
Annals of Botany 124: 837–847, 2019
doi: 10.1093/aob/mcz126, available online at www.academic.oup.com/aob

© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. 
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Advanced X-ray CT scanning can boost tree ring research for earth system 
sciences

Jan Van den Bulcke1,2,*, Marijn A. Boone3, Jelle Dhaene2,4, Denis Van Loo3, Luc Van Hoorebeke2,4,  
Matthieu N. Boone2,4, Francis wyffels5, Hans Beeckman6, Joris Van Acker1,2 and Tom De Mil1,2,6

1UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Ghent University, B-9000 Gent, Belgium, 
2Ghent University Centre for X-ray Tomography (UGCT), Proeftuinstraat 86, B-9000 Gent, Belgium, 3TESCAN XRE, 

Bollebergen 2B box 1, B-9052 Gent, Belgium, 4Radiation Physics Research Group, Department of Physics and Astronomy, 
Ghent University, Proeftuinstraat 86/N12, B-9000 Gent, Belgium, 5ELIS Department, Ghent University – imec, Technologiepark-

Zwijnaarde 15, B-9052 Ghent, Belgium and 6Royal Museum for Central Africa, Wood Biology Service, Leuvensesteenweg 13, 
B-3080 Tervuren, Belgium

*For correspondence. E-mail Jan.VandenBulcke@UGent.be

Received: 23 May 2019  Returned for revision: 13 June 2019  Editorial decision: 15 July 2019  Accepted: 18 July 2019 
Published electronically 31 July 2019

•  Background and Aims  Tree rings, as archives of the past and biosensors of the present, offer unique opportun-
ities to study influences of the fluctuating environment over decades to centuries. As such, tree-ring-based wood 
traits are capital input for global vegetation models. To contribute to earth system sciences, however, sufficient 
spatial coverage is required of detailed individual-based measurements, necessitating large amounts of data. X-ray 
computed tomography (CT) scanning is one of the few techniques that can deliver such data sets.
•  Methods  Increment cores of four different temperate tree species were scanned with a state-of-the-art X-ray CT system 
at resolutions ranging from 60 μm down to 4.5 μm, with an additional scan at a resolution of 0.8 μm of a splinter-sized 
sample using a second X-ray CT system to highlight the potential of cell-level scanning. Calibration-free densitometry, 
based on full scanner simulation of a third X-ray CT system, is illustrated on increment cores of a tropical tree species.
•  Key Results  We show how multiscale scanning offers unprecedented potential for mapping tree rings and 
wood traits without sample manipulation and with limited operator intervention. Custom-designed sample holders 
enable simultaneous scanning of multiple increment cores at resolutions sufficient for tree ring analysis and densi-
tometry as well as single core scanning enabling quantitative wood anatomy, thereby approaching the conventional 
thin section approach. Standardized X-ray CT volumes are, furthermore, ideal input imagery for automated pipe-
lines with neural-based learning for tree ring detection and measurements of wood traits.
•  Conclusions  Advanced X-ray CT scanning for high-throughput processing of increment cores is within reach, 
generating pith-to-bark ring width series, density profiles and wood trait data. This would allow contribution to 
large-scale monitoring and modelling efforts with sufficient global coverage.

Key Words:  X-ray CT, computed tomography, tree ring analysis, multiscale imaging, earth system sciences, in-
crement cores, wood traits, densitometry, deep learning, scanner simulation.

INTRODUCTION

Tree rings, as archives of the past and biosensors of the pre-
sent, offer unique opportunities to study influences of the 
fluctuating environment, including climate- or disturbance-
induced tree growth anomalies over decades to centuries (Babst 
et al., 2017), and deliver essential input for global vegetation 
modelling (Beeckman, 2016; Zuidema et  al., 2018) within 
land surface models. In addition to conventional tree ring 
width (TRW) series, wood traits are of special interest. For 
instance, X-ray densitometry has been used for a long time, 
and it has been shown that maximum latewood density (MXD) 
(Schweingruber et al., 1978) is a temperature proxy superior 
to that of TRW for certain coniferous wood species (Björklund 
et al., 2014). Quantitative wood anatomy, i.e. quantifying the 
number and size of anatomical components of which a tree ring 
consists, is another promising approach (e.g. Fonti et al., 2008; 

Cuny et al., 2015; García-González et al., 2016; Carrer et al., 
2017) to build long-term records of wood traits, documenting 
tree performance and tree stress (Beeckman, 2016), while 
mapping of long-term wood chemistry variations can also be 
of use (e.g. Hevia et al., 2018). To contribute to earth system 
sciences, however, sufficient spatial coverage is required, thus 
necessitating large data sets, since it is known that sampling 
design is a consequential issue, influencing the outcome of tree 
ring studies (Brienen et al., 2012; Nehrbass-Ahles et al., 2014).

The above-mentioned issues point to the need for high-
throughput mapping of the tree ring (at the intra-annual 
scale), especially when tree ring data series are to be coupled 
with earth observation satellite data and used in land surface 
models. Rather than merely relying on databases reporting on 
general averages, the latter models should be fed with detailed 
individual-based (Scheiter et al., 2013) pith to bark trait data to 
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properly account for spatial and temporal inter- and intraspecies 
variation in performance.

Different techniques have been reported in the literature 
(see, for example, Liang et  al., 2013; Scharnweber et  al., 
2016; Jacquin et al., 2017). In particular, progress in prepar-
ation and analysis of long thin sections has significantly ad-
vanced the field of quantitative wood anatomy (Gärtner and 
Nievergelt, 2010; Gärtner et  al., 2015). Although TRW and 
wood trait measurements are often labour intensive and time 
consuming, limiting the number of samples that can be reason-
ably analysed, progress in efficient thin sectioning and imaging 
(using, for example, a slide scanner) is further reducing the time 
needed for processing. In most cases, however, sample treat-
ment is still necessary for proper analysis, by sub-sampling of 
the increment cores (or stem discs), sawing to an appropriate 
thickness, polishing of the surface or sectioning. These proced-
ures call for skilled and trained staff. Moreover, standardization 
is challenging for most methods, yet is essential to guarantee 
comparability.

X-ray computed tomography (CT) is one of the few candi-
date techniques to take tree ring research on increment cores to 
the next level and is complementary to existing techniques. It is 
non-invasive, requires limited sample preparation, enables 3-D 
tree ring analysis (Van den Bulcke et al., 2014) and quantita-
tive wood anatomy, and has the potential for semi-automated 
or guided ring indication. In all, it is a promising technique 
for mass processing of increment cores (e.g. Steffenrem et al., 
2014; De Mil et al., 2016; Jacquin et al., 2019). Additionally, 
thanks to recent developments in scanner simulation (Dhaene, 
2017), calibration-free X-ray densitometry is within reach.

We mainly report here on a series of scans of increment 
cores, performed on state-of-the-art X-ray CT systems, devel-
oped by the Ghent University Centre for X-ray Tomography 
(UGCT, www.ugct.ugent.be) and TESCAN XRE (www.XRE.
be, part of the TESCAN ORSAY HOLDING a.s.), formerly 
known as XRE, a UGCT spin-off company. We show how auto-
mated multiscale scanning and reconstruction can be used to 
handle large physical increment core sets in different config-
urations for archiving, TRW measurements and densitometry. 
Additionally, volume of interest (VOI) scanning allows for 
zooming in on specific sections of interest at high resolution 
without sample manipulation. Dedicated sub-sampling and 
high-resolution scanning can even resolve cell-level details, as 
such complementing the thin section approach. We furthermore 
illustrate how accurate simulation of an X-ray CT scanner en-
ables estimation of wood density without the use of calibration 
material and highlight the potential of neural-based learning 
techniques for tree ring indications and quantitative wood 
anatomy on such scans.

MATERIALS AND METHODS

X-ray CT scan systems

The CoreTOM scan system has been developed by TESCAN 
XRE and is designed for multiscale imaging of elongated core-
like objects up to 1 m in length. It consists of a mechanical set-up 
with ten motorized axes mounted on high-precision granite and 
is equipped with a high-power 180 kV microfocus X-ray source 

(true spatial resolution down to 3 μm) and multiple high-speed 
flat panel detectors for high sample throughput. In this study, 
both a 43 × 43 cm2 a-Si flat panel (2800 × 2800 pixels) with a 
pixel size of 150 μm and a 14.5 × 11.4 cm2 CMOS flat panel 
(1900 × 1500 pixels) with a pixel size of 75 μm are used. The 
VOI scanning feature allows for automated scanning of a spe-
cific region of an object at a higher resolution. The scanner is 
controlled via the LabView®-based control software platform 
Acquila (currently further developed and licensed by TESCAN 
XRE), which is based on the acquisition software originally de-
veloped at UGCT (Dierick et al., 2010).

The HECTOR scan system is developed and built by the 
Radiation Physics group of the UGCT in collaboration with 
XRE. It consists of a mechanical set-up with nine motorized axes 
and has a 240 kV XWT 240-SE directional microfocus source 
from X-RAY WorX with a large 40 × 40 cm2 PerkinElmer 1620 
CN3 CS flat panel detector (2000 × 2000 pixels) with a pixel 
size of 200 μm. The two translation stages of the detector allow 
for tiled tomography, thus resulting in a large field of view 
(FOV; 80 × 80 cm2). The scanner is controlled via a LabView®-
based control software platform (Dierick et  al., 2010). More 
information can be found in Masschaele et al. (2013).

The Nanowood scan system has been developed and built by 
the Radiation Physics group of the UGCT and is equipped with 
two separate X-ray tubes and two different X-ray detectors to 
allow for optimal scanning for a very wide range of samples. 
It consists of a mechanical set-up with seven motorized axes, 
has an open-type Hamamatsu transmission tube for extra-high-
resolution scans and a closed-type Hamamatsu directional tube 
used for larger samples. An 11 megapixel Photonic Science 
VHR CCD camera with a pixel size of approx. 7 μm is comple-
mented with a large area Varian flat-panel detector. The scanner 
is controlled via the same LabView®-based control software 
platform as HECTOR (Dierick et al., 2010). More information 
can be found in Dierick et al. (2014).

The operational details of all scanners are summarized in Table 1.

Increment cores and sample holders

Increment cores of different wood species were selected, 
including three temperate broad-leaved species, namely oak 
(Quercus spp.), beech (Fagus sylvatica) and European white 
birch (Betula pendula), the temperate coniferous Scots pine 
(Pinus silvestris) and the brevi-deciduous tropical tree spe-
cies limba (Terminalia superba). All but the latter species were 
scanned with the CoreTOM scan system at TESCAN XRE, 
whereas the limba samples were scanned with the HECTOR 
scan system at UGCT. HECTOR is currently fully implemented 
in the Arion software toolbox (Dhaene et al., 2015) and there-
fore well suited for illustrating calibration-free densitometry 
(see further).

Increment cores, stored in paper straws, were mounted in 
three differently sized sample holders. For details on the exact 
configuration and mounting procedure we refer to Van den 
Bulcke et al. (2014) and De Mil et al. (2016). Sample holder 
1, with a diameter of 10 cm and a variable length (currently up 
to 60 cm), can hold 33 increment cores and was designed for 
high-throughput processing purposes. Sample holder 2, with a 

http://www.ugct.ugent.be
http://www.XRE.be
http://www.XRE.be


Van den Bulcke et al. — X-ray CT scanning can boost tree ring research 839

diameter of 3 cm and a length of 16 cm, contains six increment 
cores, allows scanning at higher resolution and was specifically 
designed for accurate densitometry. Sample holder 3 is suited 
for the highest resolution scans on intact increment cores to re-
solve as much anatomical detail as possible and can hold up to 
1 m of core, whether stacked on top of each other or not.

Finally, to highlight the potential of smaller sample sizes 
and cell-level resolution, an additional series of scans was per-
formed using the Nanowood scan system to image a splinter-
sized specimen of European larch (Larix decidua).

X-ray CT scanning and calibration-free densitometry

Overlapping smooth stacked scans were performed per 
sample holder with the X-ray CT systems described above. 
The principle of stacked scanning is schematically visualized 
in Fig. 1.

The high-resolution stacked scans of the larch sample on 
Nanowood were done by moving the sample upwards instead of 
the tube and detector since Nanowood has a fixed height for both 
components. Reconstructions were performed using the XRE 
reconstruction tools in Acquila or the Octopus Reconstruction 
package (Vlassenbroeck et al., 2007) on a workstation with 16 
CPU cores, 128 GB RAM and a 1080 Ti Nvidia GPU. Stacked 
scans per sample holder were stitched and merged afterwards 
using the XRE reconstruction software or a custom-written rou-
tine in Fiji (Schindelin et al., 2012) based on the stitching algo-
rithm of Preibisch et al. (2009).

Density estimates of the samples were based on two different 
procedures: the method described in De Ridder et  al. (2011) 
using a reference material with a chemical composition similar 
to that of wood on one hand and simulated on the other hand 
using the Arion software (Dhaene et al., 2015). For the latter, 
the following equation was solved to obtain density ρ:

µ = ρ

∑
S′′

i Dinc,iµ/ρ(Ei)z∑
S′′

i Dinc,i

The reconstructed mass attenuation coefficient in each voxel 
of a 3-D volume is represented by μ. μ/ρ(Ei)z is the mass at-
tenuation coefficient of the material z present in the sample at 
energy Ei. Si’’ represents the number of photons emitted by the 
X-ray source and Dinc,i represents the deposited energy in the 
detector per incident photon. For more details on the method, 
the reader is referred to Dhaene et al. (2015).

RESULTS

An overview of the scanned samples, the acquisition param-
eters, resolution, number of scans per stack and resulting recon-
structed data volume is given in Table 2.

Figure 2 shows the result of stacked scanning and stitching of 
a sample holder with a series of Quercus spp. increment cores 
at 60 μm resolution. The scan resolution allows the tree ring 
boundaries to be indicated rather easily and is in most cases 
sufficient for TRW measurements, yet lacks detail for further 
analysis, such as, for instance, earlywood vessel measurements 
(Fonti et al., 2008).

To image a single core at much higher resolution, zoomed 
projection images of the selected core are obtained. The result 
of such a VOI scan is shown in Fig. 3, which has been acquired 
using the automated VOI scanning protocol implemented in the 
CoreTOM acquisition software Acquila. A  single oak core is 
positioned in the FOV and is fully scanned at 13.5 μm reso-
lution. Obviously, the scan resolution allows tree ring bound-
aries to be indicated and has clear potential for the visualization 
and analysis of larger anatomical features such as earlywood 
vessels, but can also be sufficient for quantification of other 
tissue proportions such as parenchyma and rays.

Six increment cores of different wood species have been 
mounted in sample holder 2 (16 cm in length) and scanned at a 
resolution of 23.7 μm. Figure 4 shows a cross-section through 
the holder and illustrates the level of detail that can be noted for 

Table 1.   Operational details of the different X-ray CT scan systems

Maximum object diameter (cm) Maximum object height (m) Maximum object weight (kg) Maximum resolution (μm)

CoreTOM 60 1 50 3
HECTOR 60 1 80 3
Nanowood 30 0.3 5 0.4

The maximum height and diameter reported here are related to the maximum field of view (FOV) of the scanner without sample manipulation.

i = 1

i = 2

i = n

X-ray tube Sample holder Detector

Fig. 1.  Principle of stacked scanning: tube and detector move simultaneously 
and, at each position, i, a full tomography scan is made of the samples in the 
sample holder, ensuring a pre-defined overlap with the previous scan. The total 
number of scans is n. Note that instead of moving the tube and detector, the 
sample could move upwards (or downwards) as well. The dotted line in the 

centre of the beam represents the central plane.
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a series of wood species. Furthermore, it shows a clear view of 
the bark and even the different paper layers of the straws con-
taining the increment cores.

Only single increment cores (sample holder 3) fit within the 
FOV when scanning at a higher resolution. Figure 5 shows the 
result of scanning a single Scots pine core of 11.5 cm length. 
The resolution is 8 μm and individual earlywood cells can be 
seen, yet not quantified in terms of shape and size.

A small section of the best possible high-resolution scan of 
an entire increment core of oak and Scots pine is given in Fig. 6. 
Anatomical details are well resolved, yet cell-level details such 
as cell walls and measurable sizes of earlywood cells are not yet 
within reach at this resolution.

Scans at sub-micron resolution are needed to get a proper 
view of cell-level details. Such an example is given in Fig. 7, 
showing a cross-section through a splinter-sized larch stick 
scanned with the Nanowood scan system.

For densitometry (see, for example, Bastin et al., 2015), six 
increment cores of limba were scanned in sample holder 2. The 
holder, similar to the one illustrated in Fig. 4, consists of ref-
erence material with a chemical composition close to that of 
wood and is used to convert attenuation coefficients to density 
estimates. Figure 8 illustrates the density profiles of a sub-
section of the six limba cores plotted against the results of the 
scanner simulation approach. The density profiles are obtained 
according to the procedure described in De Ridder et al. (2010) 
using the software reported in Van den Bulcke et al. (2014) and 
De Mil et al. (2016). The correlation between both methods is 
very high.

DISCUSSION

The potential use of X-ray CT scanning for tree ring analysis 
was reported in the early 1980s (Onoe et al., 1984) and was ex-
plicitly mentioned as a technique needed for tree ring research 
by Grabner et al. (2009). Several researchers such as Okochi 
et al. (2007), Bil et al. (2012) and Stelzner and Million (2015) 
used X-ray CT scanning with the scope of characterizing cul-
tural and archaeological objects, yet these studies are mostly 
limited to the measurement of TRWs and wood identification.

High-throughput processing of increment cores has only 
been accomplished recently (Maes et  al., 2017; Vannoppen 
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Fig. 2.  Cross-section through sample holder 1 (A), with a longitudinal section 
along the green arc depicted in A  (B). A  single core of 32.8 cm length was 
selected (C) to illustrate the level of detail (D and E). The white arrow indicates 
the pith to bark direction, and the white triangles demarcate ring boundaries.

Table 2.   Details of the scans

Scanner Samples Resolution 
(μm)

No of projections 
per scan

Exposure time per 
projection (ms)

No of scans 
per stack

Stitched 16-bit reconstructed 
data volume (GB)

CoreTOM 33 cores (oak) 60.0 2160 1400 8 Approx. 28
VOI single core (oak) 13.5 1800 1000 13 Approx. 68
6 cores (oak, beech, 

birch, pine)*
23.7 2250 100 6 Approx. 21

1 core (pine)* 8.0 1600 150 15 Approx. 55
1 core (oak)* ,† 4.5 2400 75 73 Approx. 140
1 core (pine)* 4.0 3000 70 70 Approx. 275

HECTOR 6 cores 35.0 2000 1000 1 Approx. 2
Nanowood 1 splinter-sized 

specimen (larch)
0.8 2000 1400 10 Approx. 8

*Faster CMOS detector mounted on the CoreTOM system.
†Eight-bit reconstruction instead of 16-bit
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et al., 2017), showing the extraction of both TRW series as well 
as density profiles (De Mil et al., 2016; Vannoppen et al., 2018).

Sample preparation

One of the disadvantages of many existing techniques for 
analysis on increment cores is the need for sample manipulation 
and preparation, depending on skilled staff; see, for example, 
the protocol for sectioning for quantitative wood anatomy by 

von Arx et al. (2016). In contrast, increment core manipulation 
is limited for X-ray CT scanning. Furthermore, both scanning 
and reconstruction can be automated, limiting operator inter-
vention for data acquisition. A well-designed sample holder for 
multiple cores (see, for example, Steffenrem et al., 2014; Van 
den Bulcke et al., 2014; Jacquin et al., 2019) also enables auto-
mation of part of the processing, limiting the need for further 
intervention along the processing pipeline. The number of cores 
that can be scanned simultaneously and the maximum length of 
the cores are merely determined by (1) sample holder design 
and (2) hardware limits of the scanning system, and both can 
be optimized.

Scanning and reconstruction

Exposure time is a major consideration when scanning since 
it directly affects total scan time. The exposure time will have 
a major influence on the reconstruction quality that needs to 
be achieved. Longer scans will result in a better signal to noise 
ratio for a given set-up, yet this is also influenced by the X-ray 
source (voltage, power and spot size), the composition of the 
sample and detector hardware (sensitivity and dynamic range). 
The effect of different detectors on exposure time can be seen 
in Table 2. To obtain the highest possible scan quality, the full 
dynamic range of the detector should be explored (du Plessis 
et al., 2017), yet, more importantly, scan time should also be 
fine-tuned to the research question at hand. Automated over-
night scanning is an attractive option especially for stacked 
scanning at high resolution. It should be mentioned that X-ray 
imaging beamlines at synchrotron facilities allow for very fast, 
high-throughput scanning at high resolution, yet they are less 
accessible for frequent use and, in most cases, they have limited 
options for scanning large and long objects, and are thus less 
suited for multiscale scanning, as shown here.

Within the scope of tree-ring-related analyses, an essen-
tial point of discussion is the resolution needed to extract re-
liable quantitative data. The multiscale approach shown here 
illustrates that, depending on the research question at hand, a 
different scale can be of interest. It should be noted that CT 
is a digital imaging technique, discretizing a volume in a 
stack of 3-D voxels. As such, increasing the resolution for a 
given volume by a factor of 2 will lead to an increase of the 
resulting data by a factor of 8. Additionally, for this increase 
in resolution, more stringent requirements are imposed on the 
measurement system, resulting in an even larger increase of ac-
quisition time. The choice of the imaging resolution to be used 
is, therefore, a very difficult trade-off between the detail and the 
total volume that needs to be imaged, notably between medical 
CT and micro-CT (Jacquin et al., 2019).

Multiscale imaging enables scanning of large numbers of in-
crement cores at a moderate resolution (Fig. 2) for archiving 
purposes. In certain cases, it is also sufficiently good for TRW 
measurements (De Groote et al., 2018; 110 μm resolution) and 
density profiling (Vannoppen et al., 2018; 110 μm resolution). 
Furthermore, analysis of increment cores scanned at this reso-
lution can guide scanning at higher resolutions (Fig. 3), fo-
cusing, for instance, on narrower rings (Fig. 4, oak and pine 
sample) or most interesting cores. At higher resolutions (Figs 
5 and 6), discerning tree ring boundaries does not only depend 
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Fig. 3.  VOI scan of an oak increment core of 25.6  cm length (A), with a 
zoomed-in section illustrating the clear growth ring boundaries and earlywood 
vessels (B and C), and further zoomed-in sections highlighting that even 
smaller vessels can be discerned properly (D and E). The white arrow indicates 
the pith to bark direction, and the white triangles demarcate ring boundaries.
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on density differences but they can be derived from anatomical 
features directly. Virtual sectioning of scans at cell-level reso-
lution is also within reach (Fig. 7), although long thin sections 
are currently setting the bar for quantitative wood anatomy 
(e.g. Saß and Eckstein, 1994; Gärtner et  al., 2015). The use 
of staining agents could furthermore unlock new methods of 
visualization and analysis (Pauwels et al., 2013; Staedler et al., 
2013; Van Loo et al., 2014).

Nevertheless, many micro-CT systems are built with a 
directional-type X-ray source, and, as such, they are limited 
to a resolution of a few microns, similar to the HECTOR and 
CoreTOM systems used in this study. When higher resolutions 
are desired, a different hardware configuration is needed. The 
latter is based on either a different type of X-ray source (see, for 
example, Masschaele et al., 2007; Dierick et al., 2014; Busse 
et al., 2018), optical magnification at the detector side (see, for 
example, Busse et al., 2018) or even X-ray optics (see, for ex-
ample, Wong et al., 2014). Although a hardware configuration 
such as that of Nanowood enables both sub-micron resolutions 
and scans of larger objects, it makes the system mechanic-
ally very complex and halves the available measurement time. 
Having two separate scanners specifically tuned to their pur-
pose and resolution is thus far more ideal. The larch sample 
clearly shows that sub-micron resolution scans enable cell-level 
detail due to the specific combination of a transmission tube 
and a sensitive detector with small pixel size. Although sub-
sampling was needed, VOI imaging of certain sections of an in-
crement core could also be possible at an even higher resolution 
than presented in Fig. 6.

Finally, given that the FOV is limited by the size of the 
detector for most scanners, the stacked approach illustrated 
in Fig. 1 is key to covering the entire increment core length, 

subsequently followed by automated stitching of the separate 
volumes. The latter is a non-trivial task and needs proper 
evaluation when stitching several tens of scans (Figs 5 and 6). 
Furthermore, for the standard cone beam circular geometry, in-
formation on the transitions along the Z-axis is lost to some 
extent due to cone beam artefacts (De Witte, 2010). Sufficient 
overlap between consecutive scans is mandatory to reduce this. 
An alternative approach is helical scanning and related recon-
struction (e.g. Van den Bulcke et al., 2014) based on either the 
patented Katsevich approach (Katsevich, 2002) or on iterative 
reconstruction (De Schryver, 2017). Helical scanning requires 
clever computing if used to reconstruct large data sets (cf. full 
increment cores of which a small sub-sample is visualized in 
Fig. 6) and needs motion compensation strategies for long 
scans (Latham et al., 2018).

Finally, at sub-micron resolution, phase contrast is a prom-
inent effect. When left unprocessed, the edge enhancement 
effect is particularly disturbing for quantitative image analysis. 
However, several processing algorithms, of which the Paganin 
algorithm (Paganin et al., 2002) is currently the most used so-
lution, exist to cope with this issue (Burvall et al., 2011; Boone 
et al., 2012).

Data analysis

A number of packages exist to handle 2-D imagery and ex-
tract ring width, density and wood traits. Well-known commer-
cial tree ring software such as WinDendro™ and CooRecorder 
are used frequently for TRW measurements on flatbed scans 
of polished wood surfaces and the analysis of conventional 
densitometry images. The commercial packages WinCELL™, 
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Fig. 4.  Cross-section through sample holder 2 with six increment cores (A), with a longitudinal section along the green circle depicted in A (B). Zoomed-in section 
at the bottom shows the bark and wood anatomical details that can be discerned (C). The scale bar is given in the middle as well as a density greyscale in kg m–3.
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ROXAS (depending on Image-Pro Plus; von Arx and Carrer, 
2014) and the open-source software ImageJ (e.g. Schuldt et al., 
2013) are powerful software tools for building vessel and 
lumen chronologies, mainly using thin cross-sections. All these 
packages could handle the 2-D X-ray-based cross-sections gen-
erated here. To exploit the 3-D nature of the images, however, 
the MATLAB®-based software toolboxes described in Van den 
Bulcke et al. (2014) and De Mil et al. (2016) could be used for 
TRW and density profiling. The process of the latter is clearly 
facilitated when density values are reconstructed directly from 

scanner simulation rather than the conversion of attenuation co-
efficients to density values based on a reference material (Fig. 
8).

Furthermore, given that wood is a highly structured and or-
ganized material, conventional machine learning techniques for 
pixel-based classification can be used in the context of image 
segmentation, object detection and boundary detection. A well-
known example of this is the WEKA toolbox for ImageJ (de-
veloped by Arganda-Carreras et al., 2017), which facilitates the 
integration of machine learning schemes with image processing 
modules into the pipeline and allows for users to provide feed-
back by correcting or adding labels. Consequently, with the 
WEKA toolbox, one can efficiently delineate wood vessels and 
parenchyma (De Mil et al., 2018).

Conventional machine learning techniques are, however, 
limited in their ability to process data in their raw form. On the 
other hand, deep learning methods can result in multiple levels 
of representation by composing simple non-linear modules that 
each transform the representation at one level (starting with 
the raw input) into a representation at a higher, slightly more 
abstract level (LeCun et al., 2015). The image data sets from 
De Mil et al. (2016) and those presented herein can be of sig-
nificant value for testing the latest deep learning architecture, 
potentially assisting in much of the manual measurement work 
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Fig. 5.  Scan of a Scots pine increment core of 11.5 cm length in sample holder 
3 (A), with zoomed-in sections illustrating the clear growth ring boundaries (B 
and C), and further zoomed-in sections highlighting that individual earlywood 
cells can be discerned (D and E). The white arrow indicates the pith to bark dir-

ection, and the white indentations demarcate ring boundaries.
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Fig. 6.  Small section of a high-resolution scan of an oak (A) and Scots pine (B) 
increment core in sample holder 3. The white arrow indicates the pith to bark 

direction, and the white indentations demarcate ring boundaries.
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still done today, similar to the work reported by Fabijańska 
and Danek (2018) on optical images. Deep learning to extract 
ring boundaries but also for anatomical feature detection could 

potentially revolutionize the field. X-ray CT scanning can gen-
erate such large amounts of data (see, for instance, the www.
dendrochronomics.ugent.be website where we keep track of the 
number of cores scanned), needed for the training of a deep 
neural net. Moreover, data augmentation, which is beneficial 
for the training of a deep neural net, can be implemented in a 
clever way, given the species-specific prior knowledge of the 
anatomical structure and tree ring boundaries of wood.

Furthermore, time series of TRW, density and quantitative 
wood anatomy could be used in predictive modelling, adopting 
the principle of investigating the range of responses among 
individual sample trees (Carrer, 2011) rather than relying on 
mean chronologies. Therefore, the large data sets lend them-
selves to machine learning methods (see De Gooijer et  al., 
2006; Voyant et al., 2017 for reviews on this topic). In order to 
capture time-dependent information, time-aware methods such 
as recurrent neural networks could be used to analyse even un-
dated series properly in terms of the environmental factor under 
study. For example, reservoir computing has proven to give 
good results on time series modelling tasks without being too 
computationally demanding (Jaeger and Haas, 2004; wyffels 
and Schrauwen, 2010).

Finally, although not illustrated in this study, the latest de-
velopments in X-ray CT scanning in combination with X-ray 
fluorescence (e.g. Laforce et al., 2017) could also lead to ex-
tracting chemical information from increment cores, similarly 
to what is currently already accomplished in 2-D using, for ex-
ample, the ITRAX scanner (e.g. Hevia et al., 2018).

Data handling

Large amounts of data are generated (Table 2) and need to be 
stored efficiently, as either 16-bit or 8-bit images. Well-known 
formats are multipage TIFF, HDF5 and JP2 with different com-
pression alternatives. Exploiting the 3-D nature of the data of 
increment cores can be of interest (see, for example, Van den 
Bulcke et  al., 2014), yet, in other cases, storing a sub-set of 
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Fig. 8.  Scatterplot of densities calculated according to the procedure reported in De Ridder et al. (2010) and values derived from scanner simulation for a series 
of subsections from limba increment cores. The grey circles are the data points, the solid black line represents the linear fit (R2 and equation given in the upper 
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Fig. 7.  Sub-micron scan of a needle-shaped larch stick of approx. 4  mm 
length (A, quasi-tangential; B, transversal), with zoomed-in sections (C and D) 

illustrating the clear cell-level details that can be obtained.
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transversal sections, preferentially filtered in the longitudinal 
direction to increase the signal-to-noise ratio, is adequate. 
Furthermore, although stitching conveniently results in single 
increment core volumes, analysing volumes separately is also 
an option. Sufficient data storage and secure back-up are es-
sential, as well as up-to-date computer infrastructure for re-
construction and analysis. Cloud-based solutions are under 
development, especially for medical imaging and synchrotron 
beamlines (see, for example, Meng et al., 2011; Bednarz et al., 
2015), compelling automated data management.

Several initiatives have been launched to make X-ray CT 
data available via open repositories, such as, for example, for 
digital morphology (Davies et  al., 2017), forensic analysis 
(Rowe et al., 2016) or mathematical purposes (De Carlo et al., 
2018). The complexity of information stored in the increment 
cores calls for online storage as well, which would enable the 
research community to exploit the data, similar to existing 
tree ring databases such as the International Tree-Ring Data 
Bank (ITRDB).

CONCLUSIONS

X-ray CT scanning, accelerated by an increase in computing 
power and significant progress in both hardware and software, 
has become an eminent 3-D microscopy technique in many re-
search disciplines. Its potential in tree ring research is prom-
ising since large data sets are needed to couple tree ring series 
to global monitoring and modelling efforts. In all, a dedicated 
X-ray CT scanning system could be used optimally to scan large 
core sets and analyse them semi-automatically with custom-
written software. The multiscale scanning approach illustrated 
here allows for optimal selection of increment cores, enabling 
scanning of selected cores at high resolution without any sample 
manipulation. Although optimal results for cell-level scans are 
currently only obtained when sub-sampling cores, they do not 
yet allow for the same workflow as conventional thin section 
approaches recently developed. Nevertheless, further improve-
ments are expected to allow sub-micron VOI scanning of intact 
increment cores. Multiscale imaging will also help to exploit 
maximally the information stored in wood at different micro-
scopic resolutions from the tissue level (e.g. wood density) to 
the sub-cellular level such as cell walls and pits. Hence, it is 
complementary to the thin section approach. Calibration-free 
densitometry and novel staining procedures can also open up 
new avenues for analysis. X-ray CT data are also very well 
suited for calculation of MXD and are potentially an important 
tool for climate reconstructions.

Standardized X-ray CT scanning would also allow for 
re-analysis of existing core databases, whereas new online data-
bases of the generated CT volumes would unlock the data for 
other researchers to explore and use the images, similar to ex-
isting international tree ring databases. Establishing a dedicated 
X-ray CT facility servicing the tree ring and land surface mod-
elling community and even forest inventory campaigns could 
be a final aim. Not only would this allow a standard for scan-
ning to be set, but it would also allow optimal use of resources 
and access to the latest developments, and complement the ex-
isting suite of techniques.
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