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Abstract: Autism spectrum disorder (ASD) is increasingly understood to be associated with aberrant
functional brain connectivity. Few studies, however, have described such atypical neural synchrony
among specific brain regions. Here, we used magnetoencephalography (MEG) to characterize alterations
in functional connectivity in adolescents with ASD through source space analysis of phase synchrony.
Resting-state MEG data were collected from 16 adolescents with ASD and 15 age- and sex-matched typi-
cally developing (TD) adolescents. Atlas-guided reconstruction of neural activity at various cortical and
subcortical regions was performed and inter-regional phase synchrony was calculated in physiologically
relevant frequency bands. Using a multilevel approach, we characterized atypical resting-state synchrony
within specific anatomically defined networks as well as altered network topologies at both regional and
whole-network scales. Adolescents with ASD demonstrated frequency-dependent alterations in inter-
regional functional connectivity. Hyperconnectivity was observed among the frontal, temporal, and sub-
cortical regions in beta and gamma frequency ranges. In contrast, parietal and occipital regions were
hypoconnected to widespread brain regions in theta and alpha bands in ASD. Furthermore, we isolated a
hyperconnected network in the gamma band in adolescents with ASD which encompassed orbitofrontal,
subcortical, and temporal regions implicated in social cognition. Results from graph analyses confirmed
that frequency-dependent alterations of network topologies exist at both global and local levels. We pres-
ent the first source-space investigation of oscillatory phase synchrony in resting-state MEG in ASD. This
work provides evidence of atypical connectivity at physiologically relevant time scales and indicates that
alterations of functional connectivity in adolescents with ASD are frequency dependent and region
dependent. Hum Brain Mapp 35:6049–6066, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Autism spectrum disorder (ASD) is a complex neurodeve-
lopmental disorder characterized by impairments in social
communication and social interaction, in addition to
restricted, repetitive and stereotyped patterns of behaviors,
interests, and activities [APA, 2013]. Increasingly, ASD is
understood to be associated with aberrant functional brain
connectivity, indicating abnormal coordination of activity
among brain regions [Belmonte et al. 2004; Just et al. 2004;
Minshew and Keller, 2010; Muller et al. 2011; Schipul et al.
2011; Uhlhaas and Singer, 2007]. Prevailing hypotheses pur-
port that ASD is characterized by reduced long-range func-
tional connectivity and increased local functional connectivity
[Belmonte et al. 2004; Courchesne and Pierce, 2005; Minshew
and Williams, 2007; Rubenstein and Merzenich, 2003].

Synchronous oscillations represent a core mechanism for
sculpting temporal coordination of neural activity across
brain-wide networks [Wang, 2010]. Neural synchrony is
responsible for coordination and communication between
neural populations that are simultaneously engaged in cogni-
tive processes [Fries, 2005; Uhlhaas et al. 2009; Wang, 2010].
Electroencephalography (EEG) and magnetoencephalography
(MEG) allow the measurement of electrophysiological signals
on a millisecond timescale, which is critical for measuring
activity in numerous neurophysiologically relevant frequency
ranges [Havenith et al. 2011]. Moreover, as magnetic fields
are undisturbed by tissue inhomogeneities, MEG offers the
conferred advantage of enhanced localization accuracy and
improved oscillatory detectability compared with EEG [Kai-
ser and Lutzenberger, 2005], providing an ideal modality for
imaging oscillatory coherence in distributed brain networks
[Palva and Palva, 2012].

Despite numerous empirical studies indicating altered func-
tional brain connectivity in ASD using resting-state functional
magnetic resonance imaging [fMRI; see Dichter, 2012; Min-
shew and Keller, 2010; Vissers et al. 2012 for reviews], only a
handful have used resting-state MEG to study connectivity in
ASD populations [Cornew et al. 2012; Ghanbari et al. 2013;
P�erez Vel�azquez et al. 2013; Pollonini et al. 2010; Tsiaras et al.
2011]. Findings have largely supported the idea of long-range
underconnectivity in the ASD population, although discrepan-
cies in frequency-dependence exist. To date, no study has
examined source-space phase synchrony during resting-state
MEG in ASD. Accordingly, knowledge remains scant regard-
ing the involvement of specific brain regions and networks in
atypical oscillatory synchrony in ASD. Here, we used atlas-
guided source reconstruction of MEG data, together with the
weighted phase lag index [wPLI; Vinck et al. 2011] and graph
theoretical approaches [Rubinov and Sporns, 2010; Zalesky
et al. 2010] to investigate resting-state neurophysiological inter-
actions among brain regions in adolescents with ASD.

METHODS AND MATERIALS

Participants

Data were recorded from a total of 20 adolescents with
ASD and 15 typically developing (TD) controls. Four ASD

participants were removed from the analysis due to exces-
sive movement during recording, resulting in a final sam-
ple size of 16 ASD participants (14 males, range 5 12–15
years, 14.4 6 1.1 years, all right-handed) and 15 TD partici-
pants (13 males, range 5 12–15 years, 14.9 6 0.9 years, all
right-handed). Participants were recruited through the
Hospital for Sick Children’s Research4kids database and
flyers posted in the Greater Toronto Area. Individuals
with metal implants, a history of neurological or neurode-
velopmental disorders (other than ASD for participants in
the clinical group), or IQ� 65 were excluded. All ASD par-
ticipants had a prior clinical diagnosis, which was con-
firmed using expert clinical judgment and/or the Autism
Diagnostic Observation Schedule-General [Lord et al.
2000]. Full scale IQ was estimated for all participants using
the Wechsler Abbreviated Scale of Intelligence, consisting
of the Vocabulary and Matrix Reasoning subtests [Wechs-
ler, 1999]. All participants and their legal guardians pro-
vided written consent for the protocol approved by the
Hospital for Sick Children Research Ethics Board and the
Declaration of Helsinki.

Data Acquisition

Participants were instructed to maintain visual fixation
on a centrally presented gray cross inside a white circle on
the screen while remaining still, relaxed and awake in
supine position inside a magnetically shielded room. Five
minutes of MEG activity was acquired at 600 Hz sampling
rate with a band-pass filter of 1–150 Hz and third-order
spatial gradient noise cancellation, using a CTF Omega
151 channel whole head system (CTF Systems Inc., Port
Coquitlam, Canada). Throughout data acquisition, head
position was recorded continuously by measuring the
position of the three fiducial coils, located at the nasion
and left and right preauricular points. Fiduciary head coils
were energized at 1,470 Hz, 1,530 Hz, and 1,590 Hz. Partic-
ipants with head movement less than 10 mm for 90% of
the recording time were considered acceptable for further
analysis. This standard of movement tolerance is typical in
MEG studies of pediatric populations, allowing collection
of MEG data from a clinical child population without cre-
ating a biased sample [Taylor et al. 2011]. Median head
displacement during the 5-minute recording did not differ
between groups (P> 0.05).

Following the MEG recording, anatomical MRI scans
were acquired for each participant using a 3T MR scanner
(MAGNETOM Tim Trio, Siemens AG, Erlangen, Ger-
many). T1-weighted magnetic resonance images were
obtained using a high resolution 3D MPRAGE sequence
(TR/TE/flip angle 5 2,300/2.96 ms/9�, FOV 5 28.8 3

19.2 cm, 256 3 256 matrix, 192 slices, slice thickness 5

1.0 mm3 isotropic voxels) with a 12-channel head coil. To
support source reconstruction of MEG activity, the ana-
tomical MRI and MEG data were coregistered using fidu-
cial references.
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Data Analysis

A flowchart presenting an overview of data processing
and analysis pipeline is depicted in Supporting Informa-
tion Figure S1.

Atlas-guided source reconstruction

We used a scalar beamformer [Cheyne et al. 2006] to
reconstruct broadband time series for sources in the brain
for 300 seconds of recorded data from each subject.
Beamformer analysis affords protection against ocular
and nonocular artifacts in MEG imaging [Cheyne et al.
2007]. A time series was computed for each of the 90
cortical and subcortical regions represented in the Auto-
mated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer
et al. 2002] (Fig. 1, Supporting Information Table S1). The
AAL atlas provides coverage of the whole cortex as well
as subcortical areas and has been employed effectively in
investigation of brain networks using fMRI [He et al.
2009; Liao et al. 2010; Supekar et al. 2008; Wang et al.
2009] as well as in MEG studies [Diaconescu et al. 2011;
Papanicolaou et al. 2006; Tewarie et al. 2013; van Dellen
et al. 2013].

Next, broadband time series representing each of the
90 analyzed brain regions were filtered into six band-
widths for further analysis, concordant with classic elec-
trophysiological divisions: d (1–4 Hz), h (4–7 Hz), a (8–14
Hz), b (15–30 Hz), low c (30–80 Hz), and high c (80–150
Hz). The stop and pass bands of the high-pass filters,
and the pass and stop bands of the low-pass filters,
respectively, were as follows (in Hz) : d (0.1, 1; 4, 5), h (3,
4; 7, 8), a (7, 8; 14, 15), b (14, 15; 30, 31), low c (29, 30;
80, 81), and high c (79, 80; 150, 151). The choice of these
frequency bands was based on considerable evidence
supporting the view that neural oscillations in these
bandwidths—and their synchronization—emerge from
different neurophysiological mechanisms and play dis-
tinct roles in cortical computation and cognition [see
Wang, 2010 for review].

Multilevel network characterization

To investigate whether functional connectivity was
altered in adolescents with ASD, and to describe group
differences in dynamic relations between spatial and func-
tional organization of regional clusters in the brain, we
used a multilevel approach which aimed to characterize
atypical connectivity using bivariate statistics and graph
theory. First, we estimated inter-regional functional con-
nectivity by measuring phase synchrony between the time
series of each possible pair of sources. Then, we character-
ized large-scale lobar differences in functional connectivity
by sorting each source into an anatomical subgroup (lobe)
and contrasting the two groups of adolescents. Next, non-
parametric testing was applied to investigate network-
level connectivity as a function of the number of contigu-

ously interconnected nodes between which the extent of
connectivity was different between groups [network-based
statistic (NBS); Zalesky et al. 2010]. Finally, we quantified
graph measures in each frequency at the “whole network”
level in addition to performing multivariate analysis of
these network measures at the level of each node/region.
Taken together, these analysis approaches provide comple-
mentary accounts of alterations in resting network syn-
chrony in adolescents with ASD.

Estimating functional connectivity using the weighted

phase lag index

Functional interactions between sources of oscillatory
activity can be captured by quantifying the phase relation-
ship between their time series [see Pereda et al. 2005 for a
review]. Although beamformer source reconstruction
implements a spatial filter which aims to estimate the
activity at the target location while attenuating contribu-
tions from other sources, beamformer reconstructed sour-
ces may still contain artificial and spurious interactions
due to field spread and volume conduction. Artificial syn-
chrony is directly caused by the instantaneous linear mix-
ing of activity from nearby cortical areas and is removed
using interaction metrics that detect exclusively lagged

Figure 1.

The 90 brain regions used as seed locations and their corre-

sponding regional groupings sorted by anatomical lobe, and

arranged by colour. Blue 5 frontal, green 5 temporal, pur-

ple 5 subcortical, pink 5 parietal, yellow 5 occipital. Four regions

were excluded from a lobar subgroup due to ambiguity in ana-

tomical placement. Visualized with BrainNet Viewer [http://

www.nitrc.org/projects/bnv, Xia et al. 2013].
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interactions and suppress zero-lag synchrony. Spurious
synchrony is detected in the area’s neighboring sources
[Palva and Palva, 2012] and can be suppressed by efficient
cortical parcellation approaches [Palva et al. 2010]. In this
study, we estimated functional connectivity using the
recently introduced wPLI, which is an example of a
mixing-insensitive interaction metric that attenuates artifi-
cial interactions [Vinck et al. 2011].

Briefly, the instantaneous phase at each time point of
the filtered waveform was calculated for the 300-second
recording using the Hilbert transform. WPLI was used to
estimate phase synchrony between each source pair over
300 seconds of data, for each analyzed frequency range.
For the mathematical definition of wPLI, see Vinck et al.
[2011]. WPLI values range between zero (no phase lock-
ing) and one (total phase locking/synchronization), and
are based on the magnitude of the imaginary component
of the cross-spectrum. This limits the influence of cross-
spectrum elements about the real axes, which are at risk of
changing their “true” sign with small noise perturbations
[Ortiz et al. 2012].1 Similar to the PLI, the wPLI estimates
to what extent the phase leads and lags between signals
from two sources are nonequiprobable. In contrast to the
PLI, however, wPLI gives maximal weighting to 6 90�

phase differences, and hence omits all signals associated
with artificial synchrony [Lau et al. 2012]. Only phase lag-
ging interactions, like those from a complex coupled oscil-
lator system (i.e., synchronously oscillating neural
assemblies), are detected. It has been shown that wPLI
outperforms PLI, coherence, and imaginary coherence in
attenuating volume conduction using real local field
potential data [Vinck et al. 2011]. Moreover, wPLI has
been demonstrated for measurement of inter-regional
MEG synchrony in children [Dimitriadis et al. 2013],
including graph analysis of resting-state connectivity
[Ortiz et al. 2012].

Functional connectivity matrix construction

To describe brain networks a 90-by-90 connectivity
matrix was computed for each subject for each frequency
band. Group averages and group differences for each ana-
lyzed frequency range are presented in Figure 2. Connec-
tivity matrices quantified the intensity of inter-regional
functional connectivity between every pair of sources and
were represented by the wPLI as described above. These
connectivity matrices were used in subsequent lobar func-
tional connectivity and NBS analyses described below.

Lobar functional connectivity and network-based
statistic

We used two complementary approaches to describe
pair-wise alterations in functional connectivity in ASD: (1)
large-scale functional connectivity through lobar categori-
zation of brain regions, which investigated resting syn-
chrony within and between the lobes of the brain; (2)
network-level functional connectivity analyzed using the
NBS [Zalesky et al. 2010].

(1) To characterize neural synchrony within and
between the lobes of the brain and to investigate altera-
tions in connectivity expressed at the level of large-scale
anatomical subdivisions of the brain, we sorted each
source (region) based on lobar classification. There were
five subgroups (subcortical structures and the four lobes)
in accordance with the AAL atlas: frontal, temporal, sub-
cortical, parietal, and occipital (Fig. 1), and similar to pre-
vious studies [Fornito et al. 2011; Hong et al. 2013]. Note
that, hereafter, for the sake of brevity, we have generalized
the term “lobe” to encompass the subgroup containing
subcortical structures. Each subgroup contained between 8
and 32 nodes. Four regions [33, 34, 69, and 70] (Supporting
Information Table S1) from the [90 3 90] connectivity mat-
rices were removed due to ambiguity in anatomical place-
ment into a lobe, and hence 86 of the 90 nodes were
sorted. Connectivity within or between each lobar group-
ing was derived by averaging wPLI values across all edges
(each pair of regions) relevant for that comparison. For
example, theta band frontoparietal connectivity was
obtained by averaging the wPLI values for each connec-
tion between a frontal source and a parietal source. We
repeated this for each subject at each bandwidth, resulting
in six [5 3 5] connectivity matrices per subject. To evaluate
group differences in lobe-level functional connectivity,
two-tailed t statistics were performed for each element of
the [5 3 5] connectivity matrix in each frequency band. A
false discovery rate (FDR) using a q-value of 0.05 was
used to control for multiple comparisons [Benjamini and
Hochberg, 1995].

(2) To describe in more detail which groups of regions
were differentially connected in ASD adolescents, we
employed the NBS [Zalesky et al. 2010]. This approach
identifies networks—defined as contiguously connected
sets of nodes—that are differentially connected between
groups. An advantage of this approach over complex net-
work analysis is that functional connectivity data can be
readily related to anatomy; that is to say, clusters of
regions that are functionally interconnected can be visual-
ized in anatomical brain space.

In the NBS analysis, a primary threshold (P 5 0.0025)
was applied in a two-sample, one-tailed t-test for each
edge in the [90 3 90] connectivity matrices to define a set
of suprathreshold edges. This yielded a collection of con-
tiguously connected components (groups of nodes) and
their extent (number of significant connections/edges) was
recorded. Then, to index the significance of each identified

1Various other methods have been employed for estimating inter-
regional phase synchrony, including phase-locking values [Lachaux
et al. 1999], the phase lag index [PLI, Stam et al. 2007] and nonlinear
phase synchronization [Pereda et al. 2005]. Only interaction metrics
that detect exclusively lagged interactions and suppress zero-phase
lag synchrony, such as the imaginary coherence, imaginary part of
the phase locking value, phase-slope index and the weighted phase-
lag index are immune to artificial synchrony [Vinck et al. 2011].
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component, a null distribution was empirically derived
using nonparametric permutations (5,000 permutations).
For each permutation, each subject was randomly reallo-
cated into one of two groups, and differentially connected
components in this surrogated data were identified using
the same initial threshold that was applied to the

unshuffled data (P 5 0.0025). For a connected component
of size M found for the real (nonshuffled) grouping of
ASD participants and TD controls, a family-wise error cor-
rected P-value was determined by calculating the propor-
tion of the 5,000 permutations for which the maximal
connected component was larger than M. Two alternative
hypotheses (ASD adolescents>TD adolescents and TD
adolescents>ASD adolescents) were evaluated independ-
ently for the six frequency bands. As the component extent
of each value in the null distribution is obtained consider-
ing all pair-wise comparisons in the analyzed connectivity
matrices, NBS controls for false positives due to multiple
comparisons [Zalesky et al. 2010].

Global and local graph theory analyses

The wPLI results were used to construct a 90-by-90
weighted, undirected graph for each subject and analyzed
frequency band, from which measures describing network
topology were derived [see Bullmore and Sporns, 2009].
Detailed accounts of basic principles underlying graph
analysis and its application to neuroimaging data have
been published previously [Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010]. Given the past literature
describing long-range hypoconnectivity and local hyper-
connectivity in ASD, we were interested in measures perti-
nent to functional integration and segregation. To quantify
this, we measured strength (overall connectivity), cluster-
ing coefficient (functional segregation) and path length
(functional integration) of each subject’s graph at each fre-
quency band using the Brain Connectivity Toolbox [Rubi-
nov and Sporns, 2010].

Specifically, path length is a measure of the shortest
route (in terms of edges traversed) between two nodes
[Rubinov and Sporns, 2010]. It is commonly referred to as
a measure of functional integration [Rubinov and Sporns,
2010]. Average shortest path length, or characteristic path
length, is the average shortest path length between all
pairs of nodes in the network [Rubinov and Sporns, 2010].
Clustering coefficient, on the other hand, is a measure of
functional segregation. The clustering coefficient is the
likelihood that neighbours of a node are connected to each
other, and indicates the extent of local interconnectivity or
cliquishness in a network. For more details on graph theo-
retical measures see Bullmore and Bassett [2011] and
Rubinov and Sporns [2010].

We quantified each graph measure for each individual
node, as well as for the whole graph (obtained by averag-
ing across all 90 analyzed nodes). For both the global and
local graph analyses, a nonparametric permutation
method with an alpha value set to 0.05 was adopted to
evaluate statistical significance of group differences at
each measure, for each frequency band. To provide surro-
gate data distributions, 2048 permutations were per-
formed at an a-level of 0.05. This alpha level of 0.05 was
then corrected via the t-max test [see Blair and Karniski,
1993] to account for multiple comparisons across all

Figure 2.

Full connectivity matrices comprising 90 cortical and subcortical

sources as defined by the Automated Anatomical Labeling atlas

are shown for each of the six frequency bands and the two

groups (columns labeled ASD and TD). The difference between

the group average of ASD minus TD adolescents is also shown

(column labeled Difference). Colour bar values depict wPLI val-

ues, or estimates of functional connectivity. The numbering of

sources from 1–90 corresponds to Supporting Information Table

S1.
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network pairs and frequency bands. For local graph
theory measures, to correct for the 90 independent tests
(90 nodes in the graph), an alpha value of 1/90
(P< 0.011) was used as a threshold for statistical signifi-
cance [Lynall et al. 2010].

RESULTS

Frequency- and Region-Dependent Alterations of

Resting Synchrony in ASD

To facilitate characterization and interpretation of func-
tional connectivity data from a large number of regions in
the brain, we sorted connections represented in Figure 2
into regional clusters based on anatomical location (Fig. 1).
This analysis approach enables the identification of altera-
tions in resting synchrony which are expressed at levels of
anatomical organization previously identified in the ASD
literature (e.g. frontoparietal, frontofrontal, anterior–poste-
rior). Group differences in within- and cross-lobar func-
tional connections were statistically significant in five out
of the six frequency bands (P< 0.05, FDR-corrected, Fig.
3). One of the primary observations from this large-scale,

lobar analysis was a frequency- and region-specific pattern
of overconnectivity and underconnectivity in the ASD
group. In slower theta and alpha bands, occipital and pari-
etal lobes expressed functional disconnection from wide-
spread brain areas (including connections within these
grouping themselves), with the most prominent effects
observed in the alpha band. Conversely, faster gamma
oscillations exhibited hyperconnectivity among frontal,
temporal, and subcortical lobes in ASD adolescents. A
more complex pattern of atypical intra- and interlobar con-
nectivity was observed in the beta band, in which ele-
ments of the posterior disconnection were observed in
concert with fronto-tempo-subcortical overconnection in
the ASD group. Lastly, intralobar and interlobar connectiv-
ity in the delta band were similar between groups; how-
ever statistical differences between the two groups
supported an anterior–posterior disconnection in the fron-
tal cortex in ASD. No statistical differences in intralobe or
interlobar functional connectivity were observed in the
high gamma band.

For slow brain oscillations in the delta band, the parietal
and subcortical lobes displayed significant decreases in
functional connectivity with the frontal cortex (P< 0.05,
uncorrected for frontoparietal, FDR-corrected for

Figure 3.

Contrast of ASD and TD adolescents in group-averaged connec-

tivity matrices for the six analyzed frequency bands. WPLI values

depicted on the colour scale represent group differences (ASD

minus TD) and were averaged by lobe grouping across both

hemispheres. Uncorrected significant differences resulting from

two-tailed t statistics are marked with one star (*P< 0.05 uncor-

rected), while FDR-corrected values are marked with two stars

(**P< 0.05 FDR-corrected). F 5 Frontal, T 5 Temporal,

S 5 Subcortical, P 5 Parietal, O 5 Occipital. Positive numbers

(warm colours) represent increased connectivity in ASD; nega-

tive numbers (cool colours) reflect reduced connectivity in ASD.
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frontosubcortical). Furthermore, intratemporal, intrasub-
cortical and intraparietal connections appeared hypocon-
nected in ASD. In the theta band, intralobar functional
connectivity was lower in both parietal and occipital lobes
and between these two lobes and the rest of the brain for
the ASD group (P< 0.05, uncorrected for parietotemporal
and parietosubcortical, FDR-corrected for all other connec-
tions). A more striking trend of functional disconnection
in the same direction was found in the alpha band
(P< 0.05, FDR-corrected). In the beta band, the ASD group
had significantly higher functional temporotemporal, tem-
porosubcortical, and subcorticosubcortical connectivity
(P< 0.05, FDR-corrected). In contrast, frontooccipital, pari-
etooccipital, and occipitooccipital beta band connections
were lower in ASD adolescents compared to TD adoles-
cents (P< 0.05, FDR-corrected). In the low gamma band,
all intra- and interlobar connections between the frontal,
temporal, and subcortical lobes were significantly higher
in the ASD group (P< 0.05, uncorrected for frontofrontal
connections, FDR-corrected for all other connections).
Finally, despite lack of statistical differences between
groups in the high gamma band, the temporal lobes
appeared overconnected to the frontal cortex, to subcorti-
cal regions and to themselves.

Increased Gamma-Band Network

Synchrony in ASD

NBS is a method to detect functionally interconnected
(functionally integrated) nodes in a graph that cluster into
a single component, and which are significantly different
between two groups. In our study, NBS analysis revealed
a single significant network (P 5 0.012, see Fig. 4 for
details). This network consisted of 15 nodes that were
overconnected in the ASD group, in the low gamma band,
consisting of frontal, temporal, and subcortical regions.
Each region has been indexed by its region number, corre-
sponding to Table S1 in the Supporting Information. Of
note, the region with the greatest number of significantly
different connections was the orbital part of the left mid-
dle frontal gyrus (MFGorb). Specifically, the left MFGorb
was hyperconnected to the left and right rectal gyri, the
opercular part of the right inferior frontal gyrus (IFG), the
right hippocampus, and the left olfactory cortex. These
NBS results are congruent with the large-scale lobar con-
nectivity findings noted above for the low gamma band,
and indicate a specific network of hyperconnected nodes
anchored in prefrontal cortex. No significantly connected
components in the other five frequency bands were
observed using the NBS approach.

Figure 4.

Network consisting of 15 brain regions that were hypercon-

nected in ASD adolescents in the low gamma band. The connec-

tions (edges) between pairs of regions represent statistically

significant differences in functional connectivity between the two

groups. Network Based Statistic toolbox was used to compute

statistics between strength of connections as indexed by wPLI

values (P 5 0.012 for the network). Landmark regions have been

labelled with their respective abbreviated region names. For the

full names and abbreviations of all regions, refer to Supporting

Information Table I. Visualized with BrainNet Viewer [http://

www.nitrc.org/projects/bnv, Xia et al. 2013].
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Frequency-Dependent Alterations in Global

Network Topology in ASD

To investigate the hypothesis that network topology of
spontaneous MEG activity is altered in adolescents with
ASD, graph analyses were applied at the global (whole
graph) and local (each node) levels to each subject’s graph
of resting phase synchrony for each of the six analyzed
frequency bands. At the global level, we compared aver-
age strength, average clustering coefficient, and character-
istic path length of the two groups. Figure 5 depicts group
averages for each global measure for each frequency band.
Significant differences between the groups were observed
for low-frequency oscillations (delta and theta) but not in
the higher-frequency bands (P< 0.05, FDR-corrected).

Similar to our results from investigation of large-scale
anatomical organization within and between the lobes of
the brain, alterations in network topology in ASD were
also expressed in a frequency-dependent manner. Overall,
we found a general trend for increased “local con-
nectedness”—increased global clustering coefficient
coupled with decreased path length—of the functional net-
work (theta, beta, low, and high gamma bands). By con-
trast, networks in the alpha frequency range were similar
between groups, while delta band alterations in network
topology showed effects in the opposite direction. Taken
together, results at the ‘whole network’ level suggest alter-
ations in functional integration and segregation of regional
clusters in adolescents with ASD. Of note, average cluster-
ing coefficient in delta and theta bands were significantly
different between the groups (P< 0.05, FDR-corrected),
whereas characteristic path length was only significantly
different in theta band (P< 0.05, FDR-corrected). Average
strength differences between groups were significant in
the delta frequency range, where higher resting synchrony

was observed in the TD adolescents (P< 0.05, FDR-
corrected).

Atypical Regional Topologies in

Adolescents with ASD

Network topology was also investigated at each of the
90 nodes in order to capture alterations in brain network
organization pertaining to the connectedness of particular
brain regions in ASD. This analysis revealed significant
between-group differences in nodal strength, nodal clus-
tering coefficient, and nodal path length in five of the six
analyzed frequency ranges (P< 0.011 corrected, Table I).
Congruent with our findings using global network meas-
ures, nodal-level measures “local connectedness” (cluster-
ing coefficient and path length) were higher in theta, beta,
low, and high gamma band in ASD, but were decreased in
the delta band, with no differences present in the alpha
band. Overall, adolescents with ASD exhibited disrupted
local segregation and integration of functional networks
compared to TD adolescents. There were 13 nodes
(regions) which were significantly different in local graph
properties between the two groups; close to half of the
regions belonged to the frontal lobes, including orbital and
medial orbital parts of the superior frontal gyrus, the
gyrus rectus, the orbital part of the middle frontal gyrus,
and the pars triangularis of the inferior frontal gyrus
(P< 0.011 corrected, Table I).

DISCUSSION

This study provides the first source-resolved investiga-
tion of resting-state oscillatory synchrony in ASD. We pro-
vide new insights into the role of specific networks and

Figure 5.

Differences in measures of global topological attributes of brain

connectivity between ASD and TD adolescents derived from

global graph theoretical analysis. Significant differences (marked

with one star) were found between the two groups for delta

and theta frequency bands (P< 0.05, FDR-corrected). A, Aver-

age strength of the whole network comprising 90 nodes for

each frequency range. B, Average clustering coefficient of the

whole network for each frequency range. C, Characteristic path

length of the whole network for each frequency range. Blue-

5 ASD, red 5 TD adolescents. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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brain regions which exhibit altered neurophysiological
interactions in this population. Our findings indicate that
adolescents with ASD demonstrate atypical neural oscilla-
tory synchrony in a region- and frequency band-
dependent manner. Specifically, occipital and parietal
brain regions were found to express low frequency func-
tional disconnection from widespread brain regions in
adolescents with ASD, whereas overconnectivity at higher
frequencies was observed among frontal, temporal, and
subcortical areas. We also found a hyperconnected subnet-
work in the low gamma frequency range, which included
many regions of frontal cortex, as well as left and right
hippocampi, right amygdala, right caudate nucleus, and
right superior temporal gyrus (STG). Moreover, ASD ado-
lescents expressed atypical network topologies at both

global and local levels, indicating abnormal functional
integration and segregation in large-scale brain networks.
Together, our study provides empirical evidence for the
disruption of topological organization of functional net-
works in ASD.

Altered EEG and MEG Resting

Connectivity in ASD

Functional disconnection of the parietal and occipital
cortices from other cortical regions at lower frequencies
(delta, theta, and alpha) was observed in ASD adolescents,
in which the alpha band was the most striking. Decreased
alpha coherence has been previously reported at the

TABLE I. Group comparisons (ASD adolescents minus TD adolescents) of complex network measures characterizing

functional segregation and integration using local graph theory analysis

Frequency band Region number Region name
Difference

(ASD minus TD) P value Lobe

(A) Nodal strength
D 6 R.SFGorb 20.42 0.008 Frontal

61 L.IPL 20.33 0.010 Parietal
62 R.IPL 20.32 0.009 Parietal

H 14 R.IFGtri 1.2 0.003 Frontal
67 L.PCUN 1.0 0.008 Parietal

B 46 R.CUN 20.48 0.009 Occipital
56 R.FUSI 0.85 0.004 Temporal

Low g 9 L.MFGorb 0.54 0.004 Frontal
28 R.REC 0.94 0.0005 Frontal

High g 73 L.STG 2.1 0.004 Temporal
77 L.MTG 2.1 0.009 Temporal

(B) Nodal clustering coefficient
D 6 R.SFGorb 23.1 0.004 Frontal

25 L.SFGmorb 22.8 0.006 Frontal
28 R.REC 23.2 0.009 Frontal
60 R.SPG 22.4 0.010 Parietal
61 L.IPL 22.4 0.008 Parietal
77 L.MTG 24.3 0.010 Temporal

H 14 R.IFGtri 9.5 0.0010 Frontal
61 L.IPL 5.0 0.008 Parietal
67 L.PCUN 8.5 0.004 Parietal

Low g 28 R.REC 6.4 0.0010 Frontal
(C) Nodal path length
D 61 L.IPL 1.6 0.006 Parietal
H 14 R.IFGtri 23.0 0.002 Frontal
B 46 R.CUN 2.1 0.008 Occipital

56 R.FUSI 23.2 0.007 Temporal
Low g 9 L.MFGorb 23.5 0.0005 Frontal

28 R.REC 24.5 0.0005 Frontal

Nodes that were significantly different between the groups are denoted by their region number and abbreviated region name, corre-
sponding to Supporting Information Table I, and sorted by frequency band. Corresponding P-values for group differences are also
listed, in addition to the lobar subgrouping of each node. A negative difference in nodal graph metrics represents ASD<TD adoles-
cents, whereas a positive difference in graph metrics represents ASD>TD adolescents. A, Nodal strength differences. B, Nodal cluster-
ing coefficient differences. C, Nodal path length difference. To determine significance, an alpha value of 1/90 or P< 0.011 was used.
Note that no group differences in the alpha frequency range were detected for local graph theory analysis.
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sensor/electrode level in resting-state EEG studies in chil-
dren [Coben et al. 2008] as well as adults with ASD
[Murias et al. 2007]. We did not, however, observe a sig-
nificant frontal [Murias et al. 2007] or temporal [Coben
et al. 2008] disconnection from the rest of the cortex in
theta or alpha bands albeit nonsignificant decreases in
interlobar connectivity of frontal and temporal lobes in
ASD in comparison to TD were noted. Although frontal
and temporal connections to the occipital and parietal
lobes were significantly hypoconnected in the present
study, effects appeared to be driven by the low-frequency
disengagement of posterior regions from widespread brain
areas. In delta and theta bands, lower coherence in ASD
has been reported previously in parietal and occipital
regions [Coben et al. 2008], in addition to temporal and
central regions which we did not observe.

Interestingly, our results contrast those from a recent
resting-state MEG study that reported increased long-
range connectivity in the temporal, parietal, and occipital
lobes in alpha band [Ghanbari et al. 2013]. The differences
between this study and ours could be attributed to factors
such as differences in age groups (children and adults ver-
sus adolescents), eye state (closed versus open), analysis
level (sensor-space versus source-space), parcellation
scheme (sensor-groups versus atlas-based seeds) and func-
tional connectivity metric (synchronization likelihood ver-
sus wPLI). Moreover, the results presented here are likely
to be more accurate with respect to specific brain regions
and networks involved in altered oscillatory synchrony in
ASD, as analysis of EEG/MEG connectivity among recon-
structed sources is substantially more accurate than
sensor-based approaches in this regard [Schoffelen and
Gross, 2009].

ASD Adolescents Express Decreased Anterior-

Posterior Connections at Slow Frequencies

Deficient long-range connections along anterior–poste-
rior brain pathways could disrupt experience-dependent
processes during development that are important for creat-
ing and maintaining neural connections [see Geschwind
and Levitt, 2007 for review]. Atypical maturation of con-
nectivity could hinder the development of social cognitive
abilities such as joint attention and social responsiveness,
which reliably discriminate young children with ASD
from their TD peers [Baranek, 1999; Werner et al. 2000;
Wetherby et al. 2004]. Evidence of reduced coherence
between anterior and posterior brain regions on the basis
of resting EEG data [Coben et al. 2008; Murias et al. 2007]
supports this hypothesis. The view that frontoposterior
connectivity is reduced in ASD is also supported by sev-
eral lines of evidence from structural and functional MRI
studies [see Just et al. 2012 for review]. Our findings using
source-space analysis of resting neurophysiological syn-
chrony in adolescents with ASD are congruent with the
above hypothesis at low frequency oscillations below 30

Hz. However, our results also suggest an extension to the
disconnection theory: (1) that aberrant features of brain
organization are expressed in a frequency-dependent man-
ner; and (2) both cortical and subcortical systems are
affected.

The Hyperconnected Gamma Subnetwork May

Reflect Socioemotional Deficits in ASD

Gamma oscillations are regarded as important as they
are believed to coordinate precise synchronization in local
circuits, and accordingly, play a vital role in information
processing supporting cognition [Fries, 2009]. Converging
evidence suggests that properties of gamma oscillations
are altered in ASD during task performance [Orekhova
et al. 2007; Rojas et al. 2011; Stroganova et al. 2012; Wilson
et al. 2007]. Our finding of increased connectivity in the
ASD group in a subnetwork of medial frontal, temporal
and subcortical regions is of twofold interest; it lends sup-
port to the view that altered gamma-oscillatory processes
play a role in the pathophysiology of ASD, and demon-
strates that, in particular, affected regions in this subnet-
work include regions understood to be critical for social
cognition.

The theory that excess high frequency oscillations reflect
an imbalance in the excitation-inhibition homeostasis in
the cortex [Orekhova et al. 2007] may be relevant to find-
ings of gamma-band hyperconnectivity in ASD. Mutations
in genes involved in the expression of excitatory and
inhibitory neurotransmitters have been identified in ASD
populations [Collins et al. 2006; Ramoz et al. 2004] as well
as animal models of ASD [DeLorey et al. 2008]. This may
provide the basis for a link between atypical oscillations
and genetic mechanisms underlying ASD, as individual
differences in the expression of gamma oscillations have
been demonstrated to be under tight genetic control [van
Pelt et al. 2012].

With respect to social cognition, there are several
regions within the significantly different, hyperconnected
gamma band subnetwork in ASD (identified using NBS)
that are of particular interest. Such hyperconnected regions
include the IFG and regions encompassing the “social
brain”: the orbitofrontal areas, the amygdalae, the STG
[Brothers, 1990], and the medial frontal cortex [Amodio
and Frith, 2006]. Hyperconnectivity amongst regions criti-
cal for social cognition, in concert with hyperconnectivity
to other regions of a different functional network may dis-
rupt task-relevant communication among brain regions
underlying social cognitive abilities [Lynch et al. 2013].
Alternatively stated, atypical connectivity among these
regions may limit dynamic interactions amongst the rest
of the cortex [Uddin et al. 2013].

One region of particular interest is the IFG due to its
role in language, social cognition, and emotion processing.
The IFG is vital for speech and language processing, as it
is responsible for both semantic and syntactic processing

r Ye et al. r

r 6058 r



of linguistic inputs, in addition to the motor production of
speech [Bookheimer, 2002]. The mirror neuron system,
located in the IFG, is a neural mechanism by which others’
actions and intentions can be understood [see Rizzolatti
and Craighero, 2004 for review], and its dysfunction was
proposed to give rise to the cascade of impairments that
are characteristic of ASD [see Williams et al. 2001 for
review]. In addition, atypical activation in fMRI has been
demonstrated in the IFG during emotion processing tasks
[Fusar-Poli et al. 2009; Kesler-West et al. 1999], suggesting
aberrant connectivity of this region in ASD populations.

Another key observation from the NBS analysis relates
to the functional role of two limbic regions: the right
amygdala and the hippocampi. Converging evidence from
studies in human and animals suggests that emotion per-
ception and regulation is mediated by a brain circuit in
which the amygdalae and hippocampi are central compo-
nents. The amygdalae play a key role in the recognition
and evaluation of emotionally salient stimuli and subse-
quent production of affective states [Phillips et al. 2003].
The right amygdala in particular, is linked to implicit emo-
tional processing [Adolphs et al. 2005; Costafreda et al.
2008; Hung et al. 2012; Noesselt et al. 2005]. The hippo-
campi, apart from their general role in memory, modulate
the production of contextually appropriate affective behav-
ior that is elicited by emotionally salient stimuli. The hip-
pocampi do this through inhibitory connections with the
amygdalae and other structures involved in emotion per-
ception [Phillips et al. 2003]. Interestingly, in childhood,
several studies have supported the idea of enlarged amyg-
dalae and hippocampi in ASD [Groen et al. 2010; Howard
et al. 2000; Rojas et al. 2006; Schumann et al. 2004; Sparks
et al. 2002], with volume losses that emerge in adulthood
[Duerden et al. 2012; Nickl-Jockschat et al. 2012; Yu et al.
2011]. Our findings of hyperconnectivity in the left and
right hippocampi along with the right amygdala support
the idea of a developmental abnormality in these regions
in ASD, which persists into adolescence.

The last region of particular interest to highlight from
the hyperconnected low gamma subnetwork revealed by
NBS is the caudate nucleus. This nucleus thought to be
part of an intricate system integrating multimodal infor-
mation and regulating complex behavior [Alexander and
Crutcher, 1990; Haber, 2003]. The caudate is also increas-
ingly recognized to be implicated in affect processing
[Arsalidou et al., 2013]. Given these associations, hyper-
connectivity of the caudate nucleus in the current study
could be associated with corticostriatal feedback and may
therefore be related to behavioral problems in ASD. In
line with this, stereotypic, repetitive behavior patterns
related to the diagnostic criteria for ASD have been com-
pared to those seen in obsessive-compulsive disorders,
which are known to be associated with structural and
functional abnormalities in the basal ganglia [Langen
et al. 2009]. Furthermore, in a voxel-based morphometry
longitudinal study characterizing the developmental tra-
jectories of striatum in ASD, an increase was detected in

caudate volumes in ASD, while it decreased in control
subjects [Langen et al. 2009]. Taken together, our findings
regarding the overconnected subnetwork in the low
gamma frequency band can be interpreted considering
the postulate that daily life, with its social demands and
constantly changing situations, imposes additional social
cognitive demands in adolescents with ASD resulting in
abnormal information processing in regions related to
social cognition, behavior, and emotion perception and
regulation.

Differences in Global Network Topology

Indicated Disrupted Functional Integration and

Segregation in ASD

At the ‘whole network’ level, our results indicated ASD
adolescents exhibited disrupted functional integration and
segregation of brain networks. In particular, we demon-
strated differences in average strength, clustering coeffi-
cient and characteristic path length at both low and high
frequencies, suggesting a less optimized topological orga-
nization in functional networks of adolescents with ASD.
Furthermore, increased average clustering coefficient and
shorter characteristic path length in theta, beta, low and
high gamma bands indicate increased “cliquishness” prop-
erties of functional networks within these frequency
ranges, supporting the idea of disrupted balance between
global integration and local specialization. On the network
level, this suggests a pattern of global overconnectivity
and altered network topology favouring increased clusters
of local connections in ASD. Moreover, stronger local con-
nectivity has been previously reported in structural studies
of autism using diffusion tensor imaging [Herbert et al.,
2004; Li et al 2014].

It is possible that the overabundance of short functional
connections could be related to redundant connectivity
patterns and to proposed neurobiological mechanisms in
ASD. In normal early development, overconnectivity is fol-
lowed by a pruning of connections in the maturing brain
[Supekar et al. 2009], suggesting network refinement [Hag-
mann et al. 2010]. Physiologically, in ASD, impaired prun-
ing of connections in this dynamic process would result in
the redundancy of connections. Hence, the remaining
overconnected network may operate at different scales,
resulting in a poor signal-to-noise ratio where the system
is flooded with noise in the event of an incoming signal
[Belmonte et al., 2004]. With poor signal-to-noise ratio, the
output of the functional network may not be sufficiently
distinct (too much integration and not enough segregation)
to achieve the necessary information processing [Rippon
et al. 2007]. In addition, recent work has demonstrated
that brain maturation is reflected in a weakening of short-
range and a strengthening of long-range connectivity
[Dosenbach et al. 2010]. From this perspective, our find-
ings may reflect a more immature connectivity pattern in
adolescents with ASD.
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There are some interesting nuances to this trend in glob-
ally altered network topologies that deserve mention. First,
delta band measures of global network topology exhibit
the opposite pattern of effects in ASD: networks have
decreased average strength, decreased clustering coeffi-
cient and increased characteristic path length. This sug-
gests a loss of functional segregation of networks in ASD.
In the model of autism as a developmental disconnection
syndrome, decreased functional segregation could be
anticipated as it suggests that specific functional systems
are less distinct or functionally segregated from one
another. Second, although there is a general trend for
global overconnectivity in ASD, alpha band functional net-
works appear to be relatively the same between the two
groups. As average strength is a direct reflection of mean
coherence (functional connectivity) within the network,
our results suggest that there is no significant overall dif-
ference in phase synchrony at rest in alpha bands in ado-
lescents with ASD compared to controls. This result is not
surprising as it has been previously reported in resting
EEG studies in ASD [Mathewson et al. 2012; Peters et al.
2013].

Focal Disruptions in ASD Involve the Default

Mode Network, Frontal Cortex and the

Temporoparietal Junction

When we looked at local graph measures to describe
focal alterations in specific regions of the brain, we found
three observations of interest in the ASD literature. First,
several regions that displayed significant alterations in
focal topology were implicated in the default mode net-
work (DMN), such as the precuneus and the inferior parie-
tal lobule. Second, five of the thirteen nodes that were
significantly different in local graph properties in ASD
belonged to the frontal cortex. Lastly, in the high gamma
band, focal alterations were detected in theory of mind
(ToM)-relevant regions in the ASD group. One of the pri-
mary observations from the regional graph analysis relates
to alterations in regions encompassing the DMN. The delta
band group differences provide a particularly salient
example of these alterations involving DMN regions.
Decreased nodal strength, decreased clustering coefficient
and increased path length in nodes of the DMN in delta
band suggest loss of functional segregation within this net-
work. In contrast, theta and high gamma bands reveal the
opposite direction of effects in DMN regions; such regions
appeared to be hyperconnected and demonstrate increased
local functional connectedness. We propose that these
findings—though seemingly opposite in effect—both sug-
gest that regions involved in the DMN are functionally
disrupted. In other words, adolescents with ASD may
exhibit a less optimized topological organization in the
DMN, leading to frequency-dependent functional altera-
tions in DMN regions. Accordingly, decreased clustering
coefficient may relate to decreased functional segregation

(i.e., delta band findings) of the DMN to the rest of the
brain, while increased clustering coefficient may suggest
lack functional specialization (i.e., theta, beta, low gamma
band findings) due to an abundance of functional connec-
tions. Interestingly, evidence from structural and fMRI in
ASD have reported both underconnectivity [Assaf et al.
2010; Stigler et al. 2011] and overconnectivity [Lynch et al.
2013; Uddin et al. 2013; Redcay et al. 2013] between DMN
nodes.

The frontal lobes are responsible for numerous higher-
order cognitive functions, including planning, decision
making and abstraction, and thus are a primary candidate
for dysfunction in many neurodevelopmental and neuro-
psychiatric disorders. We report 5 out of 13 altered focal
topologies in the frontal cortex, suggesting a less organ-
ized or more random distribution of functional networks
involving frontal areas. Although our findings revealed
altered local functional connectivity in the frontal lobes,
we are limited in terms of the conclusions we can make
regarding the anatomical proximity of these functional
hyperconnections. In light of our large-scale lobar connec-
tivity results, it is plausible that short-range connections
involving the frontal cortex are underconnected at lower
frequencies (e.g., delta band) and overconnected at higher
frequencies (e.g., low gamma band). Even though current
theory purports that there is local overconnectivity in the
frontal cortex in ASD [Courchesne and Pierce, 2005], litera-
ture from multiple modalities involving task-based and
task-free paradigms have been inconclusive in supporting
this hypothesis [see Vissers et al. 2012, for review]. None-
theless, the abnormal functional properties of frontal
regions are interesting in light of both the association
between ASD and the current frontal hyperconnectivity
theory and evidence of frontal involvement in the DMN.

Another inference that may be drawn from observations
from local graph theory results relates to regions impli-
cated in ToM. The impairment of ToM (processing of men-
tal states of others) in ASD has been linked to difficulties
with the communications and interactions in everyday life
[Kana et al. 2009]. The temporoparietal junction (TPJ), in
particular, is thought to be central to the integration of
social information and empathy, in addition to selective
attention to salient stimuli (Decety and Lamm, 2007]. In
the high gamma band, two regions surrounding the TPJ
demonstrated altered focal topology in our study: the left
superior and medial temporal gyri. In children, adoles-
cents and adults with ASD, thinning of several regions in
the TPJ region, particularly on the left side, has been
reported [Greimel et al. 2013; McAlonan et al. 2005; Razna-
han et al. 2010; Wallace et al. 2010]. Although our findings
of increased local strength in TPJ regions are not immedi-
ately intuitive when considering neurological reports of
volume reductions, it is suggestive of altered function
within these regions that could interfere with ToM-related
information processing.

In general, we found alterations in global and local
graph analyses supporting increased local connectedness
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in functional brain networks in ASD. We propose that
increased local connectedness could imply decreased func-
tional specialization of brain regions in ASD. Connections
in the brain are formed at a high physical cost [Bullmore
and Sporns, 2009; Sporns and Zwi, 2004] and the brain
constantly negotiates the trade off between wiring costs
and topological efficiency [Bullmore and Sporns, 2012].
Our findings of increased average strength in ASD and
increased local connectedness suggest impaired network
refinement in this population, particularly at a critical time
of development in adolescence.

Limitations and Future Work

Some important caveats should be considered with
regard to the present study. First, the limits of MEG in
localizing and estimating the activity of deep brain sources
remain an area of on ongoing research. Multiple studies
have shown MEG to be effective at detecting weak signals
emanating from deep brain structures such as the hippo-
campi during a variety of tasks [Cornwell et al. 2008a; Ioan-
nides et al. 1995; Kirsch et al 2003; Nishitani et al. 1998], as
well as the amygdala [Cornwell et al. 2007, 2008b, 2010;
Hung et al. 2010; Ioannides et al. 1995; Liu et al. 1999; Luo
et al. 2007; Moses et al. 2007; Streit et al. 1999] and thama-
lus [Bardouille and Ross, 2008; Bish et al. 2004; Tesche,
1996]. Moreover, there have been several realistic simula-
tions that have shed light on parameters affecting our abil-
ity to detect such sources of activity [Balderston et al. 2014;
Mills et al. 2012; Quraan et al. 2011]. Despite this empirical
evidence, the debate over the ability of MEG to accurately
detect and localize deep sources has persisted [for in-depth
discussion see Riggs et al. 2009; Stephen et al. 2005]. With
this in mind, our findings regarding connectivity altera-
tions involving deep brain sources in this study should be
interpreted with a degree of caution.

Another issue is the effect of sorting brain regions into
their anatomical, lobar subdivisions. Since each lobe is dif-
ferent in size, numbers of regions/nodes sorted into each
were accordingly different. This results in an uneven num-
ber of regions for each lobe, so it is plausible that a small
number of connections within a lobe may have exerted a
disproportionate influence on the resulting depiction of
lobar connectivity. To address this issue, we describe
regional differences between the two groups using bivari-
ate statistics (NBS) in addition to both global and nodal
graph theory measures, which do not suffer from this limi-
tation. We feel this level of description is nonetheless
informative given prior theory and experimental reports
describing altered connectivity in ASD at the level of
large-scale anatomical systems.

Third, while the atlas-based whole brain reconstruction
of MEG source activity has been shown to be a valuable
approach for investigating connectivity in large-scale brain
networks, there are some limitations when using this
method. For instance, the selection of sources is sparse

and may not yield an accurate or adequate selection of
brain structures that contribute to a more complete under-
standing of the brain in ASD. Such limitations might be
ameliorated by adopting a whole-brain parcellation
scheme that is based on source sensor geometry to obtain
a set of maximally independent patches [Palva et al 2010].
While such advances are excellent in addressing some
experimental questions in normative studies, however,
they introduce additional complications for our experi-
mental question related to ASD. Specifically, it has been
established that there are reliable structural brain differen-
ces in ASD, and as such, parcellation approaches which
use structural information to define cortical “patches” for
analyses may introduce potential confounds to the study
(i.e., systematic group differences in brain morphology
may introduce systematic differences in patch location,
complicating interpretation of the results). Nonetheless, we
feel the disadvantages of using a standard brain-atlas are
outweighed by the important advantage that it enables a
more direct comparison between data from different
modalities, especially in the context of heterogeneity in
ASD findings.

Recently, there has been an emergence of evidence
indicating brain overconnectivity in children with autism,
contrasting multiple prior reports of underconnectivity in
ASD [Di Martino et al. 2014; Keown et al. 2013; Supekar
et al. 2013; Uddin et al. 2013]. These studies in resting-
state fMRI report hyperconnectivity in both long- and
short-range intrinsic connections across multiple brain
regions in young children with ASD. Such findings add
weight to the argument that hyperconnectivity outweighs
hypoconnectivity in ASD, while also painting a more
complicated picture regarding where disrupted brain
connectivity in ASD may be dependent on altered age-
related trajectories. In view of these recent findings, a
limitation to our study is the lack of longitudinal data in
our cohort of ASD participants to comprehensively
address this question. Furthermore, as adolescence is a
period of heavy grey matter development within the
brain, it will be interesting to characterize whether the
functional alterations reported are directly related to
structural alterations due to a difference in developmen-
tal trajectory in this population. Future research should
elucidate the developmental trajectory of altered MEG
connectivity in ASD, as well at the relations between
atypical neurophysiological interactions and underlying
brain structure.

CONCLUSIONS

The results of the present study provide the first evi-
dence of frequency- and region-specific alterations of
resting-state neurophysiological interactions in ASD. These
results provide valuable complementary evidence to the
growing literature indicating that ASD is associated with
atypical brain connectivity. We demonstrate that frontal
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overconnectivity is expressed in the gamma band, whereas
posterior brain regions exhibit a disconnection to wide-
spread brain areas in slower delta, theta and alpha bands.
Frequency-dependent alterations in network topology
were also detected at both global and local levels of func-
tional networks, suggesting an imbalance in cortical segre-
gation and integration in functional brain networks.
Moreover, we uniquely demonstrate atypical high-
frequency network topologies involving frontal regions
that are critical for social cognition, affording new insights
into relations between neural oscillations, brain connectiv-
ity and social cognitive deficits in ASD.
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