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ABSTRACT

Phosphorylation of the NF-xB transcription factor
is an important regulatory mechanism for the con-
trol of transcription. Here we identify serine 80 (S80)
as a phosphorylation site on the p50 subunit of
NF-xB, and IKKB as a p50 kinase. Transcriptomic
analysis of cells expressing a p50 S80A mutant re-
veals a critical role for S80 in selectively regulat-
ing the TNFa inducible expression of a subset of
NF-«B target genes including pro-inflammatory cy-
tokines and chemokines. S80 phosphorylation regu-
lates the binding of p50 to NF-kB binding (xB) sites
in a sequence specific manner. Specifically, phos-
phorylation of S80 reduces the binding of p50 at
kB sites with an adenine at the —1 position. Our
analyses demonstrate that p50 S80 phosphoryla-
tion predominantly regulates transcription through
the p50:p65 heterodimer, where S80 phosphorylation
acts in frans to limit the NF-xB mediated transcrip-
tion of pro-inflammatory genes. The regulation of a
functional class of pro-inflammatory genes by the
interaction of S80 phosphorylated p50 with a spe-
cific kB sequence describes a novel mechanism for
the control of cytokine-induced transcriptional re-
sponses.

INTRODUCTION

The transcription factor NF-«B plays an important role in
anumber of fundamental biological processes including cell

cycle, proliferation, differentiation and cell death (1). How-
ever, the primary role of NF-kB is as an essential regulator
of the immune response through the transcriptional regu-
lation of a large number of inflammatory genes, including
chemokines, cytokines and immune effectors (2). The NF-
kB transcription factor family is comprised of five struc-
turally related subunits: p65 (RelA), RelB, c-Rel, p50 and
p52. The p50 and p52 subunits are generated from the lim-
ited proteasomal processing of the precursor proteins p105
and p100 respectively, and lack the transactivation domain
(TAD) found in the C terminal regions of the p65, c-Rel
and RelB subunits. All NF-kB subunits contain a highly
conserved Rel homology domain (RHD) which facilitates
dimerisation and DNA binding. NF-kB can promote or re-
press transcription depending on the subunit composition
of dimer complexes. For example, although the p50 sub-
unit lacks a TAD, it can positively regulate transcription
by forming a heterodimer with a TAD containing subunit
such as p65. Alternatively, pS0 homodimers may function
as transcriptional repressors by competing with TAD con-
taining NF-kB dimers for the same DNA binding sites in
target gene promoters (3).

The primary mechanism regulating NF-«B activity is the
cytoplasmic sequestration of NF-kB dimers by the canon-
ical IkB proteins IkB-a, - and -g, and the pl105 and
pl00 precursor proteins. Activation of NF-«kB requires the
proteasomal degradation of the IkB proteins triggered by
IKK complex (IKKa, IKKB) mediated phosphorylation of
IkBs. The degradation of IkB proteins facilitates the nu-
clear translocation of NF-kB dimers where they bind to
specific kB sites in DNA with the consensus sequence 5'-
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GGG PR2N-IWOY Ty *2CH3C*H -3/ (R represents a
purine, N represents any nucleic acid, W represents an A
or T and Y represents a pyrimidine) (4,5). Although the
nuclear localisation of NF-«B is controlled by IkB pro-
tein degradation, NF-kB transcriptional activity is regu-
lated by a number of post-translational modifications, in-
cluding acetylation (6), ubiquitination (7) and phosphory-
lation (8). The importance of phosphorylation in regulating
NF-kB transcriptional activity has been revealed mainly by
studies of the p65 subunit, where phosphorylation has been
demonstrated to regulate transcription in a stimulus and
gene specific manner through a variety of mechanisms in-
cluding the modulation of p65 interaction with IkBa and
other transcription factors, and regulating p65 ubiquitina-
tion and stability (8).

Although the NF-«B p50 subunit is a critical regulator of
inflammatory gene expression, its regulation by phosphory-
lation is much less well understood. p50 is one of the most
highly expressed transcription factors in macrophages, and
is central to macrophage mediated inflammatory responses
(9). pS0 homodimers are important repressors of inflamma-
tory gene expression and the stability of p5S0 homodimers is
crucial for limiting pro-inflammatory gene expression and
establishing Toll-like Receptor tolerance in macrophages
(3,10). The phosphorylation of p50 at serine 337 (S337)
is required for DNA binding (11), while the phosphoryla-
tion of S242 inhibits p50 homodimer DNA binding (12)
.Phosphorylation of S20 promotes DNA binding, and is
required for VCAM-1 expression in response to TNF«
(13). p50 phosphorylation at S328 occurs in response to
DNA damage and regulates the interaction of p50 with
specific NF-kB binding sites to inhibit anti-apoptotic gene
expression (14,15). These studies indicate that transcrip-
tional responses to specific stimuli may be shaped by the
integration of signal induced NF-«B phosphorylation and
binding site sequence in the regulatory elements of target
genes.

In this study, we describe serine 80 (S80) as a novel phos-
phorylation site on the NF-kB p50 subunit. We identify
IKKp as a S80 kinase and establish p50 as a novel sub-
strate for this kinase. Our data reveals that TNFa-induced
phosphorylation of S80 selectively regulates distinct sub-
sets of NF-kB target genes, driven by differential binding
of p50 and p65 at specific DNA sequences. Our analyses
demonstrate that p50 S80 phosphorylation predominantly
regulates transcription through p50:p65 heterodimers and
shows that p50 phosphorylation may function in trans to
inhibit gene transcription. Our analysis demonstrates that
S80 phosphorylation reduces the affinity of p50 for kB sites
that have an adenine at the —1 position, limiting the expres-
sion of genes regulated by these binding sites. Remarkably,
the promoters of inflammatory cytokines and chemokines
are enriched in kB sites containing a —1 A and are thereby
selectively regulated by phosphorylation of p50 at S80. Our
data establishes IKKB phosphorylation of pS0 S80 as a
novel mechanism that shapes the TNFa-induced transcrip-
tional program and demonstrates the control of gene ex-
pression through the interaction of NF-kB phosphoryla-
tion and DNA binding site sequence.

MATERIALS AND METHODS
Cell culture and transfection

Human embryonic kidney 293T (HEK293T) cells were
cultured in DMEM (Sigma), supplemented with 10% fe-
tal bovine serum, 2 mM L-glutamine, and 100 units/ml
of streptomycin and penicillin. Nfkb1~/~ 3T3 MEFs sta-
bly expressing pl05-XP were generated as previously de-
scribed (16). Cells were maintained at 37°C in a humidi-
fied environment with 5% CO, and sub-cultured by enzy-
matic detachment with 0.05% Trypsin—~EDTA solution (In-
vitrogen). HEK293T cells were transiently transfected with
Turbofect (ThermoFisher Scientific) according to man-
ufacturer’s instructions. pFLAG-CMV2 IKKB, pFLAG-
CMV2 IKKBX*M and pcDNA3 IKKBSSEE FLAG were
kind gifts from Michael May, University of Pennsyl-
vania. pEF4A-p50-XP and pEF4A-p50-Myc were gen-
erated by cloning murine cDNA into pEF4A empty
vector. pEF4A-p505%°A.XP was generated by site di-
rected mutagenesis using the Stratagene QuikChange
II SDM kit according to the manufacturer’s instruc-
tions (Primers: 5-CCTCTAGTGAGAAGAACAAGAAA
GCCTACCCACAGG-3, 3-GGAGATCACTCTTCTTG
TTCTTTCGGATGGGTGTCC-Y). For generation of
CRISPR /Cas9 NFKBIS84 knock-in cells, HEK293Ts were
transfected using the Neon Transfection System 100 l
kit (ThermoFisher Scientific) using 2 pulses at 1100 V for
20 ms.

Western blot analysis and immunoprecipitation

Whole cell lysates were generated from cells suspended in
radio-immunoprecipitation assay buffer (RIPA) containing
50 mM Tris—HCI (pH 7.4), 1% Nonidet P-40, 0.25% deoxy-
cholate, 150 mM NaCl, ] mM EDTA, 1 mM PMSF, 1| mM
NaF, 1 mM Na3VOy, 2 pg/ml aprotinin, 1 pwg/ml pepstatin
and 1 pg/ml leupeptin. Nuclear and cytoplasmic extracts
were obtained using a nuclear extraction kit according to
the manufacturer’s instructions (Active Motif). Protein con-
centration of lysates were determined using a Bradford as-
say (Bio-Rad). Immunoprecipitation (IP) assays employed
equal concentrations of whole cell extracts, pre-cleared for
30 min at 4°C with protein G-agarose beads (Millipore),
and immunoprecipitated with antibody overnight at 4°C.
Beads were washed three times in RIPA bulffer, resuspended
in equal volumes of 2x SDS loading dye and heated for
5 min at 95°C to elute immunoprecipitated protein. De-
natured samples were resolved by SDS-PAGE, transferred
to nitrocellulose membranes and blocked for 1 h at room
temperature using 5% fat free milk powder in PBS-Tween
20. Membranes were immunoblotted with specific antibod-
ies: p-IkBa (cat. # 9246), IkBa (cat. # 4821) and p105/p50
(cat. # 12540) were purchased from Cell Signalling Tech-
nologies; antibodies against FLAG (cat. # F1804), HDAC-
1 (cat. # AV38530), a-tubulin (cat. # T6074) and B-actin
(cat. # A5441) were purchased from Sigma; anti-p65 (cat. #
A301-824A) was purchased from Bethyl Laboratories, anti-
Myc (cat. # SC-40) was purchased from Santa Cruz; and
anti-Xpress (cat. # R910-25) was purchased from Invitro-



gen. A custom anti-p50 p-S80 antibody was designed and
purchased from BioGenes GmbH. Antibody binding was
visualised using WesternBright HRP ECL substrate (Ad-
vansta) and a C-DiGit chemiluminescence scanner (LiCor).

Kinase assays

For in vitro kinase assays utilising an immunoprecipi-
tated kinase source, cells were transfected with plasmid
encoding constitutively active or kinase inactive IKKf
and immunoprecipitations performed as described above.
Protein-bound beads were used directly in the kinase as-
say by adding 800 ng of substrate and 10 pl of ki-
nase assay buffer (400 mM HEPES (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid) pH 7.5, 400 mM MgCl,,
20 mM EDTA, 40 mM NakF, 40 mM B-glycerophosphate,
20 mM DTT, 200 uM cold ATP). 10 nCi y-32P labelled
ATP was added to each sample and incubated at 30°C
for 15 min. Samples were made up to 500 pl with ice-
cold PBS, incubated with glutathione beads for 30 min
and agitated every 5 min. Beads were washed three times
with PBS followed by heating at 95°C for 5 min in 40 pl
2x SDS loading buffer. Samples were resolved by SDS-
PAGE, and the gel was stained with GelCode Blue (Ex-
pedeon) reagent. The gel was fixed in fixation buffer (10%
Glacial acetic acid/ 20% methanol/ 50% dH,O) for 30 min
followed by a 5 min incubation with rehydration buffer
(20% methanol/3% glycerol). The gel was dried onto What-
man paper using a gel-dryer, exposed to a phosphor imag-
ing screen overnight and then visualised using the Storm
phosphor-imager system (Molecular devices). For recom-
binant in vitro kinase assays, 400 ng recombinant IKK@
kinase (Cell signalling technologies, #7458) was incubated
with 400 ng substrate following the protocol as described
above. For the peptide array kinase assay, peptide libraries
of murine p50 were generated by an automatic SPOT syn-
thesis, as previously described (17) and synthesised on con-
tinuous cellulose membrane supports on Whatman 50 cel-
lulose using Fmoc (N-(9-flurenyl)methoxycarbonyl) chem-
istry with AutoSpot-Robot ASS 222 (Intavis Bioanalytical
Instruments). The array was used as a substrate for im-
munoprecipitated and recombinant IKKp, carried out as
described by (18).

Site directed mutagenesis and GST protein purification

p50 was cloned into pGEX-6P1 in frame with the N-
terminal GST tag and transformed into BL21 CodonPlus
Escherichia coli (Stratagene). Transformants were grown to
an Agy of 1.0-2.0 at 37°C and induced with 1 mM iso-
propyl B-D-1-thiogalactopyranoside (IPTG) for 16 h at
20°C. The bacteria were resuspended in a buffer contain-
ing 50 mM Tris (pH 8.0), 150 mM NaCl and 1 mM dithio-
threitol, disrupted by sonication, and centrifuged to re-
move debris. Recombinant proteins were affinity-purified
with GSH-agarose (Sigma) and eluted with 10 mM glu-
tathione (Promega) in 50 mM Tris (pH 8.5) and 150 mM
NaCl. GST-p50 mutants were created by PCR based site-
directed mutagenesis using the Stratagene QuikChange 11
SDM kit, according to manufacturer’s instructions and re-
combinant protein purified as above.
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CRISPR/Cas9 genome editing

pSpCas9(BB)-2A-GFP (PX458) plasmid was a gift
from Feng Zhang (Addgene plasmid # 48138). gRNA
oligonucleotides were purchased from Eurofins Ge-
nomics (5'-CACC GACAAACTTACTTTGACCTGA-3,
3-CTGTTTGAATGAAACTGGACTCAAA-Y) and
were cloned into pSpCas9(BB)-2A-GFP. ssODN was pur-
chased from Integrated DNA Technologies (5-AGAGG
ATTTCGTTTCCGTTATGTATGTGAAGGCCCATCC
CATGGTGGACTACCTGGTGCCTCTAGTGAAAA
GAACAAGAAAGCTTATCCTCAGGTCAAAGTAA
GTTTGTGGTAGCTCTCCTTCTATTTGAATTCTGG
AAATTTTGATTTCCTACGATTTCCAAGGAATT-3).
The ssODN contains synonymous codon changes designed
to introduce the S80A mutation, a HindIII restriction
site, and to abolish the PAM site. Prior to transfection,
HEK293T cells were treated with 200 ng/ml Nocodazole
(Sigma) for 17 h. Following treatment, cells were washed
twice with media, trypsinised and cell density was de-
termined. Cells were washed with Mg?* and Ca’" free
PBS, and re-suspended in Neon buffer R (ThermoFisher
Scientific) at a density of 5 x 107 cells/ml per transfection.
100 wl of cells were co-transfected with pPGKpuro (a
gift from Rudolf Jaenisch, Addgene plasmid # 11349),
pX458 Cas9/sgRNA vector and ssODN (1:2:2 ratio) by
electroporation. Transfected cells were plated into a 10 cm
dish containing 10 ml media and recovered overnight in
culture. Transfected cells were then selected for ~3 days
with 3 pg/ml of puromycin. After selection, puromycin
media was removed and cells washed and incubated in fresh
media. Serial dilution of selected cells was performed to iso-
late single cell clones in 96-well plates. For clone screening,
genomic DNA was extracted from cells using the DNeasy
Blood and Tissue Kit (QIAGEN) according to the manu-
facturer’s instruction. DNA was amplified by PCR using
primers (F: 5-ACCTGGCTTTTTAGCCATATCT-3
R: 5-TTCAGCTTAGGAGCGAAGGC-3) and Hot-
StarTag Master Mix Kit (QIAGEN) according to the
manufacturer’s instructions. Initial screens were performed
by HindIII (NEB) restriction digest of PCR products
purified using QIAquick PCR Purification Kit (QIAGEN),
according to the manufacturer’s instructions. Gene editing
of selected clones was confirmed by Sanger sequencing
(GATC-Biotech).

Chromatin immunoprecipitation

HEK?293T cells were cultured with or without 10 ng/ml
TNFa for 1 h before ChIP assays were performed. ChIP as-
says were performed using the Pierce Magnetic ChIP Kit
(Thermofisher Scientific) according to manufacturer’s in-
structions, with one deviation. Following MNase digestion,
nuclei were lysed on ice for 10 min in SDS lysis buffer con-
taining 1% SDS, 50 mM Tris (pH 8.0), 10 mM EDTA,
1 mM PMSF, 1 mM NaF, | mM Na3;VOy, 2 pg/ml apro-
tinin, 1 wg/ml pepstatin and 1 pg/ml leupeptin. Lysed
cells were centrifuged to remove debris. DNA-bound pro-
tein was immunoprecipitated using anti-p105/p50 anti-
body (Cell signalling technologies, cat. # 12540), anti-
p65 (Bethyl Laboratories, cat. # A301-824A) or rabbit
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IgG (Cell Signalling Technologies cat. # 2729), as a con-
trol. The eluted DNA was quantified by real-time PCR
using specific primer sets flanking the expected kB site
in each gene: IL8 F: 5-GGGCCATCAGTTGCAAATC
-3 R: 5-GCTTGTGTGCTCTGCTGTCTC-3;CXCLI F:
5-ACTCGGGATCGATCTGGAACTC-3’; R: 5-CTCC
GAGATCCGCGAACCC-3; CXCL2 F: 5-ATTCGGGG
CAGAAAGAGAAC-3;R: 5- ACCCCTTTTATGCATG
GTTG-3';

Transcriptomic and bioinformatic analysis

For RNA-sequencing, total RNA was extracted from cells
using RNeasy kits (QIAGEN), according to the manu-
facturer’s instructions. Triplicate independently generated
samples for each condition were sequenced to a read depth
of 20 million using Illumina NextSeq™500 platform. Single-
end 75 bp reads were aligned to human reference sequence
iGenome NCBI GRCh38 using HISAT (19). Aligned reads
were counted using HTseq-count (20). The above analyses
were performed using the University of Glasgow Galaxy
server. Differentially expressed genes were calculated and
visualised using an in-house RNA-seq analysis pipeline
which utilises DESeq2 (21). Induced genes with adjusted
P value <0.05 were included in this study. Heat maps
of gene groups were produced using DESeq2 mean nor-
malised counts and visualized using the online tool Mor-
pheus (Broad Institute). For real-time quantitative PCR,
total RNA was extracted from cells using RNeasy kits
(QIAGEN) according to the manufacturer’s instructions
and quantified using NanoDrop 1000 Spectrophotome-
ter (ThermoFisher Scientific). 1 pg of isolated RNA was
primed with random hexamer oligonucleotides and reverse
transcribed using Primer Design precision nanoScript re-
verse transcription kit. 10 wl PCR reactions were performed
with 1 pl cDNA (diluted 1:5), PerfeCTa SYBR Green Fast-
Mix (Quantabio) and QTAGEN QuantiTect primers (BCL3
cat. # QT00008050; CSFI cat. # QT00035224; CXCL2
cat. # QT00013104; IL8 cat. # QT00000322; MAP3KS8
cat. # QT00051730; TBP cat. # QT00000721; TNF cat. #
QT00029162) using QuantStudio 7 Flex Real-Time PCR
System (ThermoFisher Scientific). Thermocycling condi-
tions consisted of 94°C for 20 s, followed by 40 cycles of
95°Cfor 1 sand 60°C for 20 s. Melt curves for qPCR primers
are shown in Supplementary Figure S1. All data were nor-
malised to TBP. Gene expression changes were calculated
using the 2722CT method.

Motif analysis

Motif analysis was based on the GREAT approach (22),
which incorporates both proximal and distal regulatory re-
gions for enrichment analyses. Regulatory regions for genes
were obtained from the Ensembl Regulatory Build (23). Ge-
nomic locations were obtained using the ‘fetch closest non-
overlapping feature’ tool. JASPAR Position Weight Matrix
MAO0105.1 was used to identify the best matching NFKBI
binding sites in regulatory regions using the ‘FIMO’ tool.
These analyses were performed using the University of
Glasgow Galaxy server. Sequence logos were generated us-
ing WebLogo (24). Transcription factor binding site shape

analysis was performed using the TFBSshape online tool
(25).

DNA affinity binding assay (DAPA)

S'-Biotinylated and unlabelled single-stranded oligonu-
cleotides containing a central kB site flanked either side a
by 7-bp spacer were purchased from Eurofins Genomics
(5-AGTTGAGGGGNNTTTCCCAGGC-3'; 3-TCAAC
TCCCCNNAAAGGGTCCG-5', where N represents —2
—1 kB site variation per assay). Oligonucleotides were
annealed to create 5-biotinylated, and unlabelled double
stranded duplexes. DAPA reactions were prepared by mix-
ing 1.5 ng of 5-biotinylated double stranded oligo with
150 pg of nuclear extract and 15 pl streptavidin-agarose
beads (Sigma) in a total of 500 wl DAPA buffer (10 mM
Tris—=HCI pH 7.5, 50 mM NaCl, 1 mM DTT, 5% glycerol,
1 mM EDTA, 1 mM NaF, 1 mM Na;VO,, | mM PMSF,
1 wg/ml leupeptin, 2 pg/ml aprotinin, 2 wg/ml pepstatin).
Unlabelled double stranded oligonucleotides were added in
10-fold excess to confirm binding specificity. Reactions were
incubated at room temperature on a rotator for 1 h. Beads
were washed three times in 500 wl DAPA buffer. To elute
DNA-bound proteins, beads were resuspended in 20 pl of
2x SDS sample buffer, and incubated at 95°C for 5 min.
Eluates were resolved on SDS-PAGE gels and analysed by
western blot.

Luciferase assays

Promoters containing four sequential copies of defined kB
sites (5-GGGAATTTCC-3, ¥-GGGACTTTCC-3, 5-G
GGGATTTCC-3, 5-GGGGCTTTCC-3") were cloned
into the pTAL-Luc vector (Clontech). WT and NFKBI58A
HEK?293T cells were co-transfected with 100 ng pTAL-
(4xkB) Luc vector and 10 ng Renilla luciferase expression
vector pRL-TK (Promega). Twenty four hours post trans-
fection, cells were cultured with or without 10 ng/ml TNF«
for 8 h before harvest. Luciferase activities of whole cell
lysates were analysed using the Dual-Luciferase Reporter
Assay System (Promega). The ratio of firefly to Renilla lu-
ciferase activity was used to normalise for transfection effi-
ciency across all samples.

Limited proteolysis

Whole cell lysates were generated from cells suspended in
RIPA buffer lacking protease inhibitors. Limited proteol-
ysis was performed by adding varying ratios of trypsin
(Sigma) to 50 pg of whole cell lysate, and incubating the
reaction mixture for 30 min at 37°C. Proteolysis was termi-
nated by adding 5x SDS sample buffer to the reaction and
heating at 95°C for 5 min. Samples were resolved by SDS-
PAGE and analysed by western blot analysis.

RESULTS

IKK( phosphorylates NF-kB p50

The phosphorylation of NF-kB subunits is strongly linked
to the activation of the NF-kB pathway. Indeed, in ad-
dition to IkBa, IKKR also phosphorylates other compo-
nents of the NF-kB pathway including p65 and p105 (8).
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Figure 1. IKKB phosphorylates NF-kB p50. (A) HEK293T cells were
transfected with FLAG-IKKBX*M (kinase dead) or FLAG-IKK@SSEE
(constitutively active) as indicated. IKKB was immunoprecipitated from
whole cell lysates with anti-FLAG antibody and incorporated in a kinase
assay using recombinant GST-p50 or recombinant GST. (B) In vitro ki-
nase assay employing recombinant IKKB and recombinant GST-p50 or
GST. (C) HEK293T cells were co-transfected with Myc-p50 and FLAG-
TKKBSSEE or FLAG-TKKBX#M a5 indicated. p50 was immunoprecipi-
tated (IP) from whole cell lysates with anti-Myc antibody and analysed by
western blot (WB) using the indicated antibodies.

To determine if IKKB may also phosphorylate p50, we ini-
tially performed in vitro kinase assays using constitutively
active IKKB (IKKBSSEE) immunoprecipitated from tran-
siently transfected HEK293T cells and employing purified
recombinant GST-p50 as substrate. These assays revealed
that active IKK phosphorylates p50 in vitro (Figure 1A).
Kinase assays incorporating immunoprecipitated kinase
dead IKKB (IKKBX*M) and purified recombinant GST
established that p50 phosphorylation was due to IKKf
kinase activity (Figure 1A). Similar results demonstrating
the phosphorylation of p50 by IKK were obtained using
in vitro kinase assays incorporating purified recombinant
IKKB (Figure 1B). Co-immunoprecipitation of p50 and
constitutively active IKKBSSEE in transfected cells demon-
strated that IKKB and p50 interact (Figure 1C) as previ-
ously reported (26-29). Of note, p50 interacted with the ac-
tive but not a kinase dead form of IKKp indicating that
IKKp activity is required for interaction with p50 (Fig-
ure 1C). Specificity of co-immunoprecipitation of pS0 with
IKK B was validated using an irrelevant IgG under the same
conditions (Supplementary Figure S2). These data establish
the p50 subunit of NF-«kB as a novel substrate of the IKK(
kinase.
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Serine 80 is the IKK[ phosphorylation site of NF-kB p50

To identify the specific amino acids of p50 phosphorylated
by IKKB we employed an in vitro kinase assay using a pep-
tide array representing the entire amino acid sequence of
p50. A series of 30, 18-amino-acid-long peptides were SPOT
synthesised on nitrocellulose, with each peptide overlap-
ping by three residues to generate a p50 peptide array. The
p50 array was subjected to in vitro kinase assays using re-
combinant IKK as previously described (18). This analy-
sis identified four putative IKKp phosphorylation sites in
p50; S73, S74, S80 and T315 (human p50 amino acid num-
bering used) (Figure 2A). To further test the putative sites
of IKKB phosphorylation we next performed in vitro ki-
nase assays incorporating recombinant IKKf and recom-
binant GST-p50 in which S73, S74, S80 and T315 are mu-
tated to alanine. This analysis revealed that IKK could still
phosphorylate pS0 when S73, S74, and T315 are mutated
to alanine, but phosphorylation of p50 is significantly re-
duced when S80 is mutated to alanine (Figure 2B). These
data identify S80 of p50 as the major site of IKK@ phos-
phorylation. Analysis of the available crystal structure of
p50 homodimer bound to DNA revealed that S80 of p50
is located in an extended loop of the RHD and therefore
available for phosphorylation (Figure 2C). To further con-
firm IKKR phosphorylation of p50 in vivo, we next gen-
erated an antibody raised against the S80 phosphorylation
site of p50. This anti-phospho-S80 p50 antibody recognised
IKK B dependent phosphorylation of p50 but not a p505804
mutant in transiently transfected cells, demonstrating the
phosphorylation of p50 S80 by IKK} in cells (Figure 2D).
To assess the inducible phosphorylation of S80 we stim-
ulated Nfkbl=/- 3T3 MEFs stably expressing XP-tagged
pl05 (16) with TNF for 15 mins prior to immunoprecipita-
tion with anti-XP antibody and immunoblot analysis using
anti-phosphor S80 antibody. This revealed TNFa induced
phosphorylation of S80 after 15 min, consistent with the
rapid activation of IKKRB by TNFa (Figure 2E). Unfortu-
nately, this antibody was not of sufficient affinity to generate
a specific signal in cell lysates of non-transfected cells and
so was not of further use in investigating p50 S80 phospho-
rylation.

S80 phosphorylation is not required for NF-kB activation

Following the identification of S80 as a novel phosphory-
lation site on the p50 subunit, we next sought to investi-
gate its role in regulating NF-k B activity. To achieve this we
utilised CRISPR /Cas9 genome editing techniques to gener-
ate NFKBIS%A knock-in HEK293T cells (Figure 3A). The
p50 subunit of NF-kB is generated from the proteasomal
processing of the p105 precursor which requires the IKKf3
mediated phosphorylation at the C terminus of p105 (28—
31). To determine whether S80 plays a role in the processing
of p105 we analysed p105/p50 protein levels in whole cell
lysates from wild type (WT) and NFKBIS3A cells by west-
ern blot. This revealed equivalent levels of p105/p50 in WT
and NFKBI5%A cells demonstrating that S80 is not required
for the processing of p105 to p50 (Figure 3B). To determine
the effect of S80 mutation on the activation of the NF-xB
pathway we next stimulated WT and NFKBIS%A cells with
TNF« and assessed the phosphorylation and degradation
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Figure 2. TKKp phosphorylates NF-kB p50 at S80. (A) In vitro IKK kinase assay using a peptide array of immobilised, overlapping 18-mer peptides rep-
resenting the entire p50 sequence. Black spots represent IKK3-phosphorylated peptides. Peptide sequences, amino acid number (mouse p50) and putative
phosphosites (bold) are shown. (B) In vitro IKKB kinase assay using recombinant GST, wild type and mutated recombinant GST p50 as indicated. (C)
Image from the X ray crystal structure of p50 homodimer bound to DNA (INFK) indicating the location of S80, S73 and S74 in an extended loop of
the Rel Homology Domain. T315 is not represented in this crystal structure. (D) HEK293T cells were co-transfected with or without FLAG-IKK BSSEE
and with either XP-p50 or XP-p50580A as indicated. p50 was immunoprecipitated (IP) from whole cell lysates with anti-XP antibody and analysed by
western blot (WB) using anti-phospho-serine 80 (p-S80) antibody. (E) NfkbI/-3T3 MEFS stably expressing XP-tagged p105 were stimulated with TNFa
(10 ng/ml) for 15 min and p50 immunoprecipitated using anti-XP antibody. Immunoprecipitates were analyse by western blot using anti-phospho-S80

antibody as indicated.

of IkBa by western blot. This analysis demonstrated equiv-
alent levels of IkBa phosphorylation and degradation in
WT and NFKBIS®A cells stimulated with TNFa (Figure
3C). Nuclear translocation of pS0 and p65 in TNFa stimu-
lated WT and NFKBI58A cells was assessed by immunoblot
analysis of nuclear and cytoplasmic fractions. This demon-
strated equivalent levels of NF-kB translocation to the nu-
cleus following TNFa stimulation (Figure 3D). Together,
these data demonstrate that upstream signalling and nu-
clear translocation of NF-«kB following TNFa stimulation
is unaffected by the p50 S80A mutation. Furthermore, no
significant differences in proliferation or cell death were ob-
served between WT and NFKBI5%4 cells. To investigate the

effect of S80 mutation on p50 interaction with p65 we per-
formed an immunoprecipitation assay using anti-p50 anti-
body. Western blot analysis of immunoprecipitates showed
that equivalent levels of p65 co-purified with p50 in both
WT and NFKBIS3A cells demonstrating that p50 SS0A mu-
tation does not alter the interaction of p50 and p65 (Figure
3E).

S80 phosphorylation selectively regulates TNFa-induced
gene expression

Site-specific phosphorylation of NF-kB subunits has pre-
viously been shown to regulate transcriptional activity (8).
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Figure 3. S80 phosphorylation is not required for NF-kB activation. (A) Schematic of the CRISPR /Cas9 targeting strategy used to edit the NFKBI target
locus, highlighting the position of S80 (red); gRNA (yellow); PAM site (blue) and primers used for screening (green arrows). The ssODN template including
homology arms (dotted line), HindIII restriction cut site (green triangles) and synonymous codon changes (bold) are shown. Also shown is DNA sequence
chromatogram of the NFKBI target region confirming the S80A point mutation (black box). (B) Whole cell lysates extracted from WT and NFKBIS30A
HEK?293Ts were analysed by western blot (WB) with the indicated antibodies. (C) WT and NFKBIS8A HEK293Ts were stimulated with 10 ng/ml TNFa
for the indicated times prior to lysis. Whole cell extracts were analysed by western blot to detect levels of phosphorylated and total Ik Ba protein. (D) WT
and NFKBIS$9A HEK293Ts were stimulated with 10 ng/ml TNFa for the indicated times prior to lysis. Nuclear and cytoplasmic extracts were analysed by
western blot using antibodies against p65 and p105/p50. (E) WT or NFKBIS30A HEK293Ts were left untreated or were stimulated with 10 ng/ml TNFa
for 30 min prior to lysis. p5S0 was immunoprecipitated (IP) from whole cell lysates with anti-p105/p50 antibody and analysed by western blot (WB) with

anti-p105/p50 and anti-p65 antibodies as indicated.

To determine the role of S80 phosphorylation in regulat-
ing NF-kB target gene expression, we next analysed TNFa-
induced transcriptional responses in WT and NFKBI5%04
cells by RNA-seq. WT and NFKBI5%4cells were untreated
or treated with TNFa for 3 h prior to RNA-seq anal-
ysis. This revealed distinct transcriptional profiles of dif-
ferentially expressed genes in WT and NFKBIS4 cells
in response to TNFa (Figure 4A, Supplementary Figure
3 and Supplementary Table S1). In particular we identi-
fied two TNFa-inducible groups of genes composed pre-
dominantly of NF-kB target genes containing an identi-
fiable NF-kB binding site in their promoter regions that
were differentially regulated between WT and NFKBI5%04
cells (Figure 4B). The expression of genes encoding pro-
inflammatory chemokines and cytokines including TNF,
ILS, CXCL2, CXCLI and CXCLI0 was dramatically in-
creased in NFKBIS4 cells compared to WT cell fol-
lowing TNFa treatment. However, other NF-«B target
genes predominantly encoding for intracellular signalling
factors including BCL3, MAP3KS8, NFKBI and IRAKI
were expressed at equivalent levels in both WT and

NFKBISA cells following TNFa treatment. Analysis of
selected genes from each group by qPCR confirmed the
gene-selective regulation of transcription by p50 S80 phos-
phorylation (Figure 4C). Of note, although the expression
levels of a number of TNFa-inducible genes is higher in
NFKBI15%04 cells than WT cells, the gene set induced by WT
and NFKBI5%4 cells is highly similar (Figure 4D). This in-
dicates that S80 phosphorylation regulates the levels of gene
expression induced by TNFa treatment rather than the spe-
cific genes induced.

Specific DNA-binding motifs associated with differential reg-
ulation of NF-k B target genes by S80

The gene selective effects of S80 mutation on TNF«-
induced transcription suggested that phosphorylation of
S80 may regulate the activity of p50 in a promoter specific
manner. Binding site sequence preferences differ among
NF-kB dimers (32) and suggests a potential mechanism for
the selective effect of S§0 mutation on the transcription of a
distinct set of target genes. To further explore this possibil-
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Figure 4. S80 phosphorylation selectively regulates TNFa-induced gene expression. (A) Triplicate samples of WT and NFKBI5%04cells treated with TNFa
for 3 h (+TNFa) or untreated (Unt) were analysed by RNA-seq. The heat map displays differentially expressed genes (P,qj <0.05) scaled as per z-score.
Genes were clustered using spearman distances and UPGMA agglomeration. (B) Box and whisker plots of gene expression level by RNA-seq for selected
genes. Each dot represents a sample. Boxes show the 25th, 50th and 75 percentile with whiskers showing inter-quartile range. Untreated = -; TNFa treated =
+.(C) WT and NFKBIS30A HEK293Ts were stimulated with 10 ng/ml TNFa for the indicated times prior to harvest and RNA extraction. Gene expression
levels were determined by quantitative real-time PCR. Data are mean + S.E of triplicate samples and are representative of three independent experiments.
(D) Log, fold change scatter plot of genes (dots) shown in (B). The blue dotted line indicates correlation the between WT TNFa/WT Unt v S80A Ohr/WT
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ity, we performed transcription factor binding site analysis hancers) for each gene. Regulatory features were analysed
to search for the most enriched kB sites in TNFa-induced for occurrences of a 10 base pair NFKBI position weight
genes expressed higher in NFKBI5%4 cells than WT cells,  matrix (JASPAR ID MAO105.1). This analysis identified
and those expressed equally in both WT and NFKBI5%04 distinct DNA binding motifs associated with each group
cells. The genomic region between the nearest upstream of genes (Figure 5A and B). Specifically, promoter and en-
and downstream gene was used to search for both proximal hancer kB sites varied at the —1 and —2 positions (Figure
and distal regulatory features (including promoters and en- 5A and B). The kB sites of genes with increased expression
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Figure 5. Specific kB sites are enriched in genes selectively regulated by
S80 phosphorylation. Gene expression values (scaled as per z-score) of se-
lected genes (A) induced to a greater degree in NFKB1380A cells compared
to WT cells, and (B) genes expressed equally between WT and NFB]S80A
cells. Proximal and distal regulatory regions surrounding each gene were
searched for occurrences of NFKBI motifs best matched to JASPAR po-
sition weight matrix MA0105.1. Sequence logos representing the most en-
riched kB site for each gene set are shown.

in NFKBIS8A cells relative to WT cells, contain an adenine
(A) at the —2 position, and either an adenine or a cytosine
(C) at the —1 position (Figure SA). In contrast, the kB sites
of genes where expression is unchanged between WT and
NFKBI15%4 cells contain either an A or a guanine (G) at the
—2 position while there is no enrichment of any particular
nucleotide at the —1 position. This analysis suggested that
S80 phosphorylation may regulate p50 function in a DNA
binding site sequence specific manner.

S80 phosphorylation reduces p50 affinity for —1A containing
kB sites

To determine if S80 phosphorylation alters the binding of
p50 to specific kB sequences we next carried out DNA affin-
ity precipitation assays (DAPA) incorporating the kB se-
quences identified in our analysis of transcriptomic data
(Figure 5). WT or NFKBIS®A cells were left untreated
or treated with TNFa prior to extraction of nuclear frac-
tions. Nuclear extracts were incubated with 5'-biotinylated
oligonucleotides representing kB sites with base pair sub-
stitutions at the —1 and —2 positions. The oligonucleotides
were designed to represent the DNA-binding motifs iden-
tified in the gene sets identified by our transcriptomic
analysis (Figure 5A and B), and differed only in the
base pair sequence at the —2 and —1 positions of a
GGGA(—2)C(—1)TTTCC motif. Oligonucleotides repre-
senting kB sites from genes with enhanced TNF« inducible
expression in NFKBI®%4 cells therefore contained an A at
the —2 position and an A or C at the —1 position. Since
the kB sites identified in genes with equivalent expression
in both WT and NFKBI15%4 cells displayed heterogeneity
at the —1 position we generated oligonucleotides with an A
or C at the —1 position to reflect the previously reported
prevalence of A and C at this position of kB sites (33) and
a G at the —2 position. Oligonucleotides and bound pro-
tein were precipitated using streptavidin conjugated agarose
beads. Specificity of protein-DNA interaction was verified
using control samples containing a tenfold excess of non-
biotinylated oligonucleotide. Precipitated proteins were re-
solved by SDS gel electrophoresis and analysed by west-
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ern blot using antibodies against p50 and p65 and quan-
tified using a digital chemiluminescence scanner. These as-
says demonstrated approximately 2 fold greater binding
of p50589A to the GGGA(—2)A(—1)TTTCC kB site when
compared to WT p50 (Figure 6A). Remarkably, there is
also significantly greater binding of p65 to this kB site in
NFKBI5%4 cells relative to WT cells, demonstrating that
p50 S80 phosphorylation regulates the DNA binding of
p50:p65 heterodimers. The requirement of an A at the —1
position for this effect was demonstrated by a single base
change of —1A to —1C in the GGGA(-2)C(—-)TTTCC B
site which largely abolished the increased p505%°A binding
and completely abolished the increased p65 binding seen
with the GGGA(—2)A(—1)TTTCC site (Figure 6A).

The significance of the —1A nucleotide to p5053°A bind-
ing was further demonstrated by the increased binding of
p5038°A to a GGGG(—2)A(—1)TTTCC B sites relative to
WT p50 (Figure 6A). Of note, the levels of p65 binding
to this site were similar in both p5058°A and WT p50 ex-
pressing cells indicating that S80 phosphorylation may reg-
ulate the binding of p50:p50 homodimers but not p50:p65
heterodimers to kB sites with this sequence. This sug-
gested that binding to specific kB sequences may also be
influenced by the composition of p50 containing dimers.
An additional change from A to C in the —1 nucleotide
position in the GGGG(—2)C(1)TTTCC site further re-
duces p5058%4 binding relative to WT p50 as compared
to GGGG(—2)A(—1)TTTCC «B sites (Figure 6A). Chro-
matin immunoprecipitation analysis of p50 and p65 recruit-
ment to the CXCLI, CXCL2 and ILS8 promoters demon-
strated the increased binding of p50 and p65 to these pro-
moters in NFKBI5%04 cells relative to WT cells (Figure 6B—
D). Together, these data show that the regulation of p50
binding by S80 is determined primarily by the identity of the
—1 nucleotide which appears to modify the binding of both
p50:p50 homodimer and p50:p65 heterodimer complexes.
Thus S80 phosphorylation reduces the binding of p50 con-
taining NF-«kB dimers to kB sites containing an A at the —1
position.

S80 phosphorylation inhibits transcription from —1A con-
taining kB sites

The transcriptomic and DNA binding analyses suggest that
the increased transcription of pro-inflammatory genes in
NFKBI5%4 cells results from increased binding of p505804
containing NF-kB dimers to promoter kB sites contain-
ing an A in the —1 position. We next sought to investigate
whether increased DNA binding of p505894 is sufficient to
increase target gene transcription or whether the transcrip-
tional outcome observed in TNFa treated NFKBI5%4 cells
occurs only in the context of the gene promoter. We gen-
erated 4 different luciferase reporter constructs that con-
tained four kB site repeats that vary at either the —2 or
the —1 position immediately upstream of a minimal pro-
moter and firefly luciferase reporter gene. The 4 reporter
plasmids each contained a kB site sequence identical to
each of the sequences employed in the DAPA experiments
described above (Figure 6). WT or NFKBI4 cells were
transiently transfected with the different reporter plasmids
along with a constitutive expression vector for Renilla lu-
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Figure 6. S80 phosphorylation regulates DNA binding affinity to —1A containing kB sites. (A) WT and NFKBI589A HEK293T were left untreated or
treated with 10 ng/ml TNFa as indicated for 30 min. Equal concentrations of nuclear lysates were incubated with 5'-biotinylated double stranded oligonu-
cleotides, with or without a 10x excess of unlabelled competitor double stranded oligo as indicated. The sequence of the double stranded oligos containing
kB-sites that vary at the —1 and —2 positions are indicated for each assay (underlined). Precipitated samples were analysed for p50 and p65 proteins by WB.
Relative binding of p50 and p65 protein to DNA was quantified by normalising to input. Data shown are representative of three individual experiments.
(B-D) Chromatin immunoprecipitation of p50 and p65 from TNFa stimulated WT and NFKBI5%04 cells. Primers flanking the NF-kB binding sites of the
CXCLI, CXCL2 and IL8 promoters were used to assess DNA binding. Data is representative of 3 independent experiments.

ciferase to enable normalisation for transfection efficiency.
Luciferase reporter activity was measured in untreated and
TNFa-treated cells to determine the impact of p5058°A on
transcription driven by specific kB site sequences. TNFa-
induced luciferase activity from the reporter containing
the GGGA(—2)A(—1)TTTCC sequence was approximately
2 fold greater in NFKBI5%4 cells compared to WT cells
(Figure 7), consistent with the increased DNA binding of
p505894 to this sequence observed in the DAPA assays (Fig-
ure 6A). Interestingly, TNFa induced reporter activity in
both WT and NFKBI5%4 cells is highest in reporter plas-
mids containing the GGGA(—2)A(—1)TTTCC site com-
pared to the other kB sites tested, suggesting that kB sites
containing an A at the —1 and —2 position are more po-
tent drivers of gene transcription. The importance of the

—1 nucleotide is further highlighted by the observed overall
decrease in luciferase activity in both WT and NFKBI5%04
cells when the —1A is changed to —1C (Figure 7).

The increased TNFa induced reporter activity from the
A(=2)C(—1) B site seen in NFKBI5%4 cells relative to
WT cells (Figure 7) is also consistent with the observed in-
creased expression levels in NFKBISA cells of genes which
contain either A(—2)A(—1) or A(—2)C(—1) kB sites (Figure
5A). The relative differences in TNFa induced reporter ac-
tivity between WT and NFKBI5%04 cells are much less where
the kB site contains a G(—2)A(—1) and G(—2)C(—1) se-
quence (Figure 7). This is consistent with the transcription
profiles observed for genes that contain either G(—2)A(—1)
or G(—2)C(—1) kB sites where expression is similar between
WT and NFKBISA cells (Figure 5B). Furthermore, DNA
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Figure 7. S80 phosphorylation regulates transcription in a kB sequence
specific manner. WT and NFKBIS8'4 HEK293T cells were transfected
with pTAL-NF-kB reporter constructs with four identical tandem « B-sites
that vary at the —1 and —2 positions as indicated (underlined). Twenty
four hours post transfection, cells were either left untreated or treated with
TNFa for 8 h before luciferase activity was measured. The Renilla lu-
ciferase expression vector pRLTK was used as an internal control to nor-
malize transfection efficiency across all samples. Reporter activity is rep-
resented as fold increase over untreated WT cells. Data shown are mean +
S.E. of quadruplicate samples. Statistical significance between treated WT
and NFKBIS80A cells was determined by Student’s  test. **P < 0.01; ™" P
<0.001; ™" P < 0.0001.

binding analysis also showed that p65 binding to these sites
is unaffected by S80 phosphorylation which correlates with
the reporter activity (Figure 6). The reporter activity for all
four kB sequences tested were equivalent between untreated
WT and NFKBI15%4cells, consistent with TNFa dependent
activation of IKKf as a requirement for p50 phosphoryla-
tion. Taken together, these data show that S80 phosphory-
lation regulates NF-kB transcriptional activity in a kB se-
quence specific manner and that binding site sequence dif-
ferences are sufficient to determine transcriptional outcome
following S80 phosphorylation. Specifically, S80 phospho-
rylation acts to limit the NF-kB mediated transcription of
genes containing a — [ A kB site nucleotide.

DISCUSSION

In this study, we have identified S80 as a novel phosphory-
lation site on the NF-kB p50 subunit. The phosphorylation
of S80 by the IKKf kinase also identifies p50 as a novel
substrate for this kinase. Our data demonstrates that the
phosphorylation of p50 at S80 selectively regulates TNFa-
induced transcription by regulating the DNA binding of
p50 at kB sites in a sequence specific manner. Thus, phos-
phorylation of S80 reduces p50-DNA binding to kB sites
with a —1A, and thereby limits the expression of genes un-
der the control of regulatory elements bearing this sequence.
The regulation of p50 DNA binding by S80 phosphoryla-
tion occurs both in the context of p50:65 heterodimers and
p50:p50 homodimers, revealing the regulation of the tran-
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scriptional activity of the p65 subunit in trans through the
modification of p50.

In addition to the central role of IKK@ as an activa-
tor of the NF-kB pathway through the phosphorylation of
IkBa, IKKB also phosphorylates a number of other com-
ponents of the NF-kB pathway (8). This includes NF-«kB
p105, which is phosphorylated by IKKf at the C terminus
to promote its limited proteasomal degradation to generate
the p50 subunit of NF-kB. NF-kB p65 is also phosphory-
lated by IKKB at S468 (34) and S536 (34-38) which serves
to regulate p65 transcriptional activity.

Our identification of p50 as an IKKp substrate places
p50 alongside these other components of the NF-«B path-
ways as a regulatory target of IKKB kinase activity. Of
note, the regulation of sequence specific p50 DNA bind-
ing by IKK phosphorylation reveals a novel mechanism
of IKKB-mediated control of NF-kB activity. The phos-
phorylation of p65 at S468 and S536 by a number of other
kinases in addition to IKKB (39) suggests that S80 of p50
is also likely to be phosphorylated by other kinases. IKKf3
phosphorylation of S80 would be expected to occur follow-
ing stimulation of cells by other IKK activating stimuli in
addition to TNFa (e.g Toll-like receptors, antigen receptors
etc.). However, it is possible that IKK-mediated phospho-
rylation of S80 could be modulated by the phosphorylation
of other sites of p50, thereby enabling signal specific con-
trol of S80 phosphorylation through pathway-specific ac-
tivation of other p50 kinases. The future identification of
additional S80 kinases will shed further light on the role of
S80 phosphorylation in the regulation of NF-kB dependent
transcriptional responses in the context of different cellular
stimuli.

The NF-«B barcode hypothesis proposes that post-
translational modifications of NF-kB subunits, either alone
or in combination, generate distinct functional states that
direct transcription in a gene specific manner (40). This
hypothesis has largely been generated from studies of p65
phosphorylation which indicate that individual sites of p65
phosphorylation may regulate the expression of distinct
subsets of NF-kB target genes (40). The molecular basis for
such gene specific effects of p65 phosphorylation are not
clear in many cases. Although studies have demonstrated
that S468 phosphorylation promotes the ubiquitination of
p65 by enhancing interaction with an E3 ligase complex
containing COMMD1, GCNS5, Cullin2 and SOCSI at cer-
tain promoters (41), it is not understood what directs this
interaction at these specific promoters. In this study we es-
tablish that the gene-specific transcriptional effects of S80
phosphorylation are mediated by the differential binding
of phosphorylated pS0 with kB sites containing an A nu-
cleotide at the —1 position. Importantly, p5S0 S80 phos-
phorylation primarily affects the binding of p50:p65 het-
erodimers at these sites to inhibit gene transcription. While
our data does not identify S80 phosphorylation as a regu-
lator of p50 homodimer function, further analysis will be
required to determine whether cell or signal specific fac-
tors control dimer specific effects of S80 phosphorylation.
Phosphorylation of p50 at S328 has previously been demon-
strated to inhibit the binding of p50 to kB sites containing
a C nucleotide at the —1 position (14). This study, together
with our data, identifies the —1 position of kB sites as a crit-
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ical factor in determining the transcriptional consequences
of p50 phosphorylation. These data also establish kB site
sequence as an additional and important component to be
considered in further developing the NF-kB barcode hy-
pothesis.

DNA binding sites can act as allosteric regulators of tran-
scriptional regulators (42). Distinct DNA conformations
adopted by particular kB sequences provides a potential
mechanism to explain why single nucleotide variations af-
fect DNA binding of NF-kB dimers. In support of this an
in silico transcription factor binding site shape analysis of
the kB sites employed in our experiments predicts a unique
conformation for each kB site (25) (Supplementary Fig-
ure S4). Previous studies have revealed that phosphoryla-
tion of p65 induces conformational changes that may influ-
ence the transcriptional outcome following DNA binding
(43). Using similar approaches we assessed conformational
differences between pSOWT and p505%°A by limited prote-
olytic digestion (Supplementary Figure S5). This analysis
showed different sensitivities to digestion between p50WT
and p5058°A | indicating that S80 phosphorylation may in-
duce a conformational change that could modify the bind-
ing of p50 dimers to kB sites containing an A nucleotide in
the —1 position. Such conformational changes may modify
the transactivating potential of NF-kB dimers by modifying
DNA binding to specific sites, but also possibly by modify-
ing interaction with other factors that in turn affect DNA
binding.

Our data demonstrate that the interaction of S80 phos-
phorylated p50 with kB sites containing an A at the —1 po-
sition is sufficient to inhibit DNA binding and gene tran-
scription of associated genes and does not necessarily re-
quire the context of a promoter. Interestingly, our data also
show that individual kB sequences have different capaci-
ties to drive transcription as measured by reporter assays
incorporating kB sequences upstream of a minimal pro-
moter. These analyses identified —2A, —1 A kB sites as more
potent drivers of transcription than other sites tested. Re-
markably, the increased transcription from reporter vectors
containing these kB sites is also reflected in TNFa stimu-
lated cells where genes regulated by these sites are induced
at significantly higher levels than genes regulated by other
kB sites. Indeed, these kB sites appear to be enriched in
the regulatory regions of genes encoding pro-inflammatory
cytokines and chemokines, including TNFa, IL-8 and the
chemokines CXCL1 and CXCL2. The enrichment of spe-
cific kB sites in a functional class of genes provides strong
evidence that NF-kB phosphorylation and B sequences
may establish regulatory networks to coordinate stimulus-
specific transcriptional programmes.

In conclusion, this study describes a novel site of IKK
phosphorylation of the p5S0 subunit that regulates TNFa in-
duced transcriptional responses in a gene-selective manner.
Our data demonstrates that the gene selective effect of S80
phosphorylation on transcription is encoded in the kB se-
quence, specifically by the —1 nucleotide position. The re-
sults of this study contributes further to our understand-
ing of the regulation of transcriptional programmes by NF-
kB. Future research may enable the prediction of transcrip-
tional outcome based on an understanding of the phospho-
rylation status of NF-«kB and DNA binding site sequence.
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