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Abstract

The last two decades of neuroscience research has produced a growing number of studies that 

suggest the various psychological phenomena are produced by predictive processes in the brain. 

When considered together, these studies form a coherent, neurobiologically-inspired research 

program for guiding psychological research about the mind and behavior. In this paper, we briefly 

consider the common assumptions and hypotheses that unify an emerging framework and discuss 

its ramifications, both for improving the replicability and robustness of psychological research and 

for innovating psychological theory by suggesting an alternative ontology of the human mind.
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How does a human mind emerge within a human brain as it navigates within an uncertain 

world while attempting to efficiently regulate its body within hard biological constraints? 

Recently, a powerful hypothesis has emerged that offers a possible answer: actions, and the 

mental events that accompany them, are thought to begin as top-down representations in the 

brain, fashioned from past experiences that are tested against the state of the world (see 

Table 1). This is not a new idea (Box 1), but increasingly, computationally-informed 

research in a variety of different psychological domains is testing this core hypothesis, 

largely along parallel trajectories. In this paper, we suggest their integration offers a counter-

intuitive but coherent, neurobiologically-plausible scientific paradigm that has implications 

for guiding psychological research about the mind and behavior. This family of research 

approaches is deeply rooted in various forms of predictive coding (e.g., Ballard & Rao, 

1999; Clark, 2013; Spratling, 2017), in which prediction signals, as representations 

constructed from past experiences, are compared with incoming sensory information to form 

prediction errors; prediction errors can be encoded and learned to update stored experience, 

which is then available for use in future predictions. Such approaches also include the 
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Bayesian brain approach (e.g., Vilares & Kording, 2011), which assumes that the brain 

performs (approximate) Bayesian inferences when computing predictions and prediction 

errors, belief propagation (e.g., Lochmann & Deneve, 2011), which proposes that 

predictions are anticipatory cause explanations for sensations that are mapped, inversely, to 

those sensations, and active inference (e.g., Friston, 2010; Friston et al., 2017), which 

hypothesizes that the brain’s model of how sensations are caused is constrained by the need 

to minimize the cost of prediction error (referred to as the free energy principle). In the 

discussion that follows, we first consider key elements of this overarching “predictive 

processing” research program, discussing several examples of its utility for psychological 

science. We then discuss its potential to improve the robustness and replicability of 

psychological research, as well as its potential to offer unintuitive but powerful hypotheses 

that explain cognitions, emotions, perceptions and actions as emerging from a smaller set of 

common, computational ingredients.

Predictive Processing: Some Core Hypotheses

A variety of research findings that seem counterintuitive within psychology’s traditional 

framework (Figure 1a) are plausibly explained by predictive processing accounts of the 

human mind and brain (Figure 1b), as discussed in a growing number of books and review 

papers (e.g., Barrett, 2009, 2017a, b; Clark, 2013, 2016; Friston et al., 2017; Howhy, 2013; 

Keller & Mrsic-Flogel, 2018; Koster-Hale & Saxe, 2013). This research program is united 

by a core computational hypothesis: a brain is continually running an internal model of an 

animal’s world. The model is generative, meaning past experiences can be recombined in 

novel ways as they are remembered. Unlike psychology’s traditional framework where 

perception and action are separate processes with one causing the other, the predictive 

processing approach suggests that perception and action are united by the brain’s internal 

model in its effort to efficiently navigate its body in the world. Efficient navigation entails 

predictively controlling the autonomic nervous system, the endocrine system and other 

internal systems to anticipate the needs of the body so as to meet those needs in the service 

of upcoming motor actions (Sterling, 2012; Sterling & Laughlin, 2015). As a consequence 

of these preparations, the model predicts, or infers, the sensory inputs that are expected to 

derive from those movements, from which perceptions emerge (e.g., Clark, 2013; Keller & 

Mrsic-Flogel, 2018).

Via these dynamics, ongoing neuronal activity in the brain -- that is, the brain’s predictions 

-- is thought to be a continuously changing filter through which sensory inputs are 

processed, influencing the relevance of those inputs, in effect deciding which sensory 

features warrant further processing. The hypothesis is not that people are deliberately 

remembering and deciding relevance, or that there is a specific mechanism for appraising 

self-relevance per se (as suggested by Ellsworth & Scherer, 2003), but that experiences and 

actions in the future are automatically conditioned on the past in an obligatory way that is 

experienced as effortless, without a sense of personal agency. Furthermore, the brain’s 

internal model is continuously refined based on comparisons with incoming sensory 

information from the body and the world; that is, the brain’s intrinsic neural activity can be 

modulated -- either confirmed or modified -- by comparison to sensory input about features 

in the world and in the body (Raichle, 2015). In effect, by registering deviations from its 
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internal model, the brain establishes whether and how to spend energy resources to act, and 

correspondingly, whether and how to invest those resources to learn any unanticipated 

sensory inputs to improve the internal model, thereby enhancing future predictions.

This emerging predictive processing research program offers innovative and important 

hypotheses for psychological science, many of which are scattered throughout the diverse 

literatures and growing number of summaries and reviews. Here, to illustrate the program’s 

scientific utility, we focus on just two hypotheses: (1) single mental events do not arise in a 

vacuum but are temporally dependent on prior events, and (2) energy regulation, plus its 

affective consequences, are core features of all psychological phenomena, not just those that 

are emotional or involve fight-or-flight.

Temporal dependence of mental events.

Psychologists and neuroscientists have known for some time that a brain processes 

information in a temporally-dependent fashion, such that responses to incoming sensory 

inputs are conditional on current activity. Many modern day experiments routinely highlight 

that perceptual processing on a current experimental trial is dependent on an internal state 

that carries over from a previous trial or is otherwise informed by the past (e.g., Fischer & 

Whitney 2014; Kok et al., 2017; St. John-Saaltink et al. 2016; Van de Cruys et al., 2017). 

Even at longer timescales, perceptual judgements can be influenced within a single session 

by experimentally induced predictions (Chalk, Seitz, & Series, 2010) or predictions that are 

acquired across a lifetime of experience (Hansen et al., 2006; Huang & Sekuler, 2010; 

Wallisch, 2017). This dependence on memory occurs even when experimental tasks do not 

require participants to explicitly ‘remember’ past events, suggesting that an internal model, 

derived from past experiences across multiple timescales, implicitly but meaningfully 

influenced how sensory information was processed in the present.

These studies are just a handful of examples that suggest specific hypotheses for 

understanding how perceptions are formed. One such hypothesis is that, in certain 

circumstances, perceptual reports will resemble a combination between a perceiver’s internal 

model (i.e., the prediction) and a stimulus, rather than just the stimulus per se. For example, 

a number of studies show that people are experientially blind when presented with an 

apparently random selection of black and white blobs (called Mooney images) that are in 

fact visually degraded versions of regular images. These images are then dramatically 

perceived as coherent images after exposure to the natural source images that was used to 

make them (e.g., Van de Cruys et al., 2017). Such findings suggest that perceptual 

experience (along with neural firing in low-level visual cortices) is sculpted by an internal 

model, after but not before exposure to the source images (congruent findings are observed 

in studies of Kanizsa illusions; see Kok et al., 2016). In an another example, participants 

were presented with a visible banana and when asked to change its color to gray, adjusted 

the color to be slightly bluer than gray, suggesting a strong yellow coloring for the internal 

model of the banana (the sensory-driven bluish-gray and the predicted yellow would be 

combined to generate the subjective judgement of gray; Hansen et al., 2006; for a similar 

finding, see Wallisch, 2017). Similarly, studies have sought to articulate the properties of 

internal models by experimentally inducing various predictions and exploring their 
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behavioral consequences when the predicted visual input is non-existent or degraded (Chalk, 

Seitz, & Series, 2010; Fan, Hutchinson, & Turk-Browne, 2016). Additional work further 

suggests that the features of predicted visual inputs can be represented in visual cortex 

(Hindy, Ng, & Turk-Browne, 2016). Consistent with these findings, perception is also 

facilitated when features of the internal model anticipate incoming stimulus features 

(creating perceptual fluency), as in a recent study using continuous flash suppression; on a 

given trial, a photograph of a face was quicker to break through visual suppression when 

portraying a predicted set of facial actions than when a face portrayed an unexpected facial 

movements and therefore contained unanticipated features (i.e., prediction errors; Chanes et 

al., 2018).

The role of energy regulation in mental events.

One important development within the emerging predictive processing framework comes 

from several recent papers that have integrated computational hypotheses about predictive 

dynamics with anatomical models of information flow in the brain, involving the cerebral 

cortex (e.g., Barrett, 2017a; Barrett & Simmons, 2015; Chanes & Barrett, 2016; Keller & 

Mrsic-Flogel, 2018), the hippocampus and medial temporal lobe (e.g., Gravina & Sederberg, 

2017), the cerebellum (Schlerf, Ivry & Diedrichsen, 2012 ), and the striatum along other 

subcortical regions that make up the brain’s dopaminergic reward system (Schultz, 2016). 

There are even models that attempt to understand predictive processing within the anatomy 

of individual cells (Freddolino & Tavazoie, 2012), such as neurons (Koren & Deneve, 2017). 

One ambitious attempt offers specific hypotheses about the flow of predictions and 

prediction error signals within the brain using architectural models of cortical connections 

(Barrett & Simmons, 2015; Chanes & Barrett, 2016; Friston et al., 2017; see Figure 2). As 

we will see, a central implication arising from this approach is that the brain’s internal 

model is centrally concerned with energy regulation, making energetics relevant for all 

mental events, not just those involving emotion or fight-and-flight responses. This 

hypothesis is consistent with the suggestion that predictive processing is ideal for 

minimizing free energy (Friston, 2010; Friston et al., 2017) or uncertainty, so that 

information in the brain is being represented as efficiently as possible.

The key structural hypothesis is that internal representations (prediction signals) and 

learning signals (prediction errors) are propagated by neurons arranged in a loose hierarchy 

(Barbas, 2015; Mesulam, 1998). Over thirty years of research has used anatomical features 

describing the arrangement and connectivity of neurons to predict information flow across 

the cortex (summarized in Barbas, 2015), which, when integrated into the predictive 

processing research program, suggests how a generative internal model, built and 

constrained by sensory events in the periphery, might be implemented in the brain and what 

consequence this implementation has for psychology. The main hypothesis is that neurons 

within cortical areas that are higher in this predictive hierarchy send prediction signals to 

neurons in regions that are lower in the hierarchy, with prediction errors flowing in the other 

direction (see Figure 2). An important implication of this hypothesis is that limbic cortices, 

such as portions of the cingulate cortex, orbitofrontal cortex, entorhinal cortex and anterior 

insula, along with the hippocampus, have anatomical features that place them at the top of 

this predictive architecture (Barbas, 2015), meaning that they are hypothesized to compute 
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the initial representations that propagate as inferential prediction signals throughout the 

brain (for a more detailed explanation, see Barrett & Simmons, 2015; Chanes & Barrett, 

2016).

At the same time, this limbic ensemble, via a series of connections to the hypothalamus and 

throughout the brainstem, are responsible for regulating the body’s global energy budget via 

control of the autonomic nervous system, the neuroendocrine and neuroimmune systems, 

and the other systems of the body’s internal milieu (for a review of structural connectivity 

and evidence of intrinsic functional connectivity, see Kleckner et al., 2017). They are 

thought to regulate the body by anticipating its needs and attempting to meet those needs 

before they arise, a process called allostasis (Ganzel et al., 2010; Sterling, 2012), placing 

efficient energy regulation and metabolism at the structural and functional core of the brain’s 

internal model that governs interactions with the outside world. Because learning new 

information also has an energy cost, energetics may also determine the value of prediction 

errors that update the model, as well (see Barrett et al., 2016). Limbic regions are still 

considered by many in psychology to be the most reactive parts of the brain, as home to 

emotions, and therefore in need of control. But in this predictive processing framework, 

strengthened by evidence from neuroanatomy, limbic cortices, plus the hippocampus, are the 

source of prediction signals, driving action and perception in an inferential way that is 

centrally concerned with energetics; not just during episodes of emotion, but during all 

mental events.

Several different lines of research are broadly consistent with the hypothesis that a brain’s 

predictive dynamics govern efficient energy regulation, such that metabolism and energetics 

are core concerns in the construction of action and mental events. The principles of neural 

design indicate that anticipatory regulation of the body is advantageous for its energy 

efficiency (Sterling & Laughlin, 2015), consistent with evidence that this efficiency is a 

major constraint on brain evolution (Fonseca-Azevedo & Herculano-Houzel, 2012). Also 

consistent with the energetics hypothesis is the finding that an animal’s internal state is a 

context for learning (i.e., the extent to which prediction errors update the brain’s internal 

model; Yu & Dayan, 2005) and memory (Bouton, in press). More direct evidence for the 

energetics hypothesis comes from long-range connections between limbic cortices such as 

the anterior cingulate cortex (ACC) and primary sensory regions such as primary visual 

cortex (e.g., V1; Zhang et al., 2014), as well as evidence that the ACC sends prediction 

signals to V1 (Leinweber et al., 2017). Even more dramatically, these prediction signals 

appear to be the source of neural firing in V1 after retinal lesions and subsequent visual 

deprivation (Keck et al., 2013). Such evidence is consistent with other findings that a 

substantial fraction of activity in the visual cortex is not related to visual input (see 

references in Keck et al., 2013), but instead may be due to prediction signals (Liang et al., 

2013), an interpretation that is consistent with the observation that the majority of synapses 

in primary visual cortex originate in top-down sources (e.g., discussed in Sillito & Jones, 

2002).

Furthermore, both structural and functional connectivity data provide additional evidence 

that limbic cortices are contained in two, core intrinsic brain networks -- the default mode 

and salience networks -- that are implicated various psychological phenomena including 
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memory, perception, attention, social affiliation, pain, empathy, reward, addiction, stress, 

emotion, decision-making, among others, (reviewed in Kleckner et al., 2017). These findings 

suggest that allostasis, in the service of efficient energy regulation, is a fundamental feature 

of the brain’s internal model as supported by these two networks. Such findings suggest a 

provocative hypothesis for future research: whatever other psychological functions these 

networks are performing during any given brain state, they are simultaneously maintaining 

or attempting to restore allostasis.

Practical Implications: The Robustness and Replicability of Psychological 

Research

Both hypotheses we discussed -- the temporal dependence of mental events and the 

importance of energetics in mental life -- have important implications for the robustness and 

replicability of psychological studies. Some of these observations have been made before, 

but a predictive processing framework unifies them into a common account and explains 

why, in an a priori sense, they should matter. The approach also suggests points for 

enhancing robustness and replicability when designing future experiments.

Temporal dependence of mental events.

The predictive processing framework suggests that the brain is constantly attempting to 

impose predictability over multiple time scales to maintain allostasis and maximize 

efficiency. Interestingly, this process is at odds with traditional laboratory experiments that 

are designed to probe and understand human minds using unpredictable sequences of events, 

potentially limiting the generalizability of stimulus-response experiments, particularly when 

moving from the laboratory to the real world. That is, traditional laboratory experiments are 

typically constructed as sequences of stimuli (provided by the experimenter), whose order is 

randomized to minimize the extent to which stimulus-response pairings are conditional on 

one another. This allows adjacent trials to be treated as independent, making them suitable 

for aggregation and traditional statistical analysis. In principle, many scientists would not 

defend the assumption that the mind works in similarly independent and discrete chunks in 

time. In practice, however, a participant’s response on any given trial is not simply a 

function of the stimulus presented: it is some combination of the participant’s internal model 

and that stimulus, and both should be modeled to maximize the robustness of scientific 

findings. Indeed, recent research has highlighted the utility of an experimental framework 

which moves beyond discrete individual events towards attempting to understand brain and 

behavior in terms of continuous, temporally-dependent processes (Huk et al., 2018).

The role of energy regulation in mental events.

Psychological science routinely makes reference to “affective stimuli” and “rewards” or 

“threats” as if such qualities are embedded in objects and events in the world rather than 

features that arise from transactions between a person’s current state and those objects and 

events. This is more than a trivial distinction: the features of an experimental stimulus that 

are deemed salient by an experimenter may not be experienced thus by a participant, and 

other features that are deemed psychologically impotent by an experimenter may be salient 

to participants (or to certain participants). If the brain runs an internal model that, at its core, 
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is concerned with efficient energy regulation, and if the processing of stimuli are conditioned 

on that model, then the state of a person’s energy balance, and all the factors that can 

influence that balance (such as amount of sleep, ingestion of caffeine, sugar, or nicotine, the 

degree of hydration, etc.) can influence how the brain processes information and, 

correspondingly, task performance. For example, people perform better on a variety of 

cognitive tasks when they are tested at an optimal moment in their circadian cycle versus at 

non-optimal times (Yoon et al., in press). If you schedule participants at a time of day that 

takes their circadian rhythm into account, then you will reduce what appears to be random 

variation which should increase replicability.

Even if any individual source of energetic influence is small, the impact on the robustness 

and replicability can be substantial, particularly when sample sizes are as small as they 

usually are in psychology studies (Benjamin et al., 2018). These factors, when not measured, 

can add variance in an experiment that will appear as noise in the measurements, increasing 

the likelihood of Type I and Type II errors. That is, only the most potent effects will 

replicate, compounding the impact of any Type II errors that are lurking in the data. 

Statistically controlling for such influences may remove meaningful variance that is better 

modeled and examined, again enhancing the likelihood of Type II errors. Additionally, when 

not controlling for such sources of variance, Type I errors may be inflated. When sample 

sizes are low, statistical power suffers, and any observed effect may be proportionally driven 

more by these factors (because as power is reduced, so does the proportion of any observed 

effect that is due to reproducible variance). Thus, observed effects will be less likely to 

replicate as a consequence (Szucs & Ioannidis, 2017).

Conceptual Implications For Psychological Theory

The predictive processing framework may be a principled approach for unifying 

psychological phenomena into a common explanatory framework with a shared vocabulary 

for theory building, offering several novel conceptual implications. One implication is that 

phenomena that we think of as separate processes arising from separate brain systems, such 

as automatic and controlled processing, may actually be better thought of as different modes 

of whole-brain function (prediction-based and prediction error-based).

With these observations in mind, the ubiquity of dual-process theories in psychology (e.g., 

Evans & Stanovich, 2013) may reflect a single underlying distinction between modes of 

prediction and prediction error processing in the brain (for a recent critique of dual-process 

theories, see Melnikoff & Bargh, 2018). For example, in the context of controlled vs. 

automatic processing, on a given experimental trial, a participant’s brain will launch a set of 

prediction signals, which scientists interpret as evidence for a rapid, automatic and effortless 

process. If the stimulus is unexpected (such as when trials are randomized so stimuli remain 

unpredicted) or when a non-prepotent response is required, then participants will appear to 

correct the automatic process with a more deliberate, controlled and effortful process. 

Learning and practice effects during the course of an experiment might be understood as the 

consequence of a brain successfully updating its internal model, just as inhibiting a 

prepotent response may be adjusting the action plan by updating the model with prediction 

error. Participants thus appear to behave based on rapid, automatic responses (predictions) 
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followed by a more effortful choice that corrects it (updating with prediction error). What 

appears to be separate automatic and controlled processes in the mind that battle for control 

of behavior may actually be different modes of operation for the brain: one emphasizing a 

participant’s internal model (i.e., prediction), and the other emphasizing correction and 

learning (i.e., prediction error). This is consistent with recent evidence that the human brain 

is constantly switching between “internal” and “external” modes of function (Honey, 

Newman & Shapiro, 2017).

One consequence of this two-mode perspective is that traditional experiments, designed as 

independent sequences of stimulus and response, effectively sever the contingencies between 

one moment and the next. That is, the brain’s predictions will almost certainly be wrong on 

many trials, forcing it into a mode that favors encoding and processing prediction error (e.g. 

driven by the stimuli), when in the real world the dynamics may frequently favor prediction 

(i.e., people with neurotypical brains aren’t continually in a high arousal state, flush with 

norepinephrine, focusing on encoding and learning prediction error). Thus, standard, 

randomized designs encourage oversampling of what might be an unnatural state of error 

processing. Instead, psychological causation might be better measured and modeled as 

temporally extended, probabilistic sequences of brain states (Barrett, 2009). Indeed, a 

relatively unexplored, but potentially rich line of research would be to explore traditional 

psychological phenomena in predictable versus unpredictable experimental contexts (e.g. 

repeating versus randomly generated sequences of trials).

In addition, a predictive processing framework also has the conceptual implication that 

certain psychological phenomena, such as memory, are actually ingredients in all 

psychological events, even those that do not appear to strictly involve memory. For example, 

attention has long been operationalized in terms of its influence on perceptual processing, 

however a growing amount of evidence suggests that attention appears to be meaningfully 

guided by what you’ve encountered in the past (e.g., Hutchinson & Turk-Browne, 2012). 

What’s more, neural signals in brain regions historically associated with memory, such as 

the hippocampus, are also systematically observed during tasks of perception and attention 

(Aly, Ranganath, & Yonelinas, 2013; Aly & Turk-Browne, 2016). Predictions based on past 

experience influence relatively low-level perceptual processes and activity in primary visual 

cortex (den Ouden, Kok, & de Lange, 2012; O’Callaghan et al., 2017; Rao & Ballard, 1999). 

Here, we suggest that such processes are pervasive and similar dynamics take place across a 

distributed cortical hierarchy where the interplay between an internal model and feedback 

from the external world, as well as the interoceptive state of the body, guide learning at 

multiple timescales (e.g., Honey, Newman, and Schapiro, 2017).

The prediction framework also leads us to speculate that affect is part of every psychological 

phenomenon, even those that are not explicitly emotional. If allostasis and energetics are key 

features of the brain’s internal model, then so too are the predicted sensory consequences of 

those processes, referred to as interoception (Craig, 2014). Interoception is usually 

experienced in a low dimensional form as the affective properties of valence and arousal 

(Barrett & Bliss-Moreau, 2009), suggesting that all psychological events exist in affective 

space. Valence and arousal might be better thought of as properties of consciousness, rather 

than properties of emotional episodes per se, as suggested by a number of philosophers. 
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Consistent with this speculation, research shows that all words have affective connotations 

(Osgood, May & Mirron, 1975) and even putatively “neutral” objects are experienced with 

subtle affective features (Lebrecht et al., 2012). This insight, if correct, calls into question all 

hypotheses that cast cognition and emotion in a battle for the control of behavior, or as two 

separate processes that interact to produce behavior, and suggests that the concept of 

“rationality” must be redefined as something other than the absence of affect.

When taken together, the implications of these conceptual considerations suggest several 

highly speculative ideas. First, many phenomena that go by different psychological names 

and up to now have been assumed to arise from distinct processes -- such as memory, 

perception, emotion, and so on -- may actually be better understood as arising from a smaller 

set of common, computational building blocks, with prediction-related processing at the 

core. Speculating even further, predictive optimization may even be implemented at the level 

of species-wide neural development. Recently, it has been proposed that many brains within 

the animal kingdom are structured to function via prediction and correction (Sterling & 

Laughlin, 2015). Consistent with the notion of ‘experience expectant’ processes (i.e. 

information storage in anticipation of particular life periods of experience rather than in 

response to them; Greenough, Black, & Wallace, 1987), efficiency based on temporal 

regularities in the environment might be even built into the evolution of the brain itself.

Conclusions

The scientific story of predictive processing is still evolving, but many believe this approach 

has ignited a paradigm shift in neuroscience. In this paper, we have proposed that this 

paradigm shift has important implications for psychological science, both in theory and in 

practice. The mind is a computational moment in a brain that creates a temporally 

continuous trajectory of neural activity, tasked with regulating a body in the world. 

Appreciating this perspective may improve the quality of our scientific findings and also 

offer opportunities for new discoveries about the nature of the human mind.
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Box 1: Standing on the Shoulders of Giants: The Rich History of Internal 
Models

Since psychology’s emergence as an empirical science in the mid-1800’s, research has 

largely relied on a stimulus (S) → organism (O) → response (R) model of the mind 

(Danziger, 1997). Yet this model has consistently been questioned through the ages 

(Barrett, 2009). Kant (1781) proposed that we experience the world through a web of our 

own concepts, as did the 7th century Buddhist philosopher Dharmakīrti and the 11th 

century Islamic philosopher Ibn al-Haytham. At the dawn of psychological science, 

Helmholtz’s idea of unconscious inference (1860) and Dewey’s challenge of the reflex 

arc (1896) criticism of the reflex arc cautioned against a SOR model of the mind. 

Decades later, Craik’s (1943) and Johnson-Laird’s (1983) internal models, and Tolman’s 

cognitive maps (1948) all proposed, in different ways, that the internal mental 

representations such as beliefs and knowledge influence subsequent perception and 

action at least as much, if not more than, the other way around. Early studies on attention 

posited that the degree to which a stimulus elicited an orienting response was related to 

how different it was from a “nervous model” of that stimulus based on past experience 

(Sokolov 1963). The hypothesis that internal representations are hypotheses that play a 

key role in perception and action formed the basis of the cognitive revolution (e.g., 

Gregory, 1980; Neisser, 1967) and within social psychology, implicit attitudes, 

stereotyping and prejudice are predicated on the idea that information inside the head 

shapes experience of and action in the world. A major benefit of predictive processing-

related accounts of psychological phenomena is that they are usually embedded within an 

anatomical and/or computational framework, allowing, for the first time, a more direct 

assessment of their common (or distinct) implementations and consequences.
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Figure 1. Psychology’s representational framework compared to the emerging predictive 
processing framework.
Since emerging in the mid-1800s, psychological science has been guided by what is called a 

representational framework (Keller & Mrsic-Flogel, 2018), where sensory neurons are 

thought to create a representation of features in the world (i.e., the perception of a stimulus) 

which is then passed, like a baton in a relay race, to other parts of the brain which appraise it 

(i.e., cognition and/or emotion) and then respond. In the representational framework (A), 

internal representations and their outputs – the mental events you experience (thoughts, 

feelings) and the actions you take (behaviors) – are the result of sensory inputs (i.e., stimuli) 
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from the world (purple arrows). Past experiences modulate these stimulus-response links 

(green arrows). The emerging predictive processing research paradigm (depicted in B) offers 

a counterintuitive correction, turning the implied causality on its head. Your experience of 

the world and your action in that world derive from an active, constructive process driven by 

your brain’s internal model. Your brain starts with current conditions and “remembers” 

trajectories of prior experiences, projecting itself forward in time, assembling multiple 

competing prediction signals that prepare the body to move (green arrows; e.g., what 

muscles did I move the last time I was in a situation that is similar to this one?). Copies of 

these motor commands are thought to modulate the ongoing firing of sensory neurons, 

inferring the sensory consequences of those movements, thereby simulating some future 

state of the body and the world (green arrows; e.g., the last time I was in a similar situation 

and I prepared to move my body in a similar way, what did I see next?). If a brain’s internal 

model are hypotheses about the future state of things, then incoming sensory inputs are the 

data used to test those hypotheses (purple arrows). The key structural hypothesis is that 

internal representations (prediction signals) and learning signals (prediction errors) are 

propagated by neurons arranged in a loose hierarchy (discussed in more detail in Figure 2). 

It is hypothesized that, when there is a mismatch between a prediction signal at a given level 

in the hierarchy and information being passed from a lower level, the neurons in question 

have the opportunity to change their pattern of firing to capture the unexpected input; this is 

how prediction error is thought to propagate up the processing hierarchy to modify the 

internal model in the moment and to optimize future predictions. When there is no 

mismatch, the prediction signal at a given level in the hierarchy is already firing in a way to 

represent incoming information. Once prediction errors are sufficiently minimized, these 

“inferences” become the brain’s causal account of what caused the sensations in the first 

place, effectively categorizing the sensations so that they are meaningful.
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Figure 2. Predictive processing from computation to whole-brain dynamics.
(A) Schematic depiction of the original predictive coding model (Rao & Ballard, 1999). 

Sensory input drives feedforward error signals which are processed by predictive estimators 

(PE). PE modules consist of neurons whose activity (r) is compared to top-down activity 

from higher levels (i.e., prediction; rtd) and the difference of which is propagated forward to 

the next level as error (r-rtd). (B) Flow of prediction and prediction error signals between 

cortical columns based on cortical lamination gradients. Using anterograde and retrograde 

tracers, Barbas and colleagues showed that the relative difference in laminar structure 

between two communicating cortical columns predicts whether the information flow is a 

feedback (prediction) or a feedforward (prediction error) signal. Prediction signals (in green) 

originate in the deep layers (layers V and VI) of less differentiated cortical areas (such as 

agranular cortex with undifferentiated layers II and III and without a layer IV, as depicted in 

the red column) and terminate in superficial layers of areas with a more developed laminar 

structure (such as dysgranular cortices with differentiated layers II and III and a rudimentary 

layer IV or granular cortices with differentiated layers II and III and a well-defined layer IV, 

depicted in the yellow column). Prediction error signals (in purple) flow in the other 

direction, originating in the superficial layers (II–III) with more laminar differentiation and 

terminating in middle deep layers (V–VI) of areas with less differentiated laminar 

architecture. This structural model successfully predicts the flow of information in frontal, 

temporal, and parietal cortices in experiments with monkeys and cats see Barbas, 2015, for a 

review). (C) Whole-brain estimate of flow of prediction and prediction error signals. Based 

on whole-brain cortical granularity data (Triarhou, 2008; von Economo, 2009). Predictions 

flow from cortical regions with less laminar differentiation to regions with increasing 

laminar differentiation (e.g., from limbic cortices to motor, interoceptive, and primary 

somatosensory, auditory and visual cortices). Many of the anatomical and computational 

details are still under investigation, such as whether each individual neuron is capable of 

coding for internal representations (i.e., predictions) and comparing those predictions to 

incoming inputs from lower in the hierarchy (i.e., prediction errors) or whether predictions 

and prediction errors are coded by different neurons in the cortex.
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Table 1

Examples of Theory Building and Research Guided by a Predictive Processing Framework

Psychological Domain Example Reference

Sensation and Perception: Vision Rao & Ballard, 1999

Sensation and Perception: Audition Carbajal & Malmierca, 2018

Sensation and Perception: Somatosensory Adams et al, 2013

Sensation and Perception: Olfaction Zelano et al. 2011

Sensation and Perception: Taste Gardner & Fontanini, 2014

Sensation and Perception: Interoception Barrett & Simmons, 2015

Memory Hindy, Ng, & Turk-Browne, 2016

Language Kuperberg & Jaeger, 2016

Attention Feldman & Friston, 2010

Emotion Barrett, 2017a

Mood Clark, Watson, & Friston, 2018

Reward Schultz, 2016

Social Cognition Tamir & Thornton, 2018

Motor Action Shadmehr, Smith, & Krakauer, 2010

Depression Barrett, Quigley & Hamilton, 2016

The Self Seth & Tsakiris, 2018

Words as Context Lupyan & Clark, 2015
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