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Structural determinants of microtubule minus end
preference in CAMSAP CKK domains
Joseph Atherton1*, Yanzhang Luo 2, Shengqi Xiang2,9, Chao Yang3, Ankit Rai 3, Kai Jiang 4,

Marcel Stangier5, Annapurna Vemu6, Alexander D. Cook1, Su Wang1, Antonina Roll-Mecak 6,7,

Michel O. Steinmetz 5,8, Anna Akhmanova 3, Marc Baldus 2* & Carolyn A. Moores 1*

CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is

mediated by their CKK domains, which we proposed recognise specific tubulin conformations

found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK

domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end

specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and

NgCKK-microtubule complexes, which show that these CKK domains share the same protein

fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints

on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid.

However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK

remodels its microtubule interaction site and changes the underlying polymer structure

because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to

many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to

enable microtubule minus-end recognition.
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The involvement of the microtubule (MT) cytoskeleton in
numerous processes in eukaryotic cells is enabled by the
diverse and adaptable properties of individual MTs. MTs

act as tracks for molecular motors, while growing and shrinking
MTs can be used to generate force. MTs can also act as signalling
hubs, such that specific tubulin conformations within particular
regions of the polymer stimulate recruitment of distinct MT-
binding partners. The molecular basis of these effects, mediated
by the conformational adaptability of tubulin dimers, is only just
beginning to be understood and represents a key topic in the
cytoskeleton field.

The ends of MTs are important sites of conformational
diversity and are often points of communication between the MT
cytoskeleton and other cellular components, such as membranes,
organelles, centrosomes and chromosomes1. The exact con-
formation(s) of MT ends is an ongoing source of debate, but
current evidence points to their being composed of zones with
distinct and dynamic tubulin conformations2–7. MT minus ends
were long thought to be static and structurally homogeneous,
capped by γ-TuRCs and buried at MT organizing centres. More
recently, however, the discovery and characterisation of CAMSAP
(calmodulin-regulated spectrin-associated proteins)/Patronin
family members has revealed that control of non-centrosomal
MT minus-end dynamics, and their interaction with specific
cellular regions, are vital in numerous aspects of cell
physiology8,9. CAMSAP/Patronins are centrally involved in
diverse activities including promoting cell polarity, regulation of
neuronal differentiation and axonal regeneration, and definition
of spindle organization and asymmetry, thereby highlighting the
importance of regulation of MT minus-end dynamics in these
varied contexts10–20.

At the molecular level, CAMSAPs/Patronins stabilise uncapped
MT minus ends and support MT minus-end growth21–23.
CAMSAP/Patronins are large, multi-domain proteins with many
cellular binding partners. However, the family is defined by the
presence of a CKK domain (originally identified in CAMSAP1,
KIAA1078 and KIAA1543), which is necessary and sufficient for
MT minus-end binding in many CAMSAP/Patronins21,24. Pre-
viously, we showed that CAMSAP/Patronin CKK domains pre-
ferentially bind to a zone behind the extreme MT minus end,
which corresponds to a region where the lattice undergoes a
transition to gently curved tubulin sheets2. Subnanometer reso-
lution single particle cryo-EM showed that CKK domains bind on
the MT lattice between two tubulin dimers on adjacent proto-
filaments. Mutagenesis of residues at the MT-binding interface in
the CKK domain disrupted lattice and minus end binding,
showing that the same regions of the CKK domain that contact
the MT are also involved in binding to the minus-end zone.
Taking these data together, we proposed a model for CAMSAP/
Patronin MT minus end recognition, which is mediated by sen-
sitivity of the CKK domain to a curved sheet-like conformation of
tubulin exclusive to MT minus ends. Specifically, the model
suggested that the tighter CKK interaction with β-tubulin dis-
favours binding at MT plus ends while the looser α-tubulin
contacts preferentially accommodate tubulin curvature at minus
ends. This interaction also can occur on the MT lattice, but CKK
binding induces distortion of the non-optimal binding site con-
figuration, manifesting as protofilament skew within the polymer.

Despite these findings, several critical questions relating to the
structural basis of this recognition mechanism remain unan-
swered: How is the CKK-induced MT lattice distortion accom-
modated, and what can this tell us about minus-end recognition?
Can CKK binding to different MT protofilament architectures
shed further light on the mechanism of minus end recognition?
Intriguingly, we also previously identified CKKs in the amoebo-
flagellate N. gruberi and the potato blight fungus P. infestans that

lacks the binding preference for MT minus ends that was pro-
posed to be present in CKK domains from the last eukaryotic
common ancestor2. Can a comparison of CKK domains with and
without minus-end binding specificity also provide insight into
MT minus-end recognition? Since discrimination between dif-
ferent MT lattice zones can depend on relatively subtle structural
differences, high resolution information is needed to address
these questions. It is currently not possible to image MT minus
ends directly at the necessary resolution to observe these con-
formational variations. However, our previous work showed that
CKK lattice binding can be used as a proxy for minus end
binding, and cryo-EM studies of the lattice could yield near-
atomic resolution information about the CKK-tubulin complex.

We therefore developed a RELION25–27-based image-
processing pipeline that enabled us to study the CKK-MT
interaction at better than 4 Å resolution28. Using this, we deter-
mined reconstructions of MT-bound CKK domains on both 13-
and 14-protofilament pseudo-helical MTs, allowing visualisation
of a wider repertoire of tubulin conformations. We also investi-
gated the CKK domain from Naegleria gruberi (NgCKK), which
does not show minus-end binding preference. The direct com-
parison of tubulin binding by NgCKK with that of human
CAMSAP1 CKK (HsCKK)—which has minus end binding pre-
ference—allowed us to probe our previous model of minus-end
recognition. We found that NgCKK, like HsCKK, binds between
two tubulin dimers in neighbouring protofilaments. However,
NgCKK MT binding is shifted relative to HsCKK, resulting in a
modified interaction with tubulin including even smaller contacts
with α-tubulin, contrary to our previous prediction. Thus, the
comparison between NgCKK and HsCKK shows that looser
contacts with α-tubulin compared to β-tubulin are important but
not sufficient for minus end recognition. NgCKK binding does
not induce protofilament skew, reinforcing that induction of skew
is a structural signature for minus-end binding capability. NMR
studies revealed a remarkable structural rigidity of both the
HsCKK and NgCKK domains. The ability of HsCKK to remodel
MTs thus results from a combination of intrinsic structural
properties and the precise mode of interaction with its MT-
binding site. HsCKK-induced skew arises within the MT lattice
from the tilting of entire protofilaments coincidental with con-
traction of the MT diameter. These multi-disciplinary data reveal
that the surprising structural plasticity of MTs, which is distinct
from nucleotide-dependent modulations of the MT lattice, forms
the basis for minus-end recognition by CAMSAP proteins.

Results
Canonical lattice binding by a CKK domain from N. gruberi.
The presence of CKK domains in diverse organisms presents a
unique resource that can shed light on the conserved or divergent
properties of these domains. Our previous analysis suggested that
a CKK domain from N. gruberi did not exhibit MT minus-end
binding preference2. We confirmed this using TIRF experiments,
showing that, in comparison to the well-characterised MT minus-
end preference of HsCKK (Fig. 1a, left panel), NgCKK strongly
bound along the entire MT lattice and exhibited no MT minus-
end preference on dynamic MTs at a range of concentrations
(Fig. 1a, right panels).

To investigate this distinctive behaviour further, complexes
formed by either NgCKK or HsCKK and taxol-stabilised MTs
were imaged using cryo-EM for structure determination. Our
previous work showed that CKK MT binding includes interac-
tions with the C-terminal tails of tubulin (CTTs). To facilitate
visualisation of this interaction, we used MTs assembled from
tubulin purified from a human tsA201 cell line for our
reconstructions29. These MTs contain only two β-tubulin
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isoforms and one α-tubulin isoform, have no detectable post-
translational modifications as indicated by mass spectrometric
analyses29, and are thus much more homogenous than the brain
tubulin we previously used. To visualise CKK binding at higher
resolution, we also developed an image-processing pipeline for
pseudo-helical MTs and different protofilament architectures in
RELION (see methods in ref. 28). The resulting unsymmetrised
(C1) reconstructions for both NgCKK and HsCKK showed
distinct CKK intradimer, interprotofilament densities every 8 nm
along the MT axis and an absence of CKK density at the seam
(Fig. 1b, c). This validates the accuracy of the pipeline and is
consistent with our previous work2, while revealing the MT-
bound NgCKK and HsCKK complexes at substantially higher

resolutions now for both 13- and 14-protofilament MTs. The C1
reconstructions all have resolutions of 4.7 Å or better, and the
symmetrised reconstructions have resolutions of 3.8 Å or better
(Supplementary Fig. 1). This allowed us to build atomic models of
the NgCKK-MT and HsCKK-MT complexes (Fig. 1d–g, Supple-
mentary Fig. 1i–l, Supplementary Table 1).

While the structures of mammalian CKK domains have
previously been determined, our NgCKK reconstructions now
reveal the near-atomic resolution structure of a non-mammalian
CKK domain (Fig. 1h). It has a typical CKK fold, but sequence
differences compared to HsCKK (Supplementary Fig. 2a) are
reflected in structural differences in several loop regions
(Supplementary Fig. 2b). NgCKK’s loop4, which faces away from
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the MT surface (Fig. 1d, black arrows), is 34 amino acids longer
than in HsCKK. There is no extra density in the cryo-EM
reconstructions corresponding to this insert even at low thresh-
olds (Fig. 1d), suggesting it is highly flexible/disordered and
unlikely to be involved in MT binding. However, there are also
structural differences in regions closer to the MT surface:
specifically, loop3, the C-terminal single-turn helix and the
beta-hairpin leading into loop7, all show backbone RMSDs >2.5
Å (Supplementary Fig. 2c).

The reconstructions show that both NgCKK and HsCKK form
an intradimer interprotofilament wedge (Fig. 1d–g), contacting
both α- and β-tubulin subunits in a tubulin dimer pair (with
constituent monomers numbered α1, β1, α2 and β2). Both CKK
domains form MT contacts mainly via a set of surface exposed
loops (Fig. 1d–g, described below). The N-terminal extension of
each CKK domain also contacts the MT but in distinct ways. The
NgCKK N-terminus forms an ordered density that is associated
with the surface of β2-tubulin, although the density was not
sufficiently defined to allow accurate modelling (Fig. 1d).
Conversely, the HsCKK N-terminus closest to the CKK core
forms a distinct interaction with β2-tubulin that was built into the
atomic model, whereas density corresponding to its most N-
terminal part was hardly visible on the surface of β2-tubulin
(Fig. 1f). Furthermore, there is no clear contact between NgCKK
and the β1-tubulin CTT (Fig. 1d). This is in contrast to HsCKK,
where density corresponding to an additional ~5 residues of β-
tubulin’s CTT were visualised in our structures (Fig. 1f, purple)
contacting both the CKK core and its C-terminus (Supplementary
Fig. 3a). The visualisation of β-tubulin’s CTT interaction with
HsCKK is likely facilitated by the limited sequence variability
(Supplementary Fig. 3b) and lack of post-translational modifica-
tions in the CTT tails in tsA201 β-tubulin compared to brain
tubulin29.

Overall, these structures show that the core of CKK domains
with and without minus-end binding preference have the same
protein fold and interact with MTs in similar although not
identical ways. Differences in the tubulin interactions are also
seen at both their N- and C-termini. Our previous work showed
that although these regions contribute to HsCKK MT affinity,
neither the N- nor C-terminal extensions define its minus-end
binding specificity2. However, to test the hypothesis that the
absence of minus-end recognition by NgCKK is mediated by its
termini (i.e. that all CKK cores have minus end recognition
properties), we studied a set of CKK N-/C-termini truncations
and chimeras using TIRF microscopy (Supplementary Fig. 4).
Removal of either or both termini, and swapping the N-terminus
of NgCKK for that of HsCKK, drastically reduced the overall

affinity of these proteins for MTs. Crucially, the chimera in which
the C-terminus of NgCKK was substituted with that of HsCKK
retained MT binding but also showed no minus end recognition,
clearly arguing against the above gain-of-function hypothesis.
Intriguingly, however, the chimera with both N- and C-termini of
HsCKK grafted onto the NgCKK core has a slight minus-end
preference, albeit significantly less than HsCKK. This hints at
modulatory mechanisms of the unstructured termini—in parti-
cular the N-terminus—on the core CKK domain. Nevertheless,
the behaviour of most of these engineered constructs, together
with the observation of similar binding sites for NgCKK and
HsCKK, and with our previous characterisation of HsCKK
mutants, suggests that differences in CKK minus-end recognition
behaviours are primarily due to structural differences in the
interaction between tubulin and the CKK core. The near-atomic
resolution of all our reconstructions allowed us to investigate the
mechanistic basis of these effects.

Differences in MT interaction between NgCKK and HsCKK.
To visualise how NgCKK’s MT interaction differs from HsCKK,
each CKK-tubulin model was aligned on the tubulin parts of the
complex, thereby revealing differences in CKK positioning rela-
tive to the MT lattice (Fig. 2a, top). The tubulin dimers in both
models readily superimpose (Supplementary Fig. 5), as do helix-
α1, loop1 and loop7 in each CKK domain (Fig. 2a, top). However,
NgCKK loop3, loop8 and its C-terminus—which all contact the
MT—are displaced compared to HsCKK (Fig. 2a, bottom). While
some of these variations are due to structural divergence in
NgCKK, this is insufficient to explain all the differences in CKK
positioning relative to tubulin. In fact, NgCKK is rotated away
from the MT around the apex of loop7 relative to HsCKK
(Supplementary Movie 1).

As a result of this shift, even when the sequences in each CKK
domain are conserved, our reconstructions show that some
NgCKK residues engage differently with the MT lattice compared
to equivalent residues in HsCKK. For example, HsCKK loop3
residues R1535 and R1528 contribute significantly to MT affinity.
With the improved resolution of our current reconstructions,
R1528 is observed extending close to α1-tubulin’s residues H393
on H11, whilst R1535 reaches to contact the β1-tubulin CTT
(Fig. 2b, top). On the other hand, in NgCKK loop3—which is one
residue longer and positioned differently with respect to the MT
surface compared to HsCKK—the residue equivalent to R1528
(R678) interacts with loop H10-β7 of β1-tubulin, possibly
hydrogen bonding with E345 (Fig. 2b, bottom). In addition,
instead of interacting with α1-tubulin, NgCKK residue R686

Fig. 1 Comparison of the CKK domain from N. gruberi with HsCKK. a Dynamic MT TIRF assays demonstrate that unlike HsCKK, NgCKK does not have a
preference for MT minus ends but binds along the whole MT lattice at a range of concentrations. Scale bars: horizontal, 2 µm; vertical, 2 min. b C1
reconstruction of NgCKK-bound tsA201-tubulin 13-protofilament MT at 4.3 Å resolution, showing CKK density (light green) every 8 nm between
protofilaments at the intradimer tubulin interface, except at the seam; the reconstruction procedure produces a resolution gradient in the density, highest in
the middle and lowest at the top/bottom. c C1 reconstruction of HsCKK-bound tsA201-tubulin 13-protofilament MT at 4.5 Å resolution, showing CKK
density (green) bound every 8 nm between protofilaments at the intradimer tubulin interface, except at the seam; as above, the reconstruction procedure
produces a resolution gradient in the density. d Asymmetric unit extracted from the symmetrized 13-protofilament reconstruction viewed from the outside
of the MT reveals the NgCKK-tubulin interaction, including ordering of the CKK N-terminus (red). The CKK model coloured according to CKK SSE/loop
colour scheme at the bottom of the figure. Arrows show the start and end of the disordered 34 amino acid loop 4 insert in NgCKK; e 180° rotated view of
panel d, showing the NgCKK interaction from the MT lumen with a cut through of the MT, showing the NgCKK as a wedge between four tubulin
monomers. f Asymmetric unit extracted from the symmetrized 13-protofilament reconstruction viewed from the outside of the MT reveals the HsCKK-
tubulin interaction, including partial ordering of the CKK N-terminus (red) and visualization of the unmodified tsA201 cell-tubulin β-tubulin C-terminal tail
(purple). The CKK model coloured according to CKK SSE/loop colour scheme at the bottom of the figure; g 180° rotated view of panel f, showing the CKK
interaction from the MT lumen with a cut through the MT, showing the CKK as a wedge between 4 tubulin monomers and exhibiting well-ordered tubulin
interaction loops. h NgCKK domain with loops coloured, indicating loop insertions and a shortened C-terminus (residue length differences in key loop
regions compared to HsCKK are indicated)
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(equivalent to R1535) also interacts with β1-tubulin, extending to
within hydrogen bonding distance of E345.

Altogether, the subtle differences within the NgCKK sequence,
fold and positioning of the domain relative to tubulin result in a
different binding footprint on the MT surface compared to
HsCKK (Fig. 2c,d). Both the new HsCKK structure and the
NgCKK structure exhibit the previously described larger interface
with β-tubulin compared to α-tubulin (Fig. 2e) proposed to be
important for minus end recognition2. Intriguingly, however, the
differences between HsCKK and NgCKK contacts are most
striking on α-tubulin, with the HsCKK C-terminus/loop3 and
loop8/N-terminus forming closer contacts with α1- and α2-

tubulin, respectively, compared to NgCKK. Indeed, the overall
NgCKK footprint is smaller on both α1- and α2-tubulin
compared to HsCKK (Fig. 2e). These data thereby highlight that
the role of contacts with α-tubulins in mediating the minus end
specificity of HsCKK is more sophisticated than was previously
proposed (see Discussion).

Sensitivity of HsCKK to microtubule lateral curvature. In
binding between two tubulin dimers, CKK domains are well
placed to sense changes in inter-tubulin lateral curvature, which
affects the distance and angle between adjacent protofilaments.
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Previously, we proposed that sensitivity to lateral curvature was
an important facet of HsCKK binding minus-end specificity.
Since MTs with different protofilament numbers exhibit different
lateral curvature, comparison of CKK binding in our 13- and 14-
protofilament reconstructions allowed us to investigate this effect.
Superposition of a single tubulin dimer from each of the 13- and
14-protofilament atomic models for NgCKK and HsCKK
reconstructions shows that the interprotofilament lateral angle in
14- compared to 13-protofilament MTs is ~2˚ shallower (Fig. 3).
In response, NgCKK is only slightly altered in its binding site on
14-protofilament MTs (Fig. 3a, b, Supplementary Movie 2), but
HsCKK experiences a larger displacement out of the inter-
protofilament cleft on 14-protofilament MTs (Fig. 3c, d, Sup-
plementary Movie 3). Even though the HsCKK interface with α-
tubulin remains larger than that of NgCKK on 14-protofilament
MTs (Fig. 2e), the comparison between different MT archi-
tectures suggests that in the context of decreased lateral curvature,
HsCKK is more prone to being squeezed out of its binding site
than NgCKK. This is presumably because it binds deeper between
protofilaments compared to NgCKK (Fig. 3).

Since our model of minus-end recognition predicts that lateral
flattening of adjacent α-tubulin pairs would favour HsCKK
binding, the outward displacement of HsCKK from its binding
site on slightly flatter 14-protofilament MTs initially appears
counter-intuitive. In the lattice, however, lateral flattening affects
α- and β-tubulins equally, whereas our model suggested that both
(i) lateral flattening in α-tubulin towards the MT minus end is
particularly important and furthermore that (ii) preferential
lateral flattening in adjacent β-tubulin pairs at MT plus ends
would disfavour HsCKK binding. Thus, the potential enhance-
ment of α-tubulin contacts in 14-protofilament MTs is balanced
by tightening at the already tight β-tubulin interface. This
emphasises the sensitivity to subtle differences in tubulin
conformation encoded by HsCKK that supports its MT minus-
end binding preference, in particular the importance of
conformational asymmetry in α- and β-tubulins at this site.

CKK protofilament skew correlates with minus end specificity.
In addition to comparison of the NgCKK and HsCKK binding
sites, the overall architecture of the decorated MTs can be com-
pared to shed further light on HsCKK minus-end preference. We
previously described the ability of HsCKK to induce positive
(right-handed) protofilament skew in MTs polymerized from
mammalian brain tubulin. Raw images (Fig. 4a) and particle
alignment parameters (Fig. 4b) from our new HsCKK-MT dataset
support this observation on tsA201 cell-tubulin MTs. 13-
protofilament MTs usually have unskewed protofilaments, run-
ning straight along the MT wall (Fig. 4c), whereas HsCKK
binding causes right-handed protofilament skew (Fig. 4a–c).

Furthermore, 14-protofilament MTs usually have negatively
skewed protofilaments but HsCKK binding caused these proto-
filaments to lie parallel to the MT wall with no skew (Fig. 4a, b).
In other words, we observed induction of right-handed proto-
filament skew by HsCKK in both types of MT architectures.
Intriguingly—and in contrast to the HsCKK—the intrinsic pro-
tofilament skew in both 13- and 14-protofilament MTs was
unperturbed by NgCKK binding (Fig. 4a–c). This is consistent
with the idea that protofilament skew induction correlates with
MT minus-end specificity.

Protofilament skew can arise either from a stagger of individual
subunits along a protofilament perpendicular to the long axis of
the protofilament, or from tilt of the whole-protofilament relative
to the MT axis30. The higher resolution of our new reconstruc-
tions allowed us to probe how protofilament skew is structurally
accommodated in HsCKK-bound MTs and thereby shed light on
requirements for tubulin plasticity to support HsCKK minus end
recognition. To do this, we aligned and compared the HsCKK
and NgCKK C1 cryo-EM reconstructions; this is because
although these structures have slightly lower resolutions than
the symmetrised reconstructions, the fact that they have not been
symmetrised means they more closely reflect the overall polymer
structure. When protofilaments of NgCKK and HsCKK models
fitted into their corresponding C1 reconstructions are then
overlaid, a positive skew of HsCKK protofilaments relative to
NgCKK protofilaments is observed (clockwise rotation viewed
from the outer surface the MT, Fig. 4d, left). This skew is reflected
in increasing RMSD between the two models along the helical
axis (shown in Fig. 4d, right). However, when the models of
individual protofilament from NgCKK and HsCKK structures are
directly aligned, this produces only a small RMSD (<1 Å) along
the whole protofilament (Fig. 4e), i.e. the structures of protofila-
ments from each reconstruction are essentially the same. This
comparison shows that, rather than rearrangements within
protofilaments, protofilament skew in HsCKK-bound MTs results
from a tilt of whole protofilaments relative to the pseudo-helical
axis (Fig. 4f).

Free and MT-bound CKK domains are remarkably rigid. What
are the properties of HsCKK compared to NgCKK that support
induction of whole-protofilament skew? To answer this question
at atomic resolution we first turned to solid-state NMR (ssNMR).
To collect the highest quality ssNMR data, a high affinity
HsCKK-MT interaction was required. Our previous work iden-
tified an HsCKK mutant, N1492A, that increased the binding
affinity for MTs compared to wild-type HsCKK while reducing its
selectivity for MT minus ends. Therefore, a range of NMR data
were collected using this mutant, and in line with its previously
described MT-binding properties, we observed improved

Fig. 2 MT-bound NgCKK and HsCKK structures and binding footprints are subtly different. a Differences in HsCKK and NgCKK positioning relative to
tubulin (used for alignment and shown as white backbone model) viewed from the MT lumen; top, overlay of HsCKK (dark green) and NgCKK (light green)
backbones; bottom, backbone RMSD between HsCKK and NgCKK shown on the HsCKK structure, demonstrating their shifted binding position relative to
tubulin particularly in tubulin-contacting loop8 and loop3. b Comparison of the contacts formed between HsCKK or NgCKK and α-tubulin H11 (light grey
backbone) and β-tubulin’s H10-β7 loop (dark grey backbone); top, HsCKK contacts with tubulin; bottom, NgCKK contacts with tubulin; cryo-EM density is
shown in mesh and the CKK model loops are coloured according to CKK Secondary Structure Element (SSE)/loop colour scheme in the box. c Overview of
the HsCKK MT-binding footprint on its intradimer interprotofilament binding site; tubulin density < 5 Å from HsCKK is coloured according to the CKK SSE/
loop colour scheme in b; asterisks refer to the inset, which shows HsCKK interaction with the β-tubulin CTT; arrows indicate regions where tubulin contacts
differ in HsCKK and NgCKK. d The footprint of NgCKK on the MT is different compared to HsCKK. Tubulin density < 5 Å from the CKK is coloured
according to CKK SSE/loop colour scheme in b. Arrows indicated regions where tubulin contacts differ in HsCKK and NgCKK. e Calculated interface area in
Å2 between HsCKK or NgCKK and dimer pair subunits, α1-tubulin, α2-tubulin, β1-tubulin and β2-tubulin, for both 13- and 14-protofilament reconstructions,
showing smaller α-tubulin contacts in NgCKK compared to HsCKK. For each dataset, two measurements (light/dark green points) were made in PISA
using the models refined into each independent half-data reconstruction, the mean of which is also shown (black line); source data are provided as a
Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13247-6

6 NATURE COMMUNICATIONS |         (2019) 10:5236 | https://doi.org/10.1038/s41467-019-13247-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


resolution in our ssNMR spectra compared to the wild-type
CKK2 (Supplementary Fig. 6a). Importantly, this gain in spectral
resolution allowed us to conduct fast magic angle spinning
(MAS), 1H detected ssNMR experiments to further elucidate the
CKK conformations in complex with MTs (Supplementary
Fig. 6b–d). The chemical-shift perturbations observed upon MT-
binding agreed with the previous reported CKK-MT interface
while providing a more quantitative and residue-specific
description of the behaviour of the domain (Fig. 5a, left).
Importantly, we mainly observed chemical-shift perturbations on
the amide 1H and 15N atoms, while no significant chemical-shift

perturbations were detected for the Cα atoms, indicating that the
secondary structures of HsCKK did not alter upon binding to
MTs (Supplementary Fig. 6c, d).

In this context, we speculated that despite their overall
conserved fold, HsCKK and NgCKK may have intrinsically
different structural properties. To obtain additional insight into
the structural properties of these CKK domains, we probed
residue-specific dynamics of several free CKK domains using
solution-state NMR. Specifically, we conducted Carr-Purcell-
Meiboom-Gill (CPMG) relaxation dispersion31,32 and Chemical
Exchange Saturation Transfer (CEST) experiments33 to reveal
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possible millisecond time-scale conformational exchange pro-
cesses of CKK domains. The CPMG profiles of HsCKK_N1492A,
HsCKK, the CKK domain from mouse CAMSAP3 and NgCKK
all showed no exchange in these CPMG time ranges (50 Hz
~1.5 kHz) (Fig. 5a, right and Supplementary Fig. 6e). This is
particularly noteworthy in NgCKK given the large, flexible loop4
insertion compared to HsCKK (Supplementary Fig. 2a). From our
data, we can conclude that motions of loop 4 (which most likely
occur on the nanosecond scale) do not influence the millisecond
time-scale motional profile of the rest of the protein backbone
that is probed in our CPMG and CEST experiments.

Similarly, the results of additional CEST experiments using
HsCKK_N1492A speak against slow milli-second time-scale
motion in free CKK domains, for example, in residues T1553
and S1585, which exhibited significant chemical-shift changes
upon complex formation (Supplementary Fig. 6f). Similar results
were obtained for CAMSAP3 CKK (Supplementary Fig. 6g) and
NgCKK (Supplementary Fig. 6h). Taken together, our NMR
experiments suggest that the 3D structures of CKK domains—
whether they recognize minus-ends or not—are remarkably rigid
and, in contrast to many other MAPs, do not undergo structural
changes upon MT binding.

HsCKK remodels its binding site causing MT remodelling. We
then wanted to know how protofilament skew was brought about
by HsCKK binding and accommodated by the MT lattice. The
geometric constraints that define MT architecture while main-
taining longitudinal and lateral tubulin contacts are captured in
the lattice accommodation model34,35, and we investigated in
turn the set of interconnected structural parameters this model
describes.

The helical rise and monomer repeat distances were not
significantly different in MTs (13- or 14-protofilament) bound by
HsCKK or NgCKK (Supplementary Table 2). However, proto-
filaments in HsCKK-MTs are closer together (Fig. 5b), giving
these MTs a ~4 Å smaller diameter than NgCKK MTs with the
same protofilament number. The diameter shrinkage occurs
because the centres of mass of all neighbouring B-lattice dimers in
a single 3-start helical turn are closer by around 0.4 Å in HsCKK-
compared to NgCKK-MTs (Fig. 5c); such a difference is not
observed in the equivalent comparison between half-maps within
each dataset (Supplementary Fig. 7a). This inward protofilament
positioning is not symmetrical around the MT, with a range of
0.4-1.5 Å relative shifts observed in both 13- and 14-
protofilament architectures (Fig. 5b), and with the biggest
deviations seen at and opposite of the seam. Again, such a
difference is not observed in the equivalent comparison between
half-maps within each dataset (Supplementary Fig. 7b). The small
compression between lateral neighbouring tubulin dimers in the
lattice can be observed by superimposing the ones from the

atomic models of NgCKK-MT and HsCKK-MT (Fig. 5d, top).
This analysis also reveals a longitudinal displacement of adjacent
tubulin dimers in the HsCKK model relative to the NgCKK
model; this is indicative of shearing of adjacent protofilaments as
they skew. There are, however, no detectable differences in
interprotofilament lateral contacts (small RMSDs, Fig. 5d,
bottom; Supplementary Fig. 7c, d). Rather, small adjustments
across the outer tubulin surface—where HsCKK binds—flexibly
accommodate shifts in the MT architecture due to HsCKK
binding (Fig. 5d, bottom, larger RMSDs in the tubulin on the left).
In summary, relative to NgCKK, HsCKK induces small
conformational changes in tubulin at its binding site which, in
the context of whole MTs, induces protofilament tilt, shear, lateral
compression and a reduction in MT diameter (Fig. 5e).

Discussion
To shed light on the MT minus-end binding preference of
CAMSAPs, we have structurally compared a CKK domain that
does not bind MT minus ends—NgCKK—with the CKK domain
from human CAMSAP1 (HsCKK), which mediates CAMSAP1’s
MT minus-end binding preference. Little is known about the
native MT ultrastructure of Naegleria, so it is possible that
NgCKK could recognise MT minus ends on Naegleria MTs36.
However, for the purposes of our current study, NgCKK has
proven an invaluable tool for evaluating MT minus end binding
mechanisms on mammalian MTs. To allow a near-atomic reso-
lution investigation of the subtle mechanism(s) at work, we stu-
died NgCKK and HsCKK MT lattice binding in the context of
different MT architectures and used these structures to explain
the differences in their MT minus-end recognition properties
(Fig. 6).

In this study, we found that NgCKK and HsCKK share the
same protein fold, they bind at the same intradimer inter-
protofilament site and, as revealed using a combination of NMR
methodologies, share the same intrinsic structural rigidity. This
shows that the presence/absence of MT minus-end recognition is
not due to large conformational changes in the domain or sig-
nificant alterations in the CKK binding site. Although the distinct
MT interactions by the flexible regions adjacent to the CKK core
have a large effect on MT affinity (Supplementary Fig. 4), the
biggest difference between these two domains is that HsCKK
forms a more extended interface with the α-tubulin pair at its
binding site than NgCKK and sits deeper within the inter-
protofilament groove. We found that HsCKK is more displaced
from its binding site on 14- compared to 13-protofilament
MTs, squeezed outwards by the flatter lateral curvature of adja-
cent protofilaments in the higher protofilament number MT
architecture. In addition, HsCKK binding induces positive
protofilament skew in both 13- and 14-protofilament MTs while
NgCKK does not; our reconstructions show that, in inducing

Fig. 3 HsCKK is more sensitive to MT lateral curvature than NgCKK. a A transverse slice, viewed from the MT plus end, through 3 protofilaments from the
NgCKK-MT 13- and 14- protofilament (pf) models superimposed on the central protofilament. This shows that the adjacent protofilaments adopt a
shallower relative angle in 14-protofilament MTs (orange arrows) and reveals the response of NgCKK bound in the interprotofilament valley to this change
in lateral protofilament curvature. Top, view of the superimposed protofilament backbone models from the 13- and 14-protofilament structures
superimposed on the central protofilament (dotted pink outline); small blue arrows indicate the relatively small displacement of NgCKK from its binding
site on 14-protofilament MTs. Bottom, backbone RMSD between the 13- and 14-protofilament models shown on the 13-protofilament model; b schematic
depicting the effect of MT protofilament architecture on NgCKK binding. c A transverse slice, viewed from the MT plus end, through three protofilaments
from the HsCKK-MT 13- and 14- protofilament models superimposed on the central protofilament. This again shows how the adjacent protofilaments adopt
a shallower relatively angle in 14-protofilament MTs (orange arrows) and reveals the response of bound HsCKK to this change in lateral protofilament
curvature. Top, view of the superimposed protofilament backbone models from the 13- and 14-protofilament structures superimposed on the central
protofilament (dotted pink outline); larger blue arrows indicate the larger displacement of HsCKK from its binding site on 14-protofilament MTs. Bottom,
backbone RMSD between the 13- and 14-protofilament models shown on the 13-protofilament model; d schematic depicting the effect of MT protofilament
architecture on HsCKK binding
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protofilament skew, HsCKK brings the tubulin dimers to which it
binds closer together. While neither intra- nor interdimer long-
itudinal interfaces are perturbed in HsCKK-bound MTs, their
global lattice architecture alters to accommodate the local
remodelling at the HsCKK binding site: compared to NgCKK-
MTs, the diameter of HsCKK-MTs are smaller and adjacent

protofilaments exhibit compression, shear and skew while con-
serving the B-lattice MT architecture with a single seam predicted
by the lattice accommodation model.

The first important aspect of the MT minus-end recognition
mechanism by HsCKK revealed by our current data is that the
CKK domain itself does not flexibly respond to different tubulin
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conformations. Rather, its rigidity is consistent with its sensitivity
to, and affinity for, the conformation(s) of polymerized tubulin it
encounters. Second, we confirmed that the ability to induce sig-
nificant protofilament skew in fully decorated MTs correlates
with MT minus-end recognition activity. This was previously
observed in the HsCKK-N1492A mutant but is now confirmed in
the comparison of HsCKK with NgCKK. Third, we previously
speculated that skew induction reflects the non-optimal geometry
for HsCKK binding of tubulin dimers within the MT lattice
compared to minus ends. Our new reconstructions show that this
is indeed the case, and that skew arises in response to HsCKK
forcing the two tubulin dimers it contacts closer together. Con-
sistent with this idea, the CKK binding site on neighbouring
tubulin dimers are predicted to be laterally closer in the transition
zone to gently curved tubulin sheets near MT minus ends which
HsCKK prefers. Fourth, a key prediction of our previous model is
that end specificity by HsCKK is mediated by the asymmetric
curvature of tubulin at the minus end, with the α-tubulins less
laterally curved relative to the β-tubulins. Conversely, at plus ends
—with the β-tubulins less laterally curved—HsCKK binding is
inhibited. We previously hypothesised that looser contacts
between HsCKK and α-tubulins compared to β-tubulins are an
important aspect of MT minus end recognition. In fact, this
difference in contact area between tubulins is seen in both
HsCKK and NgCKK structures (Fig. 2e). Thus, while this aspect
of the model provides a logical explanation for the reduced affi-
nity of HsCKK for MT plus ends2 (Fig. 6), we now show that, by
itself, tighter contact between β- compared to α-tubulin is
insufficient to explain HsCKK minus end preference. However,
HsCKK forms different and more extensive contacts with α-
tubulins compared to NgCKK; the looser interactions between
NgCKK and the α-tubulins suggest that sensitivity to tubulin
configuration is thereby absent (Fig. 6) and explains why this
protein does not specifically bind MT minus ends. Therefore, our
new data show that, while looser than the contacts with β-tubulin,
the HsCKK contacts with α-tubulins are critical in enabling it to
recognise and bind to the relatively flattened configuration of α-
tubulins at minus-ends.

Structural studies of MT-bound MAPs typically reveal con-
formational changes in the MAP on interaction with the MT
lattice. In the most extreme cases, unstructured proteins such as
members of the tau/MAP2 family and the mitotic regulatory
protein TPX2, become at least partially ordered when in contact
with MTs37,38. A recent study of the plant MAP Companion of
Cellulose synthase 1 also showed similar behaviour in its dis-
ordered N-terminus on binding MTs39. Folded MT binding
domains in a number of MAPs—for example, kinesin motor

domains40,41, CH domains in EB proteins42, the p150glued CAP-
Gly domain43—often undergo some rearrangements and/or
ordering of otherwise disordered loop regions on formation of the
MT-bound complex. Although the termini adjacent to the CKK
become ordered on MT binding, we show that the core of
HsCKK, which is essential for minus end recognition, is suffi-
ciently rigid that it does not undergo conformational changes on
MT interaction, but rather the MT lattice is remodelled in
response to HsCKK binding. In the case of HsCKK, this is
because the main MT lattice is not the preferred binding substrate
for CKK. However, this behaviour—in which a structurally
invariant MAP is exquisitely sensitive to the precise conformation
of the underlying tubulin—is likely to be shared by other proteins.

The availability of increasing numbers of MT structures bound
by a range of ligands has also emphasised that, far from being an
inflexible, structurally invariant cylinder, the MT lattice supports
surprising structural plasticity. Lattice compaction at the inter-
dimer interprotofilament tubulin contacts in response to the
tubulin GTPase is well documented in MTs polymerized from
mammalian tubulin30,42,44–46. End Binding (EB) proteins bind at
the corner of four tubulin dimers adjacent to the tubulin GTPase
site47 and their preference for the sleeve of GDP.Pi compacted
tubulins that dynamically evolves as MTs grow mediates their tip-
tracking activity42,47–49. EB binding itself induces a small left-
handed protofilament skew by introducing a slight interdimer
stagger along the protofilament, the mechanistic significance of
which is not yet understood. CKKs bind MTs 4 nm away from the
EB binding site and are insensitive to nucleotide-dependent
conformational changes in the lattice2. We show here that
HsCKK binding induces right-handed protofilament skew via tilt
and shear of entire protofilaments, a completely different
mechanism than seen for EBs. Thus, our characterization of the
HsCKK-MT interaction also highlights the extent of structural
plasticity that can be accommodated in the MT lattice. Small
conformational effects induced by one MAP could have sub-
stantial consequences for binding of other MT-binding factors.
We previously demonstrated that CKK binding at MT ends can
sterically compete with kinesin-13 at MT minus ends2, thereby
protecting them from depolymerisation21–23. Our current work
also suggests that, beyond direct steric competition, different
MAPs may exert allosteric control over each other’s MT binding
by modifying the conformation of the MT lattice30. This was also
suggested by a recent study of axonemal dynein50. Taken toge-
ther, our data support the idea that MTs can act as allosteric
signalling platforms, in which the precise configuration of
polymerized tubulins are influenced by their dynamic state
and binding partners6,51. In the case of CAMSAPs/Patronins,

Fig. 4 HsCKK, but not NgCKK, induces tilting of whole protofilaments. a Raw and Fourier filtered images of 13- and 14- protofilament MTs decorated by
NgCKK and HsCKK. In each set of three panels: left, raw image; centre, filtered image to include data at, and adjacent to, the origin and the 1/8 nm layer
line; right, filtered image to include data at, and adjacent to, the origin highlights the MT moiré pattern; blue arrows indicate variations in the moiré pattern
that arise from protofilament skew. b Protofilament skew for a 16 MT subset from each dataset plotted as the average rotation angle around the MT axis
(PHI) change per dimer moving axially towards the MT plus-end. HsCKK-decorated MTs compared to kinesin decorated paclitaxel-stabilized MTs (13-
protofilament kinesin-3 data from40; 14-protofilament kinesin-1 data from40). All data points are plotted and bars represents mean ± SD. HsCKK 13-
protofilament (tSA201 tubulin) vs kinesin-3 13-protofilament, p < 0.0001, NgCKK 13-protofilament vs HsCKK 13-protofilament, p < 0.0001, NgCKK 13-
protofilament vs kinesin-3 13-protofilament, not significant (p= 0.164), HsCKK 14-protofilament (tSA201 tubulin) vs kinesin-1 14-protofilament, p < 0.001,
NgCKK 14-protofilament vs HsCKK 14-protofilament, p < 0.0001, NgCKK 14-protofilament vs kinesin-1 14-protofilament, not significant (p= 0.889), one-
way ANOVA with Tukey’s multiple comparisons test; source data are provided as a Source Data file. c Schematic of influence of NgCKK/HsCKK on
protofilament skew; d left, MT protofilaments fitted into aligned HsCKK and NgCKK C1 reconstructions were overlaid; the bottom dimer corresponds to the
point at which the density was aligned; divergence between NgCKK and HsCKK models increases from this point; right, RMSD of backbone positions in
panel (i) depicted on a NgCKK protofilament; e RMSDs between NgCKK and HsCKK protofilaments calculated when the bottom dimers in the models
themselves are directly aligned, where RMSD does not decrease significantly with distance from the superimposed dimer; f mechanisms of protofilament
skew induction: left, no skew change; middle, protofilament skew arising from interdimer subunit stagger, e.g. from tubulin GTPase; right, protofilament
skew arising from whole-protofilament tilting e.g. due to changes in protofilament number or HsCKK binding
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sensitivity to structural variations in tubulin is essential for MT
minus end recognition. These insights will inform future
mechanistic investigations of conformational signalling arising
from the MT cytoskeleton.

Methods
Protein expression and purification for TIRF microscopy. Strep-GFP-tagged
human CAMSAP1 CKK (residues 1474-C), Naegleria gruberi CKK (residues 612-

C, reference sequence XM_002675733.1) and chimeric or truncated CKK con-
structs were prepared as described previously2. Briefly, proteins were expressed in
HEK293T cells using a modified pTT5 expression vector (Addgene no. 44006),
purified using StrepTactin beads (GE). After incubation with the cell lysate, beads
were washed five times with high salt wash buffer (50 mM HEPES, 1.5 M NaCl and
0.01% Triton X-100), and proteins were eluted in elution buffer (50 mM HEPES,
150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 1 mM dithiothreitol (DTT), 2.5 mM d-
Desthiobiotin and 0.05% Triton X-100, pH 7.4). Purified proteins were snap-frozen
and stored at −80 °C. Truncated constructs were as follows: NgCKK ΔN
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Fig. 5 HsCKK domain rigidity mediates local remodelling of its MT-binding site. a Left, chemical-shift perturbations, coloured by differences in ppm, arising
from HsCKK_N1492A binding to MTs mapped on the structure of CKK-MT complex (PDB: 5M5C); the CKK domain is depicted in a ribbon representation
while the MT surface is shown as a space-filling model; Right, changes of transverse relaxation rates obtained from solution-state NMR CPMG experiments
plotted on the 3D structure of the free HsCKK domain; source data are provided as a Source Data file. b HsCKK MT binding is accompanied by contraction
of the MT diameter; a single turn of models docked within the aligned 13-protofilament HsCKK and NgCKK C1 reconstructions are shown viewed from the
minus end; arrows indicate the irregular shift of individual protofilaments. c Contraction of MT diameter is caused by shrinkage of the distance between
adjacent dimers; the distance between the centre of masses of each pair of adjacent B-lattice dimers was measured in 13- and 14-protofilament C1 HsCKK
and NgCKK models; all data points are plotted and bars represents mean ± SD; differences between HsCKK and NgCKK models are statistically significant
(p < 0.0001, t-test); source data are provided as a Source Data file. d Top, alignment of a single dimer from the NgCKK-tubulin and HsCKK-tubulin
C1 models shows HsCKK induces compression and shear between the dimers at its binding site; bottom, RMSD of backbone positions in top panel.
e Schematic summarising modifications imposed by HsCKK but not kinesin or NgCKK binding on MT architecture; modifications are exaggerated for clarity
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Fig. 6 NgCKK and HsCKK comparison illuminates the CAMSAP MT minus end recognition model. The schematic of a stable/growing 13-protofilament MT
on the left shows different zones within the polymer in which the tubulins adopt subtly different conformations. Towards MT ends, there is a region of
transition from the cylindrical lattice to curved sheet-like regions in which interprotofilament connections are maintained but which exhibit decreasing
lateral curvature and increasing longitudinal curvature away from the MT lattice. Beyond this transition zone, protofilaments gradually terminate and
separate at each MT end. On the right, the interaction of NgCKK and HsCKK with the unique tubulin dimer pair conformation in each zone is compared. On
the MT lattice (middle, cyan boxed zone), as visualised in our cryo-EM reconstructions, NgCKK and HsCKK bind at the same site, but HsCKK remodels its
binding site by compressing the tubulin dimer pairs, inducing protofilament skew. At the plus end lattice-end transition (top, pink boxed zone), we
hypothesise that NgCKK is insensitive to the plus end specific tubulin sheet curvature found here, whereas HsCKK binding is actively disfavoured because
of the enhanced lateral flattening in the β-tubulin pair that is specific to the MT plus end. At the minus end lattice-end transition (bottom, orange boxed
zone), we again hypothesise that NgCKK is insensitive to the minus end specific sheet curvature. In contrast, HsCKK binding is favoured because, in the
context of its particular tubulin interaction, the specific asymmetrically curved configuration of the tubulin pair—in particular the enhanced lateral flattening
in the α-tubulin pair—is the preferred binding site conformation for HsCKK
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corresponded to N. gruberi CKK core and C-terminal extension (633–788),
NgCKK ΔC to the N. gruberi N-terminal extension and CKK core (612–784) and
NgCKK ΔN+ C consisted of the N. gruberi CKK core (633–784). Chimeric con-
structs were as follows: the NgCKK Swap C construct consisted of N. gruberi N-
terminal extension and CKK core (612–784) followed by the HsCKK C-terminal
extension (1600–1613), the NgCKK Swap N construct consisted of N. gruberi CKK
core and C-terminal extension (633–788) preceded by the HsCKK N-terminal
extension (1463–1483). The NgCKK Swap N+ C construct consisted of N. gruberi
CKK core (633–784) preceded by the HsCKK N-terminal extension (1463–1483)
and followed by the HsCKK C-terminal extension (1600–1613). Primer sequences
used to prepare these constructs using Gibson assembly are provided in Supple-
mentary Table 3.

TIRF microscopy analysis of CKK binding to dynamic MTs. TIRF microscopy
was performed on an inverted research microscope Nikon Eclipse Ti-E (Nikon)
with the perfect focus system (PFS) (Nikon), equipped with a Nikon CFI Apo TIRF
×100 1.49-NA oil objective (Nikon) and a Photometrics Evolve 512 EMCCD
(Roper Scientific) camera or a Photometrics Prime BSI camera, and controlled with
MetaMorph 7.7 software (Molecular Devices, CA). Images were projected onto the
chip of an Evolve 512 camera with an intermediate ×2.5 lens (Nikon C mount
adaptor ×2.5). To keep in vitro samples at 30 °C, we used an INUBG2E-ZILCS
(Tokai Hit) stage-top incubator.

For excitation, we used 491 nm/100 mW Stradus (Vortran) and 561 nm/100
mW Jive (Cobolt) lasers. For simultaneous imaging of green and red fluorescence,
we used a triple-band TIRF polychroic filter (ZT405/488/561rpc, Chroma) and
triple-band laser emission filter (ZET405/488/561 m, Chroma), mounted in the
metal cube (91032, Chroma) together with an Optosplit III beam splitter (Cairn
Research) equipped with a double-emission-filter cube configured with ET525/50
m, ET630/75 m and T585LPXR (Chroma) filters.

Doubly cycled GMPCPP-stabilized MT seeds were prepared as described
before52, by incubating the tubulin mix containing 70% unlabeled porcine brain
tubulin (Cytoskeleton), 18% biotin-tubulin (Cytoskeleton) and 12% rhodamine-
tubulin (Cytoskeleton) at a total final tubulin concentration of 20 µM with 1 mM
GMPCPP (Jena Biosciences) at 37 °C for 30 min. MTs were pelleted by
centrifugation in an Airfuge for 5 minutes at 119,000 × g and then depolymerized
on ice for 20 minutes. This was followed by a second round of polymerization at 37
°C with 1 mM GMPCPP. MT seeds were then pelleted as above and diluted 10-fold
in MRB80 buffer (80 mM PIPES, pH 6.8, supplemented with 4 mM MgCl2 and 1
mM EGTA) containing 10% glycerol, snap frozen in liquid nitrogen and stored at
−80 °C.

The in vitro reconstitution assays with dynamic MTs were performed under the
same conditions as described previously2. Briefly, after coverslips were
functionalized by sequential incubation with 0.2 mg/ml PLL-PEG-biotin (Susos)
and 1 mg/ml neutravidin (Invitrogen) in MRB80 buffer, GMPCPP-stabilized
microtubule seeds were attached to the coverslips through biotin-neutravidin
interactions. Flow chambers were further blocked with 1 mg^ml-1 κ-casein. The
reaction mix with purified proteins in MRB80 buffer supplemented with 20 μM
porcine brain tubulin, 0.5 μM X-rhodamine-tubulin, 75 mM KCl, 1 mM GTP, 0.2
mg^ml-1 κ-casein, 0.1% methylcellulose and oxygen scavenger mix (50 mM
glucose, 400 μg^ml-1 glucose oxidase, 200 μg^ml-1 catalase and 4 mM DTT) was
added to the flow chamber after centrifugation in an Airfuge for 5 min at 119,000 ×
g. The flow chamber was sealed with vacuum grease, and dynamic MTs were
imaged immediately at 30 °C with a TIRF microscope. All tubulin products for
TIRF microscopy were from Cytoskeleton. The ImageJ plugin KymoResliceWide
v0.4 (https://github.com/ekatrukha/KymoResliceWide) was used for generating
kymographs illustrating the life history of MT dynamics).

Protein expression and purification for Cryo-EM. Human CAMSAP1 residues
1474–1613 encompassing the CKK domain (HsCKK) were cloned into pET28a
vector and expressed in BL21(DE3) cells (Stratagene) as previously described2. Cells
were harvested by centrifugation and washed with Dulbecco PBS buffer (Millipore).
They were sonicated in the presence of the protease inhibitor cOmplete cocktail
(Roche) in lysis buffer (50mM HEPES, pH 8, supplemented with 500mM NaCl,
10mM imidazole, 2 mM β-mercaptoethanol, 0.1% bovine deoxyribonuclease I).
Protein was purified by immobilized metal-affinity chromatography (IMAC) using
Ni-NTA resin (Qiagen), metal-affinity chromatography (IMAC): the column was
equilibrated in IMAC buffer A (50mM HEPES, pH 8, supplemented with 500mM
NaCl, 10mM imidazole, 2 mM β-mercaptoethanol) and the protein was eluted by
IMAC buffer B (IMAC buffer A containing 400mM imidazole). Protein samples
were subsequently loaded onto a size exclusion chromatography (SEC) HiLoad
Superdex 75 16/60 column (GE Healthcare), which was equilibrated in SEC buffer
(20mM Tris-HCl, pH 7.5, supplemented with 150mM NaCl and 1 mM DTT) and
the fractions of the main peak were pooled. Purified protein was concentrated to
~20mg^ml-1 in BRB20 buffer (20mM PIPES, 2 mM MgCl2, 1 mM EGTA, 1mM
DTT, pH 6.8), snap-frozen and stored at −80 °C.

The DNA encoding for the CKK domain of N. gruberi CAMSAP (NgCKK,
residues 621-788; Uniprot Gene: NAEGRDRAFT_50049) was cloned into the pET-
based bacterial expression vector PSPCm2, which encodes for an N-terminal 6x
His-tag and a PreScission cleavage site using a positive selection cloning
approach53. Following protein expression in BL21 (DE3) RIPL cells (Agilent),

NgCKK was purified as above for HsCKK using immobilized metal-affinity
chromatography (IMAC) and size exclusion chromatography (SEC). Purified
protein was concentrated to ~24 mg^ml-1 in BRB20 buffer, snap-frozen and stored
at −80 °C. Protein quality and identity were analyzed by SDS-PAGE and mass
spectrometry, respectively.

tsA201 cell tubulin was purified from tsA201 cell cultures as described
previously29,54,55. Briefly, tubulin was isolated from cell lysates via immobilized
TOG1 affinity, then tubulin eluted with 0.5 M ammonium sulfate. Tubulin was
then buffer exchanged into BRB80 buffer (80 mM PIPES, 2 mM MgCl2, 1 mM
EGTA, 1 mM DTT, pH 6.8) with 10% glycerol, and 20 μM GTP and flash frozen in
liquid nitrogen. The tubulin was further purified by cycling56 then buffer
exchanged into BRB80 with 20 μM GTP and flash frozen in liquid nitrogen.

Cryo-EM sample preparation. MTs were polymerized using using 5 mg/ml
tsA201 cell tubulin at 37 °C for 45 min in BRB80 containing 1 mM GTP. 1 mM
paclitaxel in DMSO was then added and MTs incubated at 37 °C for another 45
min. Paclitaxel-stabilised MTs were used to minimise tubulin background and
HsCKK-induced tubulin aggregation2, while producing roughly equal numbers of
13- and 14- protofilament MTs and having no effect on protofilament supertwist57.
Stabilised MTs were left at room temperature for at least 24 h then diluted in
BRB20 to 0.5 mg^ml-1 before use. Four microlitre of MTs in BRB20 were pre-
incubated on glow-discharged holey C-flatTM carbon EM grids (Protochips,
Morrisville, NC) at room temperature for 90 s, excess buffer manually blotted away,
then 4 μl of 1 mg/ml HsCKK domain or NgCKK added for 45 s. Excess buffer was
again manually blotted away, followed by a final 4 μl application of either HsCKK
or NgCKK at the same concentration. Grids were then placed in a Vitrobot Mark
IV (FEI Co., Hillsboro, OR) at room temperature and 80% humidity, incubated for
a further 45 s, then blotted and vitrified in liquid ethane.

Cryo-EM data collection and processing. Low dose movies were collected
manually on a K2 direct electron detector (Gatan) installed on a FEI Tecnai G2
Polara operating at 300 kV with a quantum post-column energy-filter (Gatan),
operated in zero-loss imaging mode with a 20-eV energy-selecting slit. A defocus
range of 0.5–3.5μm and a calibrated final sampling of 1.39 Å^pixel-1 was used with
the K2 operating in counting mode at 5e-^pixel-1^second-1. The total exposure
was ~42e-^Å-2 over 16 s at 4 frames^sec-1. Movie frames were aligned using
Motioncorr258 with a patch size of 5 to generate full dose and dose-weighted sums.
Full dose sums were used for CTF determination in gCTF59, then dose-weighted
sums used in particle picking, processing and generation of the final
reconstructions.

MTs were boxed manually in RELION’s (v3.0) helical mode25–27 with a box
separation distance of 82 Å (roughly the MT dimer repeat distance) and further
processed using a custom pipeline designed to account for the pseudo-helical
nature of MTs with a seam28. The pipeline, inspired by previous pipelines60,61

developed for Spider/Frealign62,63, is based in RELION and uses accessory scripts
to place refinement and classification restraints on individual MTs using prior
knowledge of MT geometry. Briefly, the protofilament number of all segments
within each MT was assigned according to the modal class of those segments after
one iteration of 3D classification to low-pass filtered references of 11-16-
protofilament MTs. Only the dominant 13-protofilament and 14-protofilament
classes were separately processed further. Rough alignment parameters of each MT
to its corresponding low-pass filtered 13-protofilament or 14-protofilament
reference were assigned. On the basis of φ angles determined for each segment,
median φ angles were assigned to all segments in a given MT. Assigned φ angles for
each MT were checked by 3D classification against low-pass filtered MT references
rotated and translated to represent all possible seam positions and αβ-tubulin
registers (i.e 26 references for a 13-protofilament MT, with 13 seam positions and
their counterparts translated 1 monomer along the helical axis). Rough final φ
angles were assigned according to the modal 3D class of all segments within each
MT. Fine local refinement was then performed, without applied helical symmetry.
Subsequently, 1 iteration each of Bayesian polishing and per-particle CTF
refinement was performed in RELION v3.025, followed by a final round of fine local
refinement with or without applied helical symmetry.

4× binned data were used in all processing steps except the final 3D refinement
(1× binned data) and segment averages of 7 segments along the helical axis were
used for 3D classification steps. Final global resolutions are estimated from the
Fourier shell correlation 0.143 cut-off of gold-standard FSCs generated by applying
soft masks to the central 15% portion of the two independent half-maps along the
helical axis. Reconstructions used for model building, refinement and display were
sharpened (using globally determined B-factors, see Supplementary Table 1) to
local resolution cut-offs determined using RELION v3.0’s internal local resolution
program (see Supplementary Fig. 1).

Cryo-EM model building and refinement. α1B/βI+ βIVb tsA201 cell tubulin with
bound HsCKK or NgCKK was modelled into pseudo-symmetrised density maps
via iterative rounds of direct model building in Coot64 and real-space refinement
applied in Phenix65. Tubulin in the starting models was constructed by fitting
dimers from the GDP-EB3 13pf microtubule cryo-EM structure (PDB 3JAR42),
into corresponding densities and applying mutations to account for sequence
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differences and incorporating taxol from the structure of tubulin-taxol zinc sheets
(PDB 1JFF66). NgCKK and HsCKK domain starting models were created via
homology modelling of the X-ray and NMR structures of CAMSAP3 CKK domain
(PDBs 5LZN2 and 1UGJ (unpublished)) using Modeller67. Starting models of
HsCKK or NgCKK domains were then fitted into density alongside tubulin and
merged into single starting models constructed of six tubulin dimers and four CKK
domains. Cryo-EM figures were prepared using UCSF Chimera68.

Protein preparations for NMR. Human CAMSAP1 N1492A CKK (residues
1474–1613) and mouse CAMSAP3 CKK (residues 1112–1252) were cloned into a
pET28a vector as for WT CAMSAP1 CKK (above). For sample preparation of low
MAS ssNMR, uniformly [13C, 15N]-labeled CAMSAP1 N1492A CKK was pro-
duced in E. coli strain Rosetta 2 in M9 minimum medium supplemented with 25 μg
^ml-1 kanamycin and 35 μg^ml-1 chloramphenicol. Cells were induced when the
OD600 reached 0.6 with 0.3 mM IPTG at 25 °C for 5 h. For 1H detected ssNMR
experiments, uniformly [2H, 13C, 15N]-labeled CKK mutant was produced in E. coli
Rosetta 2 strain in M9 minimum medium that was prepared with D2O, deuterated
13C-glucose and 15N-NH4Cl. When OD600 reached 0.6, 0.3 mM IPTG was added
for induction at 25 °C for 5 h. The proteins were purified by a ÄKTA pure system
with a POROS™ MC column that was saturated with Ni2+. The column was first
equilibrated with washing buffer (50 mM phosphate buffer, pH 8, 200 mM NaCl, 1
mM β-mercaptoethanol and 20 mM imidazole). Proteins were eluted with the same
buffer but containing 400 mM imidazole. Proteins were then loaded onto a SEC
HiLoad Superdex 75 26/60 column (GE Healthcare) that was equilibrated with 40
mM phosphate buffer, pH 7, supplemented with 150 mM NaCl and 1 mM DTT.
Subsequently, the labeled proteins were concentrated and used for ssNMR sample
preparation.

To prepare CKK-MT complexes for low-speed MAS ssNMR, 20 mg of
lyophilized porcine tubulin was dissolved in BRB80 buffer to a final concentration
of 2 mg^ml-1. Microtubule polymerization was done with 1 mM GTP and addition
of 20 μM paclitaxel (Sigma) for 30 min at 30 °C. Paclitaxel-stabilized MTs were
pelleted down at 180,000 × g (Beckman TLA-55 rotor) at 30 °C for 30 min and
resuspended in warm BRB80 buffer with 20 μM paclitaxel. [13C, 15N]-labeled CKK
N1492A was then added to a final concentration of 65.3 μM (4:1 CKK/tubulin) and
incubated at 37 °C for 30 min. The pellet was centrifuged down at 180,000 × g
(Beckman TLA-55 rotor) at 30 °C for 30 min and washed with 40 mM phosphate
buffer, pH 7, without disturbing the pellet. The pellet was then transferred and
packed into a 3.2 mm rotor.

To prepare the CKK-MTs complexes for 1H detected experiments, uniformly
[2H, 13C, 15N]-labeled CKK was first purified and maintained in the protonated
buffer overnight to allow back-exchange of amide protons. 5 mg lyophilized
porcine brain tubulin was dissolved in 2.5 mL BRB80 buffer to make a
concentration of 2 mg/mL. Tubulin was then polymerized with 1 mM GTP and 20
μM paclitaxel for 30 min at 30 °C. Paclitaxel-stabilized MTs were then
ultracentrifuged at 180,000 × g at 30 °C for 30 min and then resuspended with
warm BRB80 buffer with 20 μM paclitaxel. The CKK domain was added to the
resuspended MTs and incubated at 37 °C for 30 min. The CKK-MTs complexes
were then ultracentrifuged at 180,000 × g at 30 °C for 30 min. Finally, the pellet was
washed with phosphate buffer and packed into a 1.3 mm NMR rotor.

For sample preparation for solution-state NMR, uniformly [13C, 15N]-labeled
and 15N-labeled CAMSAP1 N1492A CKK and NgCKK, as well as 15N-labeled
CAMSAP1 and CAMSAP 3 CKK were expressed and purified in the same way as
described above and supplemented with 5% D2O for solution-state NMR
measurements.

NMR experiments and data analysis. Resonance assignments of CAMSAP1 CKK
N1492A and NgCKK were obtained from standard solution-state NMR experi-
ments (2D HSQCs, 3D HNCA, HNCO, HNCACB, CBCA(CO)NH) on free [13C,
15N]-labeled CKK recorded on a 600MHz spectroscopy (Bruker Biospin). The
assignments of NgCKK were then transferred to the spectra recorded at 25 °C. We
could assign 124 residues (88% assigned) and 87 residues (52% assigned) for
CAMSAP1 CKK N1492A and NgCKK, respectively. Standard MAS ssNMR
experiments were conducted on a 950MHz standard-bore spectrometer (Bruker
Biospin) equipped with a 3.2 mm triple-channel MAS HCN probe. The experi-
ments include 2D 13C-13C proton-driven spin-diffusion (PDSD)69,70 and NCA
experiments71 (set temperature 260 K, MAS rate 14 kHz). The spin-diffusion
mixing time was set to 30 ms, and a SPECIFIC-CP72 transfer time of 2.2 ms was
employed for the NCA experiment. Fast MAS, 1H detected, ssNMR experiments
were performed on a 800MHz wide-bore spectrometer (Bruker Biospin) equipped
with a 1.3 mm triple-channel MAS HXY probe. The experiments included 2D NH
and 3D CANH73 experiments (set temperature 244 K, MAS rate 55 kHz). ssNMR
MT samples were stable over time as confirmed by comparing ssNMR spectra at
standard and fast MAS and by conducting negative stain EM experiments before
and after ssNMR measurements.

CPMG relaxation dispersion32 and CEST measurements33 were based on the
2D 1H-15N HSQC spectra and were recorded as pseudo 3D on the 15N-labeled
CAMSAP1 N1492A CKK, CAMSAP1 CKK (only CPMG were recorded),
CAMSAP3 CKK and NgCKK. The acquisition times in each 2D plane are 66 ms for

1H (direct dimension) and 48.6 ms for 15N (indirect dimension). CPMG relaxation
dispersion experiments were conducted with temperature compensation and single
scan interleaved. The data were measured at CPMG fields of 50, 150, 250, 350, 450,
550, 650, 750, 850, 950, 1050, 1150, 1250, 1400 and 1500 Hz, which all applied for a
constant transverse relaxation time of 40 ms. The saturation during CEST
experiments were carried out with a 400 ms pulse of 15 Hz radio frequency field
strength on 15N. The saturation offsets ranged between 8200 and 6325 Hz with a
spacing of 25 Hz on 15N.

The difference of chemical-shift values between the free- and bound-state CKK
on both 1H and 15N dimensions were first measured in ppm and then combined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔN � 0:15Þ2 þ ΔH2

q

: ð1Þ
The signal linewidth in 1H and 15N dimensions were determined to amount to

0.1 and 0.6 ppm, respectively.
CMPG data were processed as follows: For each residue, the standard deviation

and the average of signal intensities with different CPMG frequencies were
calculated. The ratio of these two values was plotted for every residue on the
structures.

For determining chemical-shift changes between free and MT-bound
CAMSAP1 CKK and CAMSAP1 CKK N1492A, we transferred solution-state NMR
shifts obtained on the free variants to ssNMR experiments on the complexes
assuming spectral proximity in all three independent dimensions (HN, N, Cα).
With this strategy, we were able to transfer 48 backbone assignments as
demonstrated in Supplementary Fig. 6b.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The 13-protofilament and 14-protofilament HsCKK and NgCKK-MT models along with
their corresponding electron density maps are deposited in the PDB. The PDB codes are
as follows: 13-protofilament HsCKK-MT, PDB: 6QUS [https://www.rcsb.org/structure/
6QUS], 14-protofilament HsCKK-MT, PDB: 6QVJ [https://www.rcsb.org/structure/
6QVJ], 13-protofilament NgCKK-MT, PDB: 6QUY [https://www.rcsb.org/structure/
6QUY], 14-protofilament NgCKK-MT, PDB: 6QVE [https://www.rcsb.org/structure/
6QVE]. The EMDB codes (C1 reconstruction and symmetrised asymmetric unit) are as
follows: 13-protofilament HsCKK-MT, EMDB-4643, 14-protofilament HsCKK-MT,
EMDB-4654, 13-protofilament NgCKK-MT, EMDB-4644,14-protofilament NgCKK-
MT, EMDB-4650. The source data underlying Figs 2e, 4b, 5a–c, Supplementary Figs 6e-
h, 7a are provided as a Source Data file. Other data are available from the corresponding
authors upon reasonable request.

Code availability
The ImageJ plugin KymoResliceWide v0.4 (https://github.com/ekatrukha/
KymoResliceWide) was used for generating kymographs illustrating the life history of
MT dynamics. The cryo-EM image-processing scripts for use with RELION and user
instructions are available at https://github.com/moores-lab/MiRP.
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