Table 3. ANOVA for the Fitted Quadratic Polynomial Model before and after Optimization.
before optimization |
after optimization |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
source | SS | df | MS | F-value | P-value | SS | df | MS | F-value | P-value |
model | 192.31 | 9 | 21.37 | 110.73 | <0.0001 | 192.00 | 6 | 32.00 | 193.29 | <0.0001 |
A | 25.67 | 1 | 25.67 | 133.03 | <0.0001 | 25.67 | 1 | 25.67 | 155.04 | <0.0001 |
B | 103.82 | 1 | 103.82 | 538.06 | <0.0001 | 103.82 | 1 | 103.82 | 627.12 | <0.0001 |
C | 43.01 | 1 | 43.01 | 222.91 | <0.0001 | 43.01 | 1 | 43.01 | 259.81 | <0.0001 |
AB | 6.38 | 1 | 6.38 | 33.04 | 0.0007 | 6.38 | 1 | 6.38 | 38.51 | 0.0001 |
AC | 0.06 | 1 | 0.06 | 0.32 | 0.5871 | |||||
BC | 3.40 | 1 | 3.40 | 17.64 | 0.0040 | 3.40 | 1 | 3.40 | 20.56 | 0.0011 |
A2 | 0.04 | 1 | 0.04 | 0.20 | 0.6706 | |||||
B2 | 9.44 | 1 | 9.44 | 48.93 | 0.0002 | 9.72 | 1 | 9.72 | 58.69 | <0.0001 |
C2 | 0.19 | 1 | 0.19 | 1.01 | 0.3487 | |||||
residual | 1.35 | 7 | 0.19 | 1.66 | 10 | 0.17 | ||||
lack of fit | 1.35 | 3 | 0.45 | 1.66 | 6 | 0.28 | ||||
pure error | 0.00 | 4 | 0.00 | 0.00 | 4 | 0.00 | ||||
cor total | 193.66 | 16 | 193.66 | 16 | ||||||
R2 | 0.9930 | 0.9915 | ||||||||
adj. R2 | 0.9841 | 0.9863 | ||||||||
pred. R2 | 0.8884 | 0.9613 | ||||||||
adeq. precision | 35.151 | 45.357 |