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Abstract: Individual variation in structural brain network topology has been associated with heritable
behavioral phenotypes such as intelligence and schizophrenia, making it a candidate endophenotype.
However, little is known about the genetic influences on individual variation in structural brain net-
work topology. Moreover, the extent to which structural brain network topology overlaps with herit-
ability for integrity and volume of white matter remains unknown. In this study, structural network
topology was examined using diffusion tensor imaging at 3T. Binary connections between 82 structur-
ally defined brain regions per subject were traced, allowing for estimation of individual topological
network properties. Heritability of normalized characteristic path length (k), normalized clustering
coefficient (c), microstructural integrity (FA), and volume of the white matter were estimated using a
twin design, including 156 adult twins from the newly acquired U-TWIN cohort. Both c and k were
estimated to be under substantial genetic influence. The heritability of c was estimated to be 68%, the
heritability estimate for k was estimated to be 57%. Genetic influences on network measures were
found to be partly overlapping with volumetric and microstructural properties of white matter, but the
largest component of genetic variance was unique to both network traits. Normalized clustering coeffi-
cient and normalized characteristic path length are substantially heritable, and influenced by inde-
pendent genetic factors that are largely unique to network measures, but partly also implicated in
white matter directionality and volume. Thus, network measures provide information about genetic
influence on brain structure, independent of global white matter characteristics such as volume and
microstructural directionality. Hum Brain Mapp 35:5295–5305, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Knowledge about the extent to which genes and envi-
ronment shape human brain structure is of fundamental
importance to our understanding of both typical and atyp-

ical brain development. During the past decade, important
advances have been made in our understanding of the

genetic influences on human brain structure as it has been

shown that both grey and white matter volume are highly

heritable [Baar�e et al., 2001; Peper et al., 2007; Thompson
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et al., 2001; Wright et al., 2002]. Genetic influences on brain

structure are not limited to its global morphology. Diffu-

sion tensor imaging (DTI) studies have shown that addi-

tive genetic factors account for a significant part for the

variation in measures of white matter microstructural

properties such as fractional anisotropy (FA) and magnet-

ization transfer ratio (MTR) [Brouwer et al., 2010; Chiang

et al., 2009, 2011; Pfefferbaum et al., 2001].
In recent years, the advance of network approaches to brain

connectivity has had a major impact for understanding the
organization of the human connectome as it is a powerful way
to characterize the topology of structural connections between
brain regions. Using DTI, the organization of network topol-
ogy has been studied extensively by the application of graph
theoretical approaches where the connectivity of the brain is
represented in a matrix [Achard et al., 2006; Bullmore and
Sporns, 2009; Micheloyannis et al., 2006; Van den Heuvel
et al., 2010]. Individual differences in network topology are
associated with heritable phenotypes such as intelligence and
schizophrenia [Basset et al., 2008; Fornito et al., 2012; Li et al.,
2009; Van den Heuvel et al., 2010]. Such observations make
individual network topology a candidate endophenotypic
marker for linking genes to behavioral traits (Thompson et al.,
2013). For white matter volume, it has already been shown
that considerable genetic associations with these phenotypes
exist [Hulshoff Pol, 2004, 2012; Posthuma et al., 2002].

Determining the heritability of structural brain network
topology is an important step forward in understanding
mechanisms through which genetic influences on brain mor-
phology eventually contribute to human behavior in health
and disease. However, little is known about the heritability of

individual variability in network topology. In this study, the

heritability of network topology was assessed using a twin

model. To estimate the relative influence of genes and envi-

ronment on network characteristics, the twin model focuses

on the difference in resemblance for a particular trait between

monozygotic (MZ) twins who share (nearly always) 100% of

their genes relative to dizygotic (DZ) twins who share on

average 50% of their segregating genes. As both types of

twins are thought to share a similar amount of environmental

factors, a trait can be assumed to be heritable if MZ twins

resemble each other closer than DZ twin pairs. Twin model-

ing can also be applied to study genetic correlations between

traits by calculating correlations across twins and traits

[Bohlken et al., 2014; van Soelen et al., 2012].
Using this type of genetic modeling, the heritability of

the normalized characteristic path length and normalized

clustering coefficient were estimated. Because genetic
influences are known to play a major part in many brain
characteristics that may also influence network topology,
such as total white matter volume and white matter mean
FA the genetic model was expanded to incorporate these
features. Thus, genetic correlations between traits could be
estimated to test whether the sources of genetic variance
are independent.

METHODS

Subjects

In this study 156 twins participated, consisting of 45
MZ, and 33 DZ complete twin pairs. Of the DZ twins, five
pairs were opposite sex pairs (DOS). These twins were
newly recruited in the period between 2009 and 2013 as
part of the newly acquired U-TWIN cohort. All subjects
were between the age of 18 and 67 years (mean 31.9, s.d.
13.6 years). The MZ and DZ twin groups did not differ
significantly in age, handedness or sex (for details see
Table I). Substance use and mental health were assessed
by the Comprehensive Assessment of Symptoms and His-
tory (CASH) [Andreasen et al., 1992]. Upon participation,
all subjects gave their written informed consent. This
study was approved by the Medical Ethical Committee of
the UMC Utrecht and the experiments were in accordance
with the Declaration of Helsinki.

Scan Acquisition

MRI scans were acquired on a Philips Achieva scanner
operating at 3 T, using an eight-channel SENSE head-coil.
For each participant, a T1-weighted scan and a set of two
DTI scans were collected. The T1-weighted three-dimen-
sional fast-field echo scan was acquired with the following
parameters: 2,200.8 mm contiguous slices; echo time (TE)
4.6 ms; repetition time (TR) 10 ms; flip angle 8�; in-plane
voxel size 0.75 3 0.75 mm2.

The diffusion scans consisted of a single shot EPI-DTI
with 30 diffusion weighted scans (b 5 1,000 s/mm2) with
non-colinear gradient directions and five diffusion-
unweighted scan (b 5 0 s/mm2), TR/TE 5 7,035/68 ms,
FOV 240 mm, matrix 128/128, 75 slices at 2 mm thickness,
no gap, SENSE factor 3, no cardiac gating. The two trans-
versely acquired diffusion-weighted datasets were acquired
using the same parameters but with reverse k-space read-
out, allowing for the correction of weighted imaging arti-
facts and increasing signal to noise ratio [Andersson et al.,
2003].

Scan Processing

For each individual dataset, the T1-weighted image was
used for anatomical reference, the selection of nodes in the
brain network and the calculation of total white matter

TABLE I. Sample demographics

Sample demographics

Mean age Handedness r Sex

MZ 33.6(14.0) 89% 58% female
DZ 30.4(13.5) 79% 59% female
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volume (wmVOL). Brain regions were selected automati-
cally using the FreeSurfer segmentation pipeline (V5.1;
http://surfer.nmr.mgh.harvard.edu) [Fischl et al., 2004].
By automatically segmenting subcortical structures, and
parcellation of the cortex, the brain was divided into 82
distinct anatomical regions. These regions represented the
nodes in the network analysis. Subsequently, an individual
mask was created containing all 82, segmented anatomical
regions for each subject. This mask was registered to the
DTI data set using a six-parameter rigid body transforma-
tion with nearest neighbor interpolation. The registration
fit was visually checked for all individual datasets, to
ensure that no gross misalignments occurred.

Preprocessing of the diffusion weighted scans was per-
formed with the diffusion toolbox of Andersson et al.
[Andersson and Skare, 2002; Andersson et al., 2003] and
in-house developed software [Mandl et al., 2010]. First,
susceptibility artifacts were corrected by calculating a dis-
tortion map based on the two b 5 0 images acquired with
reversed k-space readout. Subsequently it was applied to
the two sets of 30 direction-weighted images. This resulted
in a corrected DTI set consisting of a single b 5 0 image
and 30 corrected weighted images, thereby avoiding the
need for non-linear registration approaches to the T1-
weighted images [Andersson et al., 2003]. The DTI set was
corrected for Eddy-current distortions and small head
movements by realigning all scans to the diffusion-
unweighted image [Andersson and Skare, 2002].

Diffusion Profile Modeling and Fiber

Tractography

Modeling of the diffusion profile was performed using a
constrained compressed sensing algorithm called Crossing
Fiber Angular Resolution of Intra-Voxel structure (CFARI)
[Landman et al., 2012]. CFARI models the diffusion profile
in each voxel as a finite mixture of discrete and independ-
ent compartments, defining the diffusivity within each
compartment separately. This has the advantage that it
provides a robust framework for identifying intra-voxel
structure and is able to estimate fiber tracts in areas of
high fiber complexity (e.g. crossing fibers) despite the lim-
ited number of 30 diffusion orientations in which the DTI
data were acquired. CFARI is implemented in the Java
Image Science Toolkit (JIST) and is publicly available
(http://www.nitrc.org/projects/jist) [Lucas et al., 2010].

Tractography was performed using an approach called
INtravoxel Fiber Assegnment by Continuous Tractography
(INFACT) [Landman et al., 2012], which is a continuous
tracking method based on the FACT algorithm [Mori and
van Zijl, 2002]. Conventional tensor fitting was used to cal-
culate the FA value within each voxel in the white matter
(JIST). All voxels with FA> 0.3 were used as starting seeds
for tractography. Tracing was ended when a voxel with
FA< 0.15 was encountered or when the turning angle
exceeded 45�. A Runge-Kutta solver was used for deter-
mining tract continuation. After tractography was com-

pleted, all fibers shorter then 10 mm were discarded, as
they were deemed spurious. Finally, all remaining fibers
were linearly extended by 5 mm in the orientation prior to
termination to maximize the probability of penetration
into the grey matter. The presence of a white matter con-
nection between two grey matter regions was determined
by labeling each streamline with the grey matter areas it
connects based on the anatomical segmentation mask.

Calculating Mean FA

A value of mean FA in the white matter was calculated
per subject. This was achieved by averaging the FA value
across all voxels through which a white matter connection
was traced using INFACT, within each subject. This way,
only voxels that participated in the connectivity analysis,
and thus in determining the network parameters, contrib-
uted to the value of mean FA. After calculating the wmFA,
a total of six scans were excluded from further DTI/net-
work analysis due to statistically deviant values (i.e. more
then three standard deviations away from the mean).

Reconstruction of Individual Networks

Individual networks were determined based on the
reconstructed fiber tracts combined with the collection of
segmented brain regions [Van den Heuvel and Sporns,
2011]. The brain network can mathematically be described
as G 5 (V, E), consisting of a set of nodes (V) and edges (E).
In this study V consists of the 82 distinct brain regions per
subject. For each pair of brain regions i and j, it was deter-
mined whether there was a connection between them,
based on the reconstructed fibers. If a connection was found
between i and j, it was added to the connectivity matrix.
This procedure was repeated for all possible combinations
of i and j until the binary connectivity matrix was filled.
The matrix was computed by simply adding the value 1 for
every connection between node i and j to the connectivity
matrix, creating a binary connectivity matrix.

Clustering coefficient (C) and characteristic path length (L)
parameters were calculated using the Brain Connectivity
Toolbox [Rubinov and Sporns, 2010]. Figure 1 shows a graph-
ical representation of the way C and L were calculated. To
correct for topology differences based on the number of
edges in the connectivity matrix, a randomization procedure
was performed. In each individual connectivity matrix, every
edge was reshuffled 10 times, averaged over 250 trials. From
these randomized matrices, individual Lrandom and Crandom

were computed by averaging over the trials. The normalized
characteristic path length lambda (k) was calculated as:
k 5 L/Lrandom. The normalized clustering coefficient gamma
(c) was calculated as: c 5 C/Crandom (Fig. 2).

Statistical Analysis

All statistical analyses were carried out using the R sta-
tistical software package [version 1.40, R Core Team,
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2012]. Because the twin sample included DOS twins, indi-
vidual connectivity based network parameters (c and k), as
well TB and wmFA, were corrected for subject’s sex and
age using a linear regression. All further data analysis was
carried out on the unstandardised residuals from these
regressions.

Structural Equation Modeling

The twin model was implemented using structural
equation modeling (SEM) approaches, in which the contri-
butions of additive genetic effects (A), shared environmen-
tal effects (C), and unique environmental effects (E) to trait
variation and covariation are estimated by maximum like-
lihood. SEM was implemented in OpenMx software [Boker
et al., 2011] in R [R Core Team, 2012].

To estimate the phenotypic and genetic correlations
between network parameters (c and k), wmFA and
wmVOL, a trivariate model was used. In this model, the
covariances between binary network parameters, wmFA
and wmVOL were decomposed into genetic and environ-
mental sources. Decomposition of covariance between
traits was carried out based on the comparison of cross-
trait/cross-twin correlations for MZ and DZ twins (i.e., the
correlation between a trait (e.g., k) of twin 1 with another
trait (e.g., wmVOL) of twin 2, where twin 1 and twin 2
represent a twin-pair) [Neale and Cardon, 1992]. If the
absolute value of the correlation between k of twin 1 and
wmVOL of twin 2 is larger in MZ twins than in DZ twins,
this indicates that genes influencing k (partly) overlap
with genes that influence wmVOL. In other words, there
is a genetic correlation between the two traits. If this corre-

lation is less than twice as large in MZ twins as compared
to DZ twins, there is a common environmental correlation
between the two traits. Finally, it is possible that a unique
environmental component drives the association between
two traits. In this case, there is a correlation between the
two traits, but only within persons (and not between
members of a twin pair), for an extensive discussion of the
model see [Van Soelen et al., 2012].

Determining the Best Model Fit

The full trivariate model incorporates six genetic paths,
six common environmental paths and six unique environ-
mental paths. Assuming that each observed trait should
include at least one unique environmental path to incorpo-
rate random noise, a full evaluation of all possible trivari-
ate submodels would require 215 5 32,768 model fits. As it
is not feasible to reliably assess the fit of this many mod-
els, a two-step fitting procedure was adopted. First, it was
assessed whether additive genetic or common environ-
mental factor where of significant influence on each
observed trait separately, using univariate modeling. Thus,
it was tested whether the full ACE model (family resem-
blance is attributable to both additive genetic and environ-
mental factors) fitted as well as an AE model (family
resemblance is solely attributable to additive genetic
effects), a CE model (family resemblance is solely attribut-
able to common environmental factors), or an E model (no
family resemblance), favoring the simplest model explain-
ing the data best [Neale, 2004]. Testing contributions of
the latent A, C, E factors on specific variables was done
comparing the likelihoods of nested models (22 log likeli-
hood difference is then v2 distributed). A v2 larger than
3.84 (1 df) indicates a significant difference at a 5 0.05,
which means that the reduced model provided a signifi-
cantly worse fit to the data. If a variance component could
be dropped based on the univariate model fit, it was not
considered in the trivariate model. If a variance compo-
nent could not be dropped based on the univariate model
fit, it was incorporated in the trivariate model. In the case
that univariate model selection could not determine
whether dropping A or C provided a better fit to the data,
both components were added to the trivariate model. Sub-
sequently, it was assessed which combination of paths
belonging to each component resulted in the best fit by
comparing all possible combinations to the full ACE
model. If dropping a model component did not result in a
significant drop in fit, it was considered a superior model.
If two models contained an equal number of components,
a choice was made based on the Akaike Information Crite-
rion (AIC) [Akaike, 1974].

Network Thresholding

Unthresholded matrices are thought to be more suscep-
tible to false positive connections [De Reus et al., 2013].

Figure 1.

Calculation of C and L. a. The clustering coefficient (C) of node i

is informative about the local connectedness of the network and

is given by the ratio of the number of connections between the

direct neighbors of node i and the maximum number of possible

connections between the neighbors of node i. b. Characteristic

path length (L) of node i gives information about how close it is

to all other nodes in the network. It is calculated by averaging

the distance d(i,j) to all other nodes j in the network. The dis-

tance d(i,j) between the two nodes is defined as the minimum

number of edges that have to be crossed to get from i to j.
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Therefore, the heritability analysis was repeated several
times after the application of a group threshold. This
threshold was set to allow only connections that were
present in a certain percentage of subjects. This procedure
started at a threshold of 0% overlap (no threshold), mov-
ing with increments of 10% to a threshold of 90% (connec-
tions are only considered valid if found in at least 90% of
subjects). After the removal of below threshold connec-
tions, the c- and k-parameters were recalculated and herit-
ability was assessed using the trivariate model.

RESULTS

Network Parameters and Global Brain Measures

To assure that no a priori group differences between MZ
and DZ twins were present, their mean global brain meas-
ures and network parameters were compared. Such a priori
group differences were not observed on wmVOL (p 5 0.22),
wmFA (p 5 0.89), k (p 5 0.59), or c (p 5 0.67). Furthermore,
within-twin-within-trait correlations were calculated to point
out face validity of genetic influence (Table II).

Model Selection

Univariate model fitting showed that wmVOL, c and k
were best described by an AE model, as dropping C from
the model did not reduce the model fit significantly. For
wmFA, although the AIC value of the AE model was slightly
lower, dropping A or C did not result in a significantly worse
model fit (Supporting Information Table I). Therefore, a tri-
variate model containing AE paths for wmVOL, ACE paths
for wmFA and AE paths for c or k was subsequently
assessed. All possible combinations of modeling a2,2, a2,3, c2,2

and c2,3 paths were examined. Based on the AIC value, the
model containing only a2,2 and a2,3 was considered the best
fit (Supporting Information Table II). Thus a trivariate model
incorporating AE for wmVOL, AE for wmFA and AE for c
or k was considered the best fit for the data (Figs. 3 and 4).

Heritability of Network Parameters and Global

Brain Measures

The heritability of c was estimated at 0.68 and the herit-
ability of k was estimated at 0.57. The heritability of

Figure 2.

Flowchart of the DTI connectivity analysis. a. Tracking of individ-

ual fiber tracts was performed using a constrained sensing algo-

rithm (CFARI). b. Individual anatomical labeling was performed

for 68 cortical and 14 subcortical regions. c. Using the individual

anatomical labeling, it was determined which regions of the brain

were interconnected. d. This resulted in an individual connectiv-

ity matrix which depicts all edges between nodei,j where i and j

are defined as each possible pair of brain regions. From these

matrices, individual values for C and L were calculated. e. Each

individual connectivity matrix was randomized. From this Crandom

and Lrandom were obtained. f. Subsequently k and g could be

calculated.
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wmVOL was estimated to be 0.95 and the heritability of
wmFA was estimated to be 0.55 (Table III).

Genetic Sources Acting on Network Parameters

The standardized path estimates were obtained from the
trivariate model to show which factors influence the
genetic variability in c and k (see Supporting Information
Table II). The path coefficients show that the genetic var-
iance in k and c is explained by three separate genetic
factors.

The first genetic factor that contributes to c is shared
with wmVOL and explains 16.2% of the genetic variance
and for 11.0% of the total variance in c. The second genetic
factor that contributes to c is shared with wmFA and
explains 10.6% of the genetic variance and 7.2% of the
total variance in c (Fig. 3). The genetic factor that contrib-
utes only to c was estimated to explain 73.1% of the
genetic variance and 49.5% of the total variance in the
trait.

The first genetic factor that contributes to k is shared
with wmVOL and explains 18.6% of the genetic variance
and for 10.5% of the total variance in k. The second genetic
factor that contributes to k is shared with wmFA and
explains 14.8% of the genetic variance and 8.4% of the
total variance in k (Fig. 4). The genetic factor that contrib-
utes only to k was estimated to explain 66.6% of the
genetic variance and 38.1% of the total variance in the
trait.

Genetic and Phenotypic Correlations

In concordance with the genetic factors found to act on
c, significant negative phenotypic and genetic correlations
were observed between with wmFA (rph 5A 20.38;
rg 5 20.47) and with wmVOL (rph 5 20.26; rg 5 20.33). For
k, significant negative phenotypic and genetic correlations
were observed between k and wmFA (rph 5 20.37;
rg 5 20.47). Furthermore, significant negative phenotypic
and genetic correlations were estimated between k and

TABLE II. Imaging and network measures

Measure outcomes and twin correlations

g k wmFA WM (vol in ml)

Mean (s.d.)

MZ 1.56(0.09) 1.04 (0.01) 0.36(0.01) 511.1 (50.6)
DZ 1.56(0.11) 1.05 (0.01) 0.36 (0.01) 500.2 (51.7)
Correlation (95% C.I.)

MZ 0.64 (0.42 : 0.79) 0.54 (0.28 : 0.73) 0.61 (0.37 : 0.77) 0.94 (0.89 : 0.97)
DZ 0.37 (0.02 : 0.64) 0.12 (20.24 : 0.45) 0.24 (20.11 : 0.55) 0.46 (0.13 : 0.69)

Figure 3.

Trivariate model output for g. The variance in the traits shown

in the boxes is decomposed into additive genetic (A) and envi-

ronmental (E) influences denoted with circles. Standardized path

coefficients (95% confidence interval) are displayed for each

decomposition, fat arrows indicate a significant contribution.

Figure 4.

Trivariate model output for k. The variance in the traits shown

in the boxes is decomposed into additive genetic (A) and envi-

ronmental (E) influences denoted with circles. Standardized path

coefficients (95% confidence interval) are displayed for each

decomposition, fat arrows indicate a significant contribution.
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wmVOL (rph 5 20.31; rg 5 20.43). wmVOL and wmFA
showed no significant correlations (see Table III for AE
model output).

Network thresholding

Putting a group-mask based threshold on the connectiv-
ity matrices resulted in a decrease of estimated genetic
variance as the threshold increased (Fig. 5). The heritabil-
ity estimate for c remained relatively stable until the
threshold exceeded 40%; the heritability of k remained rel-
atively stable until the group threshold exceeded 50%.

DISCUSSION

In 156 monozygotic and dizygotic twins, the heritability
of individual variation in structural brain network topol-
ogy was studied. Characteristics of global network connec-
tivity (normalized characteristic path length and
normalized clustering coefficient) were estimated using
genetic modeling. Both the normalized clustering coeffi-
cient and normalized characteristic path length of the
structural brain network were found to be under substan-
tial genetic influence. The heritability of the normalized
clustering coefficient was estimated to be 68%, whereas
the heritability of the normalized clustering coefficient was
estimated to be 57%. Genes implicated in white matter vol-
ume (h2 5 96%), and genes implicated in mean FA
(h2 5 55%) each contributed separately and significantly to
the heritability of both network topology parameters.

Our finding of genetic influence on the normalized char-
acteristic path length is consistent with a few recent
reports on heritability of brain networks, including that of
functional and structural connectivity [Fornito et al., 2011;
Jahanshad et al., 2012b; Van den Heuvel et al., 2013a]. As
a shorter average path length allows more integrated and
direct communication between distant brain regions [Van
den Heuvel et al., 2013a], these studies including the pres-
ent thus support the contention that the global efficiency
of the structural brain network is under substantial genetic
control. To our knowledge, the heritability of the normal-
ized clustering coefficient in structural brain networks has
not been studied before. However, our finding of genetic
influence on both topological properties is in line with cur-
rent ideas about genetically determined cost-efficient wir-
ing of the human brain, as a the structural network
architecture of the human brain suggests a trade-off
between local clustering and long distance integration of
information [Bullmore and Sporns, 2012].

Extending on previous observations of network herit-
ability, the present study allowed for further discrimina-
tion as to the genetic sources acting on network
parameters by using trivariate genetic modeling. Genetic
sources from white matter volume and mean FA were
found to each contribute significantly to network topology.
White matter volume was even estimated to be under near
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complete genetic control (h2 5 0.95). This is higher com-
pared to previous studies [Baar�e et al., 2001; Blokland
et al., 2012; Peper et al., 2007]. In contrast to previous
research, the current study used 3T MRI T1-weighted
imaging instead of 1.5T MRI to determine white matter
volume. Increased signal-to-noise ratio of 3T structural
imaging might have caused the increase in the genetic
component estimated by producing less measurement
error. There is generally no common environmental influ-
ence estimated on white matter volume [Blokland et al.,
2012]. In our study, this was also the case as the DZ corre-
lation was almost exactly 50% of the MZ correlation.
Another factor that might have attributed to the high esti-
mate for white matter heritability is the broad age range of
the sample (18–67 years). Although a linear correction for
age was applied before estimation of heritability, we can-
not be entirely sure that all variance due to age was taken
out of the data. Therefore, any residual age variance might
have been attributed to the genetic component, as it is
non-random. The genetic correlation between white matter
volume and both topological network properties was nega-
tive. For the normalized characteristic path length, this
finding suggests that a partially shared genetic source
between these phenotypes benefits global structural brain
network efficiency as a larger body of white matter allows
for more integrated long distance connections [Van den
Heuvel et al., 2013a]. Simultaneously, this influence might
cause the normalized clustering coefficient to decrease as
the relative emphasis on long distance integration possibly
results in a lower degree of clustering in the network.

White matter mean FA was substantially influenced by
additive genetic factors. The estimate of 55% in the present

study is in line with current estimates in twins [Jahanshad
et al., 2013b]. Although the AE model was assessed to be
the best fit to the data, the influence of common environ-
mental factors on mean FA cannot be entirely ruled out as
the model fit was not significantly reduced when the A
component was dropped. Therefore, it could be that the
estimated heritability of mean FA is slightly increased due
to model selection. The influence on this is probably minor
as the monozygotic and dizygotic twin correlations clearly
suggest substantial genetic influence.

The genetic correlation between white matter mean FA
and both topological network properties was estimated to
be -.47, explaining< 10% of the total variance in each net-
work parameter. The observation that mean FA is equally
negatively correlated to both network parameters suggests
a general influence on the structural brain network. Possi-
bly, a higher mean FA allows for more abundant long dis-
tance connections, decreasing the normalized characteristic
path length. Simultaneously, this influence might cause
the network to be less clustered as connections tend to
travel further instead of connecting locally.

The largest proportion of genetic variance in both the
clustering coefficient and normalized characteristic path
length was estimated to be independent of white matter
volume and mean FA. This is an important finding as it
shows that topological network measures provide new
information about genetic influences on human brain
structure that is not captured by global aspects of white
matter tissue. Therefore, global network properties could
be considered an endophenotype, providing new possibil-
ities for linking genetic influence to brain structure. This is
in line with the findings of several imaging genetics

Figure 5.

Heritability plotted against network group threshold, for both g and k. Results were obtained

from the trivariate model. The grey area surrounding the plot line is the 95% confidence interval

of the heritability estimate.
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studies that were able to find associations between genetic
variants and structural brain network topology [Dennis
et al., 2011, 2012; Marenco et al., 2007]. As individual dif-
ferences in network topology are associated with heritable
diseases such as autism, Alzheimer’s and schizophrenia
[He et al., 2010; Jahanshad et al., 2013a; Liu et al., 2008; Lo
et al., 2010; Micheloyannis et al., 2006; Van den Heuvel
et al., 2010, 2013b], our findings thus suggest that mathe-
matical estimates of structural network topology might
prove a candidate endophenotypic marker for disease
liability. Thus, the genetic influence on global network
topology is to a large extent independent of other global
brain measures and therefore provides new information
about genetic influence on brain structure.

Although the correlation between white matter volume
and mean FA was quite sizeable, it did not reach signifi-
cance. Possibly, this has been the result of insufficient
power as the confidence intervals around the correlation
were quite substantial. To our knowledge, the genetic
association between white matter volume and mean FA
has not been studied before. It has been shown that white
matter partial volume effects can be of influence on DTI
tractography analyses [Vos et al., 2011]. This relationship
might have introduced a correlation between both features
of white matter. Importantly, our data show that both
attributes of white matter are influenced by (partly) inde-
pendent genetic factors. This shows that although both fea-
tures might be correlated, they also provide independent
information about genetic influence on human brain
structure.

The extent to which genetic factors were estimated to
influence the normalized characteristic path length was
slightly lower in the present study (h2 5 0.57) compared to
earlier work (h2 5 0.76) [Jahanshad et al., 2012]. This differ-
ence might be explained by the differences in network
characterization. The previous study adopted a fixed edge
approach, where the Euclidian distance between the con-
nected nodes weighted each edge. Because of the specific
focus on topology in the present study, the edges of the
individual network were kept binary. Hence, the connec-
tivity parameter itself was more dependent on the distri-
bution of edges in the network and less on the distance.
This allowed for the partitioning of genetic variance into
distinct sources.

The network thresholding procedure showed that the
heritability of both normalized clustering coefficient and
normalized shortest path length remained fairly stable
until the threshold reached a point at which at least 40%
to 50% intersubject overlap was required for a connection
to be maintained. This is quite close to the 60% threshold
at which was estimated to be the ideal trade-off between
finding false-positive and false-negative connections [de
Reus et al., 2013]. It is not surprising that the heritability
goes down with higher thresholds as more variance is
selected out with every increase. In fact, network parame-
ters showed the highest heritability estimate when no
threshold was applied. This suggests that although “false-

positive” connections may exist, they show a good degree
of measurement reliability, as this is supported by a high
correlation within monozygotic twins.

Some limitations on the interpretation of genetic models
should be taken into consideration when interpreting our
results. First, although the interpretation of a genetic correla-
tion (as it is described above) is consistent with a partially
overlapping set of genes directly influencing both pheno-
types, the genetic model does not take into account other
mechanisms. Processes such as linkage-disequilibrium, phe-
notypic causality or environmentally mediated effects of one
genetically influenced trait may also explain a genetic corre-
lation on another [de Moor et al., 2008; Rijsdijk and Sham,
2002]. However, both mean FA and white matter volume
are traits in which additive genetic factors are known be of
major influence. Also, the within twin within trait correla-
tions of the normalized path length were consistent with an
additive genetic pattern (MZ correlations about two times
larger than the DZ correlation) therefore it seems unlikely
that the genetic correlation estimated is entirely explained
by non-genetic factors. Second, measurement reliability is a
known issue for tractography-based networks. Estimates for
the test-retest reliability of the average shortest path length
and clustering coefficient vary between 0.3 and 0.7, depend-
ing partly on the type of scan and tractography algorithm
[Basset et al., 2011; Dennis et al., 2012, 2013]. In the current
study, it was not possible to directly assess the test-retest
reliability. However, the lower bound of the confidence
interval for the heritability of white matter mean FA was
estimated at 0.35. This can be considered a proxy for the
lower bound of the test-retest reliability of the DTI scan.
Although a reliability of 0.35 is not ideal, significant genetic
contributions could be estimated. We can however not
exclude the possibility that genetic contributions were
underestimated due to measurement error.

In summary, this study provides evidence that individual
variation in topological aspects of the structural human
brain network is under influence of additive genetic factors.
One genetic factor is shared with white matter volume and
another is shared with white matter microstructural proper-
ties. Importantly, a major proportion of genetic variance in
both network parameters can be considered independent of
global aspects of white matter. This suggests that mathe-
matical estimates of structural network topology provide
novel information about genetic influences on human brain
structure. Moreover, our findings suggest that aspects of
network topology might be considered as endophenotypic
markers for heritable brain disorders such as schizophrenia
or autism, as these disorders have been associated with
alterations in structural network topology.
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