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ABSTRACT: The ability to write DNA code from scratch will
allow for the discovery of new and interesting chemistries as
well as allowing the rewiring of cell signal pathways. Herein, we
have utilized synthetic evolution artificial intelligence (SYN-
AI) to intelligently design a set of 14-3-3 docking genes. SYN-
AI engineers synthetic genes utilizing a parental gene as an
evolution template. Wherein, evolution is fast-forwarded by
transforming template gene sequences to DNA secondary and
tertiary codes based upon gene hierarchical structural levels.
The DNA secondary code allows identification of genomic
building blocks across an orthologous sequence space
comprising multiple genomes. Where, the DNA tertiary code
allows engineering of supersecondary structures. SYN-AI
constructed a library of 10 million genes that was reduced to three structurally functional 14-3-3 docking genes by applying
natural selection protocols. Synthetic protein identity was verified utilizing Clustal Omega sequence alignments and
Phylogeny.fr phylogenetic analysis. Wherein, we were able to confirm the three-dimensional structure utilizing I-TASSER and
protein−ligand interactions utilizing COACH and Cofactor. The conservation of allosteric communications was confirmed
utilizing elastic and anisotropic network models. Whereby, we utilized elNemo and ANM2.1 to confirm conservation of the 14-
3-3 ζ amphipathic groove. Notably, to the best of our knowledge, we report the first 14-3-3 docking genes to be written from
scratch.

1. INTRODUCTION

The ability to write DNA code from scratch is a primary goal
in the area of synthetic biology. Wherein, intelligent gene
design will allow researchers to address a broad range of
scientific conundrums such as the rewiring of signal pathways
and the intelligent design of small genomes. Thusly, allowing
for the engineering of novel organisms and the potential for
new and interesting chemistries that may include degradation
of nonbiodegradable products. Saliently, these technologies
will open frontiers in medicine allowing the design of novel
drug receptors for the discovery of new cancer and disease
treatments. The possibilities that such a technology can offer
are seemingly endless and essential for our current
technological challenges. It is worth mentioning that over the
past decade, there have been multiple attempts at the modest
ambition of de novo protein engineering. Wherein, the science
was limited to a range of mutagenesis techniques that often
resulted in nonfunctional proteins. Although, there has been
considerable progress, the ability to intelligently design fully
functional genes from scratch has been elusive.
In the current study, we focus on the intelligent gene design

utilizing synthetic evolution artificial intelligence (SYN-AI), an
AI that accelerates the evolution process by performing a

domain shuffling-like mechanism similar to the “Domain Lego”
principle.1−3 Evolutional acceleration is achieved by trans-
forming gene sequences into DNA secondary (DSEC) and
tertiary codes (DTER) based on gene hierarchical structure
levels. We assume that modern genes have a common ancestor
that partitioned over time via DNA crossovers, and that genetic
diversity occurred by processes such as gene duplication,
inversion, insertion, and deletion.4,5 Our assumption of a
common ancestor is in agreement with the “Universal
Ancestor” and LUCA “Last Universal Common Ancestor”
models.6,7 Saliently, the DSEC allows for the identification of
short highly conserved sequences occurring across multiple
genomes referred to herein as genomic building blocks
(GBBs). Based upon “The Fundamental Theory of the
Evolution Force”, these sequences are genetic artifacts formed
during the evolution process.71 The DTER allows partitioning
of genes at the supersecondary structure level. Whereby,
synthetic genes are engineered by walking the DTER followed
by random selection and ligation of supersecondary structures.
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Thusly, the exchange of information is analogous to the
swapping of genomic building blocks in a game of Legos.
To fast forward the evolution process, SYN-AI forms an

expanse orthologous sequence space followed by an
exponential number of DNA crossovers within the genomic
alphabet comprising the DNA secondary code. SYN-AI
identifies genomic building block formation across genomes
by analysis of evolution force associated with DNA crossovers.
Whereby, evolution force is a compulsion acting at the
matter−energy interface that accomplishes genetic diversity
while simultaneously conserving architecture and function.71

In the current study, we utilize SYN-AI to intelligently design a
set of 14-3-3 docking genes. These genes are responsible for
regulating protein−protein interactions (PPI) in cell signal
pathways. Saliently, docking protein interactions can have a
profound effect on the target protein, altering its localization,
stability, conformation, phosphorylation state, activity, and/or
molecular interactions.9 Thusly, the ability to write 14-3-3
docking genes from scratch will allow the rewiring of cell signal
pathways. In addition to acting as key components of cell
signal pathways, 14-3-3 docking proteins play a role in cell
growth and development, cancer cell signaling,9,10 cellular
metabolism, and organelle communication.11 Whereby, 14-3-3
proteins have been shown to interact with key signaling
components such as the insulin-like growth receptor,57−59

PI3K,60,61 cdc25 phosphatase,62−64 and bad.65−67

In the current study, we intelligently designed a set of 14-3-3
docking genes utilizing SYN-AI. Wherein, a truncated B. taurus
14-3-3 ζ docking gene was utilized as a template for gene

engineering. Genomic building blocks were identified across
multiple genomes by partitioning the parental docking gene
into a DNA secondary code and simulating evolution by
performing an exponential number of DNA crossovers within
the genomic alphabet forming the DSEC, Figure 1 (top).
Whereby, DNA crossover partners were randomly selected
across an orthologous sequence space. Synthetic super-
secondary structures were engineered by targeting evolution
within the genomic alphabet comprising the DNA tertiary
code, Figure 1 (middle). In all, SYN-AI generated a library of
10 million genes by walking the DTER, followed by random
selection and ligation of synthetic supersecondary structures,
Figure 1 (bottom). This expanse gene library was reduced to
three genes utilizing natural selection protocols. Synthetic 14-
3-3 docking genes were confirmed utilizing the Clustal Omega
multiple sequence alignment tool and by phylogenetic analysis
utilizing Phylogeny.fr. We were able to confirm the three-
dimensional structure of synthetic proteins utilizing I-TASSER
as well as verify conservation of small-molecule and fusicoccin
binding sites utilizing Cofactor and Coach. The conservation
of the 14-3-3 ζ amphipathic groove57 as well as allosteric
interactions were confirmed utilizing the elastic network
model. Whereby, we utilized ElNemo and ANM2.1 to analyze
normal modes, root-mean-square deviation (RMSD), and
deformation energies. Notably, based upon the aforemen-
tioned, we confirm the intelligent design of a set of novel 14-3-
3 docking proteins utilizing the synthetic evolution artificial
intelligence.

Figure 1. SYN-AI mechanism. SYN-AI partitions the parental gene into a DNA secondary code (DSEC) and fast forwards the evolution process by
performing an exponential number of DNA crossovers within each genomic alphabet comprising the DSEC, (Top). DNA crossovers characterized
by the highest magnitude of evolution force are selected and stored in libraries. Subsequently, genomic building block (GBB) libraries are subjected
to natural selection. Following natural selection, synthetic supersecondary structures are formed by random selection and ligation of GBBs from
appropriate genomic alphabet libraries, (Middle). Synthetic genes are engineered by walking the DNA tertiary code (DTER) followed by random
selection and ligation of synthetic supersecondary structures. Gene libraries are restricted to functional 14-3-3 docking genes by a natural selection
process (Bottom).
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2. RESULTS
SYN-AI identified genomic building block formation by
performing an exponential number of DNA crossovers within
the genomic alphabet forming the DSEC followed by the
analysis of the magnitude of the evolution force associated with
the aforementioned. Whereby, evolution force was analyzed
over single and multidimensional planes of evolution formed as
functions of the four evolution engines, (i) evolution
conservation, (ii) wobble, (iii) DNA binding state, and (iv)
periodicity according to “The Fundamental Theory of the
Evolution Force” and as described in ref 71. In addition,
genomic building blocks were identified by applying natural
selection protocols that limited selection to evolutionarily
conserved DNA crossovers utilizing pattern recognition filters
and that limited selection to sequences comprised of naturally
occurring mutations utilizing Blosum80 mutation frequency-
based algorithms. Subsequently, SYN-AI-engineered synthetic
14-3-3 docking genes by walking the DNA tertiary code and
randomly selecting and ligating synthetic supersecondary
structures formed by Domain Legos shuffling of genomic
building blocks. Whereby, SYN-AI limited selection to
structurally functional 14-3-3 docking genes by application of
natural selection protocols.
Evolution force was analyzed utilizing the rotation model, as

described in71 and as illustrated in Figure 2. Wherein, genomic

building blocks appeared as low-density occurrences displaying
(+) molecular wobble and high magnitude moments of inertia
about the evolutional axis. In identifying genomic building
blocks, SYN-AI analyzed evolution force across single and
multidimensional planes formed by the four evolution engines.
Evolution force distribution across a one-dimensional
evolution plane is illustrated in Figure 2. Where, evolution
force associated with genomic building block formation was
analyzed within genomic alphabets (1−4) of the parental
bovine 14-3-3 docking gene DNA secondary code.
Protein identity was assessed by aligning synthetic docking

genes with the truncated B. taurus 14-3-3 ζ docking gene
utilizing the Clustal Omega multiple sequence alignment
tool.12 Synthetic proteins displayed 58.5 to 71.5 percent

identity to the parental sequence characterized by stretches of
high sequence identity between residues 100 and 130 and
residues 154 and 180, Figure 3A. Phylogenetic analysis was

performed utilizing Phylogeny.fr.13,14 Saliently, SYN-AI-1 and
SYN-AI-2 diverged from the parental bovine gene forming
novel 14-3-3 gene families. SYN-AI-3 was most closely related
to the parental bovine 14-3-3 docking gene. However, each of
the synthetic genes displayed significant branch distance from
the parental gene, Figure 3B. We also performed phylogeny.fr
blast, Figure 4. Notably, each synthetic protein was
characterized by distinctive phylogenetic relationships. Where-
by, SYN-AI-1 was most closely related to 14-3-3 protein zeta/
delta of Ophiophagus hannah and Anolis carolinensis. The
aforementioned phylogenetic relationships were characterized
by score: 281 bits (718), expect: 7e-73, identities: 150/213
(70%), and positives: 165/213 (77%). SYN-AI-2 also
displayed close identity to the aforementioned but with greater
divergence. Wherein, the relationship was characterized by
alignment score: 266 bits (679), expect: 2e-68, identities: 142/
212 (66%), and positives: 156/212 (73%). Saliently, SYN-AI-3
exhibited close phylogenetic relationship to protein zeta/delta
of Ovis aries and the parental B. taurus 14-3-3 ζ docking
protein characterized by an alignment score: 281 bits (719),
expect: 5e-73, identities: 149/213 (69%), and positives: 169/
213 (79%).
Three-dimensional structure of the synthetic protein was

analyzed utilizing the I-TASSER suite, Zhang Laboratory
University of Michigan. Structural analysis revealed that
synthetic proteins conserved the 14-3-3 ζ architecture and
surface as well as conserving volume of the ligand-binding site,
Figure 5. SYN-AI-3 folded at the highest confidence
characterized by a C-score of 1.54 and a resolution of 2.5 ±
1.9 Å. However, I-TASSER structural predictions of all three

Figure 2. Analysis of evolution force utilizing the rotation model.
Evolution force was evaluated in genomic alphabets (1−4) of the
parental bovine brain 14-3-3 docking gene DNA secondary code.
Evolution force was evaluated as described in ref 71.

Figure 3. Sequence alignment and phylogenetic analysis of synthetic
14-3-3 docking proteins. Synthetic 14-3-3 docking proteins were
aligned to truncated parental 14-3-3 ζ docking protein utilizing the
Clustal Omega multiple sequence alignment tool, (A). Phylogenetic
relationships between synthetic 14-3-3 docking proteins were
compared to the parental utilizing Phylogeny.fr. (B).
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synthetic proteins were very reliable wherein synthetic proteins
folded at an average C-score of 1.51. Saliently, the truncated
parental 14-3-3 ζ docking protein folded at a similar
confidence score of 1.55 with a TM-score of 0.93 ± 0.06
and a RMSD of 2.5 ± 1.9 Å. In addition, SYN-AI-1 and SYN-
AI-3 were characterized by a TM-score of 0.93 ± 0.06
compared to SYN-AI-2 that was characterized by a TM-Score
of 0.92 ± 0.06. Further, SYN-AI-1 and SYN-AI-3 were
predicted at an RMSD of 2.5 ± 1.9 Å wherein SYN-AI-2 was
predicted at an RMSD of 2.6 ± 1.9 Å.
Synthetic protein−ligand-binding interactions were analyzed

utilizing Cofactor and Coach. Notably, SYN-AI successfully
conserved fungal toxin fusicoccin complex (FC) binding within
the BS03 site of SYN-AI-3, Figure 6 (top left). The
aforementioned was predicted at a confidence score of 0.40
and a resolution of 2.74 Å. Wherein, FC binding within
parental bovine 14-3-3 docking protein was predicted at a
slightly higher confidence of 0.45. The aforementioned analysis
revealed that fusicoccin ligand−residue interactions were
conserved with exception of N42 → V42 and V46 → A46
mutations. Fusicoccin formed hydrogen bonding interactions
with residues V42, A46, K120, M121, P165, I166, and D213
and Van der Waals interaction with F117 of the synthetic
protein amphipathic groove Figure 6 (Top Right). Whereby,
the FC complex formed bonding interactions with the residue
V42 at a distance of 0.285 nm, A46 at 0.375 nm, F117 at 0.223
nm, K120 at 0.357 nm, M121 at 0.306 nm, P165 at 0.332 nm,
I166 at 0.300 nm, and residue D213 at 0.353 nm. Compared to
the parental 14-3-3 docking protein, where fusicoccin formed
bonding interactions with the residue N42 at a distance of 0.41
nm, V46 at 0.353 nm, F117 at 0.267 nm, K120 at 0.322 nm,

Figure 4. Phylogenetic analysis of synthetic proteins. Phylogenetic
relationships characterizing synthetic 14-3-3 docking genes engi-
neered utilizing SYN-AI were analyzed by performing a Phylogeny.fr
blast. Phylogenetic tree depicting synthetic protein SYN-AI-1 (Top),
SYN-AI-2 (Middle), and SYN-AI-3 (Bottom).

Figure 5. Three-dimensional structure predictions. The I-TASSER
Suite, Zhang Laboratory University of Michigan was utilized to
analyze the three-dimensional structure. A molecular surface image of
the truncated parental 14-3-3 ζ docking protein predicted at a
confidence of 1.55 and a resolution of 2.5 ± 1.9 Å (A). A molecular
surface image of SYN-AI-3 predicted at a confidence of 1.54 and a
resolution of 2.5 ± 1.9 Å (B). A molecular surface image of SYN-AI-1
predicted at a confidence of 1.51 and a resolution of 2.5 ± 1.9 Å (C).
SYN-AI-2 predicted at a confidence of 1.48 and a resolution 2.6 ± 1.9
Å (D).

Figure 6. Analysis of protein−ligand interactions. Ligand and small-
molecule interactions were analyzed utilizing Cofactor and Coach.
Van der Waals surface image of fusicoccin binding at a resolution of
2.74 Å, (Top Left). Ligand−residue interactions between fusicoccin
and SYN-AI-3 (Top Right). Van der Waals surface image of the small-
molecule (2S)-(2)-methoxyethyl pyrrolidine at a resolution of 1.7 Å,
(Bottom Left). Ligand−residue interactions between SYN-AI-3 and
(2S)-(2)-methoxyethyl pyrrolidine (Bottom Right).
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M121 at 0.333 nm, P165 at 0.332 nm, I166 at 0.285 nm, and
residue D213 at a distance of 0.42 nm. Notably, the FC
complex ligand-binding site was fully conserved in SYN-AI-1,
Figure 7. Where, fusicoccin formed bonding interactions with

the residue N42 at a distance of 0.354 nm, V46 at 0.27 nm,
F117 at 0.213 nm, K120 at 0.333 nm, M121 at 0.287 nm, P165
at 0.33 nm, I166 at 0.379 nm, and D213 at a distance of 0.386
nm. Comparatively, synthetic protein SYN-AI-2 conserved the
fusicoccin ligand-binding site except V46 → A46 mutation,
Figure 7. Whereby, fusicoccin formed bonding interactions
with the residue N42 at a distance of 0.222 nm, A46 at 0.445
nm, F117 at 0.282 nm, K120 at 0.320 nm, M121 at 0.344 nm,
P165 at 0.329 nm, I166 at 0.301 nm, and D213 at a distance of
0.343 nm.
In addition to conserving FC complex ligand−residue

interactions, synthetic evolution artificial intelligence con-
served small molecule (2S)-2-(2-methoxyethyl) pyrrolidine
ligand binding within the BS02 site, Figure 6 (Bottom).
Wherein, Cofactor and Coach predicted the binding of the
small molecule within the SYN-AI-3 BS02 site at a resolution
of 1.7 Å. Our analysis revealed that the SYN-AI-3 BS02 ligand-
binding site comprised N42 → V42, S45 → A45, and V46 →
A46 mutations. Further, the analysis of ligand−residue
interactions within the SYN-AI-3 BS02 site revealed that
(2S)-2-(2-methoxyethyl) pyrrolidine interacts with the residue
V42 at a distance of 0.264 nm, A45 at 327 nm, A46 at 0.391
nm, F117 at 0.252 nm, and the residue K120 at a distance of
0.397 nm. Comparatively, (2S)-2-(2-methoxyethyl) binding
within the parental bovine 14-3-3 docking protein BS02 site
was characterized by the interaction of residues N42 at 0.244
nm, S45 at 0.305 nm, V46 at 0.268 nm, F117 at 0.282 nm, and
the residue K120 at a distance of 0.366 nm. Notably, synthetic
protein SYN-AI-1 displayed full conservation of the BS02

ligand-binding site. Whereby, (2S)-2-(2-methoxyethyl) pyrro-
lidine interacted with the residue N42 at a distance of 0.261
nm, S45 at 0.273 nm, V46 at 0.270 nm, F117 at 0.250 nm, and
the residue K120 at a distance of 0.385 nm.
Notably, synthetic evolution artificial intelligence success-

fully conserved protein−protein interactions, as corroborated
by Coach and Cofactor analyses of BS01 and BS02 ligand-
binding sites. Whereby, test probe I (TMLNLVSGRRR) was
occupied and was deeply buried within BS01 and BS02 ligand-
binding sites, Figure 8 (Top Left). Test probe I ligand

interaction was predicted at 2.74 Å with a C-score of 0.31.
Whereby, the probe interacted with residues H38, K41, V42,
A45, A46, R56, R60, F117, K120, R127, Y128, P165, I166,
G169, L172, N173, V176, and E180 of the synthetic protein
amphipathic grove, Figure 8 (Top right). Test probe II
(VTYSG) binding within the BS01 site was predicted at a C-
score of 0.82 and at a resolution of 2.3 Å, Figure 8 (Bottom
Left). Whereby, probe II interacted with residues K49, R56,
R60, K120, R127, Y128, L172, V176, and E180 of the
amphipathic grove, Figure 8 (Bottom Right). Saliently,
synthetic evolution artificial intelligence accomplished full
conservation of BS01 ligand-binding residues within synthetic
protein SYN-AI-3 except a K49 → A49 mutation as well as an
additional G169 residue contact. Comparatively, synthetic
protein SYN-AI-1 displayed full conservation of ligand−
residue interactions with the addition of the G169 residue
contact. Whereby, SYN-AI-2 comprised K49 → A49 and R56
→ A56 mutations in addition to the G169 contact.
To demonstrate SYN-AI’s ability to conserve protein

allosteric effects, we analyzed parental and SYN-AI engineered
14-3-3 ζ docking proteins utilizing the elastic network model.
Whereby, truncated parental and synthetic structures were

Figure 7. Analysis of ligand-binding interactions. Synthetic protein−
ligand-binding interactions were analyzed utilizing Cofactor and
Coach. A molecular surface image of fusicoccin SYN-AI-1 ligand-
binding reaction predicted at a C-score of 0.46 (Top Left). SYN-AI-1
fusicoccin ligand−residue interactions (Top Right). A molecular
surface image of fusicoccin SYN-AI-2 ligand-binding interaction
predicted at a C-score of 0.41 (Bottom Left). SYN-AI-2 fusicoccin
ligand−residue interactions (Bottom Right).

Figure 8. Analysis of protein−protein interaction sites. Protein
interactions were analyzed utilizing Cofactor and Coach. Van der
Waals surface image of probe I (TMLNLVSGRRR) buried within
BS01 and BS02 ligand-binding sites, predicted at 2.74 Å (Top Left).
Probe I ligand−residue interactions (Top Right). Van der Waals
surface image of probe II (VTYSG) buried within the BS01 site,
predicted at 2.3 Å (Bottom Left). Probe II ligand−residue
interactions (Bottom Right).
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predicted utilizing I-TASSER. ElNemo68,69 was utilized to
perform the normal mode analysis, Figure 9. Normal mode
analysis resulted in 107 modes, of which five (7−11) were low-
frequency modes indicating a role in ligand binding and
intraprotein communication. Saliently, Cα strains within
synthetic proteins were similar to those occurring within the
parental docking protein, as shown in Figure 9A. Whereby,
mode 7 was characterized by a mean residue sample variance
of σ2 = 2.62 × 10−4. Residue root mean square deviations of
synthetic proteins also closely overlapped the parental 14-3-3 ζ
docking protein, Figure 9B. When comparing RMSD of

parental 14-3-3 ζ docking protein to synthetic proteins, there
exists a miniscule variance of σ2 = 1.115 × 10−4 Å. Normal
mode analysis also revealed that the frequency and collectivity
of synthetic protein modes closely mirrored those of the
parental 14-3-3 ζ docking protein, Figure 9C,D. The frequency
of synthetic modes was characterized by a variance of σ2 =
0.202 from the parental docking protein. Wherein, synthetic
proteins were characterized by a variance in the collectivity of
σ2 = 9.593 × 10−3 from parental 14-3-3 ζ. The anisotropic
network model ANM2.170 was utilized to analyze energy
deformation and solvent accessibility. Synthetic protein energy

Figure 9. Analysis of allosteric interactions. ElNemo was utilized to perform normal mode analysis of parental 14-3-3 ζ and synthetic proteins SYN-
AI-1, SYN-AI-2, and SYN-AI-3. Whereby, we analyzed carbon α strain (A), root mean square deviation (B), mode frequency (C), mode collectivity
(D).

Figure 10. Analysis of amphipathic groove. Conservation of the 14-3-3 ζ amphipathic groove was confirmed by the anisotropic model, as described
in 70. Whereby, ANM2.1 was utilized to analyze energy deformations occurring in the parental 14-3-3 ζ docking protein (A), SYN-AI-1 (B), SYN-
AI-2, (C) and synthetic protein SYN-AI-3 (D). To further verify the conservation of the amphipathic groove, ANM2.1 was also utilized to predict
parental and synthetic 14-3-3 ζ docking protein solvent accessibility (E).
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deformation peak pattern and strength were analogous to that
of the parental protein with a strong deformation peak ranging
from residues 43−106 as well as residues 127−148, Figure
10A−D. Notably, energy deformation peaks correlate well with
the location of the 14-3-3 ζ amphipathic groove as well as
ligand-binding residues predicted by I-TASSER. Wherein, the
strong peak at residue 127 suggests a significant role of the Van
der Waal interaction with arginine in ligand-binding, in both
the parental and synthetic proteins. Synthetic protein solvent
accessibility also overlapped with that of the parental protein
with little variation per residue, as illustrated in Figure 10E.

3. DISCUSSION
In the current study, we utilized SYN-AI to design a set of 14-
3-3 docking proteins utilizing B. taurus 14-3-3 ζ docking
protein as a parental template. Notably, SYN-AI is not a
rational design technology but simulates evolution by
evaluating evolution force associated with genomic building
block formation and subsequently builds genes from scratch by
randomly assembling the aforementioned. Our approach
anticipates the evolution process by simulating DNA shuffling.
Thusly, SYN-AI is advantageous in engineering functional
genes, as anticipatory evolution has been shown to generate
functional proteins with high efficacy.74 Evolution force was
solved by overlapping gene sequences occurring over an
orthologue sequence space with that of the parental template.
Thereby, SYN-AI is able to analyze the evolutional character of
DNA crossovers going back to “LUCA”. It is worth mentioning
that our technology is limited by its dependence on the
availability of PDB structural data. In the current study, crystal
data was available for 228 of 245 B. taurus 14-3-3 ζ residues.
Further, these crystal data contained gaps wherein the STRIDE
structure-based analysis was able to generate structural data for
213 of the 228 residues. Thusly, SYN-AI protein engineering
was limited to the available empirical data, whereby we showed
the potential of our technology for gene and signal pathway
engineering by synthesizing a set of truncated 14-3-3 docking
proteins of 214 residues.
According to “The Fundamental theory of the Evolution

Force”, we were able to analyze evolution force associated with
genomic building block formation based upon four evolution
engines, (i) evolution conservation, (ii) wobble, (iii) DNA
binding state, and (iv) periodicity. Molecular biologists have
long utilized evolution conservation as a tool when selecting
mutable gene regions. Where, it has been assumed that highly
evolutionarily conserved residues are critical to protein
function.15−23 Thusly, SYN-AI is based upon the hypothesis
that evolution conservation is an artifact of the evolution force.
Classically, wobble has been defined by genetic diversity in the
third codon with the conservation of the residue se-
quence.24−30 However, in fingerprinting the evolution force
we expanded the definition of wobble to the acquisition of
genetic diversity with the conservation of architecture. Thusly,
allowing wobble to be viewed at all structural levels. For
instance, supersecondary structures such as helices, turns, and
β sheets are expressed in genetically diverse species yet retain
basic architecture and function. A further example of wobble at
a higher structural level is that of bipedal animals. Although the
aforementioned are genetically diverse, anatomical structure
and the architecture are reserved across species. Also when
constructing SYN-AI, we assumed that evolution force
interacts at the matter−energy interface via DNA crossovers.
Thusly, we were able to evaluate the interaction of the

evolution force at the matter−energy interface by analyzing
DNA binding states. Wherein, DNA binding states measure
DNA crossover selectivity in respect to the recombinant pool
and are a function of Gibb’s free energy associated with DNA
base stacking interactions.8,31−33 The final evolution engine we
considered was periodicity. We assumed that nature has a
tendency to repeat successful structures that promote the
survival of an organism. Thereby, evolution force at the
molecular level is a function of sequence periodicity.34−36

In the current study, we have demonstrated that genomic
building blocks can be identified across multiple genomes by
analyzing evolution force and exploited to write genes from
scratch. Wherein, by transforming a parental gene template
into DNA secondary and tertiary codes based on hierarchical
structure levels, SYN-AI was able to fast-forward the evolution
process. The aforementioned allowed the identification of
genomic building blocks by characterization of evolution force
and allowed for intelligent gene design by a Legos-like
swapping of genetic material in agreement with the Domain
Lego principle.1−3 Notably, SYN-AI generated synthetic
proteins displaying high sequence identity to naturally
occurring 14-3-3 docking proteins suggesting that the AI
successfully simulated the evolution process allowing diver-
gence from the parental 14-3-3 ζ docking gene while
evolutionarily conserving 14-3-3 global architecture. We were
able to corroborate the aforementioned by performing
phylogeny.fr blast and established that each synthetic protein
comprised of diverse phylogenetic relationships as charac-
terized by diverse phylogenetic trees. Synthetic proteins also
displayed significant branch distance from one another further
confirming that SYN-AI fast-forwarded the evolution process.
Wherein, each synthetic protein diverged into a different
evolutional pathway. Saliently, despite performing ∼300
million DNA crossovers within genomic alphabet comprising
the 14-3-3 DNA secondary code, Clustal Omega sequence
alignments of synthetic proteins were characterized by
stretches of high sequence identity wherein no genetic diversity
was accomplished by SYN-AI. Notably, the aforementioned
corroborates that our natural selection protocols implemented
into SYN-AI successfully conserved slow evolving regions of
genes. Saliently, the resistance of these regions to mutation
suggests that they are essential to cellular function.37−39

In addition to fast-forwarding the evolution process, SYN-AI
successfully conserved the 14-3-3 docking protein architecture.
Whereby, I-TASSER three-dimensional structural analysis
revealed that global 14-3-3 docking protein architecture was
conserved in all three synthetic proteins. Based on molecular
dynamics simulation data in conjunction with previously
discussed phylogenetic data, we validate our hypothesis of
evolution force effects on genomic building block formation by
proof-of-concept. Further corroborating our proof-of-concept,
SYN-AI evolutionarily conserved ligand-binding sites and
ligand−residue interactions. Notably, analysis by Coach and
Cofactor40 confirmed that SYN-AI conserved small-molecule
binding as demonstrated by the conservation of (2S)-2-(2-
methoxyethyl) pyrrolidine binding within the BS02 site. While
conserving small-molecule binding, synthetic evolution accom-
plished significant modification of the SYN-AI-3 BS02 ligand-
binding site. As characterized by mutation of three of the five
residues participating in the binding of (2S)-2-(2-methox-
yethyl) pyrrolidine. SYN-AI successfully altered positioning
and conformation of the molecule within the binding site.
Contrary to SYN-AI-3, synthetic protein SYN-AI-1 was
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characterized by full conservation of the BS02 binding site.
Wherein, the artificial intelligence preserved parental ligand−
residue interactions. Saliently, conformation and positioning of
(2S)-2-(2-methoxyethyl) pyrrolidine within the SYN-AI-1
BS02 ligand-binding site was altered due to changes in binding
groove volume. As a result of the modification of global protein
architecture due to the evolution process. The aforementioned
is corroborated by phylogenetic analysis. Wherein, SYN-AI-1 is
significantly diverged from parental bovine brain 14-3-3
docking protein in comparison to synthetic protein SYN-AI-
3. Notably, the ability of synthetic evolution artificial
intelligence to evolutionarily conserve small molecule binding
sites while altering conformation and binding affinities of
ligands is significant as small molecules stabilize and inhibit 14-
3-3 protein−protein interactions that play a role in neuro-
degenerative diseases and cancer.41

Contrary to the surprising level of divergence achieved in the
BS02 ligand-binding site, SYN-AI evolutionarily conserved
amphipathic interfaces and ligand-binding residues within the
BS01 and BS03 ligand-binding sites. Whereby, Coach and
cofactor confirmed the conservation of fusicoccin binding
within all three synthetic proteins engineered utilizing
synthetic evolution artificial intelligence. Fusicoccin ligand−
residue interactions were also conserved with exception of N42
→ V42 and V46 → A46 mutations. In agreement with our
previous experiments, modifications in global protein archi-
tecture altered the conformation of fusicoccin within the
amphipathic groove signifying that fusicoccin exhibited an
altered binding affinity for the ligand-binding site. Notably,
SYN-AI’s ability to evolutionarily conserve the FC complex
binding site is significant in that the complex is responsible for
activating H+ pumping across the plasma membrane.42 In
plants, the interaction of the FC complex with the 14-3-3
docking protein activates KAT1 channels and is responsible for
cell growth by regulating diffusion through K+ channels.43

Saliently, the FC 14-3-3 complex also regulates defense
responses in tomato plants.44 In addition to conservation of
the BS02 and BS03 sites, analysis of protein probe localizations
confirmed the conservation of the BS01 ligand-binding site
with exception of a K49 → A49 mutation and an additional
G169 residue contact. The aforementioned corroborates
evolutional conservation of protein−protein interactions in
synthetic proteins.
Notably, altered positioning and conformation of small

molecules, protein probes, and the FC complex within
synthetic protein BS01, BS02, and BS03 sites substantiate
our assumption that synthetic proteins designed in this study
display the potential for altered PPI. The aforementioned is
significant in that the interaction of globular domains of
protein interaction partners within the 14-3-3 amphipathic
grove regulates stress signaling proteins such as ERK, MAPK,
JNK, and p38 MAPK as well as growth and cell cycle
regulators raf, PI3K, and cdc25 phosphatase.45−49,61−67 We
confirmed the conservation of these ligand-binding inter-
actions as well as confirmed the conservation of intraprotein
communication by analyzing allosteric effects utilizing the
elastic network model. Whereby, normal mode analysis of
parental and synthetic 14-3-3 ζ docking proteins was
performed utilizing ElNemo and ANM2.1. The analysis of
mode 7 indicated that there existed little variance in Cα strain
occurring in parental 14-3-3 ζ and synthetic proteins. These
data suggest that synthetic proteins are energetically stable and
corroborate the validity of I-TASSER structure prediction. The

aforementioned are corroborated by RMSD results, wherein
synthetic proteins exhibited little variance from the parental
14-3-3 ζ protein. Thusly, SYN-AI was able to evolve protein
sequence and local structures without disrupting the global
protein architecture. Notably, the aforementioned was
accomplished while conserving mode frequency and collectiv-
ity suggesting that there exist little variance in residue potential
energies during structural transitioning from parental to
synthetic 14-3-3 ζ proteins. This is prominent due to the
many ligand and signal pathway interactions occurring within
the 14-3-3 ζ amphipathic groove, as corroborated by the
presence of 107 modes indicated by ElNemo. Our data
suggests that SYN-AI conserved allosteric interactions
regulating signal transduction pathways. The conservation of
the 14-3-3 ζ amphipathic groove is corroborated by solvent
accessibility data indicating only infinitesimal differences in
protein hydrophobicity. Notably, we demonstrate the con-
servation of the binding of the R18 protein peptide within the
amphipathic groove as well as the conservation of a “hug and
squeeze” mechanism. Where, the left and right torso of the 14-
3-3 monomer flex closed and secured the R18 protein peptide
in the amphipathic groove. The open configuration is shown in
Figure 11A,C and the closed configuration in Figure 11B,D.

Notably, we also successfully dimerized the SYN-AI-1
monomer and engineered a functional 14-3-3 ζ dimer, while
maintaining the “bend and flex” mechanism present in the WT
dimer, as illustrated in Figure 12. Whereby, we show the
synthetic 14-3-3 ζ dimer in both the open and closed positions.
Modes 7−11 were also conserved in SYN-AI-generated
dimmers. We have demonstrated that SYN-AI conserved
allosteric communications in the monomeric form of the 14-3-
3 ζ protein as well as low-frequency vibrations occurring in the

Figure 11. Hug and squeeze mechanism. The elastic network model
was utilized to perform normal mode analysis. Low-frequency
vibrations occurring within parental and synthetic 14-3-3 ζ docking
proteins were analyzed utilizing elNemo. Frontal view of mode 7 open
configuration (A), frontal view of mode 7 closed configuration (B),
view of the open configuration down amphipathic groove (C), view of
the closed configuration down amphipathic groove (D).
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14-3-3 ζ dimeric form, thusly validating the identification of
genomic building blocks by characterization of evolution force.
Saliently, our study relies heavily on the accuracy of

computational structure prediction. However, our results are
corroborated by the parental 14-3-3 ζ structure reported in ref
57. Whereby, as an experimental control, we overlapped the
native 14-3-3 ζ crystal structure with the I-TASSER-predicted
PDB structure. As illustrated in Figure 13, the I-TASSER 14-3-

3 ζ structure prediction is identical to the reported crystal
structure. Wherein, we utilized the SuperPose server72 to
overlap the PDB structure reported in ref 57 to the I-TASSER-
predicted structure, with only minor deviations present in the
coiled coil regions. It is worth mentioning that this level of
accuracy is not guaranteed for all subsequent predictions
performed in this study. However, the claims presented herein
are supported by sufficient scientific data to corroborate the
experimental controls and I-TASSER structure prediction of
synthetic proteins. Wherein, we can confidently conclude that
SYN-AI successfully engineered a set of functional 14-3-3 ζ
docking genes from scratch.

According to Wang, mutations to residues L172, V176, and
L220 drastically interrupted the interaction of 14-3-3 ζ with
raf1 kinase, thusly effecting the promotion of prosurvival by the
docking protein. Although our study does not focus on the role
of 14-3-3 ζ on apoptosis, L220 is located in the C′ terminal,
thusly is truncated in SYN-AI engineered docking proteins. In
considering effects of mutation on protein interaction, we note
that in vivo 14-3-3 ζ forms both a tetrameric complex
comprised of a 14-3-3 ζ homodimer and two serotonin N-
acetyl transferase (AANAT) monomers as well forms an
octameric biological complex with AANAT. Of the two
complexes, inter-residue C-α strains are lower in the octameric
complex, suggesting that it is more thermodynamically stable
and more likely to occur in nature. The identical overlap of
SYN-AI-engineered and parental 14-3-3 ζ docking proteins
allowed us to investigate the effects of C′-terminal truncation
by mutating rotamers of the parental 14-3-3 ζ serotonin N-
acetyl transferase octameric complex utilizing UCSF Chi-
mera.75,76 Rotamers were mutated to those characterizing
SYN-AI-1, and residues 215−228 deleted from chains A
through D of the biological complex. To obtain a good
structure, energy minimization was performed on each chain of
the octamer as reported in the Methods section. When
analyzing hydrogen bonding, we find that the native octameric
complex is characterized by 40 hydrogen bond interactions
with conserved [RRHTLP] residues 28−33 of ovine AANAT.
The AANAT motif is similar to canonical motifs [RSXpSXP;
RXY/FXpSXP].75 Notably, the SYN-AI-1 ζ biological complex
was characterized by 55 hydrogen bond interactions with the
[RRHTLP] motif, thusly displayed increased binding affinity.
As illustrated in Figure S1A, native B. taurus 14-3-3 ζ C-
terminal residues 215−228 (cyan) contribute two hydrogen
bonds (circled white) between asparagine 224 and histidine 30
of the [RRHTLP] motif (green) within each 14-3-3 ζ AANAT
ligand interaction. These hydrogen bond interactions are lost
in the SYN-AI-1 octameric complex. However, N-acetyl
transferase is secured by alternate hydrogen bond formations
between the [RRHTLP] motif and SYN-AI-1 characterized by
hydrogen bond interactions between proline 33 and lysine 49,
TPO 31 and arginine 56, arginine 29 and glutamate 180, as
well as glycine 214 of SYN-AI-1 and arginine 89 of serotonin
N-acetyl transferase, Figure S1B. The increase in binding
affinity in SYN-AI engineered 14-3-3 ζ opposed to the loss of
function reported in Fu76 is due to Fu intentionally performing
point mutations characterized by dissimilar residues, thusly
disallowing alternate hydrogen bond formations, as acceptor
atoms were conformationally blocked by the C′-terminal motif.
By doing so, Fu was able to block the promotion of prosurvival
by 14-3-3 ζ and demonstrate the potential of mutated lines for
treating cancer. Contrarily, SYN-AI deleted the entire C′-
terminal helix allowing for conformational shift of serotonin N-
acetyl transferase within the binding pocket that led to
alternative hydrogen bond formations with adjacent α-helices
located within the amphipathic groove (Figure S1B, Table S1).
Thusly, allowing stable but modified hydrogen bonding
between the [RRHTLP] motif of serotonin N-acetyl trans-
ferase and SYN-AI-1 monomers. Modifications were not
restricted to hydrogen bonding interactions occurring with
the [RRHTLP] motif but were seen globally throughout the
biological complex as AANAT formed 218 hydrogen bond
interactions within the biological complex Figure S2, compared
to 145 hydrogen bond interactions within the native 14-3-3 ζ
N-acetyl transferase complex. It is unfeasible to analyze the

Figure 12. Synthetic 14-3-3 ζ dimer formation. Dimerization of the
SYN-AI-1 14-3-3 monomer was predicted utilizing COTH,73 Zhang
Laboratory University of Michigan. The normal mode analysis was
performed utilizing ElNemo and graphics generated utilizing the
Jena3D Viewer. The open configuration of the Mode 7 bend and flex
mechanism is illustrated in (A), whereby the closed configuration is
shown in (B).

Figure 13. Superimposition of experimental and predicted 14-3-3 ζ
structures. The SuperPose server was utilized to compare the native B.
taurus 14-3-3 crystal structure reported in57 to the I-TASSER-
predicted structure. The native crystal structure covered residues 1−
228 with two gaps of 5 and 7 amino acids, respectively.
Superimposition of the parental and synthetic proteins was performed
with a minimum sequence similarity of 25% identity, a similarity
cutoff of RMSD of 2.0 Å, a dissimilarity cutoff of RMSD of 3.0 Å, and
a dissimilar subdomain cutoff of 7 residues.
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effects of synthetic evolution over 130 14-3-3 ζ protein
interaction partners. However, it is safe to assume that the
effects of synthetic evolution are pathway sensitive and depend
upon the protein interaction partner.

4. CONCLUSIONS

Based upon our findings, SYN-AI was able to engineer genes
from scratch by identifying evolution force associated with
genomic building block formation as well as by applying
natural selection protocols that mimic those that occur in
nature. The evidence reported herein suggests that synthetic
evolution methodologies are excellent tools for the intelligent
design of genes and should offer an alternative to rational
design approaches. Notably, SYN-AI technology may be
expanded allowing for the design of genomes at a very high
resolution compared to current technologies that are based on
the exchange of very large segments of genomic DNA. SYN-
AI’s ability to write DNA code from scratch at high resolution
opens an endless potential for scientific exploration and gene
design that may be applied to the evolution of any gene,
dependent on the availability of PDB structural data. The
ability to write DNA code at a high resolution also allows the
rewiring of cell signal pathways. Saliently, SYN-AI synthetic
evolution technology explores multiple evolution pathways
based on researcher’s experimental parameters, whereby each
pathway results in the formation of an alternate gene or gene
family dependent on the mutability of the sequence space. As
SYN-AI technology simulates evolution, outcomes also rely on
randomness, whereby under identical experimental parameters,
there exists a possibility of exploring a diverse evolution
pathway. Thusly, SYN-AI offers an excellent opportunity for
the discovery of new chemistries that have potential
applications in the treatment of cancer and other diseases as
well as allow for the design of industrial genes.

5. METHODS

5.1. High-Performance Computing. SYN-AI was
performed utilizing the Stampede 2 supercomputer located at
the Texas Advanced Computing Center, University of Texas.
Experiments were performed in the normal mode utilizing SKX
compute nodes comprising 48 cores on two sockets with a
processor base frequency of 2.10 GHz and a max turbo
frequency of 3.70 GHz. Each SKX node comprises 192 GB
RAM at 2.67 GHz with 32 KB L1 data cache per core, 1 MB
L2 per core, and 33 MB L3 per socket. Each socket can cache
up to 57 MB with local storage of 144/tmp partition on a 200
GB SSD.
5.2. Simulating Evolution. 5.2.1. Identification and

Isolation of Genomic Building Blocks. SYN-AI analyzed
evolution force associated with genomic building block
formation across an orthologous sequence space comprising
genes occurring at a homology threshold of >80 percent
identity to parental bovine brain 14-3-3 docking gene. The
orthologous sequence space comprised 2.5 × 106 bp of genetic
material. Evolution force was analyzed by transforming the
bovine brain 14-3-3 docking gene into a DSEC and performing
3 × 108 DNA crossovers within genomic alphabets. DNA
hybridization partners were randomly selected across orthol-
ogous sequence space. Evolution at the matter−energy
interface was simulated by performing DNA hybridizations in
a buffering solution of 3 mM Mg2+ and 1.2 mM dNTP at
328.15° kelvin.8 Gibb’s free energy was calculated according to

Owczarzy50 and a penalty assessed for DNA base pair
mismatches.
Evolutionarily fit DNA crossovers were selected by applying

natural selection protocols. Neural networks limited selection
to DNA crossovers based upon Gibb’s free energy. Genomic
building blocks were passed through pattern recognition filters
that removed sequences displaying low sequence homology to
the parental bovine brain 14-3-3 docking gene. The selection
was limited to DNA crossover instances comprising evolutio-
narily favored mutations by quantum-normalized Blosum80
mutation frequency-based neural networks. Natural selection
was further accomplished by limiting selection to sequences
characterized by (+) molecular wobble vectors. Subsequently,
genomic building block libraries were constructed by quantum-
normalized neural networks that limited selection to DNA
crossovers characterized by high magnitude of evolution.
Evolution force was enumerated over single and multidimen-
sional evolution planes, as described in ref 71.

5.2.2. Evaluation of Evolution Force Associated with
Genomic Building Block Formation. Evolution force
associated with genomic building block formation was solved
utilizing the rotation model, as described in ref 71. Evolution
force τϵ was solved as a function of inertial moments Ic about
the evolution axis and molecular wobble, eq 1. Whereby,
inertial vector Ic is a function of evolution conservation ϵ and
variance r from a recombinant pool comprising a total 3 × 108

DNA crossovers, eq 2. Evolution conservation ϵ was solved as
a function of DNA and protein evolution vectors (ϵDNA

c , ϵPro
c ),

eq 3, and molecular wobble ωm likewise solved as a function of
evolution vectors (ϵDNA

c , ϵPro
c ), eq 4. The aforementioned

evolution vectors are functions of DNA and protein similarity
vectors (Xi, Xj) weighted by the recombinant pool, eqs 5 and 6.
Whereby, evolution weights (Wd,Wp) describe similarity of the
recombinant pool to the parental sequence in respect to DNA
and protein primary sequence. Evolution weights are a
function of mean DNA μs

DNA and mean protein μs
Pro evolution

vectors, eqs 7 and 8. Wherein, μs
DNA and μs

Pro were solved by
summation of genomic building block (GBB) similarity
functions (Xi/n, Xj/n) occurring across the orthologue sequence
space (sspacer) divided by the total number of DNA crossovers
N. Where, sspacer comprised 2.5 × 106 bp of the genetic
material.
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5.2.3. Engineering Synthetic Supersecondary Structures.
Parental supersecondary structures were identified by parti-
tioning the bovine brain 14-3-3 gene into a DNA tertiary code
followed by analysis utilizing STRIDE51 knowledge-based
secondary structure algorithms. Evolution was performed by
ligation of genomic building blocks randomly selected from
genomic alphabet libraries encompassing 5′ and 3′ terminals of
parental structures. A cleaving algorithm was utilized to
remove 5′ and 3′ prime overhangs from synthetic super-
secondary structures. Natural selection was performed by
limiting selection to naturally occurring mutations utilizing
Blosum80 mutation frequency algorithms. SYN-AI also
accomplished natural selection by imposing a secondary
structure homology threshold >90 percent identity, wherein
synthetic sequences were aligned with parental 14-3-3
secondary sequences. A standalone version of PSIPRED
4.052 was utilized to evaluate secondary structure. Synthetic
supersecondary structures were stored in DTER libraries for
writing DNA code.
5.2.4. Writing DNA Code from Scratch. DNA code was

written from scratch by walking the DTER followed by
random selection and ligation of synthetic supersecondary
structures stored in genomic alphabet libraries. SYN-AI
constructed a library of 1 × 107 genes that was passed through
a set of neural networks that evaluated the closeness of
synthetic protein structural states to native states. Wherein,
SYN-AI set a minimal closeness threshold of >90 percent
identity according to.71 A subsequent selection limited
supersecondary structures to those characterized by naturally
occurring mutations. The aforementioned was performed
utilizing BLOSUM8053,54 mutation frequency algorithms. A
further round of natural selection restricted selection to
synthetic 14-3-3 docking proteins characterized by mean
secondary structure identities within the top quantile.
Structurally conserved and functional 14-3-3 docking proteins
were selected by a final natural selection protocol that
evaluated the closeness of protein active sites and hydrophobic
interfaces to the parental bovine 14-3-3 docking protein.
Wherein, selection was limited to synthetic proteins charac-
terized by closeness thresholds of >90 percent identity.
5.2.5. Analysis of Synthetic Proteins. Sequence homology

of synthetic proteins to parental bovine 14-3-3 docking protein
was analyzed utilizing the Clustal Omega multiple sequence
alignment tool.12 Wherein, phylogenetic analysis was per-
formed utilizing Phylogeny.fr. Furthermore, we analyzed
synthetic protein three-dimensional structure utilizing the I-
TASSER suite.55 Wherein, protein−protein interaction and
ligand-binding sites were analyzed utilizing Cofactor and
Coach.56

5.2.6. Building SYN-AI-1 Biological Complex. SYN-AI-1
was overlapped with the native 14-3-3 ζ monomer utilizing the
Superpose server. Upon the conformation of nearly identical
overlap, the SYN-AI-1 N-acetyl transferase octameric complex
was built utilizing UCSF Chimera76 with Biological Complex 2
reported in ref 75 as the template. Rotamers were mutated to

those characterizing SYN-AI-1 and C′-terminal residues 215−
228 deleted from chains A−D. Energy minimization of each
chain within the complex was performed utilizing AMBER78

with 100 steepest decent steps with a step size of 0.02 Å and 10
conjugant gradient steps at a step size of 0.02 Å. The process
was repeated until a good structure was obtained. Energy
minimization was performed utilizing the steric method.
Charges were added to standard residues utilizing the
Gasteiger method and computed utilizing ANTECHAM-
BER.77 Upon obtaining a good structure, energy minimization
was performed upon the entire biological complex utilizing the
hydrogen bond method with 400 steepest decent steps and 20
conjugant gradient steps. Ions were removed from the
structure, and the structure solvated utilizing AMBER with a
shell of 12.0 Å applying the hydrogen bond and TIP3PBOX
method. Hydrogen bond interactions with residues 28−33 of
the serotonin N-acetyl transferase [RRHTLP] motif were
analyzed with relaxed constraints of 4.0 Å and 20 degrees.
Clashes and contacts were identified with Van der Waals
overlap distances of greater or equal to 6.0 Å, with a correction
of −5.0 Å for potential hydrogen bonding pairs. Overlaps and
clashes within four bonding pairs were excluded.
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