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Music ranks among the greatest human pleasures. It consistently engages the reward system, and converging evidence implies it exploits
predictions to do so. Both prediction confirmations and errors are essential for understanding one’s environment, and music offers many
of each as it manipulates interacting patterns across multiple timescales. Learning models suggest that a balance of these outcomes (i.e.,
intermediate complexity) optimizes the reduction of uncertainty to rewarding and pleasurable effect. Yet evidence of a similar pattern in
music is mixed, hampered by arbitrary measures of complexity. In the present studies, we applied a well-validated information-theoretic
model of auditory expectation to systematically measure two key aspects of musical complexity: predictability (operationalized as
information content [IC]), and uncertainty (entropy). In Study 1, we evaluated how these properties affect musical preferences in 43 male
and female participants; in Study 2, we replicated Study 1 in an independent sample of 27 people and assessed the contribution of veridical
predictability by presenting the same stimuli seven times. Both studies revealed significant quadratic effects of IC and entropy on liking
that outperformed linear effects, indicating reliable preferences for music of intermediate complexity. An interaction between IC and
entropy further suggested preferences for more predictability during more uncertain contexts, which would facilitate uncertainty reduc-
tion. Repeating stimuli decreased liking ratings but did not disrupt the preference for intermediate complexity. Together, these findings
support long-hypothesized optimal zones of predictability and uncertainty in musical pleasure with formal modeling, relating the
pleasure of music listening to the intrinsic reward of learning.
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Abstract pleasures, such as music, claim much of our time, energy, and money despite lacking any clear adaptive benefits like food
or shelter. Yet as music manipulates patterns of melody, rhythm, and more, it proficiently exploits our expectations. Given the
importance of anticipating and adapting to our ever-changing environments, making and evaluating uncertain predictions can
have strong emotional effects. Accordingly, we present evidence that listeners consistently prefer music of intermediate predictive
complexity, and that preferences shift toward expected musical outcomes in more uncertain contexts. These results are consistent
with theories that emphasize the intrinsic reward of learning, both by updating inaccurate predictions and validating accurate
ones, which is optimal in environments that present manageable predictive challenges (i.e., reducible uncertainty). j

ignificance Statement

have long stumped scholars (Darwin, 1871). Music is particularly
adept at establishing and manipulating patterns of melody,
rhythm, and other features, and is often most pleasurable after
sudden and dramatic changes (Sloboda, 1991; Grewe et al., 2007).
Activity in the NAg, a central node of the brain’s reward system,

Introduction
Although rewards like food or socializing provide clear adaptive
benefits, abstract pleasures with esthetic value, such as music,
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reflects how much a listener enjoys a musical stimulus overall
(Salimpooretal., 2011, 2013) and increases after pleasurable mu-
sical surprises (Shany et al., 2019), suggesting that much of mu-
sic’s power stems from the predictions it engenders and exploits
(Meyer, 1956; Huron, 2006).

Yet surprises are often unpleasant. A study based on a natu-
ralistic concert found that listeners responded negatively to the
most surprising musical phrases, most of which occurred during
a complex and stylistically unfamiliar piece (Egermann et al.,
2013). Listeners also tend to dislike surprises during short,
experimenter-controlled stimuli, where context is lacking (Koel-
scheetal.,2008; Brattico et al., 2010), but seem most likely to enjoy
them in naturalistic and familiar music (Sloboda, 1991; Grewe et
al., 2007). These findings imply that musical events are pleasur-
able when the surrounding musical context allows for relatively
certain predictions, which may be related to evidence of caudate
dopamine transmission preceding moments of peak musical
pleasure (Salimpoor et al., 2011).

Surprises are generally important feedback signals that guide
belief updates and adaptive behavior in ever-changing environ-
ments (den Ouden et al., 2010; Friston, 2010). Inevitably, com-
pletely predictable events preclude learning because they offer no
new information, but unforeseeable, seemingly random surprises
are equally unhelpful because they’re indecipherable. An inter-
mediate degree of predictability (i.e., a manageable challenge)
therefore enhances learning, piquing curiosity and attention in
the process (Kang et al., 2009; Abuhamdeh and Csikszentmihalyi,
2012a,b; Gottlieb et al., 2013; Kidd et al., 2014; Baranes et al.,
2015; Daddaoua et al., 2016; Oudeyer et al., 2016; Brydevall et al.,
2018). Learning engages the dopaminergic reward system, such
as other adaptive benefits, often making manageable challenges
highly motivational and pleasurable (Bromberg-Martin and
Hikosaka, 2009; Kang et al., 2009; Abuhamdeh and Csikszentmi-
halyi, 2012a,b; Jepma et al., 2012; Ripollés et al., 2014; Brydevall et
al., 2018). Could the manageable challenge of foreseeable musical
surprises help explain musical pleasure?

Berlyne described the appeal of manageable challenges with
an inverted U-shaped “Wundt” effect, named for the scholar who
first linked pleasure to intermediate levels of arousal (Wundt,
1874; Berlyne, 1974). Across esthetic domains, Berlyne proposed
that intermediate complexity—concerning features such as pre-
dictability, surprise, or uncertainty—optimizes curiosity and lik-
ing. Yet evidence for musical Wundt effects is mixed: a review of
57 studies found them in only 15 (Chmiel and Schubert, 2017),
whereas many others suggested greater preferences for prototyp-
ical or familiar music that was subjectively simpler (Zajonc, 1968;
Hargreaves et al., 2005). Although these 15 studies provide some
support for Wundt effects, the evidence is weak because of their
different and arbitrary measures of complexity; a critical test of
this effect requires both well-defined independent variables and
heterogeneous sampling of them to identify potential curvilinear
effects.

We designed the present two studies to address these prob-
lems. First, we formally measure the unpredictability and uncer-
tainty of unaltered real-world music to encapsulate these aspects
of musical complexity and relate them to pleasure. Using
information-theoretic modeling (Pearce, 2005), we express un-
predictability as the negative log probability (or information con-
tent [IC]) of a musical event given the preceding context and the
prior long-term exposure of the model, and the uncertainty of the
prediction as the entropy of the corresponding probability distri-
bution. Second, we ensure quantifiably wide ranges of these
variables to test the Wundt effect rigorously. In Study 1, we in-
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vestigate how musical unpredictability and uncertainty affect lik-
ing and the musical features that contribute to them. In Study 2,
we replicate the key findings of Study 1 and explore the additional
influence of veridical familiarity.

Study 1

Materials and Methods

Participants and procedure. Forty-four healthy volunteers with normal
hearing (25 females, mean age + SD = 21.56 * 3.31 years) participated
in this experiment. Since our model of the information-theoretic prop-
erties of the stimuli is based on Western tonal folk and classical music, we
excluded 3 additional volunteers who listed atonal or jazz music, which
frequently deviate from the structures of folk and classical music, among
their five favorite genres in an open-ended screening questionnaire dur-
ing recruitment.

To learn more about the participants’ individual backgrounds and
differences, we asked them to complete three questionnaires after pro-
viding informed consent. The Goldsmiths Musical Sophistication Index
(Gold-MSI) measured their abilities to engage with music, with ques-
tions about their musical recognition, discernment, education, and more
(Miillensiefen et al., 2014). It has five subscales, distinguishing active
engagement, perceptual abilities, musical training, emotions, and singing
abilities. The Barcelona Music Reward Questionnaire (BMRQ) scored
the degree to which the participants associate music with reward, focus-
ing on music seeking, emotion evocation, mood regulation, sensory-
motor, and social reward (Mas-Herrero et al., 2013). Finally, the Big Five
Inventory assessed their personality traits for extraversion, neuroticism,
openness, agreeableness, and conscientiousness (Caprara et al., 1993),
although these results are not reported here.

After the questionnaires, participants listened to each stimulus over
professional monitor headphones (Audio-Technica), preset to a com-
fortable volume, via a computer running Presentation software (Neu-
robehavioral Systems) while a fixation cross appeared on the screen.
Afterward, they rated how much they liked it on a Likert scale from 1
(very little) to 7 (very much), and indicated whether they recognized the
stimulus (not necessarily by name, but by the music) so that we could
exclude these trials from our analyses to avoid confounding music-
syntactic predictability with effects of familiarity. Since 1 participant
rated every single trial as familiar, we excluded this participant from all
analyses. Another participant withdrew from the study approximately
halfway through, for reasons unexplained, but the existing data were
maintained. The resulting sample of 43 volunteers recognized the music
in 431 (18.44%) of 2337 trials, with a mean = SD of 10.02 * 7.81 per
participant; these familiar trials were therefore excluded, leaving 1906
trials for analysis. Pairwise correlations showed that stimuli with lower
mean duration-weighted IC (mDW-IC; see below) were more likely to be
rated as familiar (Pearson’s r(55y = —0.28, p = 0.04). There was no
significant relationship between exclusions and mean duration-weighted
entropy (mDW-Ent) (Pearson’s r(55) = —0.11, p = 0.43).

Before the listening task, participants experienced two practice trials
using stimuli that did not occur during the experiment for familiariza-
tion and to ensure that they understood the instructions. To avoid an-
choring effects, we sorted the stimuli into five clusters of mDW-IC (see
below) using k-means clustering, and randomly selected one stimulus
from each cluster to constitute the first five stimuli of the experiment.
This procedure allowed the participants to acclimate to the range of
mDW-ICs present in the experiment. After these five stimuli, the re-
maining 50 occurred in a random and participant-specific order.

To ensure the participants’ attention, we included an orthogonal task
in which they had to press the “Enter” key as soon as they heard the
timbre of a stimulus change. A practice “attention trial” warned the
participants about this task and allowed them to practice; afterward, they
occurred pseudo-randomly every 6 = 2 trials during the experiment. The
participants responded to every timbre change within the 2 s allotted,
with a mean * SD reaction time of 0.82 * 0.23 s, indicating that they
were attentive throughout the task. Moreover, linear regression models
indicated that these reaction times did not significantly vary with musical
sophistication (F; 4, = 1.01, p = 0.32), musical reward sensitivity scores
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(F1,41y = 0.25, p = 0.62), or any of their subscales (all other p values >
0.40), suggesting that these factors did not affect task attention.

Stimuli. All 55 stimuli, plus the two for the rating practice trials and the
nine for the “attention trials,” were excerpts of real, precomposed music
collected from public Musical Instrument Digital Interface databases.
Most stimuli came from the following websites: www.osk.3web.ne.jp/
~kasumitu/eng.htm and www.classicalarchives.com/midi.html. We
opted for real music instead of custom-built stimuli to more faithfully
represent naturalistic listening experiences and the greater range of sub-
jective responses it engenders.

To this same end, the stimuli contained examples of several musical
genres from a wide range of time periods, composers, tonalities, and
meters (Table 1). We used only monophonic stimuli (i.e., containing
only one tone at a time) to avoid the confounding effects of harmony
(i.e., chordal relationships) and polyphony (i.e., multiple voices), and we
reduced other confounds by normalizing their peak amplitudes to the
same level with Audacity (19992018 Audacity Team), limiting the stim-
ulito 30 = 2 5, and synthesizing the Musical Instrument Digital Interface
stimuli into Waveform Audio File (WAV) format. We also standardized
the tempo of each stimulus to either 96, 120, or 144 bpm, whichever
sounded most musically appropriate, with MuseScore (2018 MuseScore
BVPA). These considerations constrained our stimuli to excerpts that
were either solo pieces or solo melodic lines from polyphonic pieces.

We converted these well-controlled stimuli into naturalistic-sounding
WAV files with the Kontakt 5 synthesizer (2018 Native Instruments)
within the Ableton Live 9 digital audio workstation (2018 Ableton). We
generated each excerpt with a flute digital synthesizer (except for the
“attention trials” stimuli, which switched from flute to piano timbre
during the excerpt), digitally filtered them to resemble the acoustics of a
music studio, and randomly shifted the note onsets on the order of
milliseconds using Ableton’s Groove Pool with 25% randomization for
“humanization” (i.e., to prevent the stimuli from sounding mechanistic
and unnatural).

Information-theoretic modeling. We used the Information Dynamics of
Music model (IDyOM) (Pearce, 2005, 2018) to characterize both the
unpredictability and uncertainty of our stimuli. Across many different
experimental paradigms and musical samples, IDyOM has proven to
provide reliable computational measures of pitch unpredictability/sur-
prise (as represented by IC) and uncertainty (as represented by entropy)
in Western listeners (Pearce, 2005; Pearce and Wiggins, 2006; Pearce et
al., 2010; Omigie et al., 2012; Egermann et al., 2013; Hansen and Pearce,
2014; Sauvé et al., 2018), significantly outperforming similar models and
explaining up to 83% of the variance in listeners’ pitch expectations
(Pearce, 2005, 2018; Pearce et al., 2010; Hansen and Pearce, 2014).
IDyOM has also successfully predicted several electrophysiological mea-
sures of expectancy violation (Carrus et al., 2013; Omigie et al., 2013),
and even psychophysiological and subjective emotional responses
(Egermann et al., 2013; Sauvé et al., 2018).

Before modeling our stimuli, we trained IDyOM on a large corpus of
Western tonal music, including 152 Canadian folk songs (Creighton,
1966), 566 German folk songs from the Essen folk song collection (Schaf-
frath, 1992), and 185 chorale melodies harmonized by Bach (Riemensch-
neider, 1941) as in other applications of IDyOM (e.g., Pearce, 2005;
Pearce and Wiggins, 2006; Egermann et al., 2013; Hansen and Pearce,
2014). This training set allowed IDyOM to learn the statistical structure
of Western tonal music via variable-order Markov modeling (Pearce,
2005), emulating the implicit statistical learning that human listeners are
also thought to undertake during long-term enculturation in a musical
style (for review, see Pearce, 2018). The trained model therefore repre-
sents the musical syntax that listeners learn over years of exposure to
Western music (Fig. 1).

Since listeners further learn and update their expectations online while
listening to individual pieces of music (Castellano et al., 1984; Kessler et
al., 1984; Oram and Cuddy, 1995; Loui et al., 2010), IDyOM also dynam-
ically learns the statistical structure of each stimulus in its test set (for
review, see Pearce, 2018). The models we used here were configured to
integrate these respective “long-term” and “short-term” probabilities,
weighting each according to its entropy such that the higher-entropy
model (i.e., that with a flatter probability distribution, reflecting greater

J. Neurosci., November 20, 2019 - 39(47):9397-9409 + 9399

predictive uncertainty) is discounted relative to the lower-entropy
model. Our models therefore measured the IC of each note (as its nega-
tive log probability to the base 2) given prior learning of the structure of
the training corpus and the preceding musical context within the piece at
hand. IC indicates the unpredictability of a note and therefore reflects the
degree to which a stored memory of that event may be compressed by
discarding redundancies; compression and redundancy reduction are
thought to contribute to psychological processes such as pattern recog-
nition and similarity perception (Chater and Vitdnyi, 2003). The models
similarly measure the entropy of each predictive context (as the ex-
pected value of the IC across all possible continuations) based on
learning of long- and short-term structure, yielding higher values
when there were many equally unlikely continuations (i.e., the con-
text is uncertain/unstable) and lower values when there were only a
few very likely continuations.

Note-by-note IC and entropy can be computed using different musical
features as input to IDyOM: one could model the probability of the next
pitch, registral direction, time, inter-onset interval ratio, etc., and one
could model these “viewpoints” independently or simultaneously. Mo-
tivated by both music theory and empirical findings that illustrate the
role of representing and predicting rhythmic information (e.g., Clarke,
2005; Lumaca et al., 2019) and pitch information such as pitch intervals
and scale degrees (Dowling, 1978; Pearce and Miillensiefen, 2017) in
perceiving and responding to music, we selected four alternative view-
points to use with IDyOM: inter-onset interval ratio, chromatic pitch,
chromatic pitch interval, and chromatic scale degree.

We then generated seven IDyOM configurations from these view-
points. Three of these configurations used the sole timing viewpoint
(inter-onset interval ratio) to compute the probability of a note’s onset
while one of the three pitch-based viewpoints (chromatic pitch, chro-
matic pitch interval, or chromatic scale degree) computed the pitch
probability before combining these as the joint probability of the note.
Three other configurations computed note probabilities in the same way
but predicted both onset time and pitch using a single viewpoint that
linked the respective timing and pitch viewpoints. In the seventh imple-
mentation, we combined the timing viewpoint with the linked chromatic
pitch interval and chromatic scale degree viewpoints, based on the
known role of pitch intervals and scale degrees, and their relationship, in
music perception (Dowling, 1978; Krumhansl, 1990; Pearce and Miillen-
siefen, 2017). We also considered versions of these models that weighted
the IC of each note by its duration as an indicator of salience, as in
Krumhansl (1990).

We selected between these models by comparing the IC output of each
to the unexpectedness ratings of an independent sample of 24 partici-
pants (17 females and 7 males, mean age = SD = 22.08 * 2.70 years,
mean musical experience = SD = 2.89 * 4.52 years) who did not par-
ticipate in the present studies. These listeners were all neurologically
healthy and with normal hearing, and they rated 52 of the 57 possible
stimuli (Table 1) in real time, a few minutes after providing informed
consent and hearing them once each (unpublished data). Comparisons
used linear mixed-effects models with random slopes and intercepts for
each subject to separately fit the fixed effects of either mean (averaged
across each stimulus) IC or mDW-IC. We also examined the effects of
mean entropy as a control condition to ensure that the chosen model
would be able to distinguish between mean IC (i.e., the unpredictability
or unexpectedness of a melody; see above) and the related but discern-
able phenomenon of mean entropy, which is more directly associated
with the uncertainty or instability of a melody than its unexpectedness
(Pearce, 2005; Hansen and Pearce, 2014).

Comparisons with unexpectedness ratings revealed that the best-
fitting IDyOM implementation was that based on an independent com-
bination of inter-onset interval ratio and chromatic pitch, and that the
variable that best explained subjective unexpectedness ratings (measured
by Akaike information criteria [AIC] and F tests of the model’s fixed
effect) was mDW-IC (R? = 0.13, p < 0.001) (for more details on the
models tested, see Table 2).

To better understand the mDW-IC variable, we investigated its pitch
and timing contributions with partial correlations based on the separate
probability distributions for chromatic pitch and onset time that IDyOM
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Table 1. Stimulus details”

Excerpt time

Piece (approximate) Composer Year Key Meter Studies mDW-IC mDW-Ent
Streams of Kilnaspig 0:00-0:30 Irish traditional Unknown G major Compound duple 1,15 234 362
Eighteen Studies for the Flute, Op. 41, No. 11 1:30-2:00 Joachim Andersen 1891 F major Simple duple 1,215 299 223
When This Cruel War is Over 1:00-1:30 American traditional 1863 Bb major Simple duple 1,18 372 386
Seven Variations on a Theme from Silvana, J. 128, 0p. 33, Var. 7 8:00-8:30 Carl Maria von Weber 1854 Bb major Compound duple 1,2 (clar), IS 389 287
12 Fantasias for Solo Flute, No. 3, Vivace 0:45-1:15 Georg Philipp Telemann 1733 B minor Simple duple 1,18 393 264
Eighteen Studies for the Flute, Op. 41, No. 18 0:50-1:20 Joachim Andersen 1891 F minor Compound duple 1,15 404 26
12 Fantasias for Solo Flute, No. 3, Vivace 0:10-0:40 Georg Philipp Telemann 1733 B minor Simple duple 1,18 408 245
Young Cowherd 0:00-0:30 Chinese traditional Unknown G major Simple duple 1 41 3.75
Sakura 0:00-0:30 Japanese traditional Unknown D minor Simple duple 1 423 439
Orchestral Suite No. 2 in B minor, BWV 1067 2:45-3:15 Johann Sebastian Bach 1739 B minor Simple duple 1,215 452 395
Eighteen Studies for the Flute, Op. 41, No. 1 0:45-1:15 Joachim Andersen 1891 Cmajor Simple duple 1,2,1S 497 36
Five Divertimentos, K. 439b, No. 2, mvmt. 4 0:50-1:20 Wolfgang Amadeus Mozart 1785 Cmajor Simple triple 1,15 5 3.12
Gavotte 0:00-0:30 Francois-Joseph Gossec Unknown Cmajor Simple duple 1,18 504 232
Maiden Voyage 2:50-3:20 Herbie Hancock 1965 A minor Simple duple 1 516 332
Seven Variations on a Theme from Silvana, J. 128, Op. 33, Theme 0:00-0:30 Carl Maria von Weber 1854 Bb major Compound duple 1,15 531 376
Drei Fantasiestiicke, Op. 73, No. 1 0:30-1:00 Robert Schumann 1849 A minor Simple duple 1,2(clar), IS 536 4.06
Five Divertimentos, K. 439b, No. 2, mvmt. 4 3:50—-4:20 Wolfgang Amadeus Mozart 1785 G major Simple triple 1,18 547 354
35 Exercises for Flute, Op. 33, No. 3 1:00-1:30 Ernesto Koehler 1880s F major Simple triple 1,18 554 401
Eighteen Studies for the Flute, Op. 41, No. 6 1:00-1:30 Joachim Andersen 1891 B minor Simple triple 1,18 557  4.09
Carmen Suite No. 1, Aragonaise 0:45-1:15 Georges Bizet 1882 D minor Simple triple 1,15 561  3.65
Orchestral Suite No. 2 in B minor, BWV 1067 0:00-0:30 Johann Sebastian Bach 1739 B minor Simple duple 1,18 561 352
35 Exercises for Flute, Op. 33, No. 15 0:00-0:30 Ernesto Koehler 1880s E major Simple duple 1,18 563 3.62
Drei Fantasiestiicke, Op. 73, No. 1 1:15-1:45 Robert Schumann 1849 A minor Simple duple 1,18 563 397
Eighteen Studies for the Flute, Op. 41, No. 10 0:00-0:30 Joachim Andersen 1891 C# minor Compound duple 1,2 (prac), IS 565 413
35 Exercises for Flute, Op. 33, No. 10 0:00-0:30 Ernesto Koehler 1880s D major Simple duple 1,18 58 416
Study No. Tin Cmajor, Op. 131 0:00-0:30 Giuseppe Gariboldi 1900 Cmajor Simple duple 1,18 592 381
Flute Concerto No. 2 in G minor, RV439 “La notte” 10:00-10:30 Antonio Vivaldi 1729 Cminor Simple duple 1,18 593 3.63
Dolly Suite Op. 56, No. 1 0:10-0:40 Gabriel Fauré 1893 G major Simple duple 1,18 598 42
Flute Concerto No. 2 in G minor, RV439 “La notte” 9:15-9:45 Antonio Vivaldi 1729 G minor Simple duple 1,18 6.06 3.83
Solo de Concours 4:00-4:30 André Messager 1899 Bb major Simple duple 1(prac), 2 (clar), IS 6.09  4.22
Student Instrumental Course: Flute Student, Level Il book: pg. 12 exercise no.2  0:10—0:40 Douglas Steensland, Fred Weber 2000 Ab major Simple duple 1,2,1 6.09 411
Eighteen Studies for the Flute, Op. 41, No. 6 0:00-0:30 Joachim Andersen 1891 B minor Simple triple 1(prac), 2, 1S 6.09  4.07
Fantaisie, Op. 79 0:30-1:00 Gabriel Fauré 1898 E minor Simple triple 1,18 6.21 414
12 Fantasias for Solo Flute, No. 5, Allegro 0:37-1:17 Georg Philipp Telemann 1733 Cmajor Simple triple 1,18 649 370
12 Fantasias for Solo Flute, No. 10, Dolce 1:57-2:27 Georg Philipp Telemann 1733 G minor Simple duple 1,15 6.4 3.02
35 Exercises for Flute, Op. 33, No. 2 0:07-0:37 Ernesto Koehler 1880s G major Simple duple 1,18 6.61 3.79
12 Fantasias for Solo Flute, No. 10, Presto 2:45-3:15 Georg Philipp Telemann 1733 Fi minor Simple triple 1,18 709 41
Eighteen Studies for the Flute, Op. 41, No. 8 1:30-2:00 Joachim Andersen 1891 F# minor Simple triple 1,215 7271 419
Con Alma 1:15-1:45 Dizzy Gillespie 1954 Ab major Simple duple 1,18 763 403
35 Exercises for Flute, Op. 33, No. 11 1:00-1:30 Ernesto Koehler 1880s A minor Compound duple 1,15 784 464
Syrinx 2:15-2:45 Claude Debussy 1913 Bb minor Simple triple 1,18 787 395
Orchestral Suite No. 2 in B minor, BWV 1067 3:45-4:15 Johann Sebastian Bach 1739 E minor Simple duple 1,18 805 45
Nocturnes, Op. 37, No. 1 0:30-1:00 Frédéric Chopin 1839 Cminor Simple duple 1,18 808 441
Seven Early Songs, Die Nachtigall 0:30-1:00 Alban Berg 1907 A major Simple triple 1,15 819 347
Les Folies d'Espagne, Nos. 7 and 8 0:10-0:40 Marin Marais 1701 E minor Simple triple 1,2,1 86 284
Nocturnes, Op. 37, No. 1 0:00-0:30 Frédéric Chopin 1839 Cminor Simple duple 1,18 866 432
Les Folies d’Espagne, No. 5 0:00-0:30 Marin Marais 1701 E minor Simple triple 1,18 948 35
Le Rossignol en Amour 1:45-2:15 Frangois Couperin 1722 G major Simple triple 1,15 9.56  3.85
Caravan 0:00-0:30 Duke Ellington, Juan Tizol 1936 Cminor Simple duple 1 1035 53
Citygate/Rumble 1:00-1:30 Chick Corea 1986 Db major Simple duple 1,15 1075 378
First Rhapsody 0:30-1:00 Claude Debussy 1910 Fi minor, Eminor Simple duple 1,2,1S 109 432
Alone Together 0:45-1:15 Arthur Schwartz 1932 D minor Simple duple 1,215 10.93  3.85
Seven Early Songs, Traumgekront 0:30-1:00 Alban Berg 1908 G minor Simple duple 1,18 1115 4.08
Les Folies d’Espagne, No. 1 0:00-0:30 Marin Marais 1701 E minor Compound triple 1,2 (prac), IS 1.28 447
Le Jamf 0:45-1:15 Bobby Jaspar 1960 Eb major Simple duple 1 131 3.9
Syrinx 0:00-0:30 Claude Debussy 1913 Bb minor Simple triple 1,15 1321 332
Mei 0:37-1:07 Kazuo Fukushima 1962 Atonal Simple duple 1,215 16.52  4.62
35 Exercises for Flute, Op. 33, No. 5 0:03—0:33 (pianoat2.5)  Ernesto Koehler 1880s G major Simple duple 1(attn.) 1071 3.61
Ballet of the Shepherds (from Armide, Wg. 45) 0:05-0:35 (pianoat7.5)  Christoph W. von Gluck 1777 Eb major Simple duple 1(attn.) 1446 364
Baldwin’s Music, Exercise No. 4 0:00—-0:30 (piano at 8.8)  Baldwin’s Music Unknown F major Simple duple 1(attn.) 10.57  3.89
Waltz (from Coppélia) 0:50-1:20 (piano at 12.3)  Léo Delibes 1870 Cmajor Simple triple 1(attn.) 815 402
22 Studies in Expression and Facility, Op. 89, No. 6 0:00-0:30 (piano at 15.0) ~ Ernesto Koehler 1904 D minor Simple duple 1(attn.) 495 414
Fuku Ju So 0:02—0:32 (piano at 18.8)  Japanese traditional Unknown A minor Simple duple 1(attn.) 64 447
Scheherazade, Op. 35, mvmt. 3 (The Young Prince and The Young Princess) ~ 0:00—30:00 (piano at 21.7) Nikolay Rimsky-Korsakov 1888 B minor Simple triple 1(attn.) 442 390
Sicilienne, 0p.78 0:00—0:30 (piano at 24.4)  Gabriel Fauré 1893 G minor Compound duple 1 (attn.) 6.17  4.04
Baldwin’s Music, Exercise No. 1 0:00-0:30 (piano at 25.7)  Baldwin’s Music Unknown G major Simple duple 1(attn.) 6.47 436

“Stimulus details for all 5 experimental stimuliand 9 “attention trial” stimuli. IS = rated for unexpectedness by an independent sample, dar = presented in a darinet timbre during Study 2, prac = presented as a practice stimulus, “(pianoat)” = when
the stimulus changed from flute to piano timbre (from its start).
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IDyOM model. We used the IDyOM model (Pearce, 2005, 2018) to systematically measure music unpredictability as IC and entropy. As configured here, IDyOM first builds a long-term

model (LTM) of the statistical structure of a large training set of 903 melodies, represented as sequences of pitches and inter-onset interval ratios (0lr). In a new stimulus melody with n notes, IDyOM
then estimates the probability of each possible continuation x from an alphabet X, at each note index i based on the LTM and a short-term model (STM) learned dynamically within the current
stimulus (i.e., from note 1to note /). To combine the probabilities derived from the LTM and STM, IDyOM first computes a geometric mean (signified by **') of the LTM and STM probabilities for pitch
and 01r separately, weighting each according to its entropy such that predictions based on higher-entropy models are less influential, and then multiplies these resulting pitch and I0Ir probabilities.
It then computes the note’s IC as its negative log probability to the base 2, and its entropy as the expected value of the ICacross all possible continuations (X). The result is a reliable computational
measure of pitch unpredictability and uncertainty based on long- and short-term musical statistics. In the present studies, we averaged these note-by-note measures across each stimulus to

represent each 30 s stimulus as one unit.

generated before combining them for overall note IC. Using Spearman’s
nonparametric partial correlations to account for non-normal data, we
found that mDW-IC was correlated both with mean duration-weighted
chromatic-pitch IC after controlling for the effect of mean duration-
weighted onset IC (Spearman’s p,s,, = 0.72, p, < 0.001) and with mean
duration-weighted onset IC after controlling for the effect of mean
duration-weighted chromatic-pitch IC (Spearman’s p,,s,) = 0.77, p, <
0.001). These results verify that both pitch and timing features contribute
to music predictability, as detected by our measure of mDW-IC. We also
found that mDW-IC positively correlated with mDW-Ent (Pearson’s
753y = 0.44, p < 0.001; Fig. 2), even though the model selection proce-
dure had shown that mean entropy was not significantly associated with
subjective unexpectedness ratings (p = 0.11; Table 2).

Experimental design and statistical analysis. The 43 participants ana-
lyzed (24 females and 19 males) listened to the stimuli and rated their
familiarity and liking after each one, as described above. Several prior
studies of musical preferences have averaged results across participants,
even though musical preferences are highly subjective and variable (for
review, see Brattico and Jacobsen, 2009). Rather than blending together
the ratings of different listeners and potentially blurring over meaningful
effects in the process, we opted for linear mixed-effects models, enhanc-
ing our power to detect group-level results by accounting for the random
effect of subject (Diggle et al., 2002; Zuur et al., 2009). Excluding stimuli
rated as familiar (see above), we leveraged the remaining trials for linear
mixed-effects models with the fitlme function in MATLAB. Following
the procedure recommended by Diggle et al. (2002) and Zuur et al.
(2009), we first optimized the random-effects structure of a “beyond-
optimal” model (including all relevant fixed effects and interactions)
according to the AIC via restricted maximum likelihood estimation,
then optimized the fixed-effects structure via likelihood ratio tests of
nested models and AIC content of other models using maximum

likelihood estimation, and finally evaluated the model with restricted
maximum likelihood estimation. Separate mixed-effects models eval-
uated the main effects of mDW-IC and mDW-Ent, using z-scored
values of these variables to allow for comparisons between their linear
and quadratic effects.

MDW-IC and mDW-Ent represent distinct, albeit related, aspects of
complexity, with mDW-IC reflecting the surprise of a piece and mDW-
Ent its uncertainty or instability (see above). We therefore explored how
musical surprise might interact with the uncertainty/instability of its
context to affect liking ratings. To avoid the collinearity of these related
variables and to simplify the complex interactions of potentially linear
and quadratic effects, we classified each stimulus according to its mDW-
Ent and mDW-IC using MATLAB’s k-means clustering algorithm to
obtain data-driven and well-balanced groups. Starting with six points
approximately corresponding to stimuli of low or high mDW-Ent and
low, medium, or high mDW-IC (see below), this algorithm identified six
stimulus clusters through Euclidean distance minimization without us-
ing any information about the participants’ liking ratings. The category
with low mDW-IC and low mDW-Ent contained six stimuli, while there
were 17 stimuli with low mDW-IC and high mDW-Ent, 13 with medium
mDW-IC and low mDW-Ent, 8 with medium mDW-IC and high mDW-
Ent, 7 with high mDW-IC and low mDW-Ent, and 4 with high mDW-IC
and high mDW-Ent (Fig. 3C). Although these groups are not perfectly
balanced, they represent an unbiased and robust classification of our
stimuli that allows for a repeated-measures ANOVA. We then conducted
a repeated-measures ANOVA on the average liking ratings in each of
these categories, testing for main effects of mDW-IC and mDW-Ent as
well as their interaction. We additionally planned to investigate the na-
ture of any interactions with post hoc Tukey—Kramer Honest Significant
Difference tests.
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Table 2. Comparing IDyOM configurations”

Regression
Model source viewpoints  predictor Fixed effect (B) p R? AIC
(ioi-ratio cpitch) Mean IC 493 <0.001 0.10  3854.6
mDW-IC 6.16 <0.001 0.12 38457
Meanentropy ~ 11.51 0.012  0.06 3866.7
ioi-ratio cpitch* Mean IC 433 <0.001 0.09 3856.4
mDW-IC* 5.99% <0.001*  0.13* 3844.0%
Mean entropy ~ 18.09 0.109  0.05 3869.8
(ioi-ratio cpint) Mean IC 3.40 0.005 0.07 3864.0
mDW-IC 5.89 <0.001 0.10 38523
Mean entropy 217 0751 0.04 3873.1
ioi-ratio cpint Mean IC 3.65 0.001  0.08  3860.7
mDW-IC 5.28 <0.001 0.0 38518
Mean entropy 7.71 0.613 0.04 38725
(ioi-ratio cpintfref) Mean IC 5.26 <0.001 0.09 3856.8
mDW-IC 6.76 <0.001 011 38485
Meanentropy  12.86 0.065 0.05  3869.1
ioi-ratio cpintfref Mean IC 492 <0.001 0.09 3855.9
mDW-IC 6.27 <0.001 011 38492
Mean entropy ~ 21.01 0292 0.04 38721
ioi-ratio (cpint cpintfref)  Mean IC 3.84 <0.001 0.08 3859.7
mDW-IC 517 <0.001 0.0 38512
Mean entropy  —4.32 0.823 0.04 38732

“This table shows the seven IDyOM configurations tested. In all cases, IDyOM predicts the chromatic pitch and onset
time of a note using one or more source viewpoints (corresponding to musical attributes). Viewpoints may be used
inisolation or linked with another viewpoint, indicated with parentheses. For example, (ioi-ratio cpitch) indicates a
model that predicts notes based on the tuple of constituent viewpoints, e.g. (1, 60) fora middle C whose inter-onset
interval is the same as the previous note’s. For each configuration, we used linear mixed-effects models to compare
the output mean IC, mDW-IC, and mean entropy of each stimulus, given the corresponding model, to the unexpect-
edness ratings of an independent sample of 24 participants who did not participate in the present studies. The
fixed-effect coefficient (8), p value, coefficient of determination (R %), and AIC of each model are given. This process
revealed that the mDW-IC measure based on unlinked ioi-ratio and cpitch was the best correlate of subjective
unexpectedness, and so we used this implementation for the present studies.

*Best-fitting model.

Finally, we tested whether the hypothesized Wundt effect between
mDW-IC and liking would vary according to individual differences in
music reward sensitivity and music sophistication. In this case, account-
ing for subject as a random effect would obscure the subjective effects of
interest, and so we used simple linear regression models rather than
mixed effects. To evaluate the shape of each individual’s Wundt effect, we
collapsed the curve between mDW-IC and liking into a distribution by
weighting the mDW-IC of each stimulus by the participant’s rating. This
procedure represented greater preferences for stimuli with mDW-IC val-
ues as more positively skewed distributions (i.e., with more mass on the
lower mDW-IC end and flatter tails on the positive end), and greater
preferences for stimuli of higher mDW-ICs as more negatively skewed
distributions. Likewise, sharper preferences produced distributions
with greater kurtosis, and flatter preferences yielded distributions
with less kurtosis. Excluding stimuli the participants rated as familiar,
we compared these Wundt-effect parameters to total scores on the
Barcelona Music Reward Questionnaire (Mas-Herrero et al., 2013)
and the Gold-MSI (Miillensiefen et al., 2014). In the case of a signif-
icant relationship, we explored the effects of the relevant question-
naire’s subscales with stepwise linear regression using MATLAB’s
stepwiselm function to identify those that best explained the variance
in the Wundt effect’s parameters.

Results

There was a significant Wundt effect between liking ratings and
mDW-IC (Fig. 3A), indicated by the optimal model of mDW-IC,
which contained significant negative linear (8 = —0.21, p <
0.001) and quadratic effects (8 = —0.09, p < 0.001). The overall
model had significant random intercepts and mDW-IC slopes
across subjects (intercept 95% CI = 0.54, 0.86, slope 95% CI =
0.11, 0.29), and it explained 26.3% of the variance in liking rat-
ings (p < 0.001). Comparable models with only the linear or
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quadratic term explained 25.3% and 26.0% of the variance, re-
spectively, and the optimal model (which combined these terms)
fit the data significantly better than each of these alternatives
(linear-only model likelihood ratio test x2(1, N = 43) = 22.23,
p < 0.001; quadratic-only model likelihood ratio test x*(1, N =
43) = 17.20, p < 0.001).

There was also a significant Wundt effect between liking rat-
ings and mDW-Ent (Fig. 3B), and the optimal mDW-Ent model
also contained significant negative linear (8 = —0.09, p = 0.009)
and quadratic effects (8 = —0.06, p = 0.003). The overall model
had significant subject-varying random intercepts (95% CI =
0.54, 0.86), and it explained 19.1% of the variance in liking rat-
ings (p = 0.03). This model fit the data significantly better than
alternative models that were identical, except for their exclusion
of either the linear or quadratic mDW-Ent term, which explained
19.1% and 19.0% of the variance, respectively (linear-only model
likelihood ratio test y*(1, N = 43) = 8.31, p = 0.004; quadratic-
only model likelihood ratio test x*(1, N = 43) = 6.21, p = 0.01).

We used k-means clustering to categorize the stimuli (Fig.
3C). The repeated-measures ANOVA model reaffirmed the main
effect of mMDW-IC (F; 70,6063 = 34.45, partial n° = 0.51, p <
0.001, using Greenhouse—Geisser correction since Mauchly’s test
of sphericity was violated), but not that of mDW-Ent (F, ,,, =
2.84, p = 0.10). This analysis also suggested an interaction be-
tween the two (F; 7, 701, = 3.17, partial n* = 0.07, p = 0.06; Fig.
3D). Planned comparisons of this interaction resembled the
Wundt effect of mDW-IC when mDW-Ent was low (high mDW-
IC <lowmDW-IC: p < 0.001; high mDW-IC < medium mDW-
IC: p <0.001; low mDW-IC vs medium mDW-IC: p = 0.35), but
not when mDW-Ent was high, when liking ratings for low
mDW-IC were significantly greater than those for medium
mDW-IC (p = 0.01, high mDW-IC < low mDW-IC: p < 0.001;
high mDW-IC < medium DW-IC: p < 0.001). Likewise, there
was a significant preference for stimuli with high mDW-Ent over
low mDW-Ent when mDW-IC was low (p = 0.001), but not
when mDW-IC was medium (p = 0.60) or high (p = 0.85). This
analysis therefore implies that predictability is more desirable in
more uncertain contexts.

Despite the strong group-level Wundt effects, linear models fit
to individual participants exhibited considerable intersubject
variability. These models’ R values ranged from 0.005 to 0.42,
with a mean of 0.12 and a SD 0f 0.09, and had negative quadratic
coefficients for 31 of the 43 participants. We also observed sub-
stantial differences in the participants’ music sophistication
(Gold-MSI mean *= SD = 71.65 * 21.68) and musical reward
sensitivity (BMRQ mean * SD = 80.79 * 8.97). While this sam-
ple was consistent with other reports of musical reward sensitivity
scores (Mas-Herrero et al., 2013), and individuals within the
sample scored from the second to 91st percentile of normative
musical sophistication scores (Miillensiefen et al., 2014), the av-
erage musical sophistication score was at approximately the 30th
percentile of the norm.

Nonetheless, measuring the kurtosis and skewness of each
participant’s Wundt effect (Fig. 4A) revealed a significant positive
regression between musical sophistication and the Wundt effect’s
kurtosis (Fig. 4B), such that relatively more sophisticated partic-
ipants had sharper distributions, that is, more focused prefer-
ences (F, 4, = 7.43,p = 0.009, B = 0.02,R* = 0.15). A follow-up
stepwise regression on the five Gold-MSI subscales selected only
“Perceptual Abilities” (F, 41, = 6.50, p = 0.01, B = 0.04, R* =
0.14), indicating that music-listening skills drove the overall ef-
fect. This subscale includes questions about the respondent’s
ability to recognize different versions of the same song, detect
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with a musical excerpt (i.e., hearing it
multiple times in one sitting, might affect
these patterns).

Study 2

Materials and Methods

Participants and procedure. This experiment
had 27 healthy participants (14 females, mean
age = SD = 23.96 £ 5.72 years) with normal

Standardized mDW-Ent
..
(6]
()
%0
\
o \

h -

Standardized mDW-IC

hearing, none of whom participated in Study 1.
They had 8.07 % 6.40 years of musical training,
and 12 of them were still active musicians. Af-
ter providing informed consent, they listened
to each stimulus over speakers set to a comfort-
able volume via a computer running Presenta-
= tion software (Neurobehavioral Systems)

_- while a fixation cross appeared on the screen.
The procedure was very similar to Study 1’s,

but with a few key differences: in Study 2, we

used only a subset of the stimuli from Study 1

(see below; Table 1). Participants rated contin-

° uously how much they liked each stimulus as
they listened, using keyboard buttons 1-4, and
were instructed to have one of these buttons
down whenever a stimulus was playing. Partic-
ipants also rated how much they liked the stim-
ulus, the overall arousal they felt from it, and

n =)
ul S 1 © -2 -1 0 1

IInwns

Figure 2.

0.4, p < 0.001).

out-of-tune or out-of-time events, and so on, thus reflecting fine-
grained musical perceptual skills that may emerge from musical
training and listening but also from incidental exposure, genetics,
etc. (Miillensiefen et al., 2014). Kurtosis and skewness were
strongly correlated (r(,,, = 0.94, p < 0.001), and musical sophis-
tication also positively correlated with the Wundt effect skewness
(Fig. 4C), as relatively more sophisticated listeners exhibited
more positively skewed ratings, that is, greater preferences for
stimuli of lower mDW-IC (F, 4,, = 4.76, p = 0.03, 5 = 0.003,
R? = 0.10). Once again, a follow-up stepwise regression selected
only the “Perceptual Abilities” subscale (F, 4;, = 5.89, p = 0.02,
B = 0.009, R* = 0.13). Parsing the independent contributions of
kurtosis and skewness with partial correlations, we found a stron-
ger effect of kurtosis after controlling for skewness (9,40, = 0.27,
pp = 0.08) than vice-versa (p,o) = —0.14, p, = 0.38), although
neither partial correlation was significant.

The total BMRQ score was not significantly related to the
kurtosis of the Wundt effect (F(, 4,y = 0.25, p = 0.62) or its
skewness (F(, 4,;) = 0.05, p = 0.83), and a ¢ test did not differen-
tiate between the participants with and without significant
Wundt effects on this scale (#.,,, = 0.15, p = 0.88). Together,
these findings illustrate that systematically measuring predict-
ability and uncertainty yields reliable Wundt effects for both vari-
ables, as well as individual differences that might arise from the
listeners’ musical sophistication. In Study 2, we tested the reli-
ability of these results in another sample with a subset of the
stimuli, and examined how the listener’s immediate experience

Stimulus unpredictability and uncertainty distributions. Using formal mathematical modeling of musical unpredict-
ability and uncertainty, we developed 55 stimuli, all excerpts of real, precomposed music, that varied across quantifiably wide
ranges of mDW-Ent (i.e., the average entropy of all notesin a stimulus weighted by their durations) and mDW-IC (i.e., the average
ICof all notes in a stimulus weighted by their durations). We standardized these measures with z scores to compare them, and so
the standardized mDW-Ent and standardized mDW-IC are shown here. These features were positively correlated (Pearson’s r =

their familiarity with it after it ended, again
from 1 to 4; the results of these poststimulus
ratings are not reported here. The familiarity
ratings were simply to ensure that participants
were aware of hearing the same stimuli repeat-
ed; no trials were excluded for familiarity in
this study as the stimuli were presented multi-
ple times each. Each participant was assigned a
random stimulus order, and the stimuli were
presented in this order seven times in a row.
There were no breaks between repetition
blocks other than the few seconds that sepa-
rated each trial. Instead of beginning with stim-
uli across five clusters of the stimulus subset, we avoided anchoring
effects in Study 2 by selecting the two practice stimuli to have moderately
low and high mDW-IC (Table 1). Study 2 had no “attention trials” task
since providing real-time ratings was already an engaging and active task;
and although we do not report the data here, we also recorded psycho-
physiological responses (skin conductance, heart rate, pulse amplitude,
breathing rate, and respiratory amplitude). Finally, based on research
suggesting that musical playing and listening experience especially affect
music processing (Gold et al., 2013; Hansen and Pearce, 2014; Pearce,
2014), we streamlined Study 2’s questionnaires to focus on the partici-
pants’ years (if any) of playing music and approximate weekly hours of
music listening, instead of asking about musical sophistication, music
reward sensitivity, or personality.

Stimuli. The stimuli for this experiment were a subset of those used in
Study 1 (Table 1). We chose these 12 stimuli to represent the full range
of mDW-IC, yet with fewer stimuli so that we could repeat them
several times without dramatically lengthening the task. We pro-
cessed and modeled the information-theoretic properties of these
stimuli exactly as in Study 1. The only difference was that three of the
stimuli were presented in the original clarinet timbre rather than flute
(Table 1). Wilcoxon rank-sum tests of participants’ responses, stan-
dardized to the rating scales of the two studies (see above), verified
that this timbre difference had no significant effect on overall liking
ratings (Seven Variations on a Theme from Silvana median = 0.50 in
Study 1 and 0.47 in Study 2, Z = 734.50, p = 0.19; Drei Fantasiestiicke
median = 0.33 in Study 1 and 0.48 in Study 2, Z = 995.00, p = 0.43;
Solo de Concours not analyzed because it was a practice stimulus in
Study 1, yielding unreliable ratings).
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Figure 3.

Behavioral effects of unpredictability and uncertainty. Linear mixed-effects analyses revealed significant Wundt effects in Study 1. A, The optimal model of mDW-IC explained 26.3%

of the varianceinliking ratings (p << 0.001) with negative linear (8 = —0.21,p <<0.001) and quadratic (8 = —0.09, p < 0.001) effects. It also had significant random intercepts and slopes across
subjects (intercept 95% CI = 0.54, 0.86, slope 95% Cl = 0.11,0.29). Red curve indicates the fitted model. Blue dots represent the mean liking ratings for each stimulus adjusted according to the
model’s random effects. B, The optimal model of mDW-Ent explained 19.1% of the variance in liking ratings (p = 0.03), with negative linear (3 = —0.09, p = 0.009) and quadratic effects (3 =
—0.06, p = 0.003) and significant subject-varying random intercepts (95% Cl = 0.54, 0.86). Red curve indicates the fitted model. Blue dots represent the mean liking ratings for each stimulus
adjusted according to the model’s random effects. €, We used k-means clustering to categorize our stimuli. Starting with six points (black diamonds) to distinguish low and high mDW-Ent along with
low, medium, or high mDW-IC, this procedure yielded the six stimulus categories that we used for repeated-measures ANOVA. D, A repeated-measures ANOVA reaffirmed the main effect of mDW-IC
(Fa70.60.63 = 3445, partial m® = 0.51, p < 0.001, using Greenhouse—Geisser correction since Mauchly’s test of sphericity was violated) but not mDW-Ent (F; ,,, = 2.84, p = 0.10), and also
suggested an interaction between the two onliking ratings (£ ; ;1 70,51, = 3.17, partial n > = 0.07, p = 0.06). Planned comparisons reflected the Wundt effect of mDW-IC when mDW-Ent was low
(high mDW-IC << low mDW-IC: p < 0.001; high mDW-IC < medium mDW-IC: p << 0.001; low mDW-ICvs medium mDW-IC: p = 0.35), but not when mDW-Ent was high, when liking ratings for
low mDW-IC were significantly greater than those for medium mDW-IC (p = 0.01; high mDW-IC < low mDW-IC: p << 0.001; high mDW-IC << medium DW-IC: p < 0.001). Likewise, there was a
significant preference for stimuli with high mDW-Ent over low mDW-Ent when mDW-IC was low (p = 0.001), but not when mDW-IC was medium (p = 0.60) or high (p = 0.85), implying that
uncertain contexts amplify the pleasure of predictability. n.s. = not significant, *p << 0.05, ***p < 0.001.

Experimental design and statistical analysis. The 27 participants of this
study (14 females and 13 males) listened to the stimuli and rated them as
described above. As in Study 1, we used linear mixed-effects models to
detect generalizable effects while accounting for the subjectivity of the
participants. We built mixed-effects models using the same method as in
Study 1. Four separate mixed-effects models evaluated how liking ratings
changed according to the main effect of mDW-IC, the main effect
of mDW-Ent, the main effect of repetition, and the interaction between
mDW-IC and repetition. We did not assess interactions between
mDW-IC and mDW-Ent in this study due to the limited stimulus set. To
allow for comparisons between linear and quadratic effects of mDW-IC,
mDW-Ent, and repetition, we standardized these variables as z scores
before conducting any analyses.

Results

The best-fitting model of liking and mDW-IC (p < 0.001) ex-
plained 41.6% of the variance with a negative quadratic mDW-IC
term (B = —0.18, p < 0.001), illustrating a Wundt effect (Fig.
5A). This model had no fixed linear term for mDW-IC, but sig-
nificant random intercepts for each subject (95% CI = 0.31, 0.58)
as well as random slopes for each subject’s effects of mDW-IC
(95% CI = 0.15, 0.29), mDW-IC? (95% CI = 0.10, 0.19), and
Repetition (95% CI = 0.05, 0.09). Comparing AICs showed that

this model described the data more parsimoniously than a model with
only a linear mDW-IC term (AIC with mDW-IC? = 4657.9, AIC with
mDW-IC = 4681.4), but a likelihood ratio test was not possible because
the models were not nested. Similarly, adding a linear mDW-IC term to
the best-fitting model did not yield a significantly better fit (likelihood
ratio test x*(1, N = 27) = 1.08, p = 0.30).

We observed a similar Wundt effect between liking and
mDW-Ent (Fig. 5B), with the optimal model of these variables
explaining 34.9% of the variance with significant negative linear
(B = —0.31, p < 0.001) and quadratic effects (8 = —0.25, p <
0.001). Like the mDW-IC model above, this model allowed for
randomly varying intercepts (95% CI = 0.30, 0.58) and slopes of
mDW-Ent (95% CI = 0.26, 0.49), mDW-Ent? (95% CI = 0.82,
0.97), and Repetition (95% CI = 0.05, 0.09) for each subject (p <
0.001). Compared with alternative models with only the linear or
quadratic mDW-Ent term, this model fit the data significantly
better (linear-only model likelihood ratio test y*(1, N = 27) =
19.95, p < 0.001; quadratic-only model likelihood ratio test x*(1,
N =27) =13.91,p <0.001).

The best-fitting model of liking and Repetition (R* = 0.81,
p < 0.001) also had a negative quadratic effect (8 = —0.003, p <
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Individual differences in Wundt effects. Individual differences in the Wundt effects of Study 1 could be explained in part by musical sophistication, as measured by the Gold-MSI

(Miillensiefen et al., 2014). A, We represented each participant’s Wundt effect as a distribution of mean liking ratings across mDW-ICs by multiplying these measures together, resulting in flatter
distributions for those with similar preferences across the mDW-IC spectrum, sharper distributions for those with more particular preferences, and so on. We then measured the kurtosis and
skewness of each distribution, reflecting the sharpness and asymmetry of the participant’s preferences, respectively. Toillustrate this analysis, we show the distribution for Participant 7, on the left,
who exhibits the greatest kurtosis and skewness of the sample, and Participant 43, on the right, who has the lowest kurtosis and second-lowest skewness. B, There was a significant positive
correlation between Gold-MSI scores and the kurtosis of the Wundt effect, revealing sharper preferences for relatively more sophisticated participants (F; ,,) = 7.43,p = 0.009, 8 = 0.02, R?=
0.15). ¢, There was also a significant positive correlation between Gold-MSl scores and the skewness of the Wundt effect, wherein more sophisticated listeners also had greater relative preferences
for stimuli of lower mDW-IC(F; ,,) = 4.76,p = 0.03, B = 0.003,R% = 0.10). In both cases, the Gold-MS| “Perceptual Abilities” subscale was the only one to survive follow-up stepwise regressions
(kurtosis effect: F; 4;, = 6.50,p = 0.01, B = 0.04,R* = 0.14; skewness effect: F,, 5, = 5.89,p = 0.02, 8 = 0.009, R* = 0.13), indicating that music-listening skills drove these results. Kurtosis
and skewness were also highly correlated (r = 0.94, p << 0.001), complicating the interpretations of these results. P7 = Participant 7, P43 = Participant 43.

0.001), with liking ratings decreasing from the first to seventh
presentation of the stimuli. This model allowed for randomly
varying intercepts for each stimulus (95% CI = 0.22, 0.56) as well
as randomly varying intercepts (95% CI = 0.56, 0.69) and Repe-
tition slopes (95% CI = 0.08, 0.11) for each combination of
stimulus and subject.

The Wundt effect of mDW-IC on liking ratings did not sig-
nificantly change across repetitions, as the optimal model of lik-
ing that included an interaction of mDW-IC and repetition
effects showed no significant interaction (p = 0.38; Fig. 5C).
Although this overall model was significant (R*> = 0.42, p <
0.001), it was not significantly better than a model that was iden-
tical, except that it excluded the fixed effects of Repetition (like-
lihood ratio test x*(1, N = 27) = 3.42, p = 0.18).

As in Study 1, the strong group-level Wundt effect comprised
significant interindividual variability. Individual-participant R*
values ranged from 0.001 to 0.54, with a mean of 0.24 and a SD of
0.17, whereas 23 of 27 had negative quadratic terms. Once again,
kurtosis and skewness were positively correlated (r,5, = 0.95,
p < 0.001), but these parameters did not significantly vary with
participants’ musical backgrounds (years of music playing kur-

tosis F(, ,5) = 0.01, p = 0.92; hours of weekly listening kurtosis
F(1 25) = 0.18, p = 0.68; years of music playing skewness F(, ,5, =
0.08, p = 0.78; hours of weekly listening skewness F, ,5, = 0.22,
p = 0.65). Likewise, the participants with and without significant
Wundt effects did not meaningfully differ in years of musical
training (t,sy = —0.43, p = 0.67) or hours of weekly music
listening (¢,5) = 0.45, p = 0.66), as measured with independent-
samples 7 tests.

Discussion

The present studies represent a diligent test of the controversial
Wundt effect, validating an inverted U-shaped relationship
between complexity and liking. Using rigorous definitions of
complexity and entropy as independent variables, based on com-
putational modeling of real-world music, we find reliable evi-
dence of the Wundt effects in esthetic musical judgments.
Linking esthetic pleasure to information-theoretic measures, we
also implicate models of motivation, information seeking, and
learning (Abuhamdeh and Csikszentmihalyi, 2012a; Oudeyer et
al., 2016) in aspects of music listening, including attention (com-
pare Gottlieb et al., 2013; Baranes et al., 2015; Daddaoua et al.,
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Figure 5.

Behavioral effects of unpredictability, uncertainty, and repetition. Linear mixed-effects analyses revealed significant Wundt effects in Study 2. 4, The optimal model of mDW-IC

explained 41.6% of the variance inliking ratings (p << 0.001) with only a negative quadratic effect (3 = —0.18, p << 0.001) and significant random intercepts and slopes across subjects (intercept
95% CI = 0.31,0.58, mDW-IC slope 95% CI = 0.15, 0.29, mDW-IC* slope 95% Cl = 0.10, 0.19, repetition slope 95% CI = 0.05, 0.09). Red curve represents the fitted model. Blue dots represent
the mean liking ratings for each stimulus adjusted according to the model’s random effects. B, The optimal model of mDW-Ent explained 34.9% of the variance in liking ratings (p << 0.001), with
negative linear (3 = —0.31, p << 0.001) and quadratic effects (3 = —0.25, p << 0.001). This model also had significant subject-varying random intercepts (95% Cl = 0.30, 0.58), slopes for
mDW-Ent (95% Cl = 0.26, 0.49), slopes for mDW-Ent 2 (95% CI = 0.82,0.97), and slopes for repetition (95% CI = 0.05,0.09). Red curve represents the fitted model. Blue dots represent the mean
liking ratings for each stimulus adjusted according to the model’s random effects. €, The best-fitting model of liking and repetition, which included an interaction term between mDW-ICand liking,
significantly fit the data (R2 = 0.42, p < 0.001), but not better than an alternative model that excluded the fixed effects of repetition (likelihood ratio test y (1, N = 27) = 3.42,p = 0.18). Even
50, this model indicated that the Wundt effect did not significantly change across repetitions, as the interaction term was not significant (p = 0.38).

2016), anticipation (compare Bromberg-Martin and Hikosaka,
2009; Salimpoor et al., 2011), and pleasure (compare Meyer,
1956; Salimpoor et al., 2011).

Our information-theoretic approach provides a systematic
model of unpredictability, operationalized as mDW-IC, and un-
certainty, as mDW-Ent (compare Pearce, 2005, 2018). We chose
model parameters by identifying the best-fitting correlation with
a separate sample of unexpectedness ratings (Table 2), yielding a
quantified measure of unpredictability that incorporates pitch
and timing information.

We leveraged our systematic complexity measures and wide-
ranging, natural stimuli to replicate Wundt effects across two
separate samples of participants (Figs. 3A, B, 5A, B). This nonlin-
ear pattern explained between 19% and 42% of liking ratings and
fit significantly better than purely linear effects. In addition to
quadratic terms, three of the four regression models contained
significant negative linear components: a relatively common
finding, sometimes even occurring without a Wundt effect (Har-

greaves et al., 2005; for review, see Chmiel and Schubert, 2017).
These results could indicate hierarchical preferences wherein lis-
teners like medium complexity more than simple (i.e., prototyp-
ical) music (Hargreaves et al., 2005; Chmiel and Schubert, 2017),
and then highly complex music. This interpretation would be
better supported, however, if we had included very simple stim-
uli, such as isochronous repeating tones or musical scales. Like
others, the present studies excluded such stimuli in favor of real-
world pieces, leaving the simpler end of the complexity distribu-
tion relatively undersampled.

In Study 2, repeating stimuli multiple times progressively re-
duced preferences across the mDW-IC spectrum while leaving
the Wundt effect unchanged (Fig. 5C). While other studies have
described pleasure increasing with familiarity (Zajonc, 1968),
this “mere exposure” effect emerges when stimuli are repeated
among distractors, or across several hours/days (Tan et al., 2006;
Hunter and Schellenberg, 2011), thereby allowing participants to
consolidate what they’ve heard and forget specific features of it,
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or at least experience less fatigue, and thus continue to learn
(Berlyne, 1971; Chmiel and Schubert, 2017). Since Study 2 illus-
trated decreased liking across multiple repetitions of the same
stimuli over a short time span, resembling novelty preferences
(for review, see Oudeyer et al., 2016), this result likely reflects
participants’ boredom rather than shifting preferences for certain
degrees of predictability. Structural and veridical predictability
(i.e., familiarity) therefore seem to influence liking differently
(for a review of studies that show them to have similar effects, see
Chmiel and Schubert, 2017).

Between our two studies, individually fit Wundt-effect models
explained between 0.1% and 54% of the liking variance, demon-
strating both the low statistical power of within-subject analyses
and meaningful individual differences. Musical sophistication,
particularly perceptual abilities, explained a significant portion of
these differences: participants with significant Wundt effects
were generally more sophisticated than those without, and more
sophisticated participants had sharper preferences for simpler
stimuli (Fig. 4). Yet kurtosis and skewness were strongly corre-
lated, and partial correlations suggested that musical sophistica-
tion is more closely related to sharper preferences than to
preferences for simpler stimuli. Moreover, the present sample fell
in just the 32nd percentile of normative musical sophistication
scores; and since more sophisticated listeners exhibit stronger
associations between musical IC and unexpectedness ratings
(Hansen and Pearce, 2014), a sample with more sophisticated
listeners and/or a broader stimulus range, including simpler ones
than those used here, might reveal a more nuanced effect. None-
theless, more sophisticated listeners might indeed be more sensi-
tive to musical predictability, perhaps due to more confident
predictions and/or greater attention to music-syntactic viola-
tions, that shift their optimal level toward stimuli with lower IC
(compare Hansen and Pearce, 2014; but for an alternative hy-
pothesis, see Pearce, 2014).

Although mDW-IC and mDW-Ent were strongly correlated
(Fig. 2), an ANOVA with categorized stimuli showed that prefer-
ences are more complicated than merely an overall liking for inter-
mediate complexity, as high entropy amplified preferences for
predictability to exceed those of greater unpredictability (Fig. 3D).
This pattern implies that the Wundt effect arises primarily from the
relative stability of low-entropy stimuli, whereas instability shifts
preferences toward more-predictable events that can validate listen-
ers’ uncertain predictions. Future research should better distinguish
these variables to elucidate the generalizability of this finding.

Our results suggest that learning about musical structure may
be intrinsically rewarding. Reducing uncertainty (i.e., reducing
high mDW-Ent with low mDW-IC) and seeking information
(i.e., incorporating medium mDW-IC during low mDW-Ent)
are essential elements of learning, and appear to convey reward
value (Bromberg-Martin et al., 2010; Oudeyer et al., 2016; Bryde-
vall et al., 2018). People are willing to sacrifice money to reduce
uncertainty about future rewards, such as how big they’ll be, even
when that information has no influence on the rewards them-
selves (Brydevall et al., 2018), and reducing uncertainty elicits
dopamine transmission and reward-system activity (Bromberg-
Martin and Hikosaka, 2009; Brydevall et al., 2018). Learning new
information about one’s environment, like the identities of
blurry images, the meanings of pseudowords, or the answers to
trivia questions, similarly engages dopamine release and NAc ac-
tivity (Kang et al., 2009; Jepma et al., 2012; Ripollés et al., 2014,
2018). Intermediate complexity, which maximizes both reduc-
ible uncertainty and learnable information, thus optimizes
reward-related responses (Oudeyer et al., 2016). Within this
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framework, it is possible that pleasurable musical surprises and
the Wundt effect derive from the same predictive and motiva-
tional processes that adapt our beliefs and actions to our environ-
ments, such as predictions that descend from the frontal cortex to
the auditory cortex and brainstem and prediction errors that
ascend in the reverse direction (compare Koelsch et al., 2019).
Meanwhile, these pathways and subcortical structures, like the
NAc, may mediate the reward of seeking and obtaining informa-
tion in music as in other domains (Kang et al., 2009; Jepma et al.,
2012; Ripollés et al., 2014; Brydevall et al., 2018).

The intrinsic reward of learning might also explain a range of
previous music-esthetic findings. The emotional impact of mu-
sical surprises (Meyer, 1956; Sloboda, 1991; Huron, 2006; Grewe
et al., 2007) could derive from powerful feedback signals facili-
tating learning, and the distinct dopaminergic activity before and
during peak pleasure moments (Salimpoor et al., 2011) from
curious anticipation and evaluation. In goal-directed learning,
dopamine neurons encode both uncertainty leading up to pre-
dicted outcomes and “reward prediction errors” (RPEs) after-
ward, which signal how much better or worse the outcomes were
than predicted (Fiorillo et al., 2003). We recently used fMRI to
identify RPE-related activity during music processing in the NAc
with a reinforcement-learning paradigm, using musical out-
comes that were either unaltered and pleasant or distorted and
unpleasant (Gold et al., 2019). This discovery illustrates how mu-
sic might engage the reward network by manipulating expecta-
tions; yet it is unclear how musical events can be “better” or
“worse” than expected, and thus why this network might process
these events during naturalistic music listening. Based on an in-
trinsic reward for learning, one possibility is that ostensibly
value-neutral musical surprises elicit positive RPEs when they
facilitate learning, which would occur when the surrounding
context affords the formation of a predictive model and the sur-
prises contribute to this model. Conversely, surprises that detract
from one’s model might be experienced as penalties, and thus
negative RPEs. Sequences of intermediate predictability and un-
certainty would be most conducive to this learning process (com-
pare Oudeyer et al., 2016), consistent with the present results and
others, which indicate that surprises are pleasant when the con-
text is stable enough for them to be informative and unpleasant
otherwise (Sloboda, 1991; Grewe et al., 2005, 2007; Koelsch et al.,
2008; e.g., Brattico et al., 2010; Egermann et al., 2013). The re-
ward system’s response to musical information-theoretic prop-
erties has not yet been studied, but we predict that the NAc would
be more engaged by intermediate complexity, based on the pres-
ent data.

Since music constantly manipulates interweaving structures,
all but the most predictable stimuli have some degree of uncer-
tainty (Meyer, 1956; Huron, 2006; Vuust, 2010; Zald and Zatorre,
2011; Gebauer et al., 2012). Music thus enables uncertain predic-
tions about multiple interacting structures, the anticipation of
their outcomes, and learning, especially when the music is
complex but decipherable. This learning process could enhance
predictions for future events, and induce dopaminergic reward-
system activity for both uncertain anticipation and learning-
related RPEs (compare Fiorillo et al, 2003), potentially
accounting for the pleasure these surprises so often elicit (Meyer,
1956; Sloboda, 1991; Huron, 2006; Steinbeis et al., 2006; Grewe et
al., 2007). Our findings support this interpretation by rigorously
replicating the Wundt effect with formal modeling of musical
complexity, implicating prediction-based learning in the endur-
ing mystery of how abstract stimuli, such as music, can be so
pleasurable.
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