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Activity of Insula to Basolateral Amygdala Projecting
Neurons is Necessary and Sufficient for Taste Valence
Representation
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Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is
paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval
require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC
projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste
learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-
to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction.
Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory
retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation
of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive
taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an
essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the
expression of valence-specific behavior upon taste memory retrieval.
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Introduction
The anterior insular cortex (aIC) plays a crucial role in taste
learning (Rosenblum, 2008) and self-referential processes shap-

ing conscious awareness in humans (Craig, 2009). Furthermore,
it likely promotes circuit-wide dysfunction in neuropsychiatric
disorders (Caria et al., 2010; Kurth et al., 2010; Critchley and Seth,
2012; Pais-Vieira et al., 2016). Nonetheless, the robust nature of
taste learning paradigms, as well as their proven dependence on
activity at the region, have made the aIC a particularly reliable
target in studies of the molecular and cellular mechanisms un-
derlying taste learning and memory (Bures et al., 1998; Belelovsky
et al., 2005; Merhav et al., 2006; Yefet et al., 2006; Bermudez-
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Significance Statement

In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste
with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project
into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative
valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to
such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve
aversive taste memory.
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Rattoni, 2014). Administration of a malaise-inducing agent (e.g.,
LiCl) after the consumption of appetitive tastants, results in con-
ditioned taste aversion (CTA), through the association of the
conditioned stimulus (CS) with the negative consequences of the
unconditioned stimulus (US) (Garcia et al., 1955; Rosenblum et
al., 1993).

CTA learning and retrieval is subserved by the gustatory cor-
tex, located within the aIC (Lin et al., 2015), composed of gran-
ular (GI), dysgranular (DI), and agranular (AI) subregions,
arranged in the dorsoventral plane (Kosar et al., 1986; Yiannakas
and Rosenblum, 2017). Integration of sensory and reward stimuli
is thought to be facilitated by reciprocal interactions with the
limbic system (Krushel and van Der Kooy, 1988), the thalamus
(Cechetto and Saper, 1987), as well as the basolateral and central
amygdala (Grossman et al., 2008; Moraga-Amaro and Stehberg,
2012). The basolateral amygdala in particular is known to be
required for stimulus salience encoding (Fontanini and Katz,
2009), as well as generating and relaying palatability signals to the
IC (Piette et al., 2012). Correlative studies have suggested that
connectivity between the aIC and the basolateral amygdala (BLA)
facilitates the encoding and retrieval of sensory information in
relation to body states, shaping their perceived valence (Gogolla,
2017; Haley and Maffei, 2018; Tye, 2018). In agreement with the
above, we have shown recently that recruitment of IC neurons
projecting to the BLA is increased during the retrieval of aversive
taste memories, in a valence-, but not stimulus-dependent man-
ner (Lavi et al., 2018). Despite providing evidence of high tem-
poral precision in vivo, the methodology involved is correlative
by its nature. We thus attempted here to address whether activa-
tion of the IC-to-BLA projection is necessary and/or sufficient for
the expression of learned aversive taste experiences. Toward
this aim, first, wild-type (WT) were injected bilaterally with a
retrograde-adeno-associated virus 2 (retroAAV) construct at the
BLA, labeling monosynaptic anterograde connections of the IC
with the BLA (Tervo et al., 2016). We analyzed the connectivity of
aIC to BLA comparing dorsal-ventral, anterior–posterior and in-
ner versus outer cortical layers (see Fig. 1). To test the necessity of
this projection in aversive taste memory learning, retrieval and
maintenance (see Figs. 3, 4, 5, 6), we stereotactically injected mice
with appropriate AAV constructs resulting in chemogenetic si-
lencing or activation of IC-to-BLA projecting neurons (see Fig.
2), using administration of the synthetic ligand Clozapine-N-
oxide (CNO) locally or peripherally (Gomez et al., 2017). Our
results indicate that recruitment of IC-to-BLA projecting neu-
rons is an essential component in the ability of the brain to asso-
ciate taste sensory stimuli with body states of negative valence and
retrieve such aversive memories.

Materials and Methods
Animals
Wild-type (WT) adult male mice (8 –12 weeks) were used in all experi-
ments described (Envigo). All mice used for the purposes of these studies
were housed in the local Animal Resource Unit with water and standard
chow pellet available ad libitum, under a 12 h dark/light cycle, except
where stated. All procedures were approved by the institutional animal
care and use committee in accordance with the University of Haifa reg-
ulations and National Institutes of Health Guidelines, under Ethical Li-
cense 428/16.

Surgery and viral injection
Adult (8 –12 weeks old) male WT mice were used as specified. Animals
were administered an intraperitoneal injection of the analgesic Norocarp
(0.5 mg/kg), 30 min before being anesthetized using a suitable M3000
anesthetic machine (NBT Israel/Scivena Scientific) using isoflurane

(5%). After the induction of anesthesia, animals were quickly adjusted to
a Model 963 Kopf Instruments stereotaxic injection system, where anes-
thesia was similarly maintained using isoflurane (2%). After exposure of
the skull and relevant alignment, mice were injected with appropriate
AAV constructs at the anterior agranular insula (AP �0.86; ML �3.4;
DV �4.00) and/or the basolateral amygdala (AP �1.6; ML �3.375; DV
�4.80) as specified in each experiment (Tervo et al., 2016). In a separate
cohort of mice, after bilateral stereotactic injection of AAV constructs at
both regions, guide steel cannulas (23gauge) were inserted 1 mm above
the aIC, to allow local delivery of CNO upon recovery. Cannula place-
ment was secured using dental cement as previously described (Alapin et
al., 2018). After viral delivery and appropriate cleaning and suturing
(Vetbond) of the exposed skull, animals were administered an additional
intraperitoneal dose of 0.5 mg/kg Norocarp, as well as 0.5 mg/kg Baytril
(enrofloxacin). Animals were allowed an initial 2 h to recover in an
appropriately clean and heat-adjusted cage, and were then housed in
larger cages with similarly treated cage-mates. Similar weight adjusted
doses of the said analgesic and antibiotic agents were administered for an
additional 3 d after recovery. All animals were allowed 3 weeks of recov-
ery in their home cages. During the fourth week of recovery, animals were
transferred to individual cages for 5 d, in preparation for water restriction
training as described below.

All AAV constructs used in this study were obtained from the viral
vector facility of the University of Zurich (http://www.vvf.uzh.ch). All
mice used in our studies were injected with 0.25 �l/site/hemisphere of
said AAV constructs (physical titer � 4.5 � 10E12 vg/ml) as defined in
each experiment.

Immunohistochemistry and quantification (see Fig. 1)
Brain tissue was incubated for 24 h in 4% formaldehyde solution, fol-
lowed by 48 h in 30% sucrose in PBS (PBS, MFCD00131855, Sigma-
Aldrich). Tissue was subsequently frozen at �80°C and processed for
slicing using a cryostat (Leica CM 1950). Twenty-four 40-�m-thick
brain slices were collected between bregma 1.18 and 0.26, and treated for
fluorescent immunohistochemistry. Immediately after slicing, tissue was
briefly washed in PBS, before blocking and permeabilization for 1 h using
a 0.3% bovine serum albumin (10775835001, Sigma-Aldrich)/0.3% Tri-
ton X-100 (MFCD00128254, Sigma-Aldrich)/10% fetal bovine serum
solution (MFCD00132239, Sigma-Aldrich) in PBS (blocking solution).
Slices were washed and mounted on glass slides using Vectashield
mounting medium with DAPI (H-1200) or without (H-1000), depend-
ing on whether EBFP-expressing AAVs were used (Vector Laboratories
Cat# H-1200 and H-1000, RRID:AB_2336790 and AB_2336789). Slides
were visualized using a vertical light microscope (Olympus CellSens Di-
mension) at 10� and 20� magnification. Images were processed using
Image-Pro Plus V-7, Media Cybernetics and manually quantified in
terms of total numbers retroAAV � neurons in the respective subregions
and layers of the aIC. Data were subsequently analyzed in terms of the
bilateral number of positive cells/slice using 2-way ANOVA (GraphPad
Prism).

Behavioral procedures (see Figs. 3, 4, 5, 6):
In experiments involving chemogenetic inhibition of the IC-BLA
projection, we bilaterally injected WT male mice into the IC with a
Cre-dependent AAV construct expressing the inhibitory DREADD re-
ceptor in neurons, AAV8_hEF1a-dlox-hM4D (Gi) _mCherry (rev)-
dlox-WPRE-hGHp (A) (Addgene plasmid #50461; http://n2t.net/
addgene:50461; RRID:Addgene_50461). To direct expression of the
DREADD receptor into IC-BLA projecting neurons, retroAAV-hSyn1-
chI-EBFP2_2A_iCre-WPRE-SV40p (A) or retroAAV-hSyn1-chI-EGFP2_
2A_iCre-WPRE-SV40p (A) was injected at the BLA (Addgene plasmid
#81070; http://n2t.net/addgene:81070; RRID:Addgene_81070).

Similarly, in experiments involving chemogenetic activation of the
IC-BLA projection, we bilaterally injected WT male mice with a Cre-
dependent AAV construct expressing excitatory DREADD receptors in
neurons of the IC, through AAV8_hEF1a-dlox-hM3D (Gq) _mCherry
(rev)-dlox-WPRE-hGHp (A) (Addgene plasmid #44361; http://n2t.net/
addgene:44361; RRID:Addgene_44361). DREADD receptor expression
was restricted to the IC-BLA projecting neurons, by injecting retroAAV-
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hSyn1-chI-EBFP2_2A_iCre-WPRE-SV40p (A) or retroAAV-hSyn1-chI-
EGFP2_2A_iCre-WPRE-SV40p (A) at the BLA (Addgene plasmid
#81070; http://n2t.net/addgene:81070; RRID:Addgene_81070).

For CTA acquisition, mice having recovered from surgery, received 1
ml of 0.5% saccharin- or 0.5% NaCl-water after 4 d of water restriction
training (Adaikkan and Rosenblum, 2015). Forty minutes after the start
of the 20 min drinking session (interstimulus interval, ISI � 40 min),
animals were intraperitoneally injected with a 2% body weight dose of
the malaise inducing agent LiCl (0.14 M), the US. For the subsequent 2 d,
mice were maintained under water restriction. Three days after CTA
acquisition, mice were provided with a choice between the conditioned
tastant and tap water. Aversion to the conditioned tastant was calculated
by expressing the volume of water consumed as a percentage of the total
intake (water and tastant). Doses of CNO used in all experiments were
chosen based on recent publications demonstrating that higher chronic
doses of the ligand are metabolized into clozapine, which can affect be-
havior in itself (Gomez et al., 2017).

IC-BLA projection inhibition during CTA acquisition or retrieval,
systemic CNO administration (see Fig. 3A–D)
During CTA Acquisition, mice received CNO (0.5 mg/kg, i.p.) (Enzo,
http://www.enzolifesciences.com/BML-NS105/clozapine-N-oxide/) 30
min before CTA training for saccharin (0.5%). Mice were provided a
choice test between the conditioned tastant and water during retrieval
testing 3 d later. To examine the effect of circuit inhibition during CTA
retrieval, mice were trained in CTA for NaCl (0.5%). Three days later
mice received 0.5 mg/kg CNO 40 min before retrieval testing. In both
experiments, control mice received weight matched (1% body weight)
injections of saline at the same intervals.

A separate group of mice were trained in CTA for saccharin as de-
scribed above, and underwent chemogenetic inhibition of the IC-BLA
projection during retrieval. After the retrieval session, mice were used to
examine the effect of circuit inhibition during retrieval on the subsequent
extinction of the CTA memory using 9 unreinforced choice tests between
the CS and water.

IC-BLA projection inhibition during CTA acquisition or retrieval,
Local CNO Administration (see Fig. 5E–I)
Mice underwent surgery to place aIC cannulas allowing for the local
inhibition of the aIC-to-BLA projection. Based on the current literature,
mice received 0.25 �l of 10 �M CNO/site, at a speed of 0.1 �l/min,
dissolved in artificial CSF (ACSF), or a similar volume of the vehicle
(Burnett and Krashes, 2016). Delivery cannulas were secured as to allow
mice to freely move during delivery without affecting the procedure.
Mice treated during CTA acquisition received CNO or ACSF immedi-
ately before being presented with 1 ml of 0.5% NaCl for 20 min. Imme-
diately after the drinking session, mice received a 2% body weight dose of
LiCl and were returned to their cages. Three days later, mice were tested
using a 20 min choice test between NaCl and water. Mice were then
allowed an additional 3 d of recovery and the groups were reversed, so
that the same mice did not receive CNO twice. Mice treated through
cannulas during CTA retrieval, acquired CTA for 0.5% Saccharin and
were similarly tested 72 h after conditioning, receiving CNO or ACSF 15
min prior (Adaikkan and Rosenblum, 2015).

IC-BLA projection inhibition during CTA memory maintenance
(see Fig. 2E,F)
After recovery and water restriction training, adult male mice were ran-
domly assigned to CNO- and saline-treated groups and underwent CTA
training for saccharin (0.5%). Mice in the treatment group were admin-
istered CNO (0.5 mg/kg, i.p.) 24 h after CTA training (2% body weight
LiCl (0.14 M, i.p.), ISI � 40 min) using 1 ml of the saccharin solution,
while the control group received an intraperitoneal injection of saline
(1% body weight). Animals were maintained on water restriction for an
additional 48 h, followed by a choice test between the CS and tap water.

CNO control studies (see Fig. 5A–D)
Mice were injected with retroAAV2_hSyn1-�-EGFP_2A_iCre-WPRE-
SV40P (A) at the BLA and AAV8_hEF1a-dlox-mCherry (rev)-dlox-
WPRE-hGHp (A) at the aIC. After 4 weeks of recovery mice were

administered 1 mg/kg CNO 30 min before CTA training, as described
above. Mice were similarly examined using a choice test between the CS
(0.5% NaCl) and water, 3 d later. After a week of recovery, mice acquired
CTA for a second tastant (0.5% Saccharin). Mice received CNO 40 min
before a choice test between the CS and water, as described above. To
confirm the validity of our approach using CNO in different phases of
CTA acquisition (see Figs. 3, 4), an additional cohort of 8 animals was
treated with retroAAV2_hSyn1-�-EGFP_2A_iCre-WPRE-SV40P (A) at
the BLA and AAV8_hEF1a-dlox-mCherry (rev)-dlox-WPRE-hGHp (A)
at the aIC. After 4 weeks of recovery mice were administered CNO (0.5
mg/kg, i.p.) 1 h before the start of a 20 min exposure to 1 ml of 0.5%
saccharin, while the control group received an intraperitoneal injection
of saline (1% body weight). Three hours later, both groups were admin-
istered a 2% body weight injection of LiCl. Mice were provided with a
choice test between the conditioned tastant and tap water, 3 d later. After
an additional a week of recovery, the groups were reversed, so that the
same mice did not receive CNO twice. Two hours after the start of a 20
min exposure to 1 ml of the saccharin water, half of the cohort received a
similar dose of CNO, while the control group received an intraperitoneal
injection of saline (1% body weight). Three hours from the start of drink-
ing, both groups were administered a 2% body weight injection of LiCl.

Additional control studies were conducted in un-injected adult (8 –12
weeks) WT male mice. These mice were water restricted for 5 d before
CTA training for saccharin using 0.14 M LiCl at ISI � 40, as described in
previous sections. Three days later, mice were given a choice test between
pipettes containing the conditioned tastant and water, for 20 min. Forty-
five minutes before retrieval testing, half of the conditioned animals
received CNO (1 mg/kg, i.p.), while the rest received a 1% body weight
injection of saline.

IC-BLA projection inhibition before novel taste learning and
attenuation of neophobia (see Fig. 4A,B)
After surgery recovery, we separated mice into two groups (CNO and
saline). Mice in the treatment group were administered CNO (1 mg/kg,
i.p.), while the control group received an intraperitoneal injection of
saline (1% body weight), 1 h before a choice test between 0.5% saccharin
and tap water. The above choice test was repeated for another 2 d, with-
out any intraperitoneal injections. Drinking volumes were recorded and
relevant behavioral measures were calculated and analyzed.

IC-BLA projection inhibition before novel innately aversive
taste exposure
We randomly assigned mice into two groups (CNO and saline) after
surgery recovery. After 4 d of water restriction training, mice in the
treatment group were administered CNO (1 mg/kg, i.p.) 1 h before a
choice test between 0.04% quinine and water. Conversely the control
group received an intraperitoneal injection of saline (1% body weight),
before the choice test. Drinking volumes were recorded and relevant
behavioral measures were calculated and analyzed.

IC-BLA projection inhibition during CS encoding (see Fig. 3C,D)
Adult male mice randomly assigned to the treatment group were admin-
istered CNO (0.5 mg/kg, i.p.) 1 h before the start of a 20 min exposure to
1 ml of the saccharin water, while the control group received an intra-
peritoneal injection of saline (1% body weight). Three hours later, both
groups were administered a 2% body weight injection of LiCl (0.14 M,
i.p.). Mice were provided with a choice test between the conditioned
tastant and tap water, 3 d later.

IC-BLA projection inhibition during US encoding (see Fig. 3E,F)
Mice in the treatment group were administered CNO (0.5 mg/kg, i.p.) 2 h
after to the start of a 20 min exposure to 1 ml of the saccharin water, while
the control group received an intraperitoneal injection of saline (1%
body weight). Three hours from the start of drinking, both groups were
administered a 2% body weight injection of LiCl (0.14 M, i.p.). After an
additional 48 h on water restriction, mice were provided with a choice
test between the conditioned tastant and tap water. Drinking volumes
were recorded, and relevant behavioral measures were calculated and
analyzed.

Kayyal, Yiannakas et al. • Cortical Taste Valence Neurons J. Neurosci., November 20, 2019 • 39(47):9369 –9382 • 9371

http://n2t.net/addgene:81070
https://scicrunch.org/resolver/Addgene_81070


IC-BLA projection inhibition during the retrieval of trace fear
conditioning (see Fig. 4G,H)
Mice were allowed 4 weeks of recovery and were subsequently randomly
allocated into two groups (CNO and saline), without being isolated from
their cage-mates. Animals were tested in the subsequent 2 d were trained
using trace fear conditioning (Curzon et al., 2009). Twenty-four hours
after training, mice were tested for contextual fear conditioning, being
returned to the training chamber, where their activity was recorded for
180 s without the tone. On the following day, mice in the treatment group
were administered CNO (0.5 mg/kg, i.p.) 45 min before the start of the
retrieval session, while the control group received an intraperitoneal in-
jection of saline (1% body weight). Behavior was recorded, and relevant
measures were calculated and analyzed (Freeze Frame; Coulbourn
Instruments).

IC-BLA projection activation during weak CTA conditioning
(see Fig. 6A,B)
After recovery and isolation, mice were allocated into two groups, which
after 4 d of water restriction training were provided 1 ml of 0.5% NaCl
solution. Mice in the treatment group were administered CNO (1 mg/kg,
i.p.) 30 min before weak CTA conditioning (0.07 M LiCl) while the con-
trol group received an intraperitoneal injection of saline (1% body
weight). Three days later, mice in both groups were provided with a
choice test between the conditioned tastant and tap water.

IC-BLA projection activation after novel taste learning
(see Fig. 6C,D)
Mice were allocated into two groups, which after 4 d of water restriction
training were provided 1 ml of 0.5% saccharin solution. Mice in the
treatment group were administered CNO intraperitoneal (1 mg/kg) 10
min after the end of drinking session, while the control group received an
intraperitoneal injection of saline (1% body weight). Mice in both groups
were provided with a choice test between 0.5% saccharin-water and tap
water, after an additional 48 h of water restriction. Drinking volumes
were recorded, and relevant behavioral measures were calculated and
analyzed.

IC-BLA projection activation during CTA memory maintenance
(see Fig. 6F,G)
Mice in the treatment group were administered CNO (1 mg/kg. i.p.), 24 h
after weak CTA training (2% body weight LiCl (0.075 M, i.p.), ISI � 40
min) using 1 ml of the saccharin water, while the control group received
an intraperitoneal injection of saline (2% body weight). Animals were
maintained on water restriction for an additional 48 h, before a choice
test. Drinking volumes were recorded, and relevant behavioral measures
were calculated and analyzed.

Electrophysiology (see Fig. 2)
Insula slice preparations. Mice were injected with retroAAV2_
hSyn1-�-EGFP_2A_iCre-WPRE-SV40P(A) at the BLA and AAV8_
hSyn1-dlox-hM3D(Gq)_mCherry(rev)-dlox-WPRE-hGHp(A) or
AAV8_hEF1a-dlox-hM4D(Gi)_mCherry(rev)-dlox-WPRE-hGHp(A)
at the aIC. To obtain brain slices containing insula, mice were deeply
anesthetized with 5% isoflurane and transcardially perfused with 40 ml of
ice-cold oxygenated cutting solution containing the following (in mM):
25 NaHCO3, 105 Choline-Chloride, 2.5 KCl, 7 MgCl2, 0.5 CaCl2, 1.25
NaH2PO4, 25 D-glucose, 1 Na-Ascorbate and 3 Na-Pyruvate. All re-
agents were commercially obtained from Sigma-Aldrich Israel, except
where stated. The 300-�m-thick coronal brain slices were cut with a
Campden-1000 Vibrotome using the same cutting solution. The slices
were incubated for at least 60 min at 34°C in artificial CSF (ACSF) con-
taining the following (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2 and 25 D-glucose, before transferring them
to the electrophysiological setup. For electrophysiological recordings,
slices were placed in an ACSF-perfused recording chamber (2 ml/min,
32–34°C). All solutions were constantly carbogenated with carbogen
(95% O2 � 5% CO2).

Whole-cell recording. The slices were illuminated with infrared light,
and pyramidal cells were visualized under differential interference con-
trast microscope (DIC) with �40, water-immersion objective mounted

on a fixed-stage microscope (BX51-WI; Olympus). BLA-projecting neu-
rons of the IC expressing the chemogenetic hM4DGi or hM3DGq recep-
tors in a Cre-dependent manner were identified by the presence of
mCherry. Cells projecting to the BLA that did not express the chemoge-
netic receptors were identified using GFP. Whole-cell recordings from
double fluorescence-labeled cells were performed using an Axopatch
200B amplifier and digitized by Digidata 1440 (Molecular Devices). The
recording electrode was pulled from a borosilicate glass pipette (3–5
M�) using an electrode puller (P-1000; Sutter Instruments) and filled
with a K-gluconate-based internal solution (in mM): 130 K-gluconate, 5
KCl, 10 HEPES, 2.5 MgCl2, 0.6 EGTA, 4 Mg-ATP, 0.4 Na3GTP and 10
phosphocreatine (Na salt). The osmolarity was 290 mOsm, and pH was
7.3. The recording glass pipettes were patched onto the soma region of
pyramidal cells (Sharma et al., 2018). Voltages for liquid junction poten-
tial (�10 mV) were not corrected online. Current-clamp recordings
were low-pass filtered at 10 kHz and sampled at 20 kHz. Series resistance
was compensated and only series resistance �20 M� was included in the
dataset. Pipette capacitance was 	80% compensated. After 3–5 min sta-
ble baseline recording, CNO (2–10 �M) was added to the ASCF solution
containing antagonist mixture of (DNQX (20 �M); APV (50 �M); bicu-
culline methiodide (20 �M), CAS40709 – 69-1, Tocris Bioscience), was
applied through the bath to the brain slice to isolate postsynaptic effects.
This was followed by normal ACSF application for 5–30 min or until
significant recovery in membrane activity was observed. The changes in
resting membrane potential were measured 1 min after CNO application
(Nakajima et al., 2016).

Results
Majority of IC-to-BLA projecting neurons reside in the AI
and DI subregions
To examine the role of IC-BLA projecting neurons in taste va-
lence encoding, we first measured the differential neuroanatomi-
cal connectivity between the different subregions of the aIC and
the BLA using injection of an retroAAV2 construct at the BLA,
allowing the labeling of BLA-projecting neurons of the aIC (Fig.
1A; n � 11). Quantification of mCherry� neurons of the aIC was
used to assess the efficiency and distribution of the retroAAV2
construct to label BLA-projecting neurons.

Approximately 5% of all the cells of the superficial or deep
layers of the aIC are BLA projecting neurons. Approximately 62%
of the BLA projecting neurons identified across the aIC reside
within deep layers IV-VI rather than the superficial layers (Fig.
1B; F(1,168) � 27.14, p � 0.0001). This effect was prominent in the
posterior part across the bregma axis (Fig. 1B; F(3,168) � 2.825,
p � 0.04). The majority of BLA-projecting neurons in the super-
ficial (Fig. 1C; F(2,252) � 173.2, p � 0.0001) and deep layers IV-VI
(Fig. 1D; F(6,252) � 6.303, p � 0.0001) of the aIC reside in the AI
(48%) and DI (39%), while a smaller proportion reside at the GI
(13%).

Unlike the DI and GI, BLA-projecting neurons in the super-
ficial AI decrease in abundance from bregma 0.86 onwards (Fig.
1C; F(3,252) � 4.498, p � 0.0043). In parallel, the number of
BLA-projecting neurons is increased in the posterior part of the
deep layers of the DI (Fig. 1D; F(3,252) � 4.213, p � 0.0063). In the
deep layers of the AI, the number of BLA-projecting neurons
rapidly declines from bregma 0.86 onward (Fig. 1D; F(6,252) �
6.303, p � 0.0001).

Activity in BLA-projecting neurons of the aIC can be
chemogenetically manipulated using the retroAAV system
To test the functionality of this projection, we injected both
retroAAV2_hSyn1_EGFP_iCre at the BLA, and Cre-dependent,
AAV8_hEF1�-driven constructs at the IC to restrict the expres-
sion of chemogenetic receptors (hM4DGi or hM3DGq) in
aIC-to-BLA neurons (see Materials and Methods). Whole-cell
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patch-clamp recordings in slices from BLA-projecting neurons of
the aIC confirmed that bath application of CNO (10 �M) rapidly
hyperpolarized the resting membrane potentials (Wilcoxon test,
Z � �21.00, p � 0.0313) and inhibited the activity of neurons
expressing hM4DGi-mCherry� (Fig. 2A,E,F), but not in the
hM4DGi-mCherry� or GFP� expressing control cells (Fig.
2C, I, J, Wilcoxon test, Z � �7.00, p � 0.3750). Similarly, in slices
from mice treated to express hM3DGq in aIC-to-BLA neurons,
bath application of CNO (2 �M) rapidly depolarized the resting
membrane potentials (Wilcoxon test, Z � 21.00, p � 0.0313) and
increased action potential firing in neurons expressing hM3DGq-
mCherry� (Fig. 2B,G,H), but not in the hM3DGq-mCherry� or
GFP� controls (Fig. 2D,K,L, Wilcoxon test, Z � 0.00, p �
0.9999).

IC-to-BLA projecting neurons are necessary for the
acquisition and retrieval but not for the extinction or
maintenance of learned aversive memories
Inhibition of aIC-to-BLA projecting neurons using CNO during
CTA acquisition suppressed the aversive response (76.07 �

5.42%, n � 8) compared with control animals (Fig. 3B,C,
93.00 � 2.76%, n � 6, unpaired t test, p � 0.0276, t � 2.507,
DF � 12). Significant suppression of the aversive response was
also observed in comparing animals that acquired CTA normally
(81.90 � 6.64, n � 6), to ones that experienced inhibition
(47.74 � 11.06%, n � 7) of the projection during retrieval (Fig.
3D,E, unpaired t test, p � 0.0278, t � 2.533, DF � 11).

This latter treatment did not affect the subsequent extinction
of this aversive memory (Fig. 3H, I, p � 0.9327, F(1,24) �
0.007284). Treated mice (88.04 � 3.996%, n � 7) exhibited sim-
ilar aversion to control mice (93.04 � 5.329%, n � 7) 1 d after the
retrieval. After 14 unreinforced choice tests between water and
saccharin, control (57.30 � 11.69%, p � 0.0166) and IC-BLA
inhibited (63.70 � 9.389%, p � 0.0344) mice exhibited similar
extinction over time (repeated-measures ANOVA, F(13,156) �
8.514, p � 0.0001), but no significant effect of treatment was
observed (F(1,13) � 0.3314, p � 0.5747). Similarly, inhibition of
the projection during intervals associated with memory mainte-
nance after conditioning (Fig. 3F,G) resulted in similar aversion
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Figure 1. The majority of IC-to-BLA projecting neurons reside in the AI and DI subregions. BLA-projecting neurons of the aIC were labeled using a retroAAV2_hSyn_mCherry construct, and their
distribution was quantified in the different spatial dimensions of the aIC across 24 coronal slices of the mouse brain (A). The average number of BLA-projecting neurons/slice in superficial layers I-III
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(unpaired t test, p � 0.8693, t � 0.1681, DF � 12) to the CS upon
retrieval between treated (92.01 � 3.924%, n � 8) and control
animals (91.12 � 3.124%, n � 6).

Inhibition of IC-BLA-projecting neurons of the aIC disrupts
specifically CS-US association during CTA acquisition, but
does not affect innate and appetitive taste behaviors
To test the role of the projection in innate taste behaviors, we
examined the effect of inhibition during appetitive novel taste
learning and how this subsequently affects the attenuation of
neophobia (Fig. 4A). Mice were treated with CNO before expo-
sure to a novel tastant and were choice tested for three consecutive
days. Responses indicated a significant effect of taste exposure (Fig.
4B; repeated-measures ANOVA, F(2,38) � 68.92, p � 0.0001) but
not of treatment (F(1,19) � 0.072, p � 0.7915). Aversion to the
tastant observed in the first session (AN1, saline 69.122 �
5.257%, n � 10; CNO 64.8 � 6.240%, n � 11) was attenuated in
the second (AN2, saline 38.231 � 5.677%, n � 10; CNO 42.404 �
6.730%, n � 11) and third session (AN3, saline 23.442 � 7.914%,
n � 10; CNO 30.113 � 6.160%, n � 11). Aversion was signifi-
cantly suppressed in AN2 compared with AN1, in both the CNO

(p � 0.0001) and saline (p � 0.0001) groups. Aversion was also
significantly suppressed in AN3 compared with AN2, in both the
CNO (p � 0.0434) and saline (p � 0.0169) groups. We then
tested whether inhibition of the projection affects aversion of
innately aversive quinine by administering CNO or saline 1 h
before a choice test between quinine and water (data not shown).
Mice experiencing inhibition of the projection (100 � 0%, n � 6)
and mice receiving saline (99.02 � 2.405%, n � 6), exhibited no
significant differences in aversion to quinine (unpaired t test, p �
0.3409, t � 1.000, DF � 10).

To further examine whether the observed differences were
due to taste recognition, we inhibited the projection before pre-
senting the taste, and confined US association within the IC-
dependent 3 h margin (Adaikkan and Rosenblum, 2015).
Projection inhibition during intervals associated with CS encod-
ing affected the expression of aversion upon CTA retrieval when
comparing saline (87.18 � 4.432%, n � 9) and CNO (65.63 �
7.167%, n � 8) treated animals (Fig. 4C,D, unpaired t test, p �
0.019, t � 2.623, DF � 15). Using the same rationale (Adaikkan
and Rosenblum, 2015), we expanded the interstimulus interval
and inhibited the projection before US administration (Fig. 4E).
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Figure 2. Activity in BLA-projecting neurons of the aIC can be chemogenetically manipulated using the retroAAV system. Using dual viral injections at the two regions (See Materials and
Methods), we restricted the expression of chemogenetic receptors in IC-to-BLA projecting neurons in a Cre-dependent fashion (A–L). Whole-cell current-clamp recordings of mCherry �hM4DGi �

IC neurons projecting to BLA (F ), showed rapid hyperpolarization of membrane potentials and reduced firing rates after the application of 10 �M CNO for 60 s in the bath (A). Example traces from
5 similar recordings (n � 6 cells from 5 mice) from mCherry �hM4DGi � neurons projecting from the IC to the BLA (A). Unlike responses to 10 �M CNO application in mCherry � hM4DGi � cells,
non-hM4DGi expressing (mCherry-) EGFP � neurons (J ), did not show any change in membrane potential (C, n � 4 from 4 mice). Whole-cell current-clamp recording of mCherry � hM3DG �

neurons in the insula projecting to BLA (H ), showed rapid depolarization of membrane potentials and increased firing rates after the application of 2 �M CNO in the bath for 60 s (B, n � 6 cells from
5 mice). Unlike responses to 2 �M CNO application in mCherry � hM3DGq� cells, non-hM3DGq expressing (mCherry �) EGFP � neurons (L), did not show any change in membrane potential (D, n�
4 from 4 mice). Measurement of resting membrane potential changes in DREADD and non-DREADD-expressing cells, before and after the application CNO, showed a significant change in the RMP
of DREADD-expressing cells after the application of CNO, inhibitory and activator DREADD respectively (E, G, n � 6). There was no change in the RMP of non- DREADD expressing control cells before
and after the application of CNO (I, K ), inhibitory and activator DREADD respectively (n � 4). Scale bars in the traces (A–D) represent 20 mV ( y-axis) and 1 min (x-axis). *p � 0.05.
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Similarly (Fig. 4F; unpaired t test, p � 0.0016, t � 3.686, DF �
19), inhibition during US encoding for CTA suppressed aversion
for the CS upon retrieval in CNO treated mice (46.01 � 8.611%,
n � 11), but not in saline (84.0 � 5.179%, n � 10) treated mice.

We further show that inhibition of the projection before the
retrieval of trace-fear conditioning does not affect freezing be-
havior (Fig. 4G,H), indicative of the specificity of this pathway
for taste-malaise associations. Context testing resulted in similar

freezing (F(1,10) � 0.2873, p � 0.6037) between the two groups.
During the pretone, saline (12.135 � 5.077%, n � 5) and CNO
(13.693 � 1.834%, n � 5) treated mice showed similar freezing
(p � 0.4740). Tone (saline, 35.722 � 6.842%; CNO, 37.910 �
8.565%; p � 0.7879), and posttone (saline, 19.065 � 3.879%;
CNO, 17.713 � 6.208%; p � 0.6753) intervals was similar be-
tween the two groups (2-way ANOVA, F(1,8) � 0.004139, p �
0.9503).
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Figure 3. IC-to-BLA projecting neurons are necessary for the acquisition and retrieval but not for the extinction or maintenance of learned aversive memories. Adult (8 –12 weeks) WT male mice
were injected with viral constructs at the BLA (blue) and aIC (red), resulting in expression of inhibitory hMD4Gi in aIC-to-BLA neurons (A). Representative schematic overlays of the Cre-dependent
expression of the chemogenetic receptors using the retroAAV systems is shown, demonstrating the expression to be restricted in the BLA and aIC (n � 12 slices). Animals were split into saline (light
blue) and CNO (dark red) groups, and treated before CTA acquisition (B). Chemogenetic inhibition during CTA acquisition (C), significantly suppressed aversion upon retrieval compared with control
animals (C). In separate experiments, similarly injected mice, were used to assess the role of the projection in CTA retrieval (D). Inhibition during CTA retrieval, significantly suppressed aversion
compared with control animals (E). To test whether the projection is also involved in CTA memory maintenance, we inhibited 24 h after acquisition, and proceeded to test the animals 48 h later (F,
G). Inhibition 24 h after conditioning, resulted in similar aversion upon retrieval testing in control and treated animals. Even though inhibition of the projection during the retrieval of CTA suppresses
aversion to the CS (H ), 24 h later, treated mice (I ) exhibited similar aversion to control mice. After 14 unreinforced choice tests between water and saccharin, control and IC-BLA inhibited mice
exhibited similar extinction of the conditioned response (I ) and no significant differences were observed among the two groups due to our intervention. *p � 0.05.
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To account for any nonspecific effects of CNO administration
(Gomez et al., 2017), we injected animals with AAV and ret-
roAAV constructs at the IC and BLA, resulting in the expression
of mCherry, without DREADD receptors. Behavioral experi-
ments were conducted (Fig. 5A–C) as previously described (see
Materials and Methods). Control virus treated mice receiving
CNO (n � 5) and mice receiving saline (n � 6) before CTA
acquisition or retrieval, exhibit no significant effect differences
due to treatment (Fig. 5B, 2-way ANOVA, F(1,18) � 0.03366, p �
0.8565), or as a consequence of the retrieval and acquisition pro-
tocols (Fig. 5B, 2-way ANOVA (1, 18) � 1.887, p � 0.1864).
Furthermore, toward assuring that the association in CS-and US
experiments (Fig. 5C,D) was to the saccharin and not to the in-
jection of CNO, we repeated the experiments using control virus-
injected mice. Our results indicate that CNO (94.00 � 1.78%,
n � 4) and saline (87.25 � 6.25%, n � 4) treated mice show

similar aversion to saccharin (Fig. 5C,D, p � 0.339, t � 1.039,
DF � 6), meaning that the aversion was not altered by the con-
secutive intraperitoneal injections or CNO administration itself.
Similar result was observed in the protocol described for CS as-
sociation (Fig. 5C), where CNO injected (91.25 � 5.154%, n � 4)
and saline injected mice (82.25 � 5.154%, n � 4) showed similar
aversion to saccharin (p � 0.4296, t � 0.8468, DF � 6), which
further strengthens our suggestion of specific association to gas-
tric malaise caused by the LiCl.

To rule out the possibility that additional collaterals from the
BLA mediate the effect we observed, we infused CNO locally via
cannulas during CTA acquisition or retrieval (Fig. 5E). Steel
guide cannulas where placed at the aIC in addition to the relevant
injection of AAV and retroAAV at the aIC and BLA (see Materials
and Methods). CNO or saline was infused before the condition-
ing or retrieval of CTA for salty or sweet taste (Fig. 5F,G). After
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the intervention during conditioning, CNO (62.58 � 12.525%,
n � 4) treated mice showed a significant impairment in aversion
compared with saline (91.40 � 1.55%, n � 5) treated mice (Fig.
5G, unpaired t test, p�0.0361, t�2.587, DF�7). When examining
the intervention during the retrieval of the memory (Fig. 5H,I, un-
paired t test, p � 0.0165, t � 3.133, DF � 7), aIC-to-BLA inhibited

mice showed a reduction in aversion (61.84 � 7.663%, n � 5) com-
pared with their controls (90.20 � 2.888%, n � 4). In summary,
these results indicate that IC-BLA projections underlie the encoding
of malaise (i.e.US) or the association between tastes and unwanted
effects of a perceived US. We thus tested the hypothesis that activa-
tion of the pathway is sufficient to serve as an artificial US.
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Activation of IC-to-BLA projecting neurons after the
sampling of a novel taste is sufficient to form an artificial
aversive taste memory
To interrogate the validity of our hypothesis that activation of
IC-to-BLA projecting neurons is sufficient for the expression of

aversive taste behavior, mice were injected with AAV constructs,
resulting in expression of the activating chemogenetic receptor
(hM3DGq) tethered to mCherry in the projection (Fig. 6A; see
Materials and Methods). Artificial activation of BLA-projecting
neurons of the aIC during weak CTA conditioning (Fig. 6B,C,
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Figure 6. Activation of IC-to-BLA projecting neurons after the sampling of a novel taste is sufficient to form an artificial aversive taste memory. WT male mice were injected with viral constructs
at the BLA and aIC, resulting in Cre-dependent expression of activating hMD3Gq tethered to mCherry in BLA projecting neurons of the aIC (A). Representative schematic overlays of the Cre-dependent
expression of the chemogenetic receptors using the retroAAV systems is shown, demonstrating the expression to be restricted in the BLA and aIC (n � 12 slices). After recovery, animals were split
into groups receiving either saline (light blue) or CNO (green) 30 min before weak CTA training, followed by a retrieval choice test as described in (B). Chemogenetic activation of the projection using
CNO (B) significantly enhanced the expressed aversion compared with control animals (C). We then tested whether chemogenetic activation of the IC-to-BLA projecting neurons after novel taste
learning in mice, is sufficient to induce the expression of aversive taste behavior upon retrieval testing (D). Activation of the projection by administering CNO immediately after novel taste learning
resulted in significant aversion in treated mice compared with control animals (E). To examine whether activation of aIC-to-BLA projecting neurons affects the maintenance of memory, in similarly
injected animals, we activated the projection using CNO, 24 h after weak CTA training (F ). Nonetheless, the mean aversion to the CS in the CNO and saline (G) groups was similar after this
intervention. *p � 0.05.
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unpaired t test, p � 0.0001, t � 5.869, DF � 18), significantly
increased aversion (86.08 � 2.847%, n � 10) to the conditioned
tastant, compared with control (44.13 � 6.555%, n � 10) ani-
mals. To examine whether activity within the IC-to-BLA pathway
is sufficient for the formation of an aversive taste memory, a
separate group of mice consumed a novel tastant (saccharin)
followed by activation of the projection immediately afterward
(Fig. 6D, CNO 80.78 � 3.064%, n � 12; saline 24.24 � 8.015%,
n � 10), without receiving a malaise-inducing US (i.e., no visceral
experience). This resulted in strong aversive behavior during the
retrieval test (Fig. 6E, unpaired t test, p � 0.0001, t � 7.053, DF �
20). Conversely, activation of the projection 24 h after weak con-
ditioning (Fig. 6F) resulted in similar aversion between control
(86.3 � 7.100%, n � 8) and CNO-treated mice (85.67 � 4.912,
n � 7) upon retrieval testing 48 h later (Fig. 6G, p � 0.9444, t �
0.07109, DF � 13), indicating that the influence of the projection
does not extend to processes facilitating memory maintenance.
In summary, our results demonstrate that activation of the IC-
BLA pathway minutes after novel taste consumption is sufficient
and necessary for the encoding and enhancement of inputs allow-
ing for the association of CS and US during learning and is reac-
tivated to guide behavior during retrieval.

Discussion
Reciprocal connections of the anterior and posterior IC with the
amygdala complex have been heavily implicated in reward-
related encoding of both innate and learned (Stone et al., 2011;
Jezzini et al., 2013; Haley et al., 2016). CTA acquisition results in
a concerted bidirectional interplay of activity (Escobar and
Bermúdez-Rattoni, 2000), posttranslation regulation (Adaikkan
and Rosenblum, 2012), protein synthesis (Levitan et al., 2016;
Guzmán-Ramos et al., 2018), as well as transcription (Inberg et
al., 2016) and histone deacetylation (Rodríguez-Blanco et al.,
2019), at the two regions. Though a number of gustatory relay
stations undergo changes in activity and plasticity markers (Lam-
precht and Dudai, 1995; Rosenblum et al., 1997; Swank, 1999),
the aIC is unique in that its inactivation produces deficits in
acquisition (Buresová, 1978; Gallo and Bures, 1991), and prom-
inently suppresses CTA retrieval (Yasoshima et al., 2000; Ya-
soshima and Yamamoto, 2005; Gal-Ben-Ari and Rosenblum,
2011).

Studies using CTA and other outcome devaluation models
have since demonstrated that excitatory aIC neurons are neces-
sary for the acquisition of learned aversive memories, but also the
expression of nonhomeostatic, valence-driven choice behaviors
(Adaikkan and Rosenblum, 2015; Parkes et al., 2015; Baldo et al.,
2016; Rogers-Carter et al., 2018). The DI and AI subregions inte-
grate chemosensory, somatosensory, visceral and limbic infor-
mation into a complex temporal code (Katz et al., 2001; Jones et
al., 2006; Yokota et al., 2011), which provides the encoding
framework for associative relationships between experience and
outcome (Gardner and Fontanini, 2014; Haley and Maffei, 2018).
The aIC is thus increasingly viewed as a center dedicated to the
fine-tuning of behavior to salient sensory-reward/aversive asso-
ciations, rather than a chemosensory center in the broader sense
(Stehberg and Simon, 2011; Baldo et al., 2016; Fletcher et al.,
2017; Fonseca et al., 2018; Inui et al., 2019).

Presentation of the CS for CTA induces marked ERK activa-
tion in both the IC and BLA (Berman, 2003; Lin et al., 2010) and
activation of BLA projections to reward centers (Inui et al., 2013).
However, electrophysiological activity is inhibited in the majority
of recorded BLA units in vivo (Uwano et al., 1995; Kim et al.,
2010), Nonetheless, electrophysiological and molecular changes

within excitatory BLA neurons have indeed been reported in a
number of studies examining CTA acquisition and retrieval (Ya-
soshima and Yamamoto, 2005; Barot et al., 2008; Guzman-
Ramos and Bermudez-Rattoni, 2012; Osorio-Gómez et al.,
2017). Perhaps, despite their activation during acquisition, only a
small proportion of BLA neurons is reactivated during retrieval,
while the contribution of fibers projecting through or away from
the BLA is indeed significant (Dunn and Everitt, 1988; Bahar et
al., 2004; Inui et al., 2019).

We have previously demonstrated using in vivo two-photon
Ca 2� imaging of the aIC in mice, that CTA retrieval increases
recruitment of the IC-BLA pathway, in a valence- and not
stimulus-specific manner (Lavi et al., 2018). To further address
the role of this projection in the expression of valence-specific
behaviors, we first attempted to better define its spatial distribu-
tion (Fig. 1), by imaging the extended aIC in mice injected with
retroAAV at the BLA (Tervo et al., 2016). We found that consis-
tent with the literature (Krushel and van Der Kooy, 1988; Ko-
bayashi, 2011; Gogolla, 2017), BLA-projecting neurons primarily
reside within deep layers of the AI and DI (Fig. 1B–D). We then
confirmed that infected cells at injection sites were limited to the
BLA, and that projecting neurons can be chemogenetically ma-
nipulated through the Cre-dependent expression of DREADDs
at the aIC (Fig. 2).

The bidirectional connectivity of the aIC with the BLA has
been suggested to be key in shaping the perceived valence of
sensory experiences through integrating the CS with subjective
visceral and emotional experiences (Shi and Cassell, 1998; Maffei
et al., 2012; Avery et al., 2017). We therefore hypothesized that
recruitment of the projection subserves the encoding of negative
internal body states (e.g., malaise induced by an US), but also
facilitates their association with taste stimuli (e.g., saccharin),
guiding the expression of appropriate behavioral responses upon
retrieval (Höistad and Barbas, 2008; Craig, 2009). We tested our
hypothesis by inhibiting or activating the projection during two
different behavioral paradigms: the associative, negative learning
paradigm of CTA and the incidental, positive learning paradigm
of novel taste learning (Figs. 3, 4, 5, 6). Indeed, inhibition of the
projection during CTA acquisition and retrieval using intraperi-
toneal or local CNO injections (Figs. 3, 5), resulted in signifi-
cantly suppressed aversion to the CS upon choice testing, in
support of previous findings (Lavi et al., 2018).

Furthermore, chemogenetic activation of the aIC-to-BLA
pathway during weak conditioning enhanced aversive memory
retrieval, and was surprisingly sufficient to drive the expression
aversion to the CS in the absence of a real US sensory experience
(Fig. 6B–E). In agreement with the above, inhibition during the
CS- or US-encoding phase of CTA acquisition significantly sup-
pressed learned aversive behavior, but did not affect innate taste
behaviors (Fig. 4A,B). Importantly, inhibition during retrieval
did not lead to faster extinction (Fig. 3H, I), while neither inhi-
bition nor activation of the projection affected memory mainte-
nance (Figs. 3F,G, 6F,G), suggesting that the manipulation itself
does not permanently change or damage the neurons involved.
We thus propose that during CTA acquisition, activation of the
aIC-to-BLA projection facilitates CS-US associations, shapes the
valence encoding to learned taste experiences, and is reactivated
to enable the retrieval of past learned associations (Small et al.,
2003; Fontanini et al., 2009; Piette et al., 2012). Inhibition of
aIC-to-BLA neurons using local CNO delivery at the aIC further
confirmed the necessity of the projection for CTA memory ac-
quisition and expression (Fig. 5E–I), while suggesting that its
recruitment acts upstream of BLA collaterals to reward centers
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(Dunn and Everitt, 1988; Juárez-Muñoz et al., 2017; Inui et al.,
2019). Nonetheless, it is possible that aIC collaterals of the pro-
jection to other regions might also contribute to the effects elic-
ited by chemogenetic interventions (Wright and Groenewegen,
1996; Reynolds and Zahm, 2005; Stachniak et al., 2014).

Projections of the posterior IC to the central amygdala (CeA)
have been reported to shape and reverse, upon manipulation, the
valence of innate stimulus-specific responses to bitter tastants
(Schiff et al., 2018; Wang et al., 2018), while the anterior rostral
IC-to-BLA projection has been implicated in innate appetitive
behaviors to sweet taste (Wang et al., 2018). Our findings do not
preclude these circuits being involved in innate taste responses, as
we focused on learned aversive behaviors and BLA-projecting
neurons in portions of the region that were not examined in the
aforementioned studies (Schiff et al., 2018; Wang et al., 2018).
Moreover, the apparent discrepancy (Wang et al., 2018), might
be further explained by reports demonstrating a shift of the spa-
tial arrangement of aIC responses across the posterior axis after
CTA acquisition in a valence-specific manner, resembling innate
aversive responses (Accolla and Carleton, 2008; Carleton et al.,
2010; Lavi et al., 2018). However, even though manipulation of
the aIC-to-BLA projection does not affect innate taste responses,
other aIC circuits engaged in such innate responses, might con-
tribute to CTA learning and retrieval (Bales et al., 2015; Schiff et
al., 2018; Inui et al., 2019). On the other hand, given the multi-
modal role of the insula, perhaps spatial overlapping between
circuits subserving innate and learned behaviors of opposing va-
lence, might not necessarily constitute a discrepancy (Ohla et al.,
2019). For example, a recent study characterized a distinct Nos1-
expressing IC-to-CeA projection that is necessary for learned
food overconsumption, but not for homeostatic feeding (Stern et
al., 2019). Activity and connectivity within complex neocortical
structures such as the insula, might not operate merely under
spatial segregation rules, and perhaps the role of certain circuits
should be more carefully considered in relation their distinct
molecular characteristics, among others (Grant, 2018).

To examine whether aIC-to-BLA neurons are also involved in
the retrieval of other types of memory, we inhibited the projec-
tion during fear memory retrieval. However, chemogenetic inhi-
bition (Gomez et al., 2017) failed to affect freezing behavior in
conditioned mice (Fig. 4G,H). As other recent studies indicate,
distinct amygdala-projecting neurons in the posterior IC (pIC)
are more prominently involved (Grewe et al., 2017; Berret et al.,
2019). Interestingly, even though this pIC projection participates
in multiple stages during memory formation and retrieval (Berret
et al., 2019), distinct CeA-projecting neurons drive acute freezing
behavior, without leaving a memory trace (Grewe et al., 2017).
Even so, we cannot rule out the possibility that the aIC-to-BLA
projection participates in fear memory acquisition, or other types
of learning and memory (Parkes and Balleine, 2013; Rogers-
Carter et al., 2018). The aIC has been implicated in self-referential
processes, and our results further suggest learned aversive behav-
ior to arise, at least in part, through changes in activity and con-
nectivity of the region in relation to internal, subjective states
(Critchley and Seth, 2012; Pais-Vieira et al., 2016). The aIC-to-
BLA projection is necessary for CS-US association during CTA
acquisition, and is subsequently reactivated to guide retrieval,
likely consequent to brain-wide adaptations necessary for
memory maintenance (Smolen et al., 2019). Future studies
should dissect the role of aIC connectivity and distinct cell
types in taste memory encoding, maintenance and retrieval
more comprehensively.
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