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Abstract: Recent discussions within the neuroimaging community have highlighted the problematic pres-
ence of selection bias in experimental design. Although initially centering on the selection of voxels during
the course of fMRI studies, we demonstrate how this bias can potentially corrupt voxel-based analyses. For
such studies, template-based registration plays a critical role in which a representative template serves as the
normalized space for group alignment. A standard approach maps each subject’s image to a representative
template before performing statistical comparisons between different groups. We analytically demonstrate
that in these scenarios the popular sum of squared difference (SSD) intensity metric, implicitly surrogating
as a quantification of anatomical alignment, instead explicitly maximizes effect size—an experimental design
flaw referred to as ‘‘circularity bias.’’ We illustrate how this selection bias varies in strength with the similar-
ity metric used during registration under the hypothesis that while SSD-related metrics, such as Demons,
will manifest similar effects, other metrics which are not formulated based on absolute intensity differences
will produce less of an effect. Consequently, given the variability in voxel-based analysis outcomes with sim-
ilarity metric choice, we caution researchers specifically in the use of SSD and SSD-related measures where
normalization and statistical analysis involve the same image set. Instead, we advocate a more cautious
approach where normalization of the individual subject images to the reference space occurs through corre-
sponding image sets which are independent of statistical testing. Alternatively, one can use similarity terms
that are less sensitive to this bias. Hum Brain Mapp 35:745–759, 2014. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Puzzled by an abundance of papers reporting highly
significant correlations in fMRI studies, Vul et al. [2009]
eventually discovered a permeating statistical bias charac-
terized by such related terms as ‘‘circularity’’ and ‘‘nonin-
dependence.’’ Although producing much discussion in the
fMRI community [Kriegeskorte et al., 2010], subsequent lit-
erature has demonstrated the general presence of such
bias in neuroscience research [Kriegeskorte et al., 2009]. In
this article, we demonstrate how this concept of circularity
can potentially extend to a fundamental neuroimaging
analysis technique, voxel-based analysis, using fractional
anisotropy (FA) data.
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Similarly, we were perplexed by the disparity in statisti-
cal results of one of our recent analyses [Stone et al., 2011]
using the same diffusion tensor imaging (DTI) data and
same voxel-based analysis technique but different normal-
ization algorithms. Despite distinctively better alignments
with one popular method, there was little difference in the
statistical results between the two approaches. It was even-
tually discovered that the incommensurability between
alignment quality and effect size in our analysis was also
due to a subtle, yet significant circularity bias which we
explain below in the context of FA population studies.

The seminal work of Basser et al. [1994a, b] established DTI
as a viable investigatory MRI technique. DTI’s sensitivity to
brain architecture [Assaf and Pasternak, 2008; Basser and Pier-
paoli, 1996] enables promising analysis possibilities assessing
neuro-structural differences in cross-population studies
[Arnone et al., 2008; Kantarci et al., 2010; Kubicki et al., 2005;
Rametti et al., 2010]. Two popular comprehensive software
packages for assessing population differences include the Sta-
tistical Parametric Mapping (SPM) Matlab-based toolkit
(http://www.fil.ion.ucl.ac.uk/spm/) for voxel-based mor-
phometry (VBM) [Ashburner and Friston, 2000] and the tract-
based spatial statistics (TBSS) framework [Smith et al., 2006]
(http://www.fmrib.ox.ac.uk/fsl/tbss/index.html). VBM con-
tinues to find application to FA studies [Kakeda and Korogi,
2010; Preziosa et al., 2011; Takao et al., 2010] despite concerns
about its general validity [Bookstein, 2001; Davatzikos, 2004]
and, in particular, with respect to DTI [Chung et al., 2008;
Jones et al., 2005]. The TBSS framework was partially devel-
oped in response to these concerns in which voxel values are
projected onto a template white matter skeleton for increased
statistical power.

Although there are substantive differences in normaliza-
tion between these and other analysis protocols, a core com-
monality includes direct FA-to-FA registration using various
similarity metrics. The sum of squared differences (SSD)
image similarity metric is perhaps the easiest to interpret (it
drives the image intensity difference to zero), is computa-
tionally efficient (compute the image difference and gradi-
ent), and is therefore widely used. Some of the most popular
registration methods (e.g. variants of SPM, Demons [Thirion,
1998], FSL’s nonlinear image registration tool (FNIRT), and
large deformation diffeomorphic metric mapping (LDDMM)
[Beg et al., 2005]) rely on this metric and yield reasonable
performance levels [Klein et al., 2009]. However, suppose
the SSD metric is used to find a set of M transformations
that map a population of M FA images, fI1; : : : ; IMg, to a
representative FA template, J, for statistical testing between
groups. This results in the optimal transformations,
fT�1 ; : : : ;T�Mg, which minimize the SSD metric over the pop-
ulation, i.e.,

T� ¼ arg min
T1; : : : ;TM

XM
m¼1

XN

n¼1

Im Tm xnð Þð Þ � J xnð Þð Þ2; (1)

where the inner summation indexes over all N voxels of
the region of interest. Switching the order of the summa-

tions and recognizing that a principal criterion for the
selection of J is such that it be a good approximation of
the mean of the aligned images, it becomes apparent on
inspection of the inner summation that the transformation
solution,

T� ¼ arg min
T1; : : : ;TM

XN

n¼1

XM
m¼1

Im Tm xnð Þð Þ � J xnð Þð Þ2
/voxelwise variance

 !
; (2)

is that which minimizes the average voxelwise group var-
iance.1 Reducing the group variance will also directly
affect the value of a standard population statistical assess-
ment, the Student’s t test.2

Thus, instead of normalization based on anatomical
alignment followed by statistical testing, direct normaliza-
tion using SSD of the images to be statistically compared
explicitly conflates attempts at anatomical alignment with
optimizing the statistical testing results that one will ulti-
mately use to assess hypotheses. This immediately evokes
a sense of circularity in the analysis [Kriegeskorte et al.,
2009]. According to Kriegeskrote et al., ‘‘An analysis is cir-
cular (or nonindependent) if it is based on data that were
selected for showing the effect of interest or a related
effect.’’ Direct FA-to-FA template registration will produce
transformations that align (or select) voxels such that the
statistical testing result (or the effect of interest) is
increased (assuming one is using Student’s t test).
Although the SSD metric is able to provide visually

1Based on this derivation, one would also expect the popular
Demons metric to be susceptible to this erroneous increase in statisti-
cal power due to identical objective functions although the more
aggressive Demons displacement/gradient (cf., Eq. (4) of Thirion
[1998]) at each iteration will relatively exacerbate this effect for a
given number of iterations. The Demons metric may be viewed as a
second-order (i.e., Hessian-based) minimization of the SSD objective
function. Thus, we are comparing a second order (Hessian þ gradi-
ent) based minimization of the SSD metric versus a first-order (gradi-
ent-only) minimization of the same objective function. Other
standard similarity metrics will also exhibit this trend to some degree
as they minimize a local measure of intensity-based distance
between the subject and the template.
2Our experimental evidence indicates that high-dimensional nor-
malization/optimization strategies which explicitly minimize the
variance of intensity over an image population also tend to reduce
the P-value (or increase effect sizes) when t tests are performed on
the same data that were registered. Variance minimization may also
reduce group difference, and it is possible that these trends may
counteract. However, our results suggest that the former effect is
stronger than the latter. We hypothesize that the explanation for this
is (relatively) straightforward—strategies characterized by Eq. (2) ex-
plicitly reduce average variance but do not explicitly reduce average
group difference [i.e., Eq. (2) does not encode knowledge of groups].
Additional theoretical work is needed to establish that this hypothe-
sis is indeed the underlying cause of the effects observed in this
article’s experiments and we place this potentially considerable, but
ultimately very valuable, advance in the realm of future work.

r Tustison et al. r

r 746 r



attractive (although not necessary anatomically correct)
alignments across subjects, the voxel-level details (that is,
which voxels are matched where) are strikingly important
in terms of the effect on detection power.

Various processing choices may mitigate the effects of
such bias. Gaussian smoothing following normalization,
nonparametric testing [Rorden et al., 2007], statistical anal-
ysis based on orthogonal projections onto the white matter
skeleton [Smith et al., 2006], and the use of more robust
similarity metrics may all impact the outcome. However,
such choices are often made ad hoc and/or post hoc and,
to our knowledge, not with the realization of the potential
for circularity bias described by Eq. (2).

Instead of direct FA-to-FA template mapping for align-
ment to the normalized space, we advocate an independ-
ent alignment strategy in which the FA images are
mapped to the common reference space via intra-subject
FA-to-T1 mapping followed by T1-to-T1 template align-
ment thus eliminating all direct FA-to-FA registrations.
The key point is that the intensity value differences used
to assess alignment (i.e., the similarity metric) in FA-to-T1
and T1-to-T1 normalizations are independent of the inten-
sity value differences used for the postalignment statistical
analysis. It should be noted that this discussion is certainly
not limited to studies involving FA. Such bias can occur
anytime the images used for normalization are noninde-
pendent of the statistical analysis as defined by the simi-
larity metric and statistical testing. For example, following
Eq. (2), circularity could theoretically be an issue for VBM
if one directly registered individual subject gray matter
density (GMD) images to a representative GMD template
image using SSD-related similarity measures (e.g., opti-
mized VBM [Good et al., 2001]).

Fundamentally, these issues are historically rooted in a
much deeper context concerning model-based inferences
and the validity of such inferences. As mentioned previ-
ously, the contributions of Bookstein et al. [2001], who
explored related issues specifically with respect to spatial
normalization and VBM, and the work of Vul et al. [2009]
are extremely relevant to this work. However, apposite
discussion extends earlier and broader to such exemplars
as the seminal work of Akaike [1974] and his eponymous
goodness-of-fit measure for assessment of competing sta-
tistical models whereby the number of parameters factors
into decisions about model selection. Such considerations,
however, are typically excluded in the voxel-based analy-
sis paradigm where fitting high-dimensional image data
using SSD-based image metrics results in systematic ‘‘over-
fitting.’’ This may result in incorrect inferences about the
data but is also pernicious due to the inflated nature of
these statistical inferences and the susceptibility of the cur-
rent research environment to claims of statistical signifi-
cance [Dickersin, 1990].

Two sets of experiments establish that the similarity
metric can significantly affect voxel-based analysis out-
comes and that, based on the previous description of cir-
cularity bias, the relationship in performance variability

and similarity metric is to be expected. Specifically, we
show that whereas SSD and Demons substantially overes-
timate statistical significance, mutual information (MI) and
cross-correlation (CC) are less susceptible although the
effect is not negligible. Furthermore, we also show that
this effect persists even with the common practice of post-
normalization smoothing before mass univariate statistical
testing.

Given this general overview, the experimental sets can
be briefly characterized as follows:

• Simulated DTI Data: Using a simulated DTI generator,
FA images based on male/female populations were
generated in situ thus guaranteeing anatomical align-
ment before processing. The simulated images in each
group were then ‘‘registered’’ to the FA image of the
defining DTI template using four common similarity
metrics (CC, Demons, MI, and SSD). Receiver operat-
ing characteristic (ROC) curves based on voxel-based
analysis for each of these scenarios demonstrate that
effect size is maximized over anatomical alignment
and that this effect size varies with similarity metric.
Additional experiments establish that this trend per-
sists even for commonly used smoothing kernels and
the TBSS projection step.

• Real Traumatic Brain Injury (TBI) Data: FA data of TBI
survivors and controls were normalized to a template
using four common similarity metrics (CC, Demons,
MI, and SSD). Additional exploration included nor-
malization via the subjects’ anatomical T1-weighted
images as well as the default registration for TBSS.
Voxelwise statistical testing was also performed with
and without smoothing. Even though ground truth is
not available for such data, the SSD and Demons met-
rics showed increased statistical power as evidenced
by a general decrease in voxelwise P-values. This
increase in detected effects may not be complemented
by increased anatomical registration accuracy.

All major processing steps were performed using pub-
licly available software including the open source
Advanced Normalization Tools (ANTs; http://www.pic-
sl.upenn.edu/ANTs) which should facilitate reproducibil-
ity for the interested reader.

MATERIALS AND METHODS

After describing the simulated and TBI data sets, which
consist of both T1-weighted and FA images, we briefly
sketch how the population-specific, unbiased T1-weighted
template is made from the set of the subject T1-weighted
images (Anatomical T1-weighted Image Template Con-
struction section). This methodology was used to construct
a T1-weighted template from the Nathan Kline Institute
(NKI)/Rockland data. The described template-building
process was also used to generate a second T1-weighted
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template from the TBI data which was used as the normal-
ized space for analysis. All FA images for the correspond-
ing data set are normalized to their respective T1-
weighted template. We detail how this is performed with-
out using any direct FA-to-FA image registrations in Simu-
lated DTI Gender Cohort Creation section. Once all the
NKI/Rockland FA data are aligned in the space of its T1-
weighted template, a generative DTI model is formulated
which is used to produce the simulated DTI gender
cohort. This process is described in Simulated DTI Gender
Cohort Creation section. Finally, an explanation of the sta-
tistical methods used to quantify circularity bias for these
data is given in Statistical Methods section.

Imaging Data

NKI/Rockland data for generation of the simulated

DTI gender cohort

Data from the first 14 weeks of a prospective data-shar-
ing initiative sponsored by the 1,000 Functional Connec-
tomes Project (FCP)3 were downloaded on January 15,
2011 and consisted of 74 subjects (average age in years:
32.4 � 17.8). Due to various issues (e.g., lack of corre-
sponding T1-weighted image, failed DTI reconstruction,
and age matching requirements) only 62 subjects (21
females and 41 males) were used. Each imaging session
for each subject produced a 64-directional DTI scan (pa-
rameters: conventional single-shot spin echo planar pulse
sequence, repetition time (TR) ¼ 10,000 ms, echo time (TE)
¼ 91 ms, axial acquisition, and voxel size ¼ 2 � 2 � 2
mm3) and a T1-weighted anatomical scan (parameters: TR
¼ 2,500 ms, b ¼ 1,000 s/mm2 for each direction, 58 contig-
uous slices of 2.0 mm thickness, inversion time (TI) ¼
1,200 ms, TE ¼ 3.5 ms, flip angle ¼ 8�, 192 contiguous sli-
ces of 1.0 mm thickness, field of view (FOV) ¼ 256 � 256
mm2, and voxel size ¼ 1 mm3). Images were anonymized
including defacing of the T1-weighted images. Diffusion
tensor data associated with each of the data sets were
reconstructed from the diffusion weighted sequences using
Camino (http://camino.org.uk/)—an open source toolkit for
diffusion MRI processing and analysis [Cook et al., 2006] in
combination with ANTs-based registration for motion cor-
rection of the DTI sequence.

Diffuse TBI data

The TBI data used in this study are part of a larger
effort investigating the relationship between various neu-
roimaging indices and cognitive and functional abilities in
long-term survivors of TBI (principal investigator: John
Whyte). A total of 17 controls and 16 patients with TBI
were used for the analysis presented in this work. Each
patient had a history of nonpenetrating TBI of at least
moderate severity defined by significant and well-docu-
mented loss or alteration of consciousness following injury
in addition to meeting several other exclusionary criteria.
The healthy volunteers were matched in terms of age, gen-
der, ethnicity, handedness, and years of education. High-
resolution T1-weighted anatomic images were obtained
using a 3D MP-RAGE imaging sequence with the follow-
ing acquisition parameters: TR ¼ 1620 ms, TI ¼ 950 ms,
TE ¼ 3 ms, flip angle ¼ 15�, 160 contiguous slices of 1.0
mm thickness, FOV ¼ 192 � 256 mm2, matrix ¼ 192 �
256, 1 excitation with a scan time of 6 min, and voxel size
¼ 1 mm3. A total of 30-directional DTI images were also
obtained. Diffusion tensor data were reconstructed using
Camino. A more detailed data description can be found in
Avants et al. [2008].

Anatomical T1-Weighted Image Template

Construction

For the data processing described in the following sec-
tions (both simulated and real TBI data), we normalize
images to an unbiased template created from the T1-
weighted images. This unbiased template constitutes our
normalized space for warping all FA images of the popu-
lation for further analysis.

Various approaches exist for determining the normal-
ized space such as selection of a pre-existing template
based on a single subject, e.g., the Talairach atlas [Talair-
ach and Tournoux, 1988], or a publicly available averaged
group of subjects, e.g. the MNI [Collins et al., 1994] or
ICBM [Mazziotta et al., 1995] templates. One challenge
with standard templates is that they may inadvertently
bias one’s results by enabling better normalization of sub-
jects to which the template is more similar. This issue is
exacerbated when dealing with populations that have high
variance (e.g., due to disease) and/or when one’s normal-
ization method is low-dimensional (i.e., not flexible
enough to capture large shape differences).

Population-specific templates alleviate some of these
issues by deriving a most representative image from the
population. Coupling the intrinsic symmetry of SyN pair-
wise registration [Avants et al., 2008] and an optimized
sharpening/averaging of the template appearance, Sym-
metric Group Normalization is a powerful framework for
producing optimal population-specific templates [Avants
et al., 2010]. Given a set of representative images,
fI1; : : : ; IMg, optimization involves finding the set of paired
diffeomorphic transformations, /1

1;/
1
2

� �
; : : : ; /M

1 ;/
M
2

� �� �
,

3In support of open science, the 1,000 Functional Connectomes
Project (FCP—http://fcon_1000.projects.nitrc.org) was initiated on
December 11, 2009 by various members of the MRI community,
Biswal et al. [2010]. Motivated by the absence of neuroimaging data
for research, this initiative seeks to form collaborative partnerships
with imaging institutions for sharing well-documented multimodal
image sets accompanied by phenotypic data. Commitments from
institutions such as the NYU Institute for Pediatric Neuroscience and
the NKI–Rockland have resulted in prospective data repositories
currently distributed to the public via the Neuroimaging Informatics
Tools and Resources Clearinghouse (NITRC—http://www.nitrc.org).
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the optimal template appearance, J*, and corresponding
coordinate system, w xð Þ, which minimize the cost function

XM
m¼1

D w xð Þ;/m
1 x; 1ð Þ

� �
þP Im /m

2 x; 0:5ð Þ
� �

; J� /m
1 x; 0:5ð Þ

� �� �� �
(3)

where D is the diffeomorphic shape distance,

D / x; 0ð Þ;/ x; 1ð Þð Þ ¼
Z 1

0

v x; tð Þk kLdt; (4)

dependent on the choice of linear operator, L, and v is the
diffeomorphism-generating velocity field,

v / x; tð Þð Þ ¼ d/ x; tð Þ
dt

; / x; 0ð Þ ¼ x: (5)

P is the choice of similarity metric, often neighborhood
CC [Avants et al., 2008], calculated in the virtual domain
midway between each individual image and the current
estimate of the template. We first initialize /M

1 ;/
M
2

� �� �
and w xð Þ to identity and then iterate over the following
steps: (1) compute the pairwise transformations given the
current template; (2) update the optimal template appear-
ance; (3) update w xð Þ (the template shape) to minimize the
population deformation.

Simulated DTI Gender Cohort Creation

We establish the potential for circular strategies in
voxel-based analysis to induce bias by simulating a popu-
lation dataset with known group difference. This simula-
tion creates a signal difference that is patterned on the
same underlying anatomical shape, thus minimizing the
confound of spatial alignment at the outset of experimen-
tal analysis.

To provide realistic ground truth FA data, we imple-
mented the method of Van Hecke et al. [2009], which we
have also made available to the public [Tustison et al.,
2011]. Given a DTI atlas, a b ¼ 0 image, a scheme file
indicating the gradient directions, and a cohort of aligned
DTI data to model intersubject intensity/tensor variabili-
ty, the algorithm generates simulated data sets with user-
specified pathology and noise. Theoretically, the resulting
simulated data are created in situ and are thus, by defini-
tion, anatomically aligned. Any actual anatomical dis-
crepancies in the aligned cohort are incorporated into the
generative model as Gaussian-based intersubject variabili-
ty in appearance alone (i.e., we do not directly vary the
underlying anatomical shape). Therefore, anatomical
accuracy is only relevant in terms of precise modeling of
the variance of intersubject variability and not whether
such intensity variance exists with aligned anatomy. In

other words, even a perfectly aligned cohort will manifest
some degree of intensity-based intersubject discrepancies
and the resulting intensity differences between images
are what drive the pair-wise image registration to mini-
mize such variability (not anatomy). As previously men-
tioned, this artificially inflates statistical testing results.4 It
should be noted that there are other possible sources of
image intensity differences such as noise and neuropa-
thology which could increase the effects but the use of
the diffusion weighted image (DWI) simulator permits
limiting the experimental data to a study of only normal
subject variability differences where the effects are dem-
onstrated. However, the effects of these potential mis-
alignments are minimized through the use of high-
performance SyN [Klein et al., 2009] driven solely by the
high-resolution T1-weighted anatomical images and the
use of a relatively large cohort.

The aligned DTI data were generated using the follow-
ing steps to warp each DTI to the standard space defined
by a population-specific T1-weighted template (cf., Fig. 1):

• An anatomical T1-weighted template was constructed
from 30 randomly selected subjects from the NKI/
Rockland data set using the template-generating
method described in Anatomical T1-weighted Image
Template Construction section. The process is repre-
sented in the middle of Figure 1, where we show axial
slices of 5 of the 30 NKI/Rockland subjects used to
create the ANTs T1 template (shown in the middle).
The green double-sided squiggly arrows represent the
derived transformations (affine þ SyN) used to create
the T1 template. The T1-weighted template was then
registered (affine þ SyN) to the MNI152 template for
purposes of comparison with TBSS which uses the
FMRIB58 template (also normalized to the MNI152
template). Axial slices of the FMRIB58 and MNI152
templates are situated on the right of Figure 1.

• Each of the 62 NKI/Rockland T1-weighted images was
registered (affine þ SyN) to the T1-weighted template.
Each T1-weighted image was also segmented using N4
bias correction [Tustison et al., 2010] and Atropos n-tis-
sue segmentation [Avants et al., 2011] to isolate the
white matter region to be used as a registration mask
for alignment with its corresponding DTI. A representa-
tive individual T1 subject (with superimposed

4One reviewer suggested the possibility that the increase in statistical
significance produced using the SSD and Demons metrics (vs. MI or
CC) was due to the former metrics’ ability to ‘‘reveal more [anatomi-
cal] differences’’ or their greater ‘‘sensitiv[ity] to [anatomical] mis-
alignments’’ over the latter metrics. We find such possibilities to be
significantly less probable than what is actually quantified by Eq. (2),
viz., intensity variance is minimized during optimization of the nor-
malization strategies under scrutiny, not neuroanatomical differen-
ces or misalignments about which Eq. (2) is explicitly agnostic.
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segmentation results) is shown at the lower left of
Figure 1, where the transformation to the T1 template
is represented by a red double-sided squiggly
arrow.

• Each of the 62 NKI/Rockland DT images was regis-
tered to the corresponding subject’s T1-weighted
image using a transform composition derived by opti-
mizing an initial rigid transformation followed by an
optimized deformable (i.e., SyN) transform (repre-
sented by the straight and squiggly vertical arrows,
respectively, on the left side of Fig. 1). The rigid trans-
form was found by optimizing the alignment between
the average DWI and the masked white matter
T1-weighted image of the same subject. The resulting
linear transform was used as an initial transform in
performing distortion correction by minimizing the re-
sidual nonrigid alignment between the average DWI
and the masked T1-weighted image.

• Finally, for each of the 62 DTI, we composed the
previously described transforms which provide a

composite mapping from each DTI to the MNI152 tem-
plate without any direct FA-to-FA registrations (repre-
sented by the blue arrow at the top of Fig. 1 and
standard protocol for TBSS).

The transformed DTI were reoriented to the MNI152
template using the preservation of principal direction
method [Alexander et al., 2001]. Once all the DTI data are
aligned, the next step involves creating the generative
DWI model [Van Hecke et al., 2009] by first averaging
both the aligned DT and b ¼ 0 images. The 62 aligned DTI
were averaged using the log-Euclidean framework
[Arsigny et al., 2006] to create the DTI atlas. Similarly, the
62 aligned b ¼ 0 images were averaged to create the repre-
sentative b ¼ 0 image for simulated DTI creation. The
derived FA image from the DTI atlas and the b ¼ 0 image
are shown in Figure 2. An FA mask was created by thresh-
olding the FA image of the DTI atlas at 0.2.

The 41 aligned male DTI were used to generate 18
‘‘Control’’ 30-direction diffusion-weighted images with

Figure 1.

In contrast to approaches which require direct FA-to-FA regis-

tration (represented with the blue arrow), our proposed modifi-

cation first constructs an optimal anatomical template as

illustrated in the center of the figure. The FA image is then rig-

idly mapped, with distortion correction, to the individual T1

using the white matter mask as shown on the left. Each individ-

ual T1 is then nonrigidly registered to the anatomical template.

Optionally, one can register the T1 template to the MNI152

template which resides in the same space as the FMRIB58 tem-

plate. Thus, the composite transform, carefully constructed

without any FA-to-FA image registration, can take an individual

subject’s FA map (or other DTI-derived measure) to the desired

standardized coordinate system. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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neither simulated noise nor pathology. Similarly, the 21
aligned female DTI were used to generate 19 ‘‘Experimen-
tal’’ diffusion-weighted image sets. These simulated DTI
were reconstructed using Camino which were then used
to produce individual FA images. The number of simu-
lated subjects in each group was chosen based on the me-
dian number of control and experimental subjects from
the sampling of FA studies described in [Van Hecke et al.,
2009].

Statistical Methods

We employ two complementary tools for examining the
impact of image registration strategy on statistical out-
come: the ROC and the cumulative distribution function
(CDF). We provide a brief summary of these tools and
their purpose in this study.

ROC analysis

The ROC may be used to look at the performance of a
continuous model against a known classification when the
threshold on the model is varied. In this study,
the ground-truth is determined by the voxels that—via
simulation—we know have a significant difference
between groups. We choose P < 0.05 to determine the
ground truth. This leads to two classes of voxels: those
that are significantly different between groups and those
that are not. As we vary the threshold on the statistical
map that is generated by a registration algorithm, we can
compare the identified voxels against this ground truth

and draw the ROC [Fitzpatrick et al., 1998; Wenzel et al.,
2010].

CDFs

Empirically constructed CDFs have been used with
maps of P-values, derived from registration, to visually
quantify detection power [Brun et al., 2008; Hua et al.,
2009]. In this case, one examines the area under the CDF
that is to the left of some statistical cutoff, usually P <
0.05. If one assumes that the method is not producing bi-
ased results, then the method that has a greater area under
the CDF, left of cutoff, has greater detection power.

RESULTS

Simulated Data Set

To demonstrate the significance of circularity bias on
voxelwise analysis and to demonstrate its correspondence
with different common similarity metrics, we used the
simulated DTI images described earlier to quantify such
effects in FA. Since each simulated DTI and derived FA
map was generated in the MNI152 template space, the
cohort is already anatomically aligned. However, as
described in the introduction, localized image registration
using common similarity metrics drive the alignment
towards minimizing local intensity differences (not neces-
sarily anatomical differences) thereby inducing false posi-
tives. To test this, we applied ANTs registration using
default regularization and transformation parameters with

Figure 2.

Mid-axial slice of the (a) average b ¼ 0 image and (b) FA image derived from the DTI atlas used

to create the simulated gender data sets.

r Logical Circularity in Voxel-Based Analysis r

r 751 r



Figure 3.

Postnormalization smoothing analysis of the simulated data for

FWHM kernel sizes of 0 mm, 4 mm, and 8 mm. The ground

truth data is smoothed in the same way as the normalized data.

Left column: ROC curves plotting (1 � specificity) vs. sensitivity

for the different similarity metrics for voxelwise analysis.

Smoothing tends to ameliorate the bias effect but the relative

strength continues to correlate with similarity metric. Right col-

umn: A relative increase in (false) statistical power induced by

SSD and Demons, as described in the text, resulted in more

voxels having lower P-values. This will be manifested as a left-

shifted CDF curve which is apparent in the SSD and Demons

metrics for all selected smoothing kernel sizes. In summary,

improvements in detection power (if judged by the area under

the CDF that is below 0.05) do not imply results that are closer

to the truth (which is shown by examining total area under the

ROC curve). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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four common similarity metrics: neighborhood CC,
Demons, MI, and SSDs. We limited optimization to 10 iter-
ations at the full resolution level.5 As neither noise nor pa-
thology was introduced, only the differences associated
with the gender cohort modeling are responsible for driv-
ing the registration.

Voxelwise analysis included performing Student’s t test
within the DTI masked region (FA � 0.2) for both the
ground truth (i.e., anatomically aligned) data set and per-
forming the same calculations for each of the four registra-

tion scenarios. We used a significance level cutoff of P ¼
0.05 to determine ground truth significant voxels in the al-
ready aligned data set. We then varied the significance
level cutoff for each of the registered data sets. In addition,
standard practice is to smooth the images following nor-
malization and before statistical testing where the kernel
size is typically dependent upon one’s estimate of the
registration accuracy. We tested the application of com-
mon kernel sizes of 4 mm and 8 mm full width at half
maximum (FWHM) and juxtaposed those results with no
smoothing in Figure 3. ROC curves are given for each of
the three cases. We also included P-value CDFs [Yanovsky
et al., 2009]. However, ROC curves incorporate false/true

Figure 4.

Top row: Axial slices of the DTI atlas-derived FA map showing

the ground truth significant differences (P � 0.05, smoothing ¼
4 mm FWHM, uncorrected for multiple comparisons) between

control (male) and experimental (female) groups. Rows 2–4:

Same axial slices showing varying changes in significant regions

following ANTs registration using different similarity metrics.

The key point is that there is no anatomical misalignment

between the groups before the registration algorithm is run.

Although detection power ‘‘improves’’, (particularly with the

SSD and Demons metrics) this is not due to improved anatomi-

cal alignment but rather due to local effects related to circularity

bias induced by the relationship between the test statistic and

the similarity metric. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

5Specifically, the ANTs command line parameters common to each
metric were: -i 10 -t SyN [0.25] -r Gauss[3, 0].
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positives and false/true negatives, the P-value CDFs
directly illustrate that certain metrics induce false posi-
tives. False elevation of statistical power is caused by a
general decrease in P-values. This decrease in P-values
causes a left-shift in the CDF which is observed for both
the SSD and Demons metrics.

Visual comparison of the significant regions associated
with the voxelwise analysis for ground truth data and the
data using the different similarity metrics for P � 0.05
shown in Figure 4 demonstrates the potential severity met-
ric choice can have on results. Table I provides further evi-
dence of inflated statistical significance, where we looked
at the percent change from ground truth of the statistically
significant regional volumes for each of the four metrics
and each of the three smoothing parameters. Significance
increases dramatically with amount of smoothing for the
SSD and Demons metrics. Additionally, we evaluated the
effects of registration regularization on degree of increased
statistical significance with findings evincing little to no
consequence.

We also performed a similar assessment where instead of
performing voxelwise calculations over the entire white mat-
ter mask, we analyzed the FA skeleton projection character-
istic of TBSS using the relevant portions of the TBSS scripts
found in the FMRIB software library (FSL; http://
www.fmrib.ox.ac.uk/fsl/). The FA image produced from
the DTI atlas was used to produce a common skeleton for all
comparisons. The associated ROC curves are given in Figure
5. Although projection does have slightly mitigating effects,
the associated bias is still significant across certain metrics.

Despite the experimental set-up ensuring anatomical
alignment in the ground truth data, the resulting bias effects
accord with our earlier description of the problem with
these similarity metrics and direct FA-to-FA template nor-
malization. However, MI shows relatively little bias due to
its statistical formulation and relative nonlocality in contrast
to the SSD and SSD-like Demons metrics which are formu-
lated such that they explicitly minimize voxelwise group
variance and thus cause an elevation in false positives.

TBI Cohort

Even under conditions of no noise, no pathology, Gaus-
sian modeling of intersubject variation and precise ana-
tomical alignment, the simulated data demonstrated the

presence of circularity bias that varied with similarity met-
ric. In this section, we use data that was analyzed in
[Stone et al., 2011] and show how bias is potentially mani-
fested in real FA analysis. We investigated the following
FA-to-FA template normalization strategies for each sub-
ject, where we used the FMRIB58 template distributed
with the FSL toolkit as the FA template:

• antsCC: Direct individual FA-to-FMRIB58 template nor-
malization using ANTs with the CC similarity metric,

• antsDemons: Direct individual FA-to-FMRIB58 tem-
plate normalization using ANTs with the Demons sim-
ilarity metric,

• antsMI: Direct individual FA-to-FMRIB58 template nor-
malization using ANTs with the MI similarity metric,

• antsSSD: Direct individual FA-to-FMRIB58 template
normalization using ANTs with the SSD similarity
metric,

• tbss: Direct individual FA-to-FMRIB58 template normal-
ization using FNIRT (also available in FSL) with the opti-
mal configuration parameters for the FMRIB58 template
encapsulated in the config file, FA_2_FMRIB58_1mm.cnf
also distributed with the FSL toolkit, and

• antsT1: Indirect normalization where a subject’s FA
image is mapped to the individual T1-weighted image
via a composite transform pictorially described in

TABLE I. Percent change in volumes of significant

voxels relative to the ground truth after registration of

the simulated aligned data (P � 0.05) and following the

specified smoothing

MI CC SSD Demons

0 mm �0.2% �1.9% 245% 262%
4 mm �3.4% �9.9% 485% 597%
8 mm �20.3% 23% 1,960% 2,945%

The middle row corresponds to the results shown in Figure 4.

Figure 5.

ROC curves plotting (1 � specificity) vs. sensitivity for the dif-

ferent similarity metrics using TBSS projections onto the mean

FA skeleton. Degree of locality and correspondence to Eq. (2)

resulted in performance disparity between the different metrics.

As SSD and the SSD-like Demon’s formulation minimize voxel-

wise group variance, we see the greatest bias in those two met-

rics. In contrast, MI and CC are less susceptible to bias with MI

performing quite well. Comparing voxelwise (cf., Fig. 3) and pro-

jection results, it is apparent that the TBSS projection strategy

only slightly improves the effects of bias for the simulated data.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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Figure 1. First, a T1-weighted template was created
from the entire T1 cohort. The template generating
process (described in Anatomical T1-weighted Image
Template Construction section) resulted in a set of
transformations describing the mapping from each
T1-weighted image to the template. Second, the
T1-weighted template was then registered to the MNI152
template by optimizing an affine transform followed by a
deformable transform (i.e., SyN) using ANTs. Third, we
optimized a rigid transform plus a highly constrained,
distortion-correcting, deformable transform which maps
the subject’s FA image to the same subject’s T1-weighted
image. The final composite mapping which warps each
subject’s FA image to the MNI152 template (which
resides in the space of the FMRIB58 template) consists of
the ordered set of transforms from the individual
subject’s FA image to the corresponding T1-weighted
image, the individual subject’s T1-weighted image to the
T1-weighted template, and, finally, from the T1-weighted
template to the MNI152 template.

For each of these scenarios, the normalized images
were smoothed using a kernel size of 3.5 mm (FWHM).
Voxelwise analysis was then performed within the region

defined by thresholding the rescaled FMRIB58 template
(rescaled to [0,1], thresholded at FA � 0.2). Application of
Student’s t test (one-tailed, a ¼ 0.95) at each voxel between
the smoothed experimental and control group FA images
resulted in a set of P-values for each experiment. As stand-
ard practice typically applies multiple comparisons correc-
tion to this mass univariate statistical testing, we used
false discovery rate (FDR) correction to produce a set of
corrected P-values.

Given the lack of ground truth, we are unable to pro-
vide ROC curves for comparison of bias significance.
However, as with the simulated data, the CDFs of the cor-
rected P-values for the different normalization strategies
facilitate visualization of the correlated increase in statisti-
cal power with choice of normalization strategy. A bias
which (falsely) decreases P-values will yield a left-shifted
CDF. This trend is illustrated in Figure 6.

The CDF of the voxelwise FA coefficient of variation
(CV) of the aligned images is shown for each case in
Figure 7. The CV at each voxel is defined as the variance
divided by the mean over the population of FA values.
Thus, those metrics which best minimize the voxelwise
variance would trend towards greater alignment as quanti-
fied by the CV [Van Hecke et al., 2011]. As minimization
of the groupwise variance will also minimize the CV, it is
expected that the SSD and Demons metrics will produce
relatively superior alignments to the other strategies.
Despite the fact that no direct FA-to-FA registrations were

Figure 7.

Comparison of the different alignment strategies in normalizing

the TBI data to the FMRIB58 template. Assessment is quantitated

using the voxelwise CV of the FA. TBSS and the 4 ANTs metric

results were all obtained using direct registration involving subject

FA and the FMRIB58 template. The curve denoted as ‘‘antsT1’’

was also obtained in FMRIB58 space with the following transfor-

mation composition: subject FA ! subject T1-weighted image !
group T1-weighted template ! common T1-weighted ! tem-

plate MNI152 (FMRIB58) template. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Student’s t test results (one-tailed, a ¼ 0.95) for the smoothed

(kernel size ¼ 3.5 mm FWHM) TBI FA data aligned to the

FMRIB58 template adjusted for multiple comparisons (FDR). Ele-

vated statistical power is seen in the t-test with the similarity

metrics with the most correspondence to Eq. (1), namely the

SSD and Demons metric. Results for the other metrics including

TBSS and the T1-weighted template-based strategy (‘‘antsT1’’)

remain fairly stable between the two tests. TBSS and the 4 ANTs

metric results were all obtained using direct registration involving

subject FA and the FMRIB58 template. The antsT1 results were

also obtained in FMRIB58 space with the following transformation

composition: subject FA ! subject T1-weighted image ! group

T1-weighted template ! common T1-weighted template !
MNI152 (FMRIB58) template. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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performed, the ‘‘antsT1’’ normalization produced better
alignments than ‘‘tbss’’ (which supports previous findings
demonstrating improved performance of anatomical align-
ment using ANTS over FNIRT [Klein et al., 2009]). These
can be visually assessed in Figure 8 where we plotted the
resulting mean FA images for both sets of normalizations.
Although direct FA-to-FA registration with common simi-
larity metrics gives ‘‘better alignment’’ such alignment is
produced at a cost of significant Type 1 errors and does
not guarantee improved anatomical correspondence.

All these issues point to fundamental considerations
concerning the clinical interpretability of results in which
circularity bias is shown to have a significant impact with
commonly chosen registration parameters. Given the fun-
damental nature of normalization for neuroimaging, it is
important that proper experimental set-up be given prior-
ity over obtaining statistical significance. As we have
shown, in simulated and real data, that statistical power
can be artificially inflated based on similarity metric
choice, and that these are some of the most commonly
used metrics, we encourage investigators to exercise cau-
tion in making such normalization choices.

DISCUSSION AND CONCLUSIONS

Prior evaluation work using anatomically labeled data
indicates that MI, CC, Demons, and SSD metrics are all ca-
pable of producing high quality anatomical alignment
[Klein et al., 2009]. All this work, though, compares the
quality of alignment at a relatively coarse scale of major
gyri, lobes, and regions. At the voxel level, it is nearly
impossible to determine the ground truth correspondence
[Rohlfing, 2012]. Indeed, there is no reason to believe that
subtle differences between a set of alignment strategies
(induced, in the experiments of this article, by changing
the similarity metrics used in image registration) that all
apparently work well should be considered significant.
This work, however, highlights a dramatic impact of simi-
larity metric choice on detection power in template-based
FA studies. Our contention is that this dramatic ‘‘improve-
ment’’ in detection power is not due to better anatomical
alignment. Rather, it is a result of the circularity/noninde-
pendence of the normalization and statistical estimation
strategy. Consequently, we recommend that future work
should take greater care when pairing normalization strat-
egy with statistical analysis. Furthermore, we recommend
that researchers make efforts to maintain independence
between these two critical stages of a population study.
That is, the features that drive the minimization of a simi-
larity metric should be independent of the features that
will be used in hypothesis testing. In particular, one
should avoid combining the SSD and Demons metrics for
normalization with Student’s t test for assessing image-
derived differences. A final point is that CDFs and other
power assessment methods cannot be regarded as mean-
ingful comparison techniques in the presence of normal-
ization/statistical nonindependence.

Perhaps the closest work to ours is by Wenzel et al.
[2010]. The authors used ROC curves to examine the
impact of registration strategy on the ability to identify
effects in PET. They found that their own method, which
uses CC, performed better than the SSD-based SPM2 with
respect to simulated data. Our findings suggest that the
difference in performance is due, in part, to the choice of
similarity metric. However, this cannot be verified with-
out further investigation into methodological specifics.
Also, the work of Freire and Mangin [2001] demonstrated
that rigid body motion correction algorithms for align-
ment of fMRI data show a similar trend in that more ro-
bust similarity metrics, such as MI, are less susceptible to
bias caused by intensity outliers (e.g., activation) than
SSD. This could potentially provide additional motivation
for favoring more robust similarity metrics in
normalization.

Caveats with our analysis include a lack of ground truth
in the clinical component of the study. Additionally, we
are not addressing the biological plausibility of our results
nor do we intend to (in this article) enter into discussion
on the mechanisms of TBI, gender difference, and DTI that
may lead to the detected results. Rather, we focus on the

Figure 8.

Qualitative comparison of mean FA images used in TBSS taken

from the TBI data described in Materials and Methods section.

The mean FA image illustrated in (a) is created by mapping the

sample FA population to the default FMRIB58 template which is

the standard protocol for TBSS. In comparison, the mean tem-

plate represented in (c) is created from alignment of the popula-

tion sample to the optimal T1-weighted template as described in

the article. The respective skeleton masks in (b) and (d) are

created by thresholding the resulting skeleton values � 0.2.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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technical issue of circularity caused by normalizing the
image feature of interest with functions that maximize the
statistic used in hypothesis testing. We also cannot argue
that our analysis invalidates previous studies in which cir-
cularity might be an issue. Finally, we do not address the
very promising work concerning whole tensor DTI nor-
malization [Zhang et al., 2007], DTI template-based strat-
egies [Van Hecke et al., 2011], or other related methods
[Jbabdi et al., 2010].

Instead, we encourage the community to re-examine
normalization and analysis methods and to consider the
potential confounds highlighted in this article and others
[Ridgway et al., 2008]. Rank tests provide a more conserv-
ative alternative as does the methodology presented here
based on DT-to-T1-weighted intrasubject mapping and T1
normalization. To our surprise, we could not find a prior
publication that directly addresses this issue. Two reasons
may be that the majority of technical work with DTI has
focused on more cutting-edge issues, while the clinical
work is hampered by publication bias [Dickersin, 1990]
and the seductive siren song of generating statistically sig-
nificant results. An additional reason may be that only
recently have toolkits emerged to enable easy comparison
of statistical techniques (via R [R Development Core Team,
2011]), normalization methods (ANTs), and diffusion ten-
sor processing (Camino).
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