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Abstract: Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic reso-
nance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar
functions. This provides a means to investigate functional networks; however, most analysis techniques
assume functional connections are constant over time. This may be problematic in the case of neuro-
logical disease, where functional connections may be highly variable. Recently, several methods have
been proposed to determine moment-to-moment changes in the strength of functional connections
over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a
hierarchical observation modeling approach was proposed, to permit statistical inference of the pres-
ence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of
fMRI signals, incorporating the fact that overlapping windows are not independent was described. To
test this approach, datasets were synthesized whereby functional connectivity was either constant (sig-
nificant or insignificant) or modulated by an external input. The method successfully determines the
statistical significance of a functional connection in phase with the modulation, and it exhibits greater
sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-
window correlation analysis. For real data, this technique possesses greater reproducibility and pro-
vides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis.
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INTRODUCTION

Since its inception, resting-state functional magnetic res-
onance imaging (rs-fMRI) has become a valuable tool for
the identification of functional networks in the human
brain. Resting-state fMRI works on the assumption that
the degree of synchrony between time-varying blood-oxy-
genation level-dependent (BOLD) signals from spatially
distinct brain regions indicates the strength of a functional
connection (termed functional connectivity) [Beckmann
et al., 2005; Fox and Raichle, 2007]. Most current
approaches to the analysis of rs-fMRI data assume that
functional connectivity is constant over the duration of an
imaging session. This assumption has the potential to
overlook inherent variation in functional connectivity or
variability in healthy brain or as a result of neurological
disease [Hutchison et al., 2013]. Thus, recent analysis
approaches have begun to investigate this potential
dynamic behavior of functional connectivity.

One common technique used for dynamic connectivity
analysis is sliding-window cross-correlation, which deter-
mines the temporal cross-correlation between windowed
segments of BOLD fMRI signals over time [Allen et al.,
2014; Chang and Glover, 2010; Hutchison et al., 2013; Shen
et al., 2015]. Using this technique, it has been shown that
regions involved in higher level cognitive functions exhibit
highly variable functional connectivity with the posterior
cingulate cortex (PCC) of the default mode network
(DMN) [Chang and Glover, 2010]. This approach has also
demonstrated that functional connectivity networks
change over time [Allen et al., 2014], and regions with
reciprocal structural connections exhibit lower variability
in functional connectivity [Shen et al., 2015]. Sliding-
window correlation analysis also shows that networks
exhibit better stability at higher frequencies (0.5–0.8 Hz)
[Lee et al., 2013].

The sliding-window approach has also been used to
investigate the consequences of non-stationary fluctuations
on the topological organization of functional brain net-
works [Zalesky et al., 2014]. It was shown that connections
that link spatially distributed sub-systems across the cortex
exhibit the most dynamic behavior, transitioning in and
out of correlation. It was suggested that spontaneous
reconfiguration of resting-state functional brain networks
to high-efficiency states represents a balance between opti-
mizing information processing and minimizing metabolic
expenditure. Gonzalez-Castillo et al. [2014] evaluated pair-
wise connections between non-overlapping ROIs of a par-
cellated brain and grouped them into three categories of
connections, namely stable positive connections, variable
positive connections, and negative connections. Similar to
the Zalesky et al. [2014] findings, they found that within-
network connections are mostly static and variable connec-
tions correspond to between-network connections, particu-
larly those associated with higher-order cognitive
functions. They also compared the consistency of static
and flexible connections between subjects and found that

stable connections are mostly consistent between subjects,
but the set of variable positive connections is different
from subject to subject. This suggests that variability in
functional connections is dependent on the cognitive state
of the subject. Indeed, a recent study demonstrated that
frontal cortex brain systems change their network configu-
ration during task performance, which may explain the
adaptive nature of frontal cortex relevant for cognitive
functioning [Braun et al., 2015].

Other techniques have been explored to investigate the
dynamic nature of functional connectivity. Using a point-
process based method, it has been demonstrated that brief
instances of co-activation of brain regions can be used to
generate maps of the functional networks of the brain [Liu
and Duyn, 2013]. That is, the dynamic nature of functional
connections can actually be used to determine the presence
of the connections themselves.

Despite these observations, previous approaches to anal-
ysis do not provide a model of the probabilistic behavior
of estimated dynamic connectivity, and thus cannot permit
statistical inference of functional connectivity at each point
in time. This greatly limits data interpretation. In addition,
in the presence of random noise, functional connectivity
estimated by sliding-window cross-correlation analysis can
vary greatly, even when regions are in fact stationary con-
nected (or non-connected) [Hutchison et al., 2013]. There-
fore, sliding-window correlation analysis is limited to
determining if the range of variability of functional con-
nectivity is significantly different between participant
groups instead of providing insight into whether or not
functional connectivity at a single time point is significant.

Friston et al. [2003] formulates the procedure used in
conventional data analysis in terms of hierarchical linear
models, and explains how parameters and hyperpara-
meters of the model can be estimated jointly given the
observations. Parameters are the effects of interest that
determine what to expect in the observations. Hyperpara-
meters correspond to the probabilistic behavior of parame-
ters. Friston et al. [2002b] provides the example of a
single-sample t-test to clarify this. The parameter in a
single-sample t-test is the effect of interest that determines
if the observations are different from zero. The hyperpara-
meter corresponds to the variance of error between
observed data and the parameters of interest. It is impor-
tant to note that the parameters can be estimated without
estimating the hyperparameters. In the example of a
single-sample t-test, the parameter is estimated by the
sample mean. However, in order to make a statistical
inference on the estimated parameter (effect of interest), it
is necessary to estimate the hyperparameters, say the
residual sum of squares. It is valid to say that, in sliding-
window correlation analysis, the parameters are the
dynamic connectivity coefficients as a function of time. It
is impossible to make an inference on the parameters
though, since the probabilistic behavior of the parameters,
the hyperparameters, are not estimated by this technique.
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In this article we formulate a new form of sliding-
window functional connectivity analysis based on a
hierarchical observation model. This model has two lev-
els. The first level parameters are the dynamic connec-
tivity coefficients as a function of time. In the second
level, the time-average connectivity is modeled as our
model parameter. First- and second-level hyperpara-
meters in our model correspond to the covariance of
parameters. Bayesian estimation is used to jointly obtain
model parameters and hyperparameters using an itera-
tive expectation maximization (EM) algorithm. The EM
algorithm iteratively updates the estimation of parame-
ters and hyperparameters through expectation (E) and
maximization (M) steps. In each (E) step, the

conditional estimation of parameters given the data is
updated while the hyperparameters are fixed. In the
(M) steps, the maximum likelihood estimation of hyper-
parameters with fixed parameters is updated. This is a
Parametric Empirical Bayes (PEB) since the hyperpara-
meters are estimated from the observations. To test and
validate our technique, we simulate data using a net-
work topology with both stationary and non-stationary
functional connections based on a dynamic causal
modeling forward model with realistic noise/variability
components both at the neural and BOLD levels. Final-
ly, we use our technique to analyze human fMRI data
and compare its performance to sliding-window cross-
correlation analysis.

Figure 1.

Schematic of sliding-window hierarchical observation modeling

for dynamic connectivity analysis. (A) The time series, x tð Þ, of an

ROI (in red) is windowed into time-shifted overlapping segments

and entered into columns of the first-level design matrix to esti-

mate connectivity parameters, bi, that best fit a voxel time-

series, y tð Þ. The correspondence between dynamic connectivity

time points and BOLD signal is obtained by shortening the win-

dow width toward the beginning and end of the BOLD signal in

our proposed technique. The model starts with a window width

equal to M/2 and grows in width until it reaches its maximum of

M time points. From there the centered windows are shifted.

The last M/2 windows are shrinking windows. (B) The second

level models bi as distributed about an average, with correlated

fluctuations. The covariance matrix of the fluctuations is shown

in matrix format in grayscale. [Color figure can be viewed at

wileyonlinelibrary.com]
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MATERIALS AND METHODS

Theory

The theoretical background of Bayesian inference and its
applications in neuroimaging have been presented previ-
ously [Friston et al., 2002a,b]. There is an existing natural
hierarchy in time-varying functional connectivity that can
be modeled with a two-level hierarchical modeling
approach, which we depict graphically in Figure 1. Our
approach can be summarized as follows. In order to esti-
mate dynamic connectivity between an observed signal
and a predictor time series, the observed signal is modeled
as a linear combination of time-shifted windowed seg-
ments of the predictor signal at the first level. The fact that
adjacent windows in the first level of our model overlap
forces connectivity to change relatively smoothly over
time. To incorporate this knowledge into our linear model,
we augment the first level of our model with a second lev-
el, which can be thought of as providing prior constraints
on the expectation and covariance of the first-level dynam-
ic connectivity parameters. Using a Bayesian approach, the
problem reduces to finding the conditional mean and
covariance of the model parameters given the BOLD fMRI
time series at functional nodes [Friston et al., 2002b]. This
can be done using an iterative expectation maximization
algorithm. In this algorithm the parameters and hyper-
parameters of the hierarchical model are estimated jointly
given the observations. Having the posterior density of the
parameters, statistical inferences can be made about the
estimated connectivity parameters at any specific time.
Normalizing the conditional mean by its conditional error
gives a t-statistic for dynamic functional connectivity at
any specific time point. The details of our approach
follow.

Two-level hierarchical model

We are proposing a voxel-based approach to model the
dynamic connectivity between each voxel’s BOLD time
series and a model regressor from a given region of inter-
est (ROI). Without loss of generality, let y tð Þ represent the
normalized BOLD time series of a random voxel in the
brain, and let x tð Þ represent the normalized average time
series of a seed ROI (see Fig. 1A). Classical general linear
model (GLM) analysis estimates a single parameter that
scales the entirety of x tð Þ to best fit the entirety of y tð Þ: We
model y tð Þ as a linear combination of time-shifted win-
dowed segments of x tð Þ, namely xwi tð Þ for the window
centered at ith location. To accomplish this, we must esti-
mate a set of parameters over time, bi, to form the linear
combination of xwi

tð Þ: Each parameter bi thus provides a
measure of the synchrony (i.e., connectivity) between x
and y within the windowed segment wi. The complete set
of bi over time thus provides a measure of dynamic con-
nectivity. Because adjacent windows overlap, the estimates
of connectivity should not fluctuate rapidly over time (i.e.,

within a typical imaging repetition time, TR, of 2–3 sec).
That is, parameters for windows that overlap should
exhibit some degree of correlation, which will dissipate as
the overlap decreases. To incorporate this correlation
behavior, we introduce a second level into our model,
where dynamic functional connectivity is modeled as cor-
related fluctuations about an average connectivity (see
Fig. 1B).

The first level of our technique can thus be expressed
as:

y5Xb 1ð Þ1e (1)

where y is a N 3 1 vector of the normalized observed N-
point time series and X is a square (N 3 N) design matrix
constructed from the shifted windowed segments of the
normalized model regressor (i.e., ROI signal), xwi

tð Þ. b 1ð Þ is
a N 3 1 vector containing the first-level scaling parameters
for each segment of the ROI signal and represents connec-
tivity as a function of time. In Eq. (1), e models the first-
level error term. More specifically, the design matrix coef-
ficient at the ith row and jth column, X(i,j), can be written
as:

X i; jð Þ5

x ið Þ
Vi
ji2jj < M

2

0 otherwise

8>>><
>>>:

(2)

where M is the width of each windowed segment, and Vi

is a weighting factor equal to the window width at the ith
window position. Given the structure of our design
matrix, the dynamic connectivity at the ith time point rep-
resents the similarity of windowed segments of the
observed signal and the model regressor when the win-
dow is centered at the ith time-point. This is an improve-
ment over sliding-window correlation where a lag is
introduced between the observed signal and dynamic con-
nectivity model, and thus dynamic connectivity is shorter
than the observed signal. The way our design matrix is
constructed allows us to calculate the dynamic connectivi-
ty with the same number of time points as the observed
signal. However, if windows centered at the first M/2
time points had a width equal to M, they would extend
back beyond the first observed data point. This is also true
for the last M/2 window positions where the window
would extend past the last acquired data point. Therefore,
we need to crop the window width for M/2 start and end
window positions. Hence, we start with a window width
equal to M/2 and grow our window width until we reach
our maximum window width, M. From there we start
shifting our windows. The last M/2 windows are shrink-
ing windows. As mentioned earlier, Vi is a weighting fac-
tor equal to the window width at the ith position.

The first-level error term, e; is assumed to be normally
distributed, with zero mean and a covariance matrix, Ce.
To model the temporal correlations in the first-level error,
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we assume a white-noise distribution and an autoregres-
sive (AR) random process. For conventional fMRI studies,
a first-level AR model is sufficient to capture the temporal
correlations, where the temporal correlations decrease as
samples become more separated in time (i.e., as overlap
decreases) [Friston et al., 2002a]. However, for fast fMRI
datasets with TR less than a second, it is suggested to use
higher-order AR models to account for the strong autocor-
relation resulting from the higher temporal resolution
[Jacobs et al., 2014].

Therefore, Ce can be written as:

Ce5 r2
eI1kQ1 (3)

where r2
e is the variance of the first-level error at each

point, I is the identity matrix, and k is a weighting factor
for the AR(1) random process modeled by Q1: The matrix
coefficient at the ith row and jth column of Q1, Q1 i; jð Þ,
can be written as:

Q1 i; jð Þ5
e2ji2jj3TR i 6¼ j

0 i5j

8>><
>>:

(4)

for a given TR. The variance and weighting factor at this
level are treated as unknown hyperparameters that will be
optimized during the estimation step.

First-level parameters can then be modeled as fluctua-
tions about the average connectivity:

b 1ð Þ5

1

1

�

1

2
666664

3
777775

b1f51Nb1f (5)

where b is an unknown parameter with flat priors and
models the average connectivity, and f models the fluctua-
tions in connectivity about b. Substituting Eq. (5) into Eq.
(1) gives:

y5X 1Nb1fð Þ1e (6)

Further, the weighting factor in Eq. (2) guarantees that
X1N5x, such that:

y5xb1Xf1e (7)

As we can see from Eq. (7), the first and last terms are
identical to conventional GLM analysis, and the middle
term models the dynamic connectivity.

In our model we assume that fluctuations in functional
connectivity about the average connectivity are normally
distributed with zero mean and a covariance matrix, Cf.
As discussed earlier, the fact that adjacent windows over-
lap forces connectivity to be temporally correlated. This
correlation decreases as the number of overlapping time

points decreases linearly with increasing separation of
windows. Thus, the correlation of estimates of dynamic
connectivity can be modeled as:

Cf5r2
fQ2 (8)

where r2
f is the variance of the second-level fluctuations

and Q2 models the linearly decreasing correlation between
functional connections. The matrix coefficient at the ith
row and jth column, Q2 i; jð Þ, can be written as:

Q2 i; jð Þ5

M2ji2jj
M

512
ji2jj
M

ji2jj < M

0 otherwise

8>>><
>>>:

(9)

where M is the window width. The negative slope of the
correlation factor (2 ji2jj

M ) defines the decay rate of the cor-
relation between neighboring windows, which is depen-
dent on both the distance between the two windows and
the window width. It is important to note that for nar-
rower windows (smaller M) the correlation factor drops
more rapidly and allows higher fluctuation in the connec-
tivity parameters, as expected.

This is a two-level hierarchical observation model, and
the parameters and hyperparameters can be estimated
using a PEB approach, which has been described for neu-
roimaging previously [Friston et al., 2002a,b]. In summary,
the second-level design matrix puts constraints on the pri-
ors of the first-level parameters. The average connectivity
at the second level is treated as an unknown parameter
with flat priors, making our analysis an empirical Bayes
approach. Having the prior distribution of parameters,
Bayesian estimation is then performed to find the posterior
(conditional) probability of the parameters given the data.
Under the assumption of a Gaussian distribution of the
first- and second-level error terms of our hierarchical mod-
el, and that the posterior density of the parameters is also
Gaussian, the problem therefore reduces to finding the
conditional mean and covariance of the parameters given
the observations.

Estimating the posterior density of the first-level param-
eters (i.e., dynamic connectivity), we are enabled to per-
form a statistical inference on the dynamics of functional
connectivity. In order to examine the strength of connec-
tivity at a specific time point or over a period of time, a
binary contrast vector is set. The contrast of the first-level
conditional mean can then be normalized by its estimated
error to give a statistic that indicates the number of stan-
dard deviations that the mean is away from zero:

Tstatistic5cTh
1ð Þ

bjy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTC

1ð Þ
bjyc

q
(10)

where h
1ð Þ

bjy and C
1ð Þ

bjy are the posterior (conditional) mean
and covariance of the dynamic connectivity (level one
parameters), respectively, given the data, estimated by an
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iterative expectation maximization algorithm, and c is the
binarized contrast vector set to investigate a specified por-
tion of dynamic connectivity. Tstatistic is thus a test statistic
that indicates the number of standard deviations by which
the mean of the conditional distribution of the contrast
deviates from zero.

Coefficient of determination

Here we propose a measure to quantify the degree of
non-stationarity of a functional connection. The degree of
variability of a functional connection can be defined based
on a comparison of the sums of squares of the residuals
obtained from our dynamic connectivity analysis tech-
nique and from a minimal stationary model of connectivi-
ty. For the hierarchical model proposed in the previous
section, the sum of squares of the first-level residuals is
defined as:

Sdynamic5
X

i

r2
i 5rTr (11)

where the first-level residual, r, is defined to be:

r5y2Xh
1ð Þ

bjy (12)

After estimating the conventional static connectivity for a
minimal GLM model, Sstatic is defined as the sum of
squares of the residuals of that model. This is defined for
the minimal static connection model and therefore is the
largest possible value for the sum of squares of the model
residuals. The improvement in going from this worst pos-
sible model to a two-level dynamic hierarchical model
with no assumption on the stationarity of the connections
can thus be written as:

R25
Sstatic2Sdynamic

Sstatic
(13)

In linear regression terminology, R2 is called the coefficient
of determination [Dobson and Barnett, 2008]. In cases where
a functional connection is stationary in time, the static
model is sufficient because the dynamic model converges
to the static model. That is, the sum of squares of the
residuals is nearly the same for the two models, and R2

tends to zero. However, when a functional connection fluc-
tuates over time, the static model does not provide a good
fit, and portions of the variability in the observed signal
due to non-stationarity remain in the error term. On the
other hand, the dynamic model provides a better fit, and
so R2 tends away from zero. In the case where the dynam-
ic model provides a perfect fit, Sdynamic would reach zero,
and the coefficient of determination would reach its maxi-
mum value of one. Thus, R2 is bounded between zero and
one, with zero indicating a stationary connection and one
indicating a highly variable functional connection over
time. R2 thus provides a robust estimate of the variability
of a functional connection.

Simulation Dataset

A simulation dataset consisting of a set of functional
nodes was generated based on dynamic causal modeling
(DCM). The length of the simulated time series was 10
minutes. This dataset was simulated in two levels, a neu-
ral level and a BOLD level. In the neural level, an external
input is fed to each functional node to model the direct
neural signal input to the node. The external input is mod-
eled with a random binary (on/off) process to model each
neuron in a firing state and at rest, independent from oth-
er neurons. The transition probabilities of this process are
set such that the mean duration of rest (10 sec) is longer
than mean duration of firing (2.5 sec) to model longer
average rest than firing. A random process with a strength
equal to 1/20 of the state difference of the binary process
is then added to model the noise/variability in the neural
level. This external input applied in the neural level is
therefore sampled at a high sampling rate (every 5 ms).
The rate of change in neural signal at each node is then
modeled to be a linear combination of the external inputs
feeding that node and the effect received from the rest of
the network through functional connections connecting the
nodes of the network using the DCM:

_z5Az1Cu (14)

where z is the neural time series, _z is its rate of change, A
is the network matrix governing the network connections
between nodes, u is the external input to each node and C
is the weight controlling the effect of external inputs to the
network. Connectivity between any pair of nodes can be
stationary (connected or non-connected) or non-stationary
(i.e., fluctuating) over time. A binary random process is
applied to non-stationary functional connections of the
network to modulate the state of connectivity over time.
Once the node time series are modeled in the neural level,
they are converted into a hemodynamic response (or
BOLD signal) using the nonlinear balloon model of neuro-
vascular coupling, as described elsewhere [Buxton et al.,
1998; Friston et al., 2003] and used previously in similar
studies [Smith et al., 2011]. Finally, thermal white noise
was added to model noise/variability at the BOLD level.
BOLD time-series are then sampled with the required TR.
The simple network topology used to validate our dynam-
ic connectivity analysis technique is shown in Figure 2A.
This topology consists of functional nodes with stationary
connections, nodes that are not connected, and nodes with
connections modulated over time. All of the functional
connections are direct connections originating from the
hub functional node (node A) to avoid propagation of
non-stationarities to neighboring (adjacent) connections.
This enables a stationary connection between nodes A and
B while modulating the connectivity between functional
nodes A and other nodes. Node B is functionally con-
nected to node A with connection strength set randomly
to a mean value of 0.7 and a standard deviation of 0.1
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(range limited to 0.5–0.9). These values are adjusted to
ensure a functional connection between nodes, but at the
same time enable variability from one dataset to another
(numbers are close to those used by Smith et al. [2011]).
Node C is a functional node not connected to node A, but
having an external input to model signals feeding into this
node from other functional networks or noise at the neural
level. Node D is an isolated node without any external
input to model measurement noise. Node E is functionally
connected to node A, but is modulated over time between
connected and unconnected according to a random exter-
nal bistable process in order to model a non-stationary
connection. The transition probabilities of this process are
set such that the mean duration of connection and inter-
rupted connection are equal and approximately 200 sec.
The number of transitions is not limited and depends sole-
ly on the bistable random process. There is also an

external input feeding to node E in order to model inputs
from other functional networks. Knowing the transitions,
we can also calculate the proportion of time that Node E
is connected to Node A (i.e., from 0 to 1). All other simula-
tion parameters are set accordingly based on previous
work [Smith et al., 2011].

To investigate the effect of TR and noise level on the
performance of our dynamic connectivity analysis tech-
nique, different simulation datasets were generated with
TRs equal to 2 and 3 sec and noise levels equal to 0.5, 1,
and 2 standard deviations of the BOLD signal. For each
pair of TR and noise level, 50 realizations of the simulation
dataset were generated with a different set of external
inputs, connectivity modulation and functional connection
strength. In the processing step, node A was considered to
be the ROI node and the dynamic connectivity of all other
nodes with this node was extracted using two different

Figure 2.

(A) Simulation dataset network topology based on [Smith et al.,

2011]. Functional Node A is modeled to have a stationary con-

nection with functional Node B and no connection to nodes C

and D, where node C is receiving neural inputs to model a func-

tional node, and node D only receives noise inputs to model a

non-functional node. The connection between node A and func-

tional node E is modeled as a dynamic connection as determined

by an external modulation input. (B) Examples of dynamic func-

tional connectivity as determined by our hierarchical observation

model (top) and sliding-window correlation analysis (bottom)

(window width 5 90 sec), with the corresponding external input

modulating the connection strength between node A and node E

at the neural level (middle). The state transition of this input

modulates the functional connectivity between the nodes at the

neural level. Connection variability with a standard deviation of 1/

20 of the state difference is applied. This is propagated through

the network based on DCM modeling and then translated to a

BOLD signal through the balloon model of the hemodynamic

response function. The resulting BOLD signal is sampled every 3

sec. The stationary connection of node B is determined to be

statistically significant (t> 1.96) at all time points using our

approach, while sliding-window correlation coefficients vary to

near zero values. The connection of node E is determined to be

statistically significant and in phase with the external modulation

input. Note that dynamic connectivity estimated by sliding-

window correlation analysis has fewer time points than the actual

BOLD signal due to windowing effect. However, the correspon-

dence between dynamic connectivity time points and BOLD sig-

nal is obtained by shortening the window width toward the

beginning and end of the BOLD signal in our proposed technique.

[Color figure can be viewed at wileyonlinelibrary.com]
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techniques: our proposed hierarchical observation model-
ing technique and sliding-window correlation analysis. To
investigate the effect of window width, we ran the analy-
sis on the simulation datasets for different window widths
(30, 60, 90, 150, and 300 sec worth of data). To calculate
the variability of functional connections obtained by the
hierarchical observation modeling technique, we used the
coefficient of determination as defined in the previous sec-
tion; it is a measure of improvement in goodness of fit
compared with a static connectivity model. A coefficient of
determination cannot be defined for sliding-window corre-
lation analysis since by its nature it does not provide a
model of the residuals. However, various measures have
been used previously to assess variability of sliding win-
dow correlations. Chang and Glover [2010] used the stan-
dard deviation of the Fisher Z-transformed correlation
coefficients as the measure of variability in functional con-
nectivity. The coefficient of variation used by Gonzalez-
Castillo et al. [2014] to assess variability in connections
basically divides the standard deviation of the Fisher Z-
transformed correlation coefficients by their average.
Therefore, the coefficient of variation places emphasis on
regions with high average connectivity and tries to divide
them into stable positive connections and variable positive
connections. However, it is not clear that a low coefficient
of variation corresponds to a low average stable connec-
tion or a non-stable positive connection. Zalesky et al.
[2014] developed a statistic based on the height and dura-
tion of deviations from the median connectivity to test
sliding-window connectivity for evidence of non-
stationary temporal dynamics. Allen et al. [2014] intro-
duced the amplitude of oscillations and Gonzalez-Castillo
et al. [2014] suggested the coefficient of variation for this
purpose. For the sliding-window correlation analysis, we
chose the standard deviation of the Fisher Z-transformed
correlation coefficients as the measure of variability in
functional connectivity. This is conceptually closer to the
coefficient of determination we used for our proposed
technique, as both measures summarize the deviation
from an average model considering all time points.

Our aim was thus to compare the performance of the
two methods in detecting the node with a modulated
functional connection (node E) to the ROI node (node A),
among the nodes with stationary functional connections
(node B, C, and D) to node A. To perform our detection
analysis, a threshold coefficient of determination was set,
and nodes above the threshold were classified as highly
variable connections, and nodes below the threshold were
classified as stationary connections. The threshold was set
to give a 5% false positive (FP) rate in detecting stationary
connections (nodes B, C, and D to node A) as highly vari-
able. The fraction of true positives (TP) in detecting non-
stationary connections (node E to node A) as highly vari-
able was then calculated. This was, therefore, a measure of
success in separating TP estimated from FP estimated vari-
able connections. The FP-based threshold was estimated

from three stationary connections in network topology
among all 50 simulated networks. Receiver operating char-
acteristic (ROC) curves of the detection of non-stationary
functional connections among all the connections was
compared between sliding-window correlation analysis
and our hierarchical observation modeling technique.
From this ROC analysis, we also compared the sensitivity
of our technique to that sliding-window correlation analy-
sis, as a function of the proportion of time that Node E
was connected to Node A. This analysis allowed us to
determine if our technique was more sensitive at detecting
weak (or strong) but variable connections (i.e., when the
proportion of time connected was near 0 or near 1).

Real Dataset

In order to compare the accuracy of any two techniques,
ground truth is required. Unfortunately, the true state of
connectivity between two regions of the brain at a given
time is not at hand. Therefore, it is not possible to compare
the accuracy of hierarchical observation modeling and
sliding-window correlation analysis using real datasets. It
is possible, however, to compare the reproducibility of
methods if we have repeated measurements of BOLD sig-
nal fluctuations acquired under the same conditions. Obvi-
ously, it is impossible to repeat a resting-state fMRI
experiment and expect dynamic connectivity to undergo
the same fluctuations as the previous experiment. Howev-
er, we can approximate repeated measurements of BOLD
signals by down-sampling a fast (low TR) fMRI dataset.
Taking the first time point and every nth time point there-
after generates a down-sampled BOLD signal time course.
Another time course can be generated by starting with the
second time point and every nth time point thereafter, and
so on. As long as the effective TR of the down-sampled
datasets (i.e., original TR 3 n) is on the order of that of a
typical resting-state fMRI experiment (i.e., 2–3 sec), this
procedure will generate n repeated measurements of real
data under realistic noise conditions. From these repeated
measurements, we can compute dynamic connectivity
with a given ROI, expecting its dynamic behavior to be
the same across the n data sets. Thus, we have a means to
compare the reproducibility of our proposed method to
that of sliding-window correlation analysis. Real data
methodology and data analysis are described in detail in
the following sections.

Real data methodology

Resting-state fMRI data from three healthy right-handed
volunteers with no known neurological disorders was pro-
vided by the fMRI Lab at the Rotman Research Institute,
Toronto, ON, Canada. All images were collected using a
Siemens TIM Trio 3 Tesla System (Siemens, Erlangen, Ger-
many) equipped with a 32-channel phased-array head coil.
Slice-accelerated single shot gradient-echo echo planar
images (GE-EPI) (“short TR”) were acquired with the
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following parameters: TR/TE 5 380/30 ms; flip
angle 5 408; FOV 5 22 3 22 cm; 64 3 64 matrix; 1,880 vol-
umes; fifteen 6.25-mm thick slices. During image acquisi-
tion, subjects were asked to close their eyes and relax. T1-
weighted anatomical images were collected for anatomical
registration of the fMRI data (MPRAGE: TR/TE 5 2,400/
2.43 ms, FOV 5 256 3 256 mm, 192 3 256 3 256 matrix,
voxel size 1 3 1 3 1 mm).

Image analysis

Preprocessing of resting-state fMRI data was performed
using the FMRIB Software Library (FSL, http://www.
fmrib.ox.ac.uk/fsl) and consisted of: brain extraction using
the Brain Extraction Tool (BET) [Smith, 2002], motion cor-
rection using MCFLIRT [Jenkinson et al., 2002], spatial
smoothing (10-mm FWHM), and temporal high-pass filter-
ing (using 0.01 Hz as the cutoff frequency). Images were
further processed by entering them into a GLM with white
matter and CSF signals as well as six translation/rotation
head motion parameters as nuisance regressors. This pro-
duced a set of zero-mean residual images for connectivity
analysis. The resulting 4D resting-state fMRI images were
then down-sampled by a factor of 8, generating eight dis-
tinct datasets with an effective TR of 3,040 ms.

An ROI was placed within the PCC (a 5 mm radius
sphere, centered at Talairach coordinates x 5 26, y 5 258,
z 5 28) [Chang and Glover, 2010] to act as a primary node
of the default mode network (DMN) of the brain. The
average BOLD signal of the voxels within the ROI was
then extracted for each of the eight datasets. Dynamic con-
nectivity was estimated between the time series of the
PCC ROI and that of every other voxel in the brain inde-
pendently for each of the eight down-sampled datasets
using sliding-window correlation analysis and our pro-
posed hierarchical observation model. Maps of mean con-
nectivity and variability for each subject were then
generated by computing the temporal average and stan-
dard deviation of dynamic connectivity across the eight
down-sample datasets (in the form of t-statistics for our
technique and Fisher Z-transformed correlation coefficients
for sliding-window correlation analysis). To compare the
maps, a threshold was selected so that the total number of
voxels in the final maps was equivalent between the two
techniques (10% of the total number of brain voxels for
mean connectivity and 5% of the total number of brain
voxels for variability).

For each subject, the reproducibility of dynamic connec-
tivity was assessed for our technique and sliding-window
correlation by computing Kendall’s coefficient of concor-
dance (KCC) for each voxel. KCC is a non-parametric sta-
tistic that assesses the agreement among multiple raters,
and has been used previously in fMRI studies [Zang et al.,
2004] to evaluate the similarity of a time series of a given
voxel with that of its nearest neighbors. Here we are inter-
ested in assessing the similarity of n estimated dynamic
connectivity time series of a given ROI as a measure of
reproducibility of our modeling technique. We then

compared the reproducibility of our proposed technique
with that of sliding-window cross-correlation analysis.

RESULTS

Simulation Dataset

Examples of results obtained from our sliding-window
hierarchical observation model approach and sliding-
window correlation analysis are shown in Figure 2B. For
the hierarchical observation model approach, stationary
connected Node B remains significantly connected (i.e.,
t> 1.96) at all time points, whereas for sliding-window
correlation analysis, Fisher-transformed correlation coeffi-
cients vary over a wide range, to near zero in some cases.
Non-connected nodes C and D are deemed insignificant at
all time points using our approach; sliding-window corre-
lation coefficients are also low. The statistical significance
of Node E is detected by our model approach, in phase
with the modulation input that generated the dynamic
connection. Sliding-window correlation coefficients also
show an increase in phase with the modulation input, rela-
tive to other time points; however, no statistical signifi-
cance can be assigned.

Figure 3 shows the percentage of true positives in detect-
ing functional nodes with significantly variable functional
connectivity for our analysis technique and sliding window
correlation analysis, with different TRs and noise levels at
varying window widths. Our proposed technique exhibits a
higher percentage of true positives in detecting non-
stationary connections compared with sliding-window corre-
lation analysis for all TRs, noise levels and window widths.

Figure 4 shows ROC curves for the detection of non-
stationary functional connectivity for sliding-window cor-
relation analysis and our hierarchical observation model
technique, for a window width of 90 sec (45 time-points
for TR 5 2 sec and 30 time-points of TR 5 3 sec). The hier-
archical observation model clearly outperforms sliding-
window correlation analysis for both TRs. Similar results
were obtained for other window widths (not shown).

Figure 5A shows static functional connectivity (comput-
ed as Fisher Z-transformed correlation coefficients)
between node A and node E as a function of the propor-
tion of time the nodes are connected. Shown below the x-
axis are examples of how the functional connection would
be modulated to arrive at the specified proportions. As
expected, there is a linear relationship between static esti-
mates of functional connectivity and the proportion of
time connected. Thus, low proportions are synonymous
with very weak connections, and high proportions are syn-
onymous with very strong connections. Figure 5B shows
our measure of variability (the coefficient of determina-
tion) of the functional connection between node E and
node A as a function of the proportion of time the nodes
are connected. The same plot is shown in Figure 5C for
the standard deviation of the Fisher Z-transformed slid-
ing-window correlation coefficients. The 5% false positive
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(FP) rate threshold in detecting stationary connections
(nodes B, C, and D to node A) as highly variable is
depicted by the solid black line. The blue dots indicate the
cases where variability was above the 5% false positive
rate threshold, meaning they were correctly determined as
variable connections (i.e., true positives). The red dots
indicate the false negatives. Out of 50 realizations of the

simulated variable connections, our hierarchical observa-
tion model exhibited only 8 (16%) false negatives, whereas
sliding-window correlation analysis exhibited 18 (36%) false

Figure 3.

The percentage of true positives (TP) in detecting functional

nodes with a non-stationary (dynamic) connection to node A,

for our hierarchical observation modeling technique and sliding-

window correlation analysis, at different noise levels equal to

0.5, 1, and 2 standard deviations of the BOLD signal, with (A)

TR 5 2 sec and (B) TR 5 3 sec. The hierarchical model provides

a greater true positive percentage across all conditions and win-

dow widths. [Color figure can be viewed at wileyonlinelibrary.

com]

Figure 4.

Receiver operating characteristic (ROC) curves for the detec-

tion of nodes with non-stationary functional connections using

our hierarchical observation modeling technique and sliding-

window correlation analysis, with (A) TR 5 2 sec and (B) TR 5 3

sec. The optimal window width of 90 sec was selected based on

Figure 3. For our proposed hierarchical observation modeling

technique, the coefficient of determination (R2) was used as the

measure of connection variability. For sliding-window correlation

analysis technique, the standard deviation (std) of the Fisher Z-

transformed correlation was used as the measure of connection

variability. The hierarchical model possesses greater sensitivity

and specificity across all conditions. [Color figure can be viewed

at wileyonlinelibrary.com]
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negatives. Note that false negatives arise for very low and
very high proportions, that is, for very weak or very strong
connections. The false negatives for our model are more con-
tained near proportions of 0 and 1 than sliding-window cor-
relation analysis, and in fact, some true positives for our
model are present near 0 and 0.9. Overall, this demonstrates
our technique is more sensitive and accurate at detecting
very weak and very strong, but variable connections.

Real Dataset

Figure 6A shows maps of mean and standard deviation
of dynamic connectivity across the eight down-sampled
datasets for one example subject. Regions with significant-
ly high mean connectivity with the ROI are shown in red
and include the entire posterior cingulate cortex and later-
al parietal cortex. Regions with significantly variable func-
tional connections with the ROI are shown in green. These
regions include the inferior and middle frontal cortex (in
the z 5 22 mm slice), and the inferior and superior parietal
lobe (in the z 5 42, 52 mm slices). Upon visual inspection,
the maps generated by our technique and sliding-window
correlation appear similar.

Figure 6B shows time courses of connectivity for three
selected voxels: one from the mean connectivity map (i.e., a

voxel from the red area), one within gray matter but not
within the maps (i.e., an insignificant voxel), and one from
the variability map (i.e., a voxel from the green area). At
first look, fluctuations in dynamic connectivity extracted
using both techniques appear to provide similar informa-
tion. Both of the red curves show significantly high dynam-
ic connectivity throughout the scan, gray curves are
basically below the threshold lines, and green curves show
high variability and at some point pass the threshold. How-
ever, the proposed hierarchical observation modeling tech-
nique provides better discrimination between these voxels
in the form of statistical significance of the connection as a
function of time. That is, sliding-window correlation analy-
sis merely captures variation without statistic inference.

Although for real data we did not possess the truth
regarding the times when connections and disconnections
occur, we could, however, determine the strength of the
connections that our technique classified as variable but
sliding-window correlation analysis did not. The average
static connectivity (computed as the Pearson cross-
correlation coefficient) for voxels identified as variably
connected by both techniques was 0.16 6 0.04, whereas
voxels determined to be variably connected by our tech-
nique but not by sliding-window correlation analysis,
exhibited an average static connectivity of 0.11 6 0.04.

Figure 5.

(A) Static functional connectivity between nodes A and E (com-

puted as Fisher Z-transformed correlation coefficient) as a func-

tion of the proportion of the time nodes A and E were

connected. Below the x-axis are examples of external input

modulations that give rise to the specified proportions. (B)

Coefficient of determination for the functional connection of

node E to node A and (C) the standard deviation of the Fisher

Z-transformed sliding-window correlation coefficients, as a func-

tion of the proportion of the time the nodes were connected.

The solid black line indicates the 5% false positive (FP) rate

threshold in detecting stationary connections (nodes B, C, and

D to node A) as highly variable. [Color figure can be viewed at

wileyonlinelibrary.com]
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Figure 7 shows maps of reproducibility (expressed as
KCC, thresholded at 0.8) for three subjects, for our proposed
hierarchical observation modeling technique and sliding-
window correlation analysis. The hierarchical observation
modeling technique exhibits greater and more widespread
reproducibility within the grey matter compared with
sliding-window correlation analysis, as confirmed by the
map of average KCC across the three subjects. Reproducibili-
ty is high throughout gray matter for our technique, regard-
less if it is connected to the PCC or not. This is expected,
since a robust technique should generate reproducible results
for both high and low functional connections.

DISCUSSION

We have proposed a two-level hierarchical observation
model for dynamic functional connectivity analysis and

solved it with Bayesian estimation. Using simulation data-
sets we demonstrated that a two-level hierarchical obser-
vation model successfully permits statistical inference of
the variability of functional connections. Using real data,
we demonstrated that a two-level hierarchical observation
model exhibits better discrimination ability and reproduc-
ibility than sliding-window correlation analysis. Our find-
ings also demonstrate some key technical points, which
we discuss below.

Connectivity Fluctuations of Non-Interest

One main concern about sliding-window correlation anal-
ysis is that white noise, physiological signals and even sig-
nals originating from completely disconnected brain regions
can give rise to high amplitude fluctuations of functional
connectivity [Hutchison et al., 2013]. This was confirmed by

Figure 6.

(A) Map of temporal average (red) and connection variability

(green) of dynamic functional connectivity with PCC for both

techniques. Results are thresholded to produce the same num-

ber of voxels (10% of the total number of brain voxels for aver-

age connectivity and 5% of the total number of brain voxels for

connection variability). (B) Functional connectivity time courses

are shown for single voxels with high average functional connec-

tivity (red), low average functional connectivity (gray), and highly

variable connectivity (green). Although highly variable connec-

tions exhibit low average connectivity, functional connectivity is

significantly high at some time-points (i.e., passes the threshold).

[Color figure can be viewed at wileyonlinelibrary.com]
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our results as well (Fig. 2B). The fluctuations we observed
in the sliding-window correlation of nodes B, C, and D
with node A are due to noise properties, and not a real
modulation of functional connectivity. In fact, the ampli-
tudes of these fluctuations were on the order of those
observed for node E, which did exhibit real modulation.
Thus, it is difficult to set a threshold and test the statistical
significance of functional connection strength at each time
point using sliding-window correlation analysis. By model-
ing the residuals in our hierarchical observation model tech-
nique, we are enabled to provide statistical inference of the
significance of functional connectivity at each time point.
So, while there is some modulation of connectivity in the
presence of fluctuations of non-interest using our model, it
remains statistically insignificant, whereas real modulations
are detected with a high true positive rate (Fig. 3) and high
sensitivity and specificity (Fig. 4).

Effect of Window Width

The choice of window width is another concern with
sliding-window correlation analysis. Short duration win-
dows do not capture coherency in the low-frequency com-
ponents of resting-state BOLD signals, and long duration
windows fail to detect transitions in functional connectivi-
ty states. Gonzalez-Castillo et al. [2014] did not investigate
window widths less than 60 sec in order to maintain suffi-
cient data points to calculate meaningful correlations.

Even with fast fMRI datasets with a high number of data
points per unit time, window widths less than 100 sec
have been shown to generate connectivity maps with high
spatial and temporal variability [Lee et al., 2013]. Our
results (Fig. 3) support this and clearly demonstrate that
the detection power of sliding-window correlation analysis
is highly dependent to the choice of window width. This
issue is somewhat resolved by our hierarchical observation
model technique. Although windowed segments of the
model signal are used as separate regressors in our design
matrix, incorporating all segments into a single model
reduces the sensitivity to the choice of window width. It is
also important to note that detection power is nearly con-
stant when the window width increases above 60 sec.

Our current model states that the correlation between
dynamic connectivity extracted from neighboring windows
decreases linearly as the windows separate in time. In
addition, this decay in correlation is inversely related to
window width (i.e., for narrower windows, correlation
decreases more rapidly). This permits connectivity to fluc-
tuate more for narrower windows since the window over-
lap is smaller. However, this assumes that the data have
sufficiently high signal-to-noise ratio such that the first lev-
el parameters do not fluctuate wildly due to noise. Noise
effects will dominate if the windows have a narrow width.
This can be seen in Fig. 3; for the case when the noise level
was equal to twice the standard deviation of the simulated
signal, analyzing dynamic connectivity with window
widths narrower than 90 sec gave a low true positive rate

Figure 7.

Maps of reproducibility of dynamic connectivity for three sub-

jects for our proposed hierarchical observation modeling tech-

nique and sliding-window correlation analysis, expressed as

KCC (thresholded at KCC 5 0.8). The hierarchical observation

modeling technique exhibits greater and more widespread

reproducibility within the gray matter compared with sliding-

window correlation analysis. This is confirmed by the average

over all three subjects, at the right. [Color figure can be viewed

at wileyonlinelibrary.com]
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(<70%). Extending a linear decay model of correlation
between dynamic connectivity extracted from neighboring
windows to non-linear models is a possible topic for
future work. In addition, our proposed hierarchical model
can also be investigated with non-overlapping windows,
by modifying the first-level design matrix and second level
covariance model.

The Effect of TR

Our results show that as the noise level increases, the
detection power of highly variable connections decreases.
This was the case for both the TR 5 2 and TR 5 3 sec data-
sets (Fig. 3). However, it is important to note that the
decrease in detection power for TR 5 2 sec was smaller
than the decrease in detection power for TR 5 3 sec (see
also Fig. 4). This suggests that detection power is more
related to temporal signal-to-noise ratio (tSNR) rather than
image SNR. In other words, with the same SNR, it is
important to collect as many image volumes per unit time
as possible to obtain a better estimate of dynamic function-
al connectivity. Therefore, imaging techniques that permit
sub-second TR, such as MR-encephalography [Lee et al.,
2013], and multiplexed EPI [Feinberg et al., 2010] may fur-
ther improve dynamic functional connectivity analysis.

Multiple Comparisons in Bayesian Inference

Our two-level hierarchical observation model extracts
the dynamic connectivity between an observed signal and
a predictor time series. In order to apply this model to a
multivoxel dataset, we have treated each voxel indepen-
dently. Bayesian inference provides the posterior probabil-
ity of the effect given the observations for each voxel. In
our case, it provides the probability that a single voxel sig-
nal and the predictor time series are synchronous at a spe-
cific time point given the observations. This differs from
classical inference, where the P-value indicates the proba-
bility of obtaining the same (or larger) observation in the
absence of connectivity at a specific time point, and the
null hypothesis is rejected for extremely low P-values. A
distinct advantage of having the posterior probability is
that one can reject the alternative hypothesis, and conclude
that two signals are not synchronous at a given time point.
This is not possible with classical inference, where one can
only reject the null hypothesis. It follows that although the
significance of a connection at each time point is being
examined, there is no need to adjust for multiple compari-
sons. This is an important aspect for the examination of
dynamic connectivity, since the probability that a connec-
tion is significant at a given time point should not be
dependent on the length of the dataset.

Spatial information contained within the entire brain
volume could also be used to improve our model, by
using a spatiotemporal Bayesian model, in which voxel-
specific effects are constrained by responses of other vox-
els. The application of a spatiotemporal model with

empirical Bayes has been explained in detail by Friston
et al. [2002b].

The Effect of the Proportion of Time That

Nodes are Connected

As expected, static functional connectivity increased lin-
early with the proportion of time that two nodes were
functionally connected (Fig. 5A). Both the coefficient of
determination and the standard deviation of sliding-
window dynamic connectivity reached their maximum
value when the proportion of the time that nodes were
connected was about 0.5 (Fig. 5B,C). In these cases, func-
tional connections are highly variable, and static functional
connectivity is unable to model this variable relationship
between the nodes. However, the coefficient of determina-
tion is higher (more discriminative) for proportions near 0
and 1 and fewer connections are missed (i.e., fewer red
dots). Proportions near 0 and 1 represent nodes that are
non-connected or connected for the vast majority of the
time, respectively. In other words, both techniques per-
form equally well for highly variable connections, but our
technique is more sensitive at detecting variable connec-
tions for weak connections that become momentarily
strong and for strong connections that become momentari-
ly weak.

For our real datasets, the examination of the variability
maps revealed that the additional voxels identified as vari-
able by our technique exhibited low static functional con-
nectivity. Given the results presented in Figure 5B,C, this
finding supports a conclusion that our hierarchical obser-
vation modeling technique is more sensitive at classifying
briefly variable connections that are weak on average.

Discrimination Power and Reproducibility for

Real Datasets

When the maps of mean connectivity and variable con-
nectivity are visually inspected (Fig. 6A), little difference is
observed between hierarchical observation modeling and
sliding-window correlation analysis when the number of
voxels are equalized. This demonstrates that the two meth-
ods possess similar sensitivity for detecting connected and
variably connected regions. However, when we observe
the time course of connectivity of a single voxel, it is clear
that hierarchical observation modeling provides the ability
to determine the significance of a connection at any point
in time and with better discrimination power than sliding-
window correlation analysis (i.e., the separation between
significant and insignificant time courses is much greater
for hierarchical observation modeling). As discussed above
for simulation datasets, noise and artifacts give rise to
high-amplitude fluctuations in connectivity when using
sliding-window correlation analysis, making it difficult to
set a threshold and to test the statistical significance of a
functional connection at any given point in time. However,
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undesired components of the fMRI signal are isolated in
the first-level residual term in our hierarchical observation
model, permitting statistical testing at any point in time.

Although method accuracies cannot be compared since
the ground truth about the fluctuations in functional con-
nectivity is not known, we were able to compare method
reproducibility. As was shown in Figure 7, our hierarchical
observation modeling technique gives a more reproducible
estimation of the dynamic behavior of functional connec-
tivity within the gray matter for both high and low func-
tional connections. It is important to note that a low
functional connection in gray matter is also reproducible
with our technique. Results for sliding-window correlation
analysis of real datasets, however, are less reproducible, in
agreement with our simulation data, which demonstrated
that sliding-window correlation analysis has a higher rate
of false positives for the same detection power.

In summary, a two-level hierarchical observation model
permits statistical inference of dynamic functional connec-
tivity, which is lacking from current analysis approaches.
A two-level hierarchical observation model should have
important implications for studies aimed at determining
the fluctuating resting states of the human brain and stud-
ies investigating the variability of functional connections
as a result of neurological and neurovascular disease.
These types of studies are increasingly prominent in the
current literature, and the modeling framework presented
here will provide the means to make statistical inferences
of the dynamic nature of functional connections.
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