con-
nectivity network, which is related to episodic memory
[Buckner et al., 2005; Seeley et al., 2009]. Decreased func-
tional connectivity within the default mode network has
been found in AD [Balthazar et al., 2014; Greicius et al.,
2004; Hafkemeijer et al., 2012; Zhou et al., 2010]. In addi-
tion to decreased precuneal network integrity, we found
decreased hippocampal network integrity in AD compared
with controls. This network includes the hippocampus,
temporal fusiform cortex, occipital and temporal pole,
brain areas that show typical AD pathology [Buckner
et al., 2005; Krueger et al., 2010; Seeley et al., 2009].

SCNs show spatial overlap with functional connectivity
networks [Segall et al., 2012]. In addition to structural
covariance, functional connections were studied using rest-
ing state fMRI data of the patients included in the current
study [Hafkemeijer et al., 2015]. We showed that func-
tional connections are different between AD and bvFTD,
but less abundant than in the current SCN study. This
suggests that SCNs are more sensitive to detect average
dementia network pathology in the mild to moderate
stage.

We investigated whether SCN integrity is related with
cognitive performance. The MMSE score [Folstein et al.,
1975], which is a general measurement of cognitive per-
formance, and the integrity of the precuneal SCN are

TABLE II. (continued).

Brain clustera

MNI coordinates

x y z

Network j Cerebellum 36 268 244
(Pallidum) 24 24 26
(Precentral gyrus) 40 216 56
(Insular cortex) 234 224 22

Abbreviation: MNI, Montreal Neurological Institute 152 standard space image.
aEach SCN is divided in brain clusters using the cluster tool integrated in FSL. MNI x-, y-, and z-coordinates of each cluster are given.
Brain structures are anatomically identified using the Harvard-Oxford atlas integrated in FSL. Figure 2 shows the most informative sag-
ittal, coronal, and transverse slices. Structures in parentheses in the table are not visible in Figure 2.

r Structural Covariance in FTD and AD r

r 985 r



positively associated in AD, which is in line with our
expectations. This relationship between SCN integrity and
global cognitive performance, suggest the potential of
SCNs to monitor disease severity. However, MMSE is a
general screening tool and should not be regarded as an
extensive neuropsychological assessment. We expected to
find an association between FAB score [Dubois et al.,
2000], which is a general screening tool for bvFTD, and
the integrity of the anterior cingulate network. The inabil-
ity to find this association might be related to the rela-
tively small number of subjects that was included in the
bvFTD group and the more limited range in FAB scores.
Further research is recommended to study whether SCN
integrity is related to dysfunction in specific cognitive
domains and to investigate its potential to monitor disease
progression.

The whole-brain gray matter networks were based on
structural covariance of gray matter density, using the ICA
method [Beckmann et al., 2005]. This multivariate
approach takes into account inter-regional dependencies
rather than the common analyses that consider voxels sep-
arately. Multivariate approaches have the potential to give
more insights in dementia pathology than univariate
approaches that focused on local gray matter atrophy,
since brain disorders appear not to be localized in one spe-
cific brain area, but rather in networks of a multitude of
brain regions [Evans, 2013; Fornito et al., 2015]. Cognitive
dysfunction might not just be the consequence of localized
brain damage, but of a damaged brain network as well.
Therefore, studying the brain as a network of connected
regions might give valuable information. Analyzing net-
works in dementia increases sensitivity compared with
regional voxel-based methods [Rombouts et al., 2009]. The
current study also suggests a higher sensitivity of multi-
variate SCNs to detect disease-specific patterns.

An advantage of the ICA approach is that it defines
fully automatically spatial components without a priori
selected region of interest. However, a limitation of this
technique is that the number of components to estimate
(i.e., the number of SCNs) is arbitrarily chosen. The topic
of choosing the number of components and the effect of
the dimensionality on the statistical results is currently an
active area of research. There is no consensus on the opti-
mal number of components [Cole et al., 2010], which may
vary depending on the data and the research question. In
the current study, we decided to use a dimensionality
within the range of the most often applied dimensionality
in studies of brain networks, that is use eight to ten com-
ponents [Beckmann et al., 2005; Damoiseaux et al., 2006;
Segall et al., 2012; Smith et al., 2009; Zielinski et al., 2012].
However, varying the dimensionality may impact the spa-
tial organization of the networks. For example, increasing
the dimensionality will split networks into several
subnetworks.

In the current study, we decided to use all available
data to define the SCNs, i.e., we used three equal-sized

groups including both patients and controls for the ICA
approach. Although network approaches are widely
applied, the way to define networks has not been standar-
dized [Griffanti et al., 2015]. Brain networks can be defined
in subjects from all groups or on the control subjects only
[Jafri et al., 2008], with both approaches having their own
advantages. Using all groups and therefore more data may
increase the robustness of the defined networks. However,
a potential disadvantage is its decreased sensitivity for
group differences [Griffanti et al., 2015; Rytty et al., 2013].

A limitation of our study is the possibility of misdiagno-
sis of the patients. The diagnosis FTD or AD can only be
confirmed by brain autopsy after death. In this study,
postmortem data were not available. Nevertheless, all
patients underwent an extensive dementia screening and
were evaluated in a multidisciplinary panel including
clinicians from different centers specialized in dementia.
Only dementia patients that fulfilled the most recent clini-
cal criteria for probable bvFTD [Rascovsky et al., 2011]
and probable AD [McKhann, 2011] were included in the
present study.

CONCLUSION

This is the first study that used structural MRI data to
compare whole-brain networks of gray matter structural
covariance between patients with AD and patients with
bvFTD. Our findings show that AD and bvFTD target dif-
ferent SCNs. The comparison of both types of dementia
showed bvFTD pathology in the anterior cingulate net-
work (i.e., salience network) and AD pathology in the pre-
cuneal network (i.e., default mode network). This confirms
the hypothesis that AD and bvFTD have specific anatomi-
cal networks of degeneration and shows that structural
covariance gives valuable insights in the understanding of
network pathology in dementia.
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