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Abstract: A critical question for cognitive neuroscience regards how transitions between cognitive
states emerge from the dynamic activity of functional brain networks. Here we combine a simple data
reorganization with spatial independent component analysis (ICA), enabling a spatiotemporal ICA
(stICA) which captures the consistent evolution of networks during the onset and offset of a task. The
technique was applied to functional magnetic resonance imaging (MRI) (FMRI) datasets involving
alternating between rest and task, and to simple synthetic data. Starting and finishing time-points of
periods of interest (anchors) were defined at task block onsets and offsets. For each subject, the 10 vol-
umes following each anchor were extracted and concatenated spatially, producing a single 3D sample.
Samples for all anchors and subjects were concatenated along the fourth dimension. This 4D dataset
was decomposed using ICA into spatiotemporal components. One component exhibited the transition
with task onset from a default mode network (DMN) becoming less active to a frontoparietal control
network becoming more active. We observed other changes with relevance to understanding network
dynamics, for example, the DMN showed a changing spatial distribution, shifting to an anterior/supe-
rior pattern of deactivation during task from a posterior/inferior pattern during rest. By anchoring
analyses to periods associated with the onsets and offsets of task, our approach reveals novel aspects
of the dynamics of network activity accompanying these transitions. Importantly, these findings were
observed without specifying a priori either the spatial networks or the task time courses. Hum Brain
Mapp 36:1348–1364, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

A critical question for cognitive neuroscience regards
how transitions between cognitive states emerge from the
shifting balance in activity of functional brain networks.
According to the dominant model, cognitively challenging

tasks, such as a visually cued working memory task, evoke
well-recognized patterns of activation and deactivation
with functional neuroimaging [Fox et al., 2005; Smith
et al., 2009]. For example, frontal and parietal regions form
the frontoparietal control network (FPCN), which typically
activates with sensory and motor systems during many
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cognitively challenging tasks [Dosenbach et al., 2007; Vin-
cent et al., 2008]. In contrast, activity within posterior cin-
gulate, ventromedial frontal, and lateral parietal cortex,
forming the default mode network (DMN), is typically
increased at rest, when thought is unfocused or focused
internally [Buckner et al., 2008; Raichle et al., 2001], and is
typically decreased during externally focused tasks [Chang
and Glover, 2010; Fox et al., 2005]. The perceived dichot-
omy of activity between the DMN and FPCN encourages
a caricature of network dynamics where an active DMN
represents a basal state of brain activity that is transiently
interrupted or “turned off” during task conditions, whilst
the FPCN (alongside sensory and motor systems) activates.
When the active, task state finishes, the FPCN and sensori-
motor systems turn off, leaving the brain to return to its
basal state of DMN-predominant activity.

However, this dichotomous model may be overly sim-
plistic. There is evidence that the dynamics of the interac-
tions between functional brain networks supporting
cognitive functions are much more complex. For example,
functional connectivity between brain networks, even at
rest, has been shown to be nonstationary, fluctuating over
time [Chang and Glover, 2010]. Further, there is increasing
evidence that cognitive control relies on transient competi-
tive or cooperative interactions between brain networks
[Cocchi et al., 2013; Hellyer et al., 2014; Zalesky et al.,
2014]. Therefore, in the context of a given cognitive task,
there may be multiple different network transitions, and
these transitions could involve more complexity than an
on–off cycle between the DMN and the FPCN. Further, it
has been proposed that the spatial composition of the net-
works themselves may be nonstationary and may adapt to
cognitive demands [Leech et al., 2014]. For example, the
spatial pattern of the DMN evoked by even quite similar
cognitive tasks can vary substantially [Harrison et al.,
2011; Leech et al., 2011, 2014; Seghier and Price, 2012;
Utevsky et al., 2014]. This phenomenon, of spatial varia-
tion of network organization with cognitive state, has been
observed for multiple brain networks across a range of
tasks [e.g., Gordon et al., 2014; Mennes et al., 2013]. Fur-
ther, the spatial organization of the networks varies across
individuals and relates to cognitive performance [e.g., Fili-
ppini et al., 2012; Mennes et al., 2010; Smith et al., 2014].
Therefore, the configuration of functional brain networks
is not static, but context dependent, changing over time
when transitioning between cognitive states.

Current methodologies are unable to easily evaluate
complex situations where both the temporal aspects of the
interactions between networks and the spatial configura-
tion of those networks can vary with cognitive demands.
Specifically, traditional analyses using the regression of
psychological time courses onto voxelwise functional data
are not designed to identify coherent functional connectiv-
ity patterns across the brain, nor do they capture the rela-
tionships that exist between spatial activation patterns
across time. In contrast, data-driven approaches, including
independent component analysis (ICA) and principal com-

ponent analysis (PCA), do extract functional networks of
brain regions, and can be used to examine the interactions
between networks across task conditions [e.g., Allen et al.,
2014, see also Duff et al., 2012, who use a hybrid approach
involving ICA on task regression statistic maps]. However,
whilst these data-driven methods capture the complexity
of activity over time in terms of multiple networks, they
assume that any individual network is spatially static,
varying only in the activity level or magnitude across
time. Consequently, they cannot determine whether the
spatial properties of networks evolve in a consistent man-
ner across time and cannot differentiate between these
competing perspectives. Where existing approaches have
been used to study spatial nonstationarity, it has typically
been done following an ICA. For example, independent
components may be estimated for different datasets and
then these are compared, or else a set of independent com-
ponents are calculated and then back-projected onto differ-
ent task datasets, and the resulting spatial maps for
different datasets are shown to be different [Duff et al.,
2012; Gordon et al, 2012; Leech et al., 2011; Utevsky et al.,
2014]. While these approaches reveal changing network
structure with task, they do so over long timescales (i.e.,
minutes), and are unable to show rapid (e.g., <10 s) shifts
in network structure that accompany shifts in cognitive
state.

Here, we present a novel method for spatiotemporal ICA
(stICA) of task Functional MRI (FMRI) data that is
designed to assess the spatial evolution of functional brain
networks within the context of transitions between cogni-
tive states. This is different from previous ICA approaches
that focus on finding independent components in either
the spatial or temporal domain [e.g., Beckmann and Smith,
2004], and indeed, from many other stICA approaches
which do not allow for both spatial and temporal nonsta-
tionarity [e.g., Stone et al., 2002]. To identify components
that, for a given temporal window, can vary both in space
and time, we propose a simple reorganization of data that
is subsequently used with standard spatial ICA. Specifi-
cally, we rearrange adjacent FMRI time-points in space,
before performing the ICA (Fig. 1). The key difference
between this approach and spatial or temporal ICA [e.g.,
Beckmann et al., 2005; Smith et al., 2012] or other forms of
stICA [e.g., Stone et al., 2002] is that time is remapped into
space, such that both the input and the output spatial
maps contain multiple time-points; a voxel at a given spa-
tial coordinate (e.g., in MNI space), has multiple independ-
ent representations for different time-points. Therefore, a
component resulting from the ICA procedure contains vox-
els that can covary across both space (within a brain at a
given time-point) and time (across different time-points
within the component). However, our approach generates
components that can evolve spatially over time, thereby
providing a simple data-driven method for observing the
dynamics of network activity accompanying the onset and
offset of a cognitive task, without having to specify the net-
works a priori or assume the spatial distribution of
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networks is fixed over time. This method allows us to cap-
ture two phenomena that can be difficult to capture using
a spatial ICA: (i) consistent sequences of transitions
between different networks that occur under specific cogni-
tive conditions (e.g., when switching between tasks, per-
forming sequential actions, or reacting to a stimuli); (ii)
situations in which the spatial configuration of a network

changes across time. We explore this approach using both
a simple synthetic dataset and empirical FMRI data from a
working memory and target detection tasks.

METHODS

Transition stICA

Figure 1 illustrates the data reorganization and analysis
involved in the transition stICA. The approach starts by
defining anchor points, that are the starting and finishing
time-points of periods that are theoretically interesting
(Fig. 1, top). In this work, we investigate the onset and off-
set of task blocks both in simulated and empirical task
FMRI datasets (involving interleaved task-rest blocks).
Therefore, we define our anchor points as the first time-
point and the last time-point of each task block. Given the
slow changes in the hemodynamic response, these time-
points reliably precede any detectable task-evoked change
in the neural signal (i.e., change from rest to task or from
task to rest). For each dataset (i.e., each subject or simu-
lated subject), we extracted the whole-brain simulated or
empirical FMRI volume at each anchor time-point and the
following nine time-points. We then spatially concatenated
the 10 volumes extracted for each anchor point (i.e., each
task block onset or offset) along the medial–lateral dimen-
sion (Fig. 1, middle). (The dimension over which data is
spatially concatenated has no effect on the results of the
analysis; we chose to use the medial–lateral dimension for
practical and illustrative purposes.) For the empirical
FMRI data, this involved taking an image of dimension
23 3 28 3 23 voxels, and creating a sample of dimensions
230 3 28 3 23 voxels. Multiple samples (i.e., 10 volume-
wide images) were then temporally concatenated
along the fourth dimension (normally referred to as the
“temporal dimension” in spatial ICA of FMRI data; Fig. 2,
middle). This resulted in an image for the empirical data-
set with 230 3 28 3 23 3 1,080 voxels (i.e., one 10 3 3D
volume 3 1,080 samples). Finally, the resulting 4D dataset
was decomposed into independent components (each size
230 3 28 3 23 voxels) by performing a probabilistic ICA,
implemented in Melodic 3.13 (Fig. 1, bottom). We
provide a Unix shell script in Supporting Information
(tardis) that uses tools from FSL to perform the data reor-
ganization, prior to a Melodic ICA (see Supporting
Information).

The ICA algorithm we use (Melodic 3.13 [Beckmann
et al., 2005]) finds spatially independent components.
However, since we have reorganized volumes of the same
brain acquired at different time-points into the same three
dimensions normally used to code for space, the ICA will
now find spatiotemporal components: that is, the algo-
rithm is optimizing independence over both space and
time. A key assumption is that over the course of the tem-
poral analysis window (i.e., the number of adjacent con-
catenated volumes), there are patterns that have a
temporal dependency (i.e., that extend over multiple

Figure 1.

Transition spatiotemporal independent component analysis (tran-

sition stICA). Schematic showing high-level description of the

approach. Anchor points of theoretical interest are defined,

such as marking the time-point at the start or end of task

blocks. The subsequent N volumes following each anchor point

(in this example, four) are then rearranged and spatially con-

catenated along the lateral/medial dimension (although the

choice of spatial dimension is arbitrary). The four-volume wide

spatial map for each anchor point is then concatenated in the

fourth dimensions (i.e., what is normally thought of as the tem-

poral dimension), and the data is then entered into an ICA.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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adjacent time-points). However, in the situation where
there is no consistent temporal structure but consistent
spatial structure (e.g., when variation between adjacent

volumes is random but there are voxels that covary consis-
tently with each other), the resulting components will be
restricted to single time-points, and the same voxel

Figure 2.

Simulated FMRI data, method and results of spatiotemporal inde-

pendent component analysis (stICA). Two examples of simple syn-

thetic data illustrating two different examples that the transition

stICA approach can detect. (A) Two symmetric transitions where

Region 1 precedes either Regions 2 or 3 with equal frequency, or

Regions 2 or 3 precede Region 1. Top left is an illustration of the

spatial patterns used to generate the synthetic data. Top right is an

illustration of the timecourses used, with the spatial patterns, to

create transitions. Below are the components found from the

stICA. (B) A second simulation, illustrating a case of spatial non-

stationarity. Regions 1 and 2 are anticorrelated, but Region 1 is a

different size when it is deactivated than when it is activated. At

the bottom of 2B we see: first, the transition stICA that captures

the spatial nonstationarity; followed by two additional ICA

approaches: an example of a standard spatial ICA and an alterna-

tive stICA [Stone et al., 2002] both of which fail to capture the

spatial nonstationarity and anticorrelated network structure. Vox-

els are displayed at z-values where the probability of a voxel being

part of the component rather than noise was >0.95. To aid visual-

ization, square black boxes have been placed around the distinct

regions in the ICA output. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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(defined in terms of, e.g., MNI coordinates) will appear at
multiple time-points (see Simulation Results section).

We quantitatively assessed the spatial evolution over
time of each spatiotemporal component identified. For the
empirical FMRI-derived components (size 230 3 28 3 23
voxels), we subdivided the image along the medial–lateral
dimension to produce 10 volumes (23 3 28 3 23 voxels),
corresponding to the within-component time-points. Spa-
tial correlation and mutual information between all pairs
of within-component volumes were calculated, resulting in
two (10 3 10) similarity matrices. The two measures are
expected to be broadly complementary but provide differ-
ent information about the changing spatiotemporal rela-
tionship. Mutual information is a more comprehensive
statistical measure, tracking the existence of any statistical
(spatial) relationship over time, while the correlation pro-
vides information about the direction of the relationship
(i.e., whether it is positive or negative).

Simulated FMRI Data

We used simulated FMRI data to demonstrate the transition
stICA procedure, and how it differs from standard spatial
ICA, and to show it is able to detect spatiotemporal compo-
nents when ground truth is known. Two simple scenarios
were simulated in MATLAB (R2014a) involving transitions
between regions of activation (described below). All simula-
tions involved the simple representation of brain activity as
3D synthetic data (dimensions 100 3 100 3 time). The exam-
ple datasets have a small number of spatial data points (100 3

100) compared to empirical FMRI data. However, for the sim-
ple stylized simulations (where there were only a few, rela-
tively sparse, signals), the degree of sparseness of the data was
(as in FMRI data) high relative to the number of voxels sug-
gesting that ICA is still an appropriate tool to use. The syn-
thetic data are similar or larger than that used in other ICA
simulations [e.g., Stone et al., 2002], supporting our use of sim-
ilar sized simulations.

We generated pixel timecourses where activation, deacti-
vation and baseline states were modeled as all pixels within
a specified region being set to 1, 21, or 0, respectively.
Regions composed of adjacent 20 3 20 pixels (Fig. 3A, B, top
right) were defined. To all pixel timecourses (Fig. 2A, B, top
right) we added Gaussian noise (mean 5 0, s.d. 5 0.2). The
synthetic data were, as described above, divided up based
on predefined anchor points, spatially concatenated and
combined across datasets. The resulting dataset was then
decomposed into spatiotemporal components.

The first simulation (Fig. 2A) demonstrates a scenario where
a given pattern of activation could be followed by two different
patterns of activation. It involved three regions and a temporal
structure as follows: The activation of Region 1 is followed
equally frequently by activity either in Regions 2 or 3, and then
the period of activation of Regions 2 and 3 are followed by the
activation Region 1. This results in four possible transitions:
Region 1! Region 2 and its symmetric transition Region 2!

Region 1; and Region 1!Region 3 and its symmetric transition
Region 3! Region 1. When a region was fully activated (on),
its timecourse was set to 1, when fully inactive (off) it was set to
0. When a region was turned on, its activity linearly increased
over 5 TRs to full activation; similarly, when turned off, its
activity linearly decreased over 5 TRs to 0. One hundred data-
sets were generated with 40 TRs per dataset, resulting in a data-
set with dimension 100 3 100 3 400. Given that we
implemented slow onset or offsets in the signals (crudely
approximating a hemodynamic response function), anchor
points were placed at the starts of transitions, which were 10
TRs apart (i.e., TR 5 1, 11, 21, 31), capturing the start states and
end states of the transitions. We predicted that the transition
stICA should find two components, with each component
reflecting a separate symmetric pair of transitions (one for
Region 1! Region 2 and its reverse; and a second for Region 1
! Region 3 and its reverse).

The second simulation (Fig. 2B) explores the scenario where
there is spatial nonstationarity, and consists of two regions, one
of which region shape consistently with a transition. To simulate
this scenario, Region 1 had two spatial patterns, either Region
11 which contains 20 3 20 pixels, or Region 12 which contains
a subset of 15 3 15 of the pixels in Region 11. In this simple sim-
ulation, Region 2 is activated, Region 12 is deactivated. In con-
trast, Region 2 is deactivated and Region 11 is activated. In this
simulation, regions become either fully active (value set to 1) or
fully deactivated (value set to 21). For each transition, a region’s
activity linearly increased or decreased over 5 TRs. One hundred
datasets were generated with 30 TRs per dataset, resulting in a
100 3 100 3 300 dataset. Anchor points were again set to the
start points of the transitions, at TR 5 1, 11, 21. We predicted that
the transition stICA should find a single component reflecting
the changing spatial pattern of Region 1, with the smaller area
corresponding to Region 12 being initially deactivated and
Region 2 activated, followed by a spatially larger Region 11

becoming activated and Region 2 becoming deactivated.
In addition to the transition stICA approach, we also calcu-

lated independent components using alternative approaches:
(a) Melodic ICA without the reorganization (i.e., standard spa-
tial ICA); and (b) an alternative form of spatiotemporal ICA
proposed by Stone et al., [2002]. Stone et al.’s approach does not
involve any data reorganization, but instead simultaneously
maximizes both spatial and temporal independence. For all
approaches (i.e., the transition stICA, spatial ICA and Stone
et al.’s stICA), we used default parameters except where stated
otherwise.

Empirical FMRI Dataset

Participants

FMRI datasets from 68 healthy control participants (50
female, mean age 30.9 6 2.76 1s.d.) involving blocks alternating
between rest (fixation) and either target detection or 2-back
working memory task conditions (see below) were obtained
from the Human Connectome Project [Van Essen et al., 2013].
These were all the FMRI datasets publicly available from this
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project at the time, in late 2013. Participants provided written
informed consent.

FMRI data acquisition and preprocessing

Four hundred and five gradient-echo echo planar images
were collected with whole-brain coverage using an accelerated

multiband acquisition protocol [Feinberg et al., 2010; Moeller
et al., 2010; Setsompop et al., 2012] with the following parame-
ters: repetition time 5 720 ms; echo time 5 33.1 ms; flip
angle 5 52�; FOV 5 208 3 180 mm (RO 3 PE); Matrix 5 104 3

90 (RO 3 PE); Slice thickness 5 2.0 mm; 72 slices with 2.0 mm
isotropic voxels; Multiband factor 5 8; Echo spacing 5 0.58 ms;
and bandwidth 5 2,290 Hz/Px. For each participant, two runs

Figure 3.

Nine spatiotemporal components extracted from a 30-component

spatiotemporal independent component analysis (stICA). Time is

presented from left to right, different columns representing the 10

time-points following an anchor point. Cool colors represent vox-

els negatively coupled to the component and warm colors posi-

tively coupled. All components were classified according to

whether they were significantly (Bonferroni-corrected for multiple

comparisons) more activated for task onset anchor points, (A) or

offsets (B), or neither (C). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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were acquired, one with phase encoding from right-to-left and
the other from left-to-right.

The data was minimally preprocessed according to the
standard Human Connectome Project preprocessing pipe-
line, described in Fischl [2012], Glasser et al., [2013], and Jen-
kinson et al., [2002, 2012]. In brief, this included: (i) correction
for field inhomogeneities, (ii) motion correcting the data; and
(iii) transforming and resampling the data into 2 3 2 3

2 mm3 MNI152 standard space. We down-sampled the data
to 8 3 8 3 8 mm3 voxel resolution to mitigate the computa-
tional requirements of the modified probabilistic ICA step
(see below). Additionally, the data were temporally filtered
using a 30-s high-pass filter (although qualitatively similar
results were obtained without any temporal filtering).

FMRI stimuli and design

The FMRI tasks are reported in detail on the website of the
Human Connectome Project: (http://www.humanconnec-
tome.org/documentation/Q1/task-fMRI-protocol-details.
html). Briefly, participants underwent blocks of either target
detection (0-back) or 2-back trials interspersed with blocks of
rest (fixation). Participants were visually presented with blocks
of pictures of places, tools, faces or body parts. Stimuli were
projected onto a computer screen behind the participant’s
head via a mirror approximately 8cm from the participant’s
eyes. During each run, there were four long blocks separated
by approximately 15 seconds of rest (fixation). Each of the
long blocks (approximately 50 seconds) consisted of two
shorter blocks (approximately 25 seconds each) with either tar-
get detection or 2-back stimuli from one of the four categories.
At the start of each of the short blocks, the task type (2-back or
target detection) and target (if target detection) was displayed
for 2.5 seconds. This was then followed by 10 trials of 2.5 sec-
onds. Each stimulus was presented for 2 seconds with an
inter-trial interval of 500ms. For simplicity, we analyzed only
the beginning (placing anchor points at the start of the onset)
and end (placing anchor points at the start of the offset) of the
long blocks, although future work could explore the transi-
tions between different task states rather than between rest
and different tasks as here. Each participant performed two
runs of the task. The block presentation order was the same
across participants.

FMRI analysis

For the empirical FMRI data, we spatially concatenated
the 10 volumes extracted for each anchor point (i.e., each
task block onset or offset) along the medial–lateral dimen-
sion (Fig. 2, middle), providing a period (10 3 720
ms 5 7.2 s) encompassing the peak of the hemodynamic
response function, which occurs about 4–6 s following
stimulus delivery [Logothetis, 2002]. Here, per subject, we
have two runs with four task onset samples and four task
offset samples for each run. To remove any subject-specific
mean signal effects, each voxel within the spatially con-
catenated data was demeaned within a run (in the fourth

dimension) before being concatenated across runs and
subjects (also in the fourth dimension). This resulted in a
single 4D dataset, with 1,088 samples (68 subjects 3 2 runs
3 8 onsets/offsets).

The 4D dataset was then decomposed into different com-
ponents using spatial probabilistic ICA (Fig. 2, bottom). The
ICA was decomposed into 20-, 30-, and 70-independent
components, to investigate if the results were robust to dif-
ferent levels of decomposition, and the consistency of the
components calculated at different dimensionality was
assessed using spatial correlation. For example, each com-
ponent derived at 20-dimensions was spatially correlated
with each component at 70-dimensions, to assess which, if
any, components were preserved in both analyses. As a fur-
ther validation step, a separate analysis was performed
after concatenating 15 rather than 10 adjacent time-points,
and then analyzing the data using a 30-dimensional ICA.
For display purposes, components were thresholded fol-
lowing mixture modeling (as part of the Melodic process)
using a probability >0.95 that a voxel was more likely com-
ponent than noise (the thresholds for each component are
presented alongside the Supporting Information Figures
that present each component in more detail).

Each component consisted of a spatial map and had an
associated set of weights (with one value per 1,088 samples).
In typical spatial ICA, the weights are considered as the
component time course, with a value for each TR, represent-
ing how strongly active that component is at that time-
point. Here, we do not have time-points as with a spatial
ICA. Instead, since we input a sample for each time window
(e.g., for each 10 time-points), the transition stICA results in
a component weight for each sample, representing how
strongly active it is, for that sample. These weights can be
used to investigate whether a specific component was
involved in specific task conditions. To do this, the weight
vector (1,088 data points for each component) were entered
as the dependent variable into a mixed effects general linear
model (using fitlme in MATLAB R2014a). The model con-
tained fixed effect main effects for both task sequence (i.e.,
onset/offset) and task type (2-back or target detection) and
the interaction between the two as well as subject (since
there were multiple samples per subject), modeled as a ran-
dom intercept. Overall model F-statistics were calculated to
investigate if the component was modulated by the task
(Bonferroni-corrected for multiple comparisons), and t-sta-
tistics were calculated for the main effects and for the inter-
actions to see if they were significantly different from the
null hypothesis (i.e., no difference).

RESULTS

Simulation Results

Simulated transitions between multiple networks

Figure 2A presents the results from the transition stICA
performed on the first simulated dataset. The synthetic
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data contained four symmetrical transitions (Region 1 $
Region 2 and Region 1 $ Region 3). A transition stICA
was calculated with two components. The two components
strongly resembled the expected transitions. The first com-
ponent represented the transition from Region 1 ! Region
2. This is shown as (from left to right) a decline in activa-
tion in Region 1 to a negatively activated state, while
simultaneously there is an increase in activation in Region
2. This captures the pattern of activity starting at the
anchor point at TR 11. Because the underlying transition
pattern was symmetric between Region 1 ! Region 2 and
Region 2 ! Region 1, this component also captures the
reverse transition starting at TR 5 21 (i.e., if the component
is multiplied by 21, it captures the transition from Region
2 to Region 1). The second component resembles the tran-
sition between Region 1 and Region 3, with again, Region
1 deactivating over time (from left to right) and Region 3
activating. This is consistent with the anchor point starting
at TR 5 31. Again, this component also captures the
reverse transition from Region 3 to Region 1 that starts at
TR 5 1.

We note that the data is demeaned and variance normal-
ized as part of the preprocessing with Melodic; as such
the “baseline” inactive state for the different Regions is
negative, rather than 0 (as in the inputted timecourse
shown in the figure) and the negative “baseline” value is
different between Region 1 and Regions 2 and 3, which
are active only half as frequently.

We also note that a standard spatial ICA does not cap-
ture the transitions in the same form. A spatial ICA on the
original data (i.e., performed by running Melodic without
the spatial reordering step) revealed three components,
corresponding to Regions 1, 2, and 3, but did not directly
find the different transitions. We also applied an alterna-
tive form of spatiotemporal ICA [Stone et al., 2002] to the
simulated dataset. This approach finds components that
are maximally independent across both space and time;
however, unlike our approach it does not explicitly allow
for both spatial and temporal nonstationarity. As with the
standard spatial ICA, this alternative form of stICA does
not explicitly find the different transitions.

Simulated transitions involving spatial nonstationarity

The second simulation (Fig. 2B) demonstrates the
approach when there is spatial nonstationarity (i.e., the
regional pattern of activation changes with the transi-
tion). A transition stICA was calculated with a single
component: theoretically, the minimum necessary to cap-
ture the transition. The component displayed spatial
nonstationarity: starting (on the left) with a region
resembling Region 12 (the reduced size square area)
negatively weighted while Region 2 was positively
weighted. This then changed over time into Region 11

(the larger square area) being positively weighted and
Region 2 being negatively weighted. Again, we note that
the standard Melodic spatial ICA failed to produce a

component structure that easily captures the ground
truth. Figure 2B, bottom, shows the results of a spatial
ICA with three components (a number which might be
expected to capture all three states: Region 12, Region
11, and Region 2). This analysis splits Region 1 into two
separate spatial patterns, rather than replicating the spa-
tial organization of Region 12 and Region 11. The same
difficulty of the standard spatial ICA to capture the
underlying spatiotemporal structure (because of the non-
stationarity of Region 1) occurs with 1-, 2-, 5-, or
10-component analyses. Similarly, the alternative stICA
(Fig. 2B, bottom) performs similarly to the spatial ICA at
the dimensions tested (2, 4, and 10 components: the
available code only functioned when even numbers of
components were specified) and fails to find components
that reflect the underlying transition structure.

Empirical Results

Network transitions with task onset and offset

We performed the transition stICA on the empirical task
FMRI data, extracting 30 components. Nine components
are presented in Figure 3 (more detailed presentations of
the components are included in the Supporting Informa-
tion). A mixed effects general linear model comparing
each component’s loadings with the task condition (i.e.,
whether a sample was working memory or target detec-
tion and whether it was an onset or offset) showed that
eight components were significantly affected by the task
(Bonferroni correcting for multiple comparisons). Two
components were positively weighted with task onsets
and six with task offsets. In addition, we present another
component (Component 7) that, although not being modu-
lated by the task (e.g., onset/offset) is reported here
because it has a strong resemblance to the canonical DMN.
The other 21 components are presented in Supporting
Information Figure 9.

Within Component 1, we see over time (i.e., from left to
right in Fig. 3), the component changes dramatically, con-
sistent with a shift from being in a resting state to a state
performing an externally focused cognitive task. The com-
ponent weights revealed that it was strongly weighted to
the onset anchor points, that is, a transition from rest to
task. Figure 4 shows the temporal evolution in the spatial
pattern within each component (using spatial correlation
and mutual information between time-points within the
component). We see that Component 1 evolves such that
the first and last time-points are highly spatially anticorre-
lated (although, the anticorrelation is not perfect and, as
we see below in Figure 5B, the spatial patterns are nonsta-
tionary, changing with the transition).

The majority of the offset components showed the
reverse temporal evolution from Component 1. Compo-
nents 2, 4, 6, and 9 displayed a shift over time from typi-
cally task-positive networks of brain regions being active
to being inactive (Fig. 3B, Components 2, 4, 6, and 9). As
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with Component 1, this progression is consistent with the
temporal change predicted based on a canonical hemody-
namic response model of a task offset. These findings sug-
gest the modified ICA has decomposed the offset periods
into multiple different well-recognized functional net-
works. Component 2 is composed of bilateral superior
parietal, lateral, and medial superior frontal regions, a var-
iant on FPCNs. Components 4 and 9 are visual networks
localized to predominantly occipital regions. As with Com-
ponent 1, Figure 4 shows these components shifting over
time to a spatially anticorrelated state. Component 6 is
composed of bilateral anterior insula/frontal operculum
and medial frontal regions, consistent with another typical
network involved in cognitive control [Bonnelle et al.,
2012; Menon and Uddin, 2010].

Of the remaining components, Component 7 strongly
resembles the canonical DMN and anticorrelated parts of
the dorsal attention network, displaying a gradual reduc-
tion in activity over time. Surprisingly, this network was
not significantly more active in task onsets (where a reduc-
tion of DMN might be expected to accompany task

engagement) than offsets (P 5 0.37, uncorrected for multi-
ple comparisons).

Three components, 3, 5, and 8, partially resembled right-
or left-lateralized FPCNs (although all three extended over
much of the gray matter in the cortex, possibly reflecting
some form of global signal). Component 5 is only transi-
ently present (for three time-points) which is inconsistent
with the expected extended hemodynamic temporal
smoothing of the neural signal, and appears in the middle
of the time window. It seems likely that this component
may be non-neural in origin (Fig. 3). Further, the spatial
correlation and mutual information of the network is not
consistent with a smooth transition between states (Fig. 4).
Components 3 and 8 are also more transient than pre-
dicted based on the typical hemodynamic response (Figs.
3 and 4) as such it is unclear whether they are neural or
non-neural, or possibly a mixture of the two. If these com-
ponents are non-neural then the source of the noise is an
open question for future work. One possibility is that there
may be some degree of subtle task-locked movement or
other physiological signal. This would have a different

Figure 4.

Assessing spatial change over time within spatiotemporal com-

ponents. For each component, the similarity matrix (calculated

using spatial correlation and mutual information) between each

time-point is presented. In addition, the spatial correlation

between the first time-point and each additional time-point is

also presented. Brain images shown are a representative time-

point from within each spatiotemporal component. Full compo-

nents are shown in Figure 3 and Supporting Information. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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time course and different effects on the MR images than
the blood oxygen level dependent (BOLD) effect, and so
be captured as separate components.

Transitions Between Networks and Network

Nonstationarity

The spatiotemporal evolution of Component 1 is pre-
sented in more detail in Figure 5. At time-point one (T1,
Fig. 5A), there are positively coupled medial frontal and
parietal regions (reminiscent of the medial nodes of the
DMN), and negatively coupled occipital, superior parietal,
presupplementary motor area, and dorsolateral prefrontal
regions (regions typically activated by externally focused
cognitive tasks). This pattern evolves over time (i.e., within
the spatiotemporal component), with the expected fronto-
parietal system becoming apparent from T5 (approximately
3.5 s from the task onset) and being fully established by T7
(approximately 5 s post onset). This is consistent with the
timing of the peak of the canonical hemodynamic response
function (about 4–6 s) [Logothetis, 2002].

In general, Component 1 captures the change in spatial
pattern expected for a transition between the resting state
and an active externally focused cognitive task. However,
the component also suggests that, rather than the network

resembling the DMN simply changing from a relatively
“active” state to a relatively “less active” state, its spatial
organization also changes (Fig. 5B). In particular, we see
that in the first time-point (Fig. 5B, red), the DMN extends
posteriorly from the posterior cingulate and precuneus and
shows activation in areas of ventral anterior cingulate and
paracingulate frontal regions. In contrast, by time-point 10
(Fig. 5B, blue), the network is relatively deactivated and we
see that, while there are areas of overlap with the first-
time-point, the parietal regions extend anteriorly, and the
frontal regions extend into superior frontal regions. The
same evolution within Component 1 was seen at a range of
thresholds for component inclusion, and when comparing
other time-points, for example, T2 with T9. Figure 5C
shows the difference in z-statistic between T1 and T10, sug-
gesting that the nonstationarity, we observe is not merely a
function of the threshold chosen, but reflects a shift in the
spatial pattern of the DMN with task state.

Network Transitions and Different Task

Demands

Up to now, we have only considered how the compo-
nents are weighted differently for task onset and offset.
However, task blocks were composed of two different

Figure 5.

The first non-noise spatiotemporal component identified by a

30-component spatiotemporal independent component analysis

(transition stICA). (Component 1 in Fig. 4.) The component was

strongly weighted to onset anchor points, that is, a transition

from rest to task. (A) The component is shown in multiple axial

planes (top to bottom, MNI Z co-ordinate 5 50, 40, 20, 0, and

220), with time presented from left to right (T1–T10). Cool

colors represent voxels negatively coupled to the component

and warm colors positively coupled. (B) The evolving spatial

organization of the medial default mode network regions of the

component is shown for time-points T1 and T10, with voxels

coupled to the component at the first timepoint T1 (thresh-

olded z> 2) shown in red, and voxels within the final time-point

(T10) in blue (component thresholded z<22). The three pan-

els show different X-coordinates in MNI space. (C) The same as

in B, but with the difference in z-statistic between T1 and T10,

thresholded at z> 3 (restricted to DMN regions: i.e., positively

weighted z-scores from T1 and negatively weighted z-scores

from T10). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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externally focused cognitive tasks: either a target detection
(i.e., 0-back) or a 2-back task. Both tasks had a similar
composition, with a visually presented picture stimulus
cueing a forced choice cognitive decision followed by a
motor response (button press). Both tasks had the same
intertrial and interstimulus timings. However, the tasks
differed in terms of their cognitive demands, with target
detection requiring a single target picture to be maintained
in memory across the whole block, while the 2-back
required the continuous updating of items in working
memory. Consistent with their different cognitive
demands, the two tasks showed a difference in terms of
behavior, with the target detection being performed more
accurately and more rapidly (mean of median accu-
racy 5 0.92, s.d. 5 0.09; mean of median reaction time 5 807
ms, s.d. 5 134) than the 2-back task (mean of median accu-
racy 5 0.82, s.d. 5 0.12; mean of median reaction time-
5 1,028 ms, s.d. 5 137).

Figure 6 shows how different components are loaded
for the two tasks, and for the onsets and offsets of the two
tasks. Table I presents results from 2 3 2 mixed effects
general linear models (with a random intercept accounting
for subject) performed for each component, with task type
(target detection or 2-back) and task onset (block onset or
offset) as main effects and also including a task type by
onset interaction. We found that task onset/offset was the
most significant predictor, but that for some components
there were significant differences between task-type. Of
the components weighted heavily for task onset, Compo-
nent 1 (the network that transitions from a default-mode
type network to a frontoparietal control type network) was
significantly more heavily involved with the onset of the
target detection than the onset of the 2-back task. For the
components involved in the offset of tasks, Component 2
(a frontoparietal network) was more involved with the off-
set of the 2-back than the target detection task, as was
Component 3. Component 8 had a significant overall
model F statistic (see Supporting Information Figure 8) but
neither of the main effects nor the interaction was signifi-
cant on its own.

Robustness of Network Transitions

The number of components extracted with an ICA can
substantially affect the findings, and typically involves a
trade-off between specificity of the networks found and
interpretability. For example, in a recent analysis, we
found that certain important functional networks only
became apparent at higher dimensionality [i.e., >50 com-
ponents extracted, see Geranmayeh et al., 2014]. For this
reason, it was important to show that the present results
were robust to different dimensionalities, and so we reran
the original analysis, extracting 20 and 70 components.
The comparisons of the 20- and 70-dimensional analyses
with the original 30-component analysis are presented in
Figure 7A. We found a very close correspondence between

Component 1 from the original analysis (Fig. 7A, middle
row) with the two other analyses (Fig. 7A, top and bot-
tom). When using spatial correlation to quantitatively com-
pare across the components extracted, there were very
strong correspondences for the majority of the original
nine components of interest (Fig. 7B).

To show that the results were tolerant to different num-
bers of adjacent time-points being concatenated, Figure 7C,
D (in comparison with equivalent components shown in
Fig. 3) show the very strong similarity in specific compo-
nents between analyses conducted with 15 time-points and
the original analysis with 10 time-points. We note that,
within Component 1, the medial DMN structures (i.e., pos-
terior cingulate and ventromedial prefrontal cortex, cold
colors) that are present in the original 10-time-point analy-
sis do not survive the conservative statistical threshold
used in the 15-time-point analysis. However, at lower
thresholds, these regions are present.

DISCUSSION

Here, we found our simple adaptation to a frequently
used data-driven approach robustly defines transitions in
simulated data and empirical FMRI data, involving well-
recognized functional networks that accompany the onset
and offset of a cognitive task. The approach explicitly
focuses on spatiotemporal transitions rather than either
temporal or spatial patterns, and allows for both spatial
and temporal nonstationarity as well as making explicit
how a spatial pattern can be involved in different transi-
tions. From a cognitive perspective, our approach captures
transitions between brain networks, which can allow
investigation of the mechanisms underlying cognitive tran-
sitions that are fundamental to efficient and flexible behav-
ior. Our results are consistent with the current
understanding of a broad dynamical pattern, based on
previous studies: a DMN that becomes less active while a
set of FPCNs become more active with the onset of task.
However, in this first exploration of our novel approach,
we have observed a number of more subtle changes with
potentially important consequences for understanding net-
work dynamics.

Although this work is primarily a proof of concept
study, there are several interesting neurobiological find-
ings that the analysis reveals in addition to the expected
transition between DMN and FPCN with task. First, the
DMN has sometimes been described as a spatially consist-
ent and stable network; however, increasingly it is seen to
be more reactive to task demands [e.g., Harrison et al.,
2008; Leech et al., 2011, 2014; Seghier and Price, 2012].
However, here, we see the DMN that is anticorrelated
with the FPCN has a changing spatial distribution with
cognitive state. The DMN shifts to a more anterior/supe-
rior pattern of relative deactivation during task from the
more posterior inferior pattern of activation during rest.
More work is needed to understand the functional
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significance of this spatial variation; given that we anchor
the analyses to periods when the DMN and FPCNs are
expected to be dominant (given the extensive prior litera-
ture). Therefore, it remains possible that the transitions we
observe are not between networks that are truly linked
(e.g., at rest), but instead have been mixed together,
because of the neural response to the specific task

demands (something that requires future work across mul-
tiple tasks). However, one more intriguing possibility is
that the DMN and other functional networks are spatially
dependent and may be constantly shifting their spatial
organization to approximately balance activation and inhi-
bition across space, to maintain a specific neural dynamical
regime as we have recently proposed [Leech et al., 2014]. In a

Figure 6.

Assessing spatial change over time within spatiotemporal com-

ponents. For each component, the similarity matrix (calculated

using spatial correlation and mutual information) between each

time-point is presented. In addition, the spatial correlation

between the first time-point and each additional time-point is

also presented. Brain images shown are from an illustrative

time-point from within each spatiotemporal component to help

interpretation. Full components are shown in Figure 4 and Sup-

porting Information. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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similar vein, a second DMN component was identified, con-
sistent with the DMN playing multiple functional roles [Leech
and Sharp, 2014; Leech et al., 2012]. Further, this DMN compo-
nent, which showed initially activated (positive component
coupling) DMN regions reducing in activation over time, was
equally weighted to task onsets and offsets; that is, there was a
“reducing” DMN component following the onset of task (as
typically expected) but also following the end of task and into
rest. This suggests that the transition to rest from task is not
necessarily a completely passive process. Instead, it may be
more of an active process, consistent with recent results sug-
gesting a transient increase in DMN activity following task
[Mullinger et al., 2013].

Our analysis also suggests an asymmetry between task
onset and offset: that is, transitioning to rest is not the
same as transitioning into task. There were two compo-
nents that accompanied the onset of the task: (i) a DMN-
type component that transitioned into frontoparietal and
visual networks (that typically activate during these types
of task [Bonnelle et al., 2011; Sharp et al., 2011]); (ii) an
extensive network covering much of the gray matter but
centered on frontal executive systems including bilateral

insula and anterior cingulate regions (which, given its late
onset and extensive activation pattern, may be noise and
may relate to the global signal that is often regressed out
in seed based analyses). The offset of task was followed by
multiple components showing a “reducing” pattern (i.e.,
activation reducing over time). Components C4 and C9,
which both show initially positive coupling of the visual
regions to the component, were significantly associated
with task offsets and not task onsets. Within the compo-
nents there was reducing activation over time and even-
tual deactivation (negative component coupling) in C4.
This is as expected for the end of a visual task moving
into rest. One possible explanation for the existence of rel-
atively few onset components compared to multiple differ-
ent offset components is that transitioning from an
unconstrained rest state to a cognitive task involves an ini-
tial transition into a highly constrained neural state that is
relatively consistent across both tasks. Over time during
the task block, more heterogeneous neural processes may
become evident, possibly because the relatively homoge-
nous set of neural processes necessary to establish a new
cognitive set are no longer necessary, allowing a more
unconstrained or metastable state [Hellyer et al., 2014], or
because of variability in how task performance is sus-
tained over time [Leech et al., 2014]. Although rest periods
appeared to be more variable, this may be because we
know less about the rest state, rather than an inherent dif-
ference between task and rest. Task periods are relatively
easy to interpret (since there is an explicit task, with well-
described demands) while rest periods are less so. There
can be multiple different states of “rest” [Hayden et al.,
2009], and it is likely that the type of network activity
observed during rest depends on general context, the pre-
ceding task demands and other factors such as levels of
overall arousal.

The transitions evoked by the onsets or offsets of the two
different tasks (i.e., target detection or 2-back) also differed.
Although components were generally weighted to being over-
all task onset or offset, there was also a smaller influence from
the type of task, such that Component 1, although involved
for both tasks, was more heavily weighted for the target detec-
tion task. Similarly, for offsets, Component 2 (a second FPCN)
was more heavily weighted for the 2-back. These findings
may reflect shared neural systems supporting similar cogni-
tive operations involved in both tasks. But they also imply that
the 2-back task may involve additional cognitive resources,
shown as the engagement during onset (and the disengage-
ment during offset) of additional frontoparietal systems. Dif-
ferences between onsets and offsets, and between tasks, may
also reflect heterogeneity across subjects in how they per-
formed the task. This is something that can be studied in the
future by looking at datasets where there is considerable indi-
vidual variability in task strategy or performance, for example,
in patient groups or more executive tasks that elicit a variety
of behavioral strategies.

Our transition stICA approach modifies a well-accepted
spatial ICA procedure by rearranging adjacent time-points

TABLE I. Results from 2 3 2 mixed effects general lin-

ear models performed for each component, with task

type (target detection or 2-back) and task onset (block

onset or offset) as main effects and also including a task

type by onset interaction

Component Condition T P (one tailed)

C1 2-Back vs target detection 23.45 <0.005
Onset vs offset 39.94 <0.0001

Interaction 23.85 <0.005
C2 2-Back vs target detection 8.27 <0.0001

Onset vs offset 25.44 <0.0001
Interaction 25.77 <0.0001

C3 2-Back vs target detection 3.97 <0.005
Onset vs offset 28.48 <0.0001

Interaction 21.45 Ns
C4 2-Back vs target detection 0.87 Ns

Onset vs offset 25.56 <0.0001
Interaction 24.24 <0.001

C5 2-Back vs target detection 0.49 Ns
Onset vs offset 21.44 Ns

Interaction 21.35 Ns
C6 2-Back Vs Target Detection 20.87 Ns

Onset vs offset 24.04 <0.0005
Interaction 1.83 Ns

C7 2-Back vs target detection 20.075 Ns
Onset vs offset 20.68 Ns

Interaction 0.10 Ns
C8 2-Back vs target detection 0.90 Ns

Onset vs offset 1.40 Ns
Interaction 1.36 Ns

C9 2-Back vs target detection 0.46 Ns
Onset vs offset 27.57 <0.0001

Interaction 1.59 Ns
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in space, before performing the ICA on samples concaten-
ated across subjects. This approach generates components
that are not constrained in space or time (except by the
size of the rearranging time window), but rather span
both dimensions. By anchoring the analyses to data from

time periods associated with the onset and offset of a cog-
nitive challenging task, our approach reveals novel aspects
of the dynamics of network activity accompanying the
transition into and out of task conditions. Importantly,
these findings were observed without having to specify a

Figure 7.

Demonstrating the robustness of the findings with different anal-

yses. (A) The homologue of Component 1 from the 30-

component transition stICA (middle row) in both a 20- (bot-

tom) and a 70-component (top) analysis. (B) Matrix of spatial

correlation between each of the nine non-noise components

from the 30-component transition stICA and components from

either the 20- (top matrix) or 70-dimension analyses (bottom)

coefficients. Absolute correlation coefficient values are plotted,

since the sign of the correlation between components is not

important for assessing spatial similarity. This shows strong,

unique correlations between most of the nine components and

homologues in the 20- and 70-dimension analyses. (C and D)

Exploring the results when spatially concatenating 15 rather

than 10 time-points, using a 30-dimensional transition stICA.

Time is from left to right. (C) The homologue of Component 1

(see Fig. 3A for comparison), (D) the homologue of Component

2 (see Fig. 3B). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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priori either the spatial networks or the specific task time
courses (specifying instead only the anchor points) and
allowing the spatial distribution of networks to evolve
over time.

While our simulations were highly simplified, they
enabled us to demonstrate some important aspects of our
stICA approach, supporting our application of the
approach to empirical FMRI data. The simulations also
allowed comparison with standard spatial ICA where
ground truth was known. We found stICA was able to
directly capture two phenomena defined within the syn-
thetic data: (i) a consistent transition between networks
and (ii) nonstationarity of networks over time. We found
that standard spatial ICA (implemented in Melodic) in
both cases failed to produce components that captured the
underlying spatiotemporal structure of the data as clearly.
To uncover this structure with spatial ICA, additional
analysis steps using the component timecourse would be
necessary, and accurately pulling apart the appropriate
underlying transition structure would depend on the
choice of additional analysis approach.

Our approach differs in important ways from existing
approaches to investigating functional brain networks dur-
ing cognitive tasks. In the traditional mass univariate vox-
elwise approach, a time-course known to be associated
with the task is regressed with functional data, to find
voxels which are active during task and rest. This pro-
duces a single map of regions that are associated with the
time-course, but may miss the possibility that regions asso-
ciated with the task are the result of activity or competi-
tion between or within multiple functional networks over
time. More recently, data-driven approaches, such as spa-
tial ICA, have been used to define networks of brain
regions, and the time-course of networks have been com-
pared with a time-course associated with the task. Com-
paring the output of our stICA procedure to standard
spatial ICA is nontrivial. For instance, the model order of
a spatial ICA would need to be far higher to capture the
same rich description of spatiotemporal transitions.
Increasing the model order comes with problems of multi-
ple comparisons and in interpretation, and this approach
still assumes stationarity of spatial pattern of components,
which may not be the case.

While we have focused on using ICA to find spatiotem-
poral components within FMRI data, a similar rearranging
approach (rearranging time into space) could also be com-
bined with other functional connectivity approaches, and
could be used with other functional data. For example,
alternative clustering approaches such as PCA could be
used. Indeed, seed-based approaches could also be used
by selecting a voxel from the first time-point, and maps
computed based on voxels that significantly covary with
this voxel at the same time-point and across different time
shifts could be calculated. However, such mass univariate
approaches would fail to take full advantage of the multi-
variate nature of the data, and the fact that there are likely
to be different temporally evolving components (depend-

ing on task), within-individual and across-individual
differences.

One of the key advantages of our approach is that it is
methodologically simple (involving simple spatial rear-
ranging of the data). As such, it has considerable potential,
in principle, as an exploratory data analysis tool across a
range of FMRI challenges. Currently, we present results
for a slow blocked FMRI design, but the approach could
also be used for short event-related designs. However, for
event-related data, there will be complexities to do with
the precise alignment between when images are acquired
and the onsets/offsets of events. Further, to interpret how
the components are weighted onto different tasks would
require convolving event onsets and durations with canon-
ical hemodynamic responses (which was not necessary in
the current situation). The length of the time window can
also be modified depending on the neurobiological ques-
tion, and there is no in principle minimum or maximum
time window that need be used. Finally, the approach
could also be applied to resting state data, although this
lacks explicit time-points to anchor the analyses, and so
could be too unconstrained. One approach would be to
analyze resting state data by performing a two step proce-
dure: (1) a data-driven classification (e.g., k-means cluster-
ing) to label brain volumes into different well-recognized
states (e.g., canonical resting states, Smith et al., 2009]) and
identify transition points between them; (2) using these
transition points to define anchors for our approach (data
rearrangement followed by ICA), and thereby characteriz-
ing the transitions between different states during rest.

ACKNOWLEDGMENTS

Data were provided by the Human Connectome Project,
WU-Minn Consortium (Principal Investigators: David Van
Essen and Kamil Ugurbil; 1U54MH091657) funded by the
16 NIH Institutes and Centers that support the NIH Blue-
print for Neuroscience Research; and by the McDonnell
Center for Systems Neuroscience at Washington University.

REFERENCES

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun
VD (2014): Tracking whole-brain connectivity dynamics in the
resting state. Cereb Cortex 24:663–676.

Beckmann CF, Smith SM (2004): Probabilistic independent compo-
nent analysis for functional magnetic resonance imaging. IEEE
Trans Med Imaging 23:137–152.

Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005): Investiga-
tions into resting-state connectivity using independent compo-
nent analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–
1013.

Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De
Boissezon X, Greenwood RJ, Sharp DJ (2011): Default mode
network connectivity predicts sustained attention deficits after
traumatic brain injury. J Neurosci 31:13442–13451.

Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA,
Greenwood RJ, Sharp DJ (2012): Salience network integrity

r Scott et al. r

r 1362 r



predicts default mode network function after traumatic brain
injury. Proc Natl Acad Sci USA 109:4690–4695.

Braga RM, Sharp DJ, Leeson C, Wise RJ, Leech R (2013): Echoes of
the brain within default mode, association, and heteromodal
cortices. J Neurosci 33:14031–14039.

Buckner RL, Andrews-Hanna JR, Schacter DL (2008): The brain’s
default network: Anatomy, function, and relevance to disease.
Ann N Y Acad Sci 1124:1–38.

Chang C, Glover GH (2010): Time–frequency dynamics of resting-state
brain connectivity measured with fMRI. Neuroimage 50:81–98.

Cocchi L, Zalesky A, Fornito A, Mattingley JB (2013): Dynamic
cooperation and competition between brain systems during
cognitive control. Trends Cogn Sci 17:493–501.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,
Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME,
Schlaggar BL, Petersen SE (2007): Distinct brain networks for
adaptive and stable task control in humans. Proc Natl Acad
Sci USA 104:11073–11078.

Duff EP, Trachtenberg AJ, Mackay CE, Howard MA, Wilson F, Smith
SM, Woolrich MW (2012): Task-driven ICA feature generation for
accurate and interpretable prediction using fMRI. NeuroImage, 60:
189–203.

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S,
Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010): Multi-
plexed echo planar imaging for sub-second whole brain FMRI
and fast diffusion imaging. PLoS ONE 5:e15710.

Filippini N, Nickerson LD, Beckmann CF, Ebmeier KP, Frisoni
GB, Matthews PM, Smith SM, Mackay CE (2012): Age-related
adaptations of brain function during a memory task are also
present at rest. Neuroimage 59:3821–3828.

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME (2005): The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci USA 102:9673–9678.

Geranmayeh F, Wise RJ, Mehta A, Leech R (2014): Overlapping
networks engaged during spoken language production and its
cognitive control. J Neurosci 34:8728–8740.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen
DC, Jenkinson M (2013): The minimal preprocessing pipelines for
the Human Connectome Project. Neuroimage 80:105–124.

Gordon EM, Breeden AL, Bean SE, Vaidya CJ (2014): Working
memory-related changes in functional connectivity persist
beyond task disengagement. Hum Brain Mapp 35:1004–1017.

Harrison BJ, Pujol J, L�opez-Sol�a M, Hern�andez-Ribas R, Deus J,
Ortiz H, Soriano-Mas C, Y€ucel M, Pantelis C, Cardoner N
(2008): Consistency and functional specialization in the
default mode brain network. Proc Natl Acad Sci USA 105:
9781–9786.

Harrison BJ, Pujol J, Contreras-Rodr�ıguez O, Soriano-Mas C,
L�opez-Sol�a M, Deus J, Ortiz H, Blanco-Hinojo L, Alonso P,
Hern�andez-Ribas R, Cardoner N, Mench�on JM (2011): Task-
induced deactivation from rest extends beyond the default
mode brain network. PLoS ONE 6:e22964.

Hayden BY, Smith DV, Platt ML (2009): Electrophysiological cor-
relates of default-mode processing in macaque posterior cingu-
late cortex. Proc Natl Acad Sci USA 106:5948–5953.

Hellyer PJ, Shanahan M, Scott G, Wise RJ, Sharp DJ, Leech R
(2014): The control of global brain dynamics: Opposing actions
of frontoparietal control and default mode networks on atten-
tion. J Neurosci 34:451–461.

Jenkinson M, Bannister P, Brady M, Smith S (2002): Improved
optimization for the robust and accurate linear registration and
motion correction of brain images. Neuroimage 17:825–841.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith
SM (2012): FSL. Neuroimage 62:782–790.

Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011). Fractionat-
ing the default mode network: Distinct contributions of the
ventral and dorsal posterior cingulate cortex to cognitive con-
trol. J Neurosci 31:3217–3224.

Leech R, Sharp DJ (2014): The role of the posterior cingulate cor-
tex in cognition and disease. Brain 137:12–32.

Leech R, Braga R, Sharp DJ (2012): Echoes of the brain within the
posterior cingulate cortex. J Neurosci 32:215–222.

Leech R, Scott G, Carhart-Harris R, Turkheimer F, Taylor-
Robinson SD, Sharp DJ (2014): Spatial dependencies between
large-scale brain networks. PLoS ONE 9:e98500.

Logothetis NK (2002): The neural basis of the blood-oxygen-level-
dependent functional magnetic resonance imaging signal.
Philos Trans R Soc Lond B Biol Sci 357:1003–1037.

Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB,
Castellanos FX, Milham MP (2010): Inter-individual differences
in resting-state functional connectivity predict task-induced
BOLD activity. Neuroimage 50:1690–1701.

Mennes M, Kelly C, Colcombe S, Castellanos FX, Milham MP
(2013): The extrinsic and intrinsic functional architectures of
the human brain are not equivalent. Cereb Cortex 23:223–229.

Menon V, Uddin LQ (2010): Saliency, switching, attention and
control: A network model of insula function. Brain Struct
Funct 214:655–667.

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N,
Ugurbil K (2010): Multiband multislice GE-EPI at 7 tesla, with
16-fold acceleration using partial parallel imaging with appli-
cation to high spatial and temporal whole-brain fMRI. Magn
Reson Med 63:1144–1153.

Mullinger KJ, Mayhew SD, Bagshaw AP, Bowtell R, Francis ST
(2013): Poststimulus undershoots in cerebral blood flow and
BOLD fMRI responses are modulated by poststimulus neuro-
nal activity. Proc Natl Acad Sci USA 110:13636–13641.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,
Shulman GL (2001): A default mode of brain function. Proc
Natl Acad Sci USA 98:676–682.

Seghier ML, Price CJ (2012): Functional heterogeneity within the
default network during semantic processing and speech pro-
duction. Front Psychol 3:281.

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ,
Wald LL (2012): Blipped-controlled aliasing in parallel imaging
for simultaneous multislice echo planar imaging with reduced
g-factor penalty. Magn Reson Med 67:1210–1224.

Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle
V, De Boissezon X, Powell JH, Counsell SJ, Patel MC, Leech R
(2011): Default mode network functional and structural con-
nectivity after traumatic brain injury. Brain 134:2233–2247.

Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele P-F, Adriany G,
Hu X, Ugurbil K (2002): Sustained negative BOLD, blood
flow and oxygen consumption response and its coupling to
the positive response in the human brain. Neuron 36:1195–
1210.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE,
Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF
(2009): Correspondence of the brain’s functional architecture
during activation and rest. Proc Natl Acad Sci USA 106:13040–
13045.

r Exploring Spatiotemporal Network Transition r

r 1363 r



Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich
MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF,
Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K (2012):
Temporally-independent functional modes of spontaneous
brain activity. Proc Natl Acad Sci USA 109:3131–3136.

Smith DV, Utevsky AV, Bland AR, Clement N, Clithero JA,
Harsch AE, McKell Carter R, Huettel SA (2014): Characterizing
individual differences in functional connectivity using
dual-regression and seed-based approaches. NeuroImage 95:
1–12.

Spreng RN (2012): The fallacy of a “task-negative” network. Front
Psychol 3.

Stone JV, Porrill J, Porter NR, Wilkinson ID (2002): Spatiotemporal
independent component analysis of event-related fMRI data

using skewed probability density functions. NeuroImage 152:
407–421.

Utevsky AV, Smith DV, Huettel SA (2014): Precuneus is a func-
tional core of the default-mode network. J Neurosci 343:932–
940.

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E,
Ugurbil K (2013): The WU-Minn Human Connectome Project:
An overview. Neuroimage 80:62–79.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008):
Evidence for a frontoparietal control system revealed by intrin-
sic functional connectivity. J Neurophysiol 100:3328–3342.

Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M (2014):
Time-resolved resting-state brain networks. Proc Natl Acad Sci
USA 111:10341–10346.

r 1364 r

r Scott et al. r


