
Characteristics of Canonical Intrinsic Connectivity
Networks Across Tasks and Monozygotic

Twin Pairs

Craig A. Moodie,1 Krista M. Wisner,2 and Angus W. MacDonald III1,2,3*

1Department of Neuroscience, University of Minnesota Medical School, Minneapolis,
Minnesota

2Department of Psychology, University of Minnesota, Minneapolis, Minnesota
3Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota

r r

Abstract: Intrinsic connectivity networks (ICNs) are becoming more prominent in the analyses of in vivo
brain activity as the field of neurometrics has revealed their importance for augmenting traditional cogni-
tive neuroscience approaches. Consequently, tools that assess the coherence, or connectivity, and mor-
phology of ICNs are being developed to support inferences and assumptions about the dynamics of the
brain. Recently, we reported trait-like profiles of ICNs showing reliability over time and reproducibility
across different contexts. This study further examined the trait-like and familial nature of ICNs by utiliz-
ing two divergent task paradigms in twins. The study aimed to identify stable network phenotypes that
exhibited sensitivity to individual differences and external perturbations in task demands. Analogous
ICNs were detected in each task and these ICNs showed consistency in morphology and intranetwork
coherence across tasks, whereas the ICN timecourse dynamics showed sensitivity to task demands. Spe-
cifically, the timecourse of an arm/hand sensorimotor network showed the strongest correlation with the
timeline of a hand imitation task, and the timecourse of a language-processing network showed the
strongest temporal association with a verb generation task. The area V1/simple visual stimuli network
exhibited the most consistency in morphology, coherence, and timecourse dynamics within and across
tasks. Similarly, this network exhibited familiality in all three domains as well. Hence, this experiment is
a proof of principle that the morphology and coherence of ICNs can be consistent both within and across
tasks, that ICN timecourses can be differentially and meaningfully modulated by a task, and that these
domains can exhibit familiality. Hum Brain Mapp 35:5532–5549, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

The burgeoning field of functional connectivity magnetic
resonance imaging (fcMRI) has shown marked interest in
developing our understanding of brain activity from the

perspectives of both functional specialization and integra-
tion [Behrens and Sporns, 2011; Smith, 2012]. Several
methods have been developed for assembling the voxel-
wise fcMRI signals across the brain to form networks
based on their functional covariation, that is, their intrinsic
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connectivity or coherence [Beckmann and Smith, 2004; Cal-
houn and Adali, 2001; Fox and Raichle, 2007; Mckeown
et al., 1998], and the existence of these networks has been
corroborated using other techniques such as magnetoence-
phalography and electroencephalography [Calhoun et al.,
2009; Pasquale et al., 2012]. These findings show that
intrinsic connectivity networks (ICNs), observed using
fcMRI techniques, can be moderately reliable nonartifac-
tual networks that correspond in their location and behav-
ioral significance to well-established areas and canonical
brain processes such as vision, motor control, and execu-
tive function [Behrens and Sporns, 2011; Deco et al., 2009;
Lahaye et al., 2003; Meier et al., 2012; Repov�s and Barch,
2012; Smith, 2012; Snyder and Raichle, 2012]. For instance,
an independent component analysis (ICA) of activation
maps from the numerous behavioral paradigms in the
BrainMap database generated activation networks that
were morphologically similar to the ICNs extracted from
resting state scans [Smith et al., 2009]. Furthermore, func-
tional associations were derived for the BrainMap net-
works as a guide for tests of the reverse inference of data-
driven ICNs, such as this study [Laird et al., 2011].

Other groups have been interested in how ICNs may be
useful for studying individual differences and/or the bio-
logical basis of psychopathology [Fornito and Bullmore,
2012; Guo et al., 2012; Van Dijk et al., 2010]. However, it is
important to first consider whether ICNs possess a neuro-
metric profile necessary for these purposes. Some findings
suggest that ICNs are not only reproducible and replicable
at a group level, but that their test–retest reliability is also
strong at the individual level [Anderson et al., 2011; Chou
et al., 2012; Shehzad et al., 2009; Thomason et al., 2011;
Zuo et al., 2010]. Hence, with some caveats, the network
profiles appear to be reliable individual difference traits
[Poppe et al., 2013; Wisner et al., 2013]. These findings are
consistent with the studies showing that ICNs appear to
be present irrespective of task demands or cognitive states,
including rest and sedation [Arbabshirani et al., 2012;
Biswal et al., 2010; Calhoun and Adali, 2001; Calhoun
et al., 2001, 2008; Deco et al., 2011; Greicius et al., 2008; Li
et al., 2012; Poppe et al., 2013; S€amann et al., 2011; Smith
et al., 2009]. To further examine the trait-like nature of
ICNs, this study builds on these previous neurometric
findings by examining (1) whether individual differences
in canonical ICNs are consistent within tasks, and (2)
across tasks within participants, (3) the manner in which
network consistency may vary with task demands and
engagement, and (4) to what extent these individual differ-
ences might be similar across monozygotic twin pairs.

The question of the consistency of ICNs, both within
task and across different tasks, has both theoretic and
practical significance. Two fundamental questions about
the nature of ICNs that remain are whether they are stable
over time and whether they reflect structural–functional
“priors” or, in effect, networks in a reserve state, waiting
to be activated by appropriate cognitive demands [Deco
et al., 2011]. A great deal of work has preceded under the

unexamined assumption that individual differences in the
profiles of “reserve” ICNs anticipate individual differences
in ICNs when they are relevant to brain functioning. There
is indirect evidence that resting state (reserve) ICNs have
a similar structure to task-related networks [Calhoun et al.,
2008; Kristo et al., 2012; Smith et al., 2009], and thus sup-
porting this hypothesis and the potential for predictive
capacity across task demands. However, there is no direct
evidence, to date, that the characteristics of a complement
of data-driven ICNs can describe traits across the brain
and across circumstances.

One approach to this question is to examine whether
phenotypes exhibited by ICNs during one task are predic-
tive of phenotypes in a different task. It should then be
possible to determine the degree to which each ICN,
observed in each behavioral assay, is involved with that
task and how its characteristics change with respect to
changing task demands. By doing so, this approach can
also be used to validate the functional associations of
canonical networks recently described in a meta-analysis
of activation studies [Laird et al., 2011]. Additionally, by
using functional localizer tasks, which are paradigms that
were designed to drive activation reflecting specific cogni-
tive processes, this study also examined whether ICNs
were detected equally well across paradigms, enabling a
test of convergence and divergence of ICNs across cogni-
tively driven brain states.

Another consideration when establishing new metrics is
the extent to which they are influenced by familial versus
nonshared environmental factors. Familiality, which
includes both heritable and shared environment influen-
ces, can be examined using twin study designs. Heritable
influences have been reported on cognitive–behavioral
phenotypes as diverse as intelligence, memory, and per-
sonality, as well as psychiatric syndromes such as schizo-
phrenia, depression, and autism [Blokland et al., 2011;
Hallmayer et al., 2011; Jang et al., 2011; Molloy et al., 2001;
Tost et al., 2011]. It is, therefore, not surprising that twin
studies have also found that the development, structural
architecture, cortical profile, and functional activity of the
brain also show large heritable components [Ambrosius
et al., 2008; Belmonte and Carper, 2006; Blokland et al.,
2008; Borgwardt et al., 2010; Brun et al., 2009; Chen et al.,
2012; Chiang et al., 2011; Deco et al., 2011; Duarte-
Carvajalino et al., 2012; Glahn et al., 2010; Hagmann et al.,
2010; Honey et al., 2010; Jahanshad et al., 2010; Matthews
et al., 2007; Meyer-Lindenberg, 2009; Munn et al., 2007;
Rimol et al., 2010; Tarokh et al., 2011; Yang et al., 2012].

These findings support the investigation of the heritabil-
ity of ICNs and, hence, population variance in ICNs
should be related to population variance in genes. Mono-
zygotic twin designs provide a division between non-
shared environmental influences and familial influences,
which include shared environmental and additive genetic
factors, of which the primary source of familial variance is
genetic [Belmonte and Carper, 2006; Blokland et al., 2011;
Matthews et al., 2007]. As a result, in this study we
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assessed the familial, and therefore primarily genetic, con-
tribution to the characteristics of ICA-derived ICNs by
using a monozygotic twin sample to examine the consis-
tency of ICN measurements in two paradigms. Hence, this
proof of principle approach allowed us to investigate the
extent to which ICNs could be viewed as traits, and
whether ICNs that were trait-like were also familial in this
sample.

METHODS

Participants

Twenty-six pairs of right-handed monozygotic twins (13
female pairs, 13 male pairs, mean age 25.02 6 5.36 SD;
range, 19–34) were recruited for this study from a larger
sample of 1,388 twin pairs from the Minnesota Twin
Registry. All twins were prescreened for pre-existing med-
ical, neurological, or psychiatric conditions and personality
characteristics relevant to a decision-making task not fur-
ther reported here. All participants were given written,
informed consent before participating in the study, and
the Institutional Review Board of the University of Minne-
sota approved all experiments. Five twin pairs were
excluded from the analysis owing to one member not hav-
ing the entire complement of scans, or technical problems
during the scanning session.

Hand Imitation and Verb Generation Tasks

Each participant was trained prior to the start of the
experiment and all participants performed two behavioral
tasks, Hand Imitation (HI) and Verb Generation (VG), that
were designed to drive brain activity in a specific way
(functional localizers). The tasks included a 6-min run
each of HI and VG, from the International Consortium on
Brain Mapping (ICBM) test battery, within a single scan-
ning session [Mazziotta et al., 2001, 2009]. HI and VG had
an identical block design and subtraction condition: six
3000 experimental blocks were interspersed with 3000 control
blocks in which participants performed an arrow-
monitoring activity. The two tasks had the same Nyquist
frequency (0.17 Hz), as well as the same trial frequency
(0.5 Hz) and the total experimental time for each task was
6 min. Within the experimental blocks for both tasks, there
were 15 analogous 2-s trial periods. For HI, participants
imitated a novel hand position during the 2-s trial period.
For VG, a drawing of a familiar object was flashed on-
screen for a 500-ms presentation period, followed by a 1.5-
s response window for participants to silently generate a
verb associated with the picture without actually moving
their lips. The control task involved fixating on a central
cross, after which an arrow would appear on the screen
pointing in one of the four directions. Participants pressed
a button with their left thumb when the arrow was point-
ing left.

MR Acquisition and Preprocessing

All data were collected on a 3T Siemens Trio MRI scan-
ner using a 6-channel transmit, 12-channel receive head
coil. One identical whole-brain functional scan each was
collected for the HI and VG tasks (EPI; repetition time 5

2,000 ms, echo time 5 28 ms; flip angle 5 90�; voxel size
5 3.5 3 3.5 3 3.5 mm; matrix size 5 64 3 64, axial orien-
tation; number of slices 5 34, slice thickness 5 3.5 mm,
spacing between slices 5 3.5 mm, interleaved slice acquisi-
tion). In addition, a high-definition structural T1-weighted
image (MPRAGE) was also collected per participant.

All MRI data were preprocessed and analyzed using the
FMRIB FSL 4.1.8 software package (http://www.fmrib.ox.
ac.uk/fsl). Prestatistical processing steps included high-
pass temporal filtering (70 s 5 0.014 Hz), motion correc-
tion via the MCFLIRT linear registration algorithm [Jenkin-
son et al., 2002], BET brain extraction, interleaved slice-
timing correction, and spatial smoothing with a 5-mm full-
width half-maximum Gaussian kernel. For each partici-
pant, the functional scans were registered to their high-
resolution T1 images and then to the 2-mm standard-space
MNI brain using nonlinear algorithms with a 2-mm resam-
pling resolution and 10-mm warp kernel [Andersson et al.,
2007].

FMRI Data Analysis

Intrinsic connectivity network generation

To generate reliable data-driven networks that reflected
functional regions in the brain, the EPI scans for both tasks
were processed via temporal concatenation group inde-
pendent component analyses using FSL’s MELODIC ICA
toolkit [Beckmann and Smith, 2004]. The algorithms were
constrained using a dimensionality of thirty (30) compo-
nents and all components that clearly did not reflect physi-
ologically relevant BOLD-dependent signal were excluded
from subsequent analyses. The remaining nonartifactual
components were subsequently identified as ICNs [Beck-
mann, 2012; Calhoun et al., 2009; Zuo et al., 2010]. Given
that roughly one-third of the components tended to be
artifactual, 30 components were the optimal dimensional-
ity to match the nonartifactual components with the 20
BrainMap networks derived by Laird et al. (2011) and uti-
lize said networks for reverse inference [Bhaganagarapu
et al., 2013; Ray et al., 2013].

Additionally, to avoid artificially inflating correlations
between tasks and twins, and to allow for cross-validation
analyses, group-level ICNs were generated separately for
each task (HI, then VG) and, within each task, for two sub-
groups containing one member of each twin pair (all twin
1s and then all twin 2s). Owing to possible participant
scan concatenation and initial random value effects, a
participant-order permutation and combination procedure
was performed, which involved running multiple
MELODICs and deriving a set of meta-level ICNs,
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reflecting consistent components across the permutations
[Wisner et al., 2013]. Once the meta-level ICNs were
obtained, the FSL spatiotemporal regression algorithm was
used to generate participant-level network spatial maps
and timecourses for the ICNs derived from each task
(http://www.fmrib.ox.ac.uk/analysis/dualreg).

ICN morphology analyses

When assessing ICN morphology, all 3D spatial maps
were thresholded using a conservative threshold (z 5 6) to
limit the maps to only voxels that were highly significant
and contributed most to the ICN morphology [Wisner
et al., 2013]. Spearman rank correlations and Dice similar-
ity indices were then calculated in each set of compari-
sons. Given the relationship between the Dice similarity
index and Cohen’s kappa, a Dice of s � 0.4 (max 5 1.0)
represented fair to good overlap [Agresti, 2013; Banerjee
et al., 2012]. These metrics were first computed between
thresholded group-level ICNs (z 5 6) from the HI and VG
tasks and the ICNs were then displayed at higher thresh-
olds during 3D rendering to simplify the maps for view-
ing. Second, these metrics were computed between the
group-level ICNs and the canonical BrainMap networks
[Laird et al., 2011] at the standard threshold (z 5 6) for
reverse inference testing. ICNs with good Dice similarity
(s > 0.4) for these comparisons were considered to have a
reasonable amount of overlap with the BrainMap net-
works. Hence, this test functioned as one external valida-
tion for the ICNs generated from the two distinct
functional scans.

Next, similar procedures were completed at the partici-
pant level. Participant-specific spatial maps of the ICNs
were thresholded as mentioned above (z 5 6) and spatial
correlations were performed between each twin and his or
her co-twin, as well as every other participant in the study
for each ICN. Heatmap matrices were generated per ICN
to visualize these spatial correlations and to determine if
twin pair correlation scores were distinguishable from the
correlation scores for the entire sample. All ICN correla-
tion matrices were averaged to produce a final heatmap
with a value for the average spatial correlation across all
ICNs for all twins. A t-test contrasting the mean ICN cor-
relation scores for twin pairs versus scores for the pairs of
unrelated participants was performed. Subsequently, a
nonparametric permutation test [Hothorn and Hornik,
2011], employing random reassignment of twin pair mem-
bership, was completed to validate the results of the t-test
using a method in which no assumptions would be vio-
lated by genetic covariance.

Finally, spatial correlation analyses that included Spear-
man and Dice coefficient tests were performed between
the participant-level ICN spatial maps and the spatial
maps of the group level ICNs. This was done to determine
the extent to which each individual’s spatial maps con-
formed to the group ICN spatial maps. For the spatial
familiality metric, an intraclass correlation (ICC) of the

Dice similarity coefficients within twin pairs was calcu-
lated per ICN to ascertain which ICNs exhibited
familiality.

ICN coherence analyses

The intranetwork coherence of an ICN is an estimate of
how well the timecourses of voxels in a participant-level
ICN fit the group-level timecourse vector and, hence, is a
measure of the intrinsic connectivity strength of that net-
work. To obtain an estimate of the familiality of intranet-
work coherence, both voxelwise and network-level mean
ICC’s were computed using an image data (nifti file) algo-
rithm and the ICC package in RTM from CRAN (http://
cran.r-project.org/), respectively [Revelle, 2011]. First, the
participant-level network spatial maps were masked using
a binarized image of a task-specific group-level ICN map
that had been prethresholded (z 5 6). Voxelwise ICC’s
were then calculated across twins using the FMRIB
fslmaths algorithm, and the mean of the ICC values across
the voxels within the mask was recorded per ICN, per
participant (Supporting Information Methods). Second, the
network-level mean coherence score for each thresholded
ICN spatial map was calculated per participant using the
fslstats tool (Supporting Information Methods). RTM was
then used to calculate ICC’s of the resulting average net-
work coherence coefficients across twins for all ICNs,
within each task separately, and this was used as the basis
of the coherence familiality metric.

ICN timecourse analyses

To examine the relationship between the ICNs and the
respective task designs, Pearson correlations were per-
formed between the timecourse of each participant-level
ICN and the convolved task hemodynamic response func-
tion (HRF) design matrix for that individual. Hence, the
relationship between the timecourse of each ICN and the
HRF associated with task demands could be computed
per individual. This consequently revealed the extent to
which each network was engaged by the task for both the
HI and the VG paradigms. For each task, these correla-
tions (after z-transformation) were averaged across all par-
ticipants per ICN and the mean correlations were used as
the basis for determining the degree to which each ICN
was involved with the task in the “relationship to task”
metric. Additionally, z-transformed correlation scores were
correlated within twin pairs for the task HRF familiality
metric [Revelle, 2011].

Participant-level ICN consistency within task
(split-half analysis)

To address the question of ICN consistency within task,
each scan was divided into equal halves and the group-
level ICNs from the meta-ICAs of each task were used as
the templates in separate dual regressions performed on the
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corresponding halved data sets (for HI and VG, respec-
tively). The meta-ICA maps were used for these analyses to
allow for interpretability of subsequent comparisons of
these split-half data to other metrics. The resulting
participant-level spatial maps and timecourses from the
subsequent dual regressions were used for a split-half anal-
ysis of the consistency within task of the following three
metrics described above: (i) spatial overlap, (ii) mean coher-
ence, and (iii) the relationship to task during each scan.

To assess how much the participant-level spatial maps
changed during the scan, Dice’s similarity calculations were
performed between ICN spatial maps generated from the
two respective halves of each task. These coefficients were
averaged across individuals per ICN and described as the
Spatial Overlap Consistency within each task (HI and VG). For
the Mean Coherence Consistency, mean intranetwork coherence
was calculated for the participant-level spatial maps gener-
ated from the two halves of data, for each task respectively,
as described above (Supporting Information Methods) and
the reliability within each task was calculated using ICC’s.
The task EV vectors were also halved and each half was cor-
related with the ICN timecourses generated from the corre-
sponding half of the scan data using the calculation
described in the ICN timecourse analyses section. These task-
relevant scores were then z-transformed and submitted to an
ICC in the ICN Relationship to Task Consistency metric.

Participant-level ICN consistency across tasks
(cross-task network correspondence)

Additional metrics were computed to assess the extent
to which network characteristics were stable from one task
condition to the other at the participant level. At the group
level, 15 networks were matched across the two tasks
based on at least a modest level of Dice similarity (Dice
threshold, s � 0.4). First, ICN consistency was assessed by
performing 3D spatial correlations of the amount of over-
lap between matched participant-level ICN maps (HI vs.
VG). Second, the consistency of the ICN coherence across
tasks was assessed by calculating ICC’s of the mean intra-
network coherence scores generated for the matched task
ICNs across all individuals. Third, the set of z-transformed
correlations between the task timeline and the participant-
level ICN timecourses, for each task, was then submitted
to an ICC calculation to assess the stability of ICN task
relevance across tasks in an individual.

RESULTS

Relationship to Canonical Brain Networks

Nonartifactual group-level networks generated from the
separate ICAs of the first twin group and second twin
group exhibited a high degree of similarity (Supporting
Information Fig. 1). As a result, the group components
from the HI and VG tasks that were produced from the
meta-ICA of the first twin group were selected for use in

all subsequent analyses. These two sets of group-level
maps were consequently back transformed into
participant-level component maps and timecourses for all
participants and, hence, full twin pairs. By using maps
derived from only the first twin group the analyses were
not artificially inflated by genetic covariance.

In both the HI and the VG data, 17 out of the 30 compo-
nents generated by the meta-ICA procedure were nonarti-
factual (Fig. 1a). Dice similarity coefficients calculated
between these two sets of group-level ICN spatial maps
highlighted a one-to-one or a one-to-two correspondence
between the ICNs derived from the two tasks (Fig. 1b). The
canonical networks from the BrainMap database (Laird
et al., 2011) were subsequently correlated with each set of
ICNs for comparison and reverse inference of function. This
showed that there was a modest or good correspondence
between each BrainMap network and an ICA derived-ICN
(Fig. 2). To determine whether the ICNs derived from the
different tasks were related to the BrainMap networks in a
similar way, we tested the relationship between the group-
level inference correlation scores (Table I, data columns 1
and 2). These were correlated at r 5 0.50 (P 5 0.057), indicat-
ing that the ICNs that were the best matches to the Brain-
Map networks could be consistent across the two tasks.

Relationship to Task

Timecourse analyses showed both strongly positive and
strongly negative correlations between the ICN time-
courses and the convolved HRF design matrix vectors for
both tasks (Table I, columns 3 and 4). In all tests, signifi-
cance testing with the effective sample size and Bonferroni
correction were applied. For the HI task, the networks that
had significant positive relationships to the task were the
arm/hand sensorimotor network (r 5 0.82), MT 1 MST/
association visual network (r 5 0.81), area V1/simple vis-
ual stimuli network (r 5 0.61), and the visuospatial rea-
soning network (r 5 0.56). Additionally, the subgenual
cingulate cortex and orbitofrontal cortex network had a
significant anticorrelation with the task timeline (r 5

20.56). For the VG task, the networks that had significant
positive relationships to the task were the area V1/simple
visual stimuli network (r 5 0.70) and left executive and
language processing network (r 5 0.66); no networks
showed a significant anticorrelation with the task timeline.
Taken together, these results show that the networks that
were most engaged by each task were networks with func-
tions relevant to the particular task demands, including
visual processing of stimuli, sensorimotor processing for
HI, and language processing for VG.

Participant-Level Network Consistency Within

Task (Split-Half)

In the split-half analysis of ICN spatial overlap consis-
tency, average Dice overlap scores ranged from s 5 0.64 to
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Figure 1.

Networks generated from the HI and VG tasks. (a) 3D overlays

of ICNs were rendered in either coronal or axial orientations

for the first two and last two rows, respectively. For each orien-

tation, the HI ICNs are in the first row and the VG ICNs in the

second. (b) Spearman rank-order correlations and Dice similar-

ity correlations were calculated between ICN maps from the HI

and VG tasks. These two sets of ICA-derived ICNs underwent

spatial correlations with a threshold for at least a modest score

on the Dice similarity index (s � 0.4). In addition, the Spearman

correlations were found to be significant above a threshold of

r� 0.433 at a< 0.05. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 2.

Spearman rank-order correlations and Dice similarity correla-

tions were calculated between the network masks from the

BrainMap database and the ICN spatial maps generated from the

ICA of functional data from (a) the HI task and (b) the VG task.

ICA networks were assessed for having at least a modest score

on the Dice similarity index (s � 0.4) with a corresponding

BrainMap network. In addition, the Spearman correlations were

found to be significant above a threshold of (r � 0.433) at a <
0.05. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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s 5 0.90 for the HI task, and from s 5 0.64 to s 5 0.91 for
the VG task. For HI, the highest spatial consistency
within-task was observed in the midbrain/interoception
network (s 5 0.90), followed by the default mode network
(DMN) (s 5 0.86), and the area V1/simple visual stimuli
network (s 5 0.85). For VG, the highest spatial overlap
was observed in the area V1/simple visual stimuli net-
work (s 5 0.91), followed by the hand–eye coordination

network (s 5 0.87) and the DMN (s 5 0.86). The overall
consistency of the morphology of the ICNs during the task
was excellent and comparable in both tasks (s 5 0.76 for
HI; s 5 0.74 for VG) (Table II, data columns 1 and 2).

The ICC’s from the split-half analysis of mean coherence
consistency ranged from 0.19 to 0.75 for HI, and from 0.18
to 0.79 for VG. For HI, mean network coherence was most
consistent within-task in the frontoparietal network (ICC

TABLE I. Summary statistics for reverse inference and the ICN relationships to the tasks

Inference correlation Relationship to Task

Network Reverse Inference Component HI (90% Cl) VG (90% Cl) HI (95% Cl) VG (95% Cl)

1 Medial temporal/Emotion & Limbic Network 1 0.45 0.43 20.24 0.24
(0.10 0.70) (0.00 0.73) (20.32 20.15) (0.17 0.31)

2 Subgenual ACC & OFC/Reward 1a 0.52 0.46 20.56 * 20.36
(0.19 0.75) (0.04 0.74) (20.63 20.50) (20.41 20.30)

3 Basal Ganglia/Reward Network 2 0.43 0.27 0.03 20.10
(0.07 0.69) (20.18 0.63) (20.07 0.13) (20.15 20.04)

4 Emotion & Executive/Language & Auditory Cortices 0.20 0.36 0.00 20.17
(20.18 0.53) (20.08 0.69) (20.09 0.08) (20.24 20.11)

5 Midbrain/Interoception Network 0.56 0.53 0.05 20.05
(0.24 0.77) (0.13 0.78) (20.05 0.15) (20.10 0.00)

6 Visuospatial Reasoning Network 0.39 0.42 0.56 * 0.05
(0.02 0.66) (20.01 0.72) (0.49 0.61) (20.04 0.13)

7 Arm/Hand Sensorimotor Network 0.32 0.31 0.82 * 20.21
(20.06 0.62) (20.14 0.65) (0.78 0.86) (20.29 20.13)

8 Hand-eye Coordination Network 0.44 0.51 0.00 20.17
(0.08 0.70) (0.10 0.77) (20.09 0.08) (20.24 20.10)

9 MT 1 MST/Areas V2 & V3/Covert reading 0.38 0.36 0.81 * 20.18
(0.01 0.66) (20.08 0.69) (0.78 - 0.84) (20.27 20.09)

10 Area V1/Simple Visual Stimuli Network 0.49 0.59 * 0.61 * 0.70 *

(0.15 0.73) (0.21 0.81) (0.54 - 0.70) (0.65 0.74)
11 Social Cognition/Default Mode Network 0.58 * 0.55 20.39 20.35

(0.27 0.78) (0.16 0.79) (20.47 20.31) (20.44 20.26)
12 Cerebellum/Autonomic/Naming Network 0.46 0.63 * 20.20 0.21

(0.11 0.71) (0.27 0.83) (20.31 20.07) (0.14 0.28)
13 Fronto-parietal/Right Executive Network 0.45 0.44 20.34 20.15

(0.10 0.70) (0.01 0.73) (20.42 20.26) (20.23 20.06)
14 Speech Sensorimotor Network 0.38 0.51 20.14 0.04

(0.01 0.66) (0.10 0.77) (20.20 20.08) (20.05 0.12)
15 Left Executive/Language Processing 0.22 0.47 20.39 0.66 *

(20.16 0.55) (0.05 0.75) (20.47 20.31) (0.59 0.71)
16 Medial temporal/Emotion 2 0.39 0.00

(0.02 0.66) (20.11 0.10)
17 Subgenual ACC & OFC/Reward 1b 0.29 20.15

(20.09 0.60) (20.23 20.06)
18 Visuomotor Timing & Movement Preparation 0.35 0.44

(20.10 0.68) (0.40 0.49)
19 Arm/Hand Sensorimotor Network 1b 0.16 20.32

(20.29 0.55) (20.38 20.27)

Note: Reverse Inference Component and Inference Correlation: Reverse Inference Component labels derived from Laird, et al., 2011 (http://
fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/). Relationship to Task: mean correlations of the participant-level design matrix hemodynamic
response function (HRF) with ICN timecourses. Network correlation scores were bolded at significance threshold of p < 0.05. Significant
correlations that survived Bonferroni correction were starred (p < 0.0029). Some confidence intervals do not include zero, but the values
were not found to be significant after adjustments with the effective sample size (see Methods). HI 5 hand imitation, VG 5 Verb Gener-
ation, CI 5 Confidence Interval.

r Network Characteristics in Monozygotic Twins r

r 5539 r

http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
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5 0.75), followed by the area V1/simple visual stimuli net-
work (ICC 5 0.64). For VG, mean network coherence was
most consistent in the visuospatial reasoning network (ICC
5 0.79), followed by the frontoparietal network (ICC 5

0.76). The overall consistency of mean network coherence
during the task was good for both tasks (ICC 5 0.51 for
HI; ICC 5 0.64 for VG) (Table II, data columns 4 and 5).

The ICC’s from the split-half analysis of z-transformed
scores for the ICNs’ relationship to task had a range of
0.01–0.88 for HI and 0.21–0.70 for VG. The task relevance
of the ICNs was most consistent during the task for the
arm/hand sensorimotor network (ICC 5 0.88) for HI and
the basal ganglia network for VG (ICC 5 0.70). The overall
consistency of the task relevance of the ICNs was found to
be good and comparable in both tasks (ICC 5 0.56 for HI;
ICC 5 0.47 for VG) (Table II, data columns 7 and 8).

Participant-Level Network Consistency Across

Different Tasks (Cross-Task)

For the analysis of the correspondence of individual
level spatial maps across tasks, it was found that the mid-
brain/interoception network had the highest participant-
level spatial consistency (s 5 0.82), followed by the DMN
(s 5 0.81) (Table II). Overall, the task-to-task spatial consis-
tency across all individuals and matched networks was
found to be 0.51 (Table II, data column 3). The frontoparie-
tal/right executive network showed the highest consis-
tency for mean coherence scores across the two tasks (ICC
5 0.77), and the overall consistency of ICN coherence
across tasks was 0.46 (Table II, data column 6). When look-
ing at the consistency of each network’s response to differ-
ential task demands (task relevance), ICN timecourses
were most similar across tasks for the area V1/simple vis-
ual stimuli network (ICC 5 0.61). However, owing to the
fact that the ICNs showed differential task-relevant
changes in their timecourses during each task, there was
low overall consistency of ICN timecourses across tasks
(ICC 5 0.14) (Table II, data column 9), suggesting many of
the ICNs were sensitive to specific aspects of task
demands.

Task Familiality

Using the task HRF familiality metric, which assessed
the degree to which twins showed similar relationships
between the ICN timecourses and the task timeline, four
ICNs showed significant correspondence within twin pairs
after Bonferroni correction in the HI task (Table III, data
column 1). These ICNs were the area V1/simple visual
stimuli network (ICC 5 0.63), the hand–eye coordination
network (ICC 5 0.59), the basal ganglia network (ICC 5

0.49), and the emotion and executive network (ICC 5

0.49). In the VG task, the networks that showed significant
task HRF familiality after Bonferroni correction were the
left executive/language processing network (ICC 5 0.57),

the visuomotor timing and movement preparation net-
work (ICC 5 0.57), the DMN (ICC 5 0.48), and the arm/
hand sensorimotor network (ICC 5 0.48) (Table III, data
column 2). Given that the levels of ICN task HRF familial-
ity did not simply map onto the magnitude of task rele-
vance in either task, this suggests that the familiality
metric measured covariance in twins’ brains over-and-
above task relevance.

Spatial Familiality

The spatial overlap familiality metric was used to indi-
cate the correspondence of twin scores for the extent of
spatial overlap of individual-level ICN spatial maps with
the group maps in each task. Of the networks that passed
multivariate significance thresholds in the HI task, it was
found that the basal ganglia reward network exhibited the
highest familiality (ICC 5 0.65), followed by the frontopa-
rietal/right executive network (ICC 5 0.61) and the mid-
brain interoception network (ICC 5 0.49) (Table III, data
column 3). In the VG analysis, significant familiality was
observed in the arm/hand sensorimotor network 1b (ICC
5 0.66), the emotion and executive network (ICC 5 0.51),
the midbrain/interoception network (ICC 5 0.48), the area
V1/simple visual stimuli network (ICC 5 0.48), and the
arm/hand sensorimotor network (ICC 5 0.48) (Table III,
data column 4).

Intranetwork Coherence Familiality

To assess coherence familiality, mean network coherence
score of ICC’s and voxelwise ICC’s was calculated. There
were several networks that were found to exhibit signifi-
cant familiality for the mean network coherence analysis
after corrections for multiple comparisons. For ICNs from
the HI task, the ICN with significance that survived Bon-
ferroni correction was the MT 1 MST/association visual
network (ICC 5 0.63) (Table III, data column 5). For ICNs
from the VG task, the area V1/simple visual stimuli net-
work exhibited the highest familiality (ICC 5 0.68), fol-
lowed by the frontoparietal/right executive network (ICC
5 0.65), and the arm/hand sensorimotor network (ICC 5

0.62) (Table III, data column 6). There was only a modest,
nonsignificant correlation between the coherence familial-
ity observed in each task (r 5 0.30).

The magnitudes of the mean network coherence ICC’s
were two to three times the magnitude of the same metric
when calculated voxel-by-voxel. For example, for HI task,
the three highest voxelwise ICC scores were for the mid-
brain interoceptive network (ICC 5 0.33), basal ganglia/
reward network (ICC 5 0.27), and area V1/simple visual
stimuli network (ICC 5 0.21), but none of these reached
the level of significance (Supporting Information Fig. 2a).
Similarly, for the VG task, the highest voxelwise ICC’s
were for the area V1/simple visual stimuli network (ICC
5 0.31), midbrain interoceptive network (ICC 5 0.28), and
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cerebellar network associated with autonomic and naming
tasks (ICC 5 0.26), which were also nonsignificant (Sup-
porting Information Fig. 2b). Interestingly, the area V1/
simple visual stimuli network was found to be one of the
networks with the highest familiality using both the mean
network coherence and the voxelwise coherence metrics,
which suggests that this network exhibits robust coherence
familiality; however, it appeared that the network-level
analyses amalgamate the signal more efficiently than vox-
elwise analyses.

Permutation Testing

After selecting the group components from the ICA, the
back-transformed participant-level spatial maps were used
to generate heatmaps showing spatial correlations across
all participants (Fig. 3). This analysis provided a different
way of looking at familiality as in this case, all study par-
ticipants were compared to each other. Consequently, the
twin scores could be compared within this larger sample
to see if there were group mean differences between twins
and unrelated individuals. In the resulting heatmap, the
diagonal showed that twins tend to have scores that are
higher with their co-twin, that is for the twin pair than for
unrelated individuals. This observation was then validated
by performing a t-test of the group of twin pair scores ver-
sus scores for unrelated participants and it was found that
the correlations were significantly higher within the twin
pair (diagonal elements) than for unrelated individuals
(off-diagonal elements) (t 5 6.6856, df 5 21.455, and P 5

5.765e 2 07). In addition, this finding was confirmed by a
nonparametric permutation test in which twin pair mem-
bership was randomly reassigned (t 5 19.5595, P 5 3.373e
2 13). Overall, these tests recapitulated that the ICNs
exhibited a significant degree of familiality.

DISCUSSION

To examine the consistency and familiality of ICNs, we
examined ICN phenotypes during two functional localizer
tasks performed by 21 monozygotic twin pairs. These anal-
yses revealed (1) common ICN characteristics that (2)
showed a great degree of participant-level reproducibility
within and across tasks, but were nevertheless (3) modu-
lated to some degree by changes in task demands. (4) Sev-
eral features showed significant familiality, including the
extent to which brain networks were modulated by task
demands, intranetwork coherence, and network
morphology.

Relationship Between Canonical Brain

Networks and Tasks

There was at least a modest Dice correlation, with
strong one-to-one mappings, between the data-driven,
group-level ICNs from the analyses of the HI and VG

tasks, as well as between the ICNs from each task and the
BrainMap networks. As such, this study is a validation of
the functional associations from the BrainMap meta-
analyses using raw data from task scans [Laird et al., 2011;
for replication see Wisner et al., 2013] and shows that the
meta-ICA algorithm was robust and captured generally
the same networks from two highly dissimilar tasks. Fur-
thermore, as a congruent set of networks was present in
very different ICBM tasks, the findings of this study are
evidence that a large proportion of the ICNs were not spe-
cific to a particular task. These results are consistent with
previous studies that have shown that ICNs are not stimu-
lus dependent, as similar networks have been derived dur-
ing task and rest [Arbabshirani et al., 2012; Calhoun et al.,
2008], as well as from an extensive task activation meta-
analysis and resting state scans [Laird et al., 2011; Smith
et al., 2009]. However, given that the ICNs from each task
in this study were not identical, with some showing
greater disparity compared to others, it remains to be
determined how much of this results from systematic task-
dependent variation versus instabilities in measurement
and processing. Nevertheless, this study serves as a proof
of principle that complements of brain networks can be
captured under different circumstances, and that the same
general network can be examined across varying contexts
to examine how it changes.

Another goal of these analyses was to show that not
only could canonical ICNs be derived from various behav-
ioral paradigms, but also that the ICA algorithms would
be sensitive to task manipulations in a manner that is com-
plementary to traditional fMRI activation studies. In doing
so, this study provides a separate, additional validation of
the BrainMap functional associations by not only using the
spatial correspondence of activation networks and ICNs,
but also employing direct analysis of raw fMRI data and
the resulting ICN timecourses. Consequently, task rele-
vance was established for networks with meta-analytical
functional associations to hand motions in the HI task,
including a network with premotor areas that are putative
mirror neuron regions, as well as for language-related net-
works in the VG task. These functionally relevant ICNs
were not only selectively and significantly related to sepa-
rate tasks using timecourse analyses, but they also con-
tained regions that had been previously reported to be
related to these tasks in traditional GLM paradigms.
Within the HI task, this is true for the visuospatial reason-
ing ICN, which contained the superior parietal lobe and
ventral premotor cortex, as well as the association visual
ICN, which contained the extrastriate visual cortex, and
finally the network which encapsulated the primary visual
cortex (area V1). The arm/hand sensorimotor ICN con-
tained the hand regions of the pre- and postcentral gyri,
and all of these areas contained within the ICNs have pre-
viously been found to be related to hand imitation [Graf-
ton and Hamilton, 2007; Iacoboni, 2005; Jackson et al.,
2006; Koski et al., 2003]. The same was true for the left
executive and language processing ICN that was
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significantly related to the VG task timeline as it contained
both Broca’s and Wernice’s areas, which have been heavily
associated with verb generation [Crivello et al., 1995;
Edwards et al., 2010; Indefrey, 2011; Indefrey and Levelt,
2004].

These findings lend credence to the assertion that the
data are not overfit, and that this ICA method can be used
to examine task manipulations [Calhoun et al., 2001].
These ICNs reflect the activity of real, relevant brain
regions and the ICA method used to produce them can
provide information about which networks receive even
subtle perturbations from the task presentation, which
might not be captured by a typical GLM subtraction para-
digm. Hence, it is apparent that this new approach can
provide information that is complementary to activation
paradigms [Smith, 2012]. However, any claims can only be
made about the relevance of ICN modulation by these two
tasks. Hence, future studies will directly relate the results
of a traditional GLM to an ICA in the same task data set
to determine the extent to which this is a general
principle.

The arm/hand sensorimotor and visuospatial reasoning
networks were strongly related to the task timeline of
the HI task, but the hand–eye coordination network was
not related at all. There are several explanations for this
curious finding, including that the participants were
lying supine in the scanner and, as such, were not look-
ing at their hands and not making parabolic, grasping,
or other complex actions that might have engaged the
hand–eye coordination network. A similar finding is that
in the analysis of the VG task, the left executive and lan-
guage processing network, which includes both Broca’s
and Wernice’s areas, was significantly related to the task,
but the speech sensorimotor network and the composite
network associated with emotion and executive function-
ing, language, and the primary auditory cortices did not
exhibit strong task relevance. In the case of the VG task,
the participants were instructed to look at a picture and
generate a verb or action without actually speaking it out
loud. Hence, it is likely that the task engaged the left
executive and language processing network as well as
visuomotor timing and movement preparation network,
but not the speech sensorimotor network as there was no
verbal output and associated activity in that part of the
motor cortex. Similarly, as the participants were produc-
ing no sounds, it is reasonable that the auditory network
was also not engaged by the task in a significant
manner.

Another observation is that both the DMN and the exec-
utive networks were anticorrelated with the task. This at
first seemed counterintuitive as executive networks are
typically described as being antagonistic to the DMN [Fox
and Raichle, 2007; Raichle et al., 2001]. However, the con-
trol condition is a passive monitoring task, which the
DMN has been shown to be involved in [Greicius and
Krasnow, 2003; Li et al., 2012]. Additionally, this monitor-
ing task probably recruited the executive networks more

than the task condition owing to the need for sustained
vigilance for the particular arrow that required a button-
press response, in contrast to the HI and VG tasks that eli-
cited more stereotyped responses.

Within-Task and Cross-Task

Consistency

In general, it was found that ICNs have good to excel-
lent consistency within tasks regardless of the metric used.
For the spatial overlap split-half consistency, the midbrain
and DMNICNs consistently had some of the highest scores
in both the HI and the VG tasks. Hence, it is not surpris-
ing that this results in these two networks having the
highest scores for the crosstask reproducibility of the spa-
tial maps. This observation also holds for the area V1/sim-
ple visual stimuli network as it also had one of the highest
levels of spatial reproducibility and mean coherence for
the split-half analyses and, subsequently, the crosstask
analysis. Although there are other networks that had high
scores in the morphology and coherence analyses as well,
when considering the relationship to task, area V1 had
good reliability in both tasks for the split-half analyses and
a comparable score for the crosstask analysis, which was
almost twice the magnitude as the next highest ICNs,
making the consistency of task relevance in V1 a unique
finding.

The previous studies, such as Zuo et al. (2010) have
employed test–retest reliability measures to ICA data and
they found that the networks with the highest within-
participant reproducibility were their medial visual net-
work, frontoparietal networks, DMN, and executive con-
trol network. In a later study, Wisner et al. (2013) found
that group-level reproducibility was highest for the V1/
simple visual stimuli network, followed by the DMN. In
addition, when comparing the ICN group maps from their
test–retest and crossvalidation samples with BrainMap net-
works, the simple visual stimuli network showed the high-
est level of consistent spatial overlap [Wisner et al., 2013].
These findings are supported by those of this study which
shows that the area V1/simple visual stimuli network
emerges as the ICN with the best consistency. Hence, V1
had the highest average rank (and group of averages) for
the consistency metrics, both within each task and across
tasks. This is likely owing to the fact that V1 is a unimodal
input area that has a stereotyped response, and this will
be discussed further below.

In general, the three methods of assessing the consis-
tency of ICNs provided evidence that the morphology and
coherence of the ICNs showed good overall consistency,
both within and across tasks. However, although the rela-
tionship with task was stable within each task, this metric
exhibited low consistency across tasks, which implies that
the dynamics of a functional network when engaged in
different tasks are stable but divergent and the ICA there-
fore captures context-dependent variability in ICN
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timecourses. In addition, the characteristics of these ICNs
being relatively stable within and across tasks, with the
exception of divergent task relevance, are supported by
the findings that show that there is a correspondence

between network states during a task and at rest [Calhoun
et al., 2008; Hampson and Driesen, 2006; Hermundstad
et al., 2013; Li et al., 2013]. Hence, our findings are in line
with the assertion that the brain is typically in a

Figure 3.

Heatmaps showing spatial correlations across all participants averaged across all ICNs. The cor-

relations for each twin with their co-twin lie on the diagonal and the correlations with all other

unrelated individuals can be found in the corresponding row or column. Correlation scores

ranged from 0 to 1 and the scores for each task are represented in a 21 3 21 matrix. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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multistable state that is optimized and primed for different
forms of either endogenous or exogenous activity [Deco
and Corbetta, 2012]. Given that stable functional connectiv-
ity architecture has been reported across many studies,
which include task paradigms, these results support the
notion that the introduction of a task does not override the
baseline state in the brain [Arfanakis et al., 2000; Biswal
et al., 2010; Fox and Raichle, 2007].

Familiality

Given that there are several networks that are signifi-
cantly related to task but that do not show task HRF time-
course familiality and vice versa, the results of this study
suggest that the familiality of network timecourses is not
solely dependent on how those network timecourses are
being modulated or driven by the task timeline. Similarly,
familiality does not appear to be a function of split-half or
crosstask consistency. This is significant as it shows that
the observed familiality is not simply a reflection of how
well captured or stable the network is, nor is it based on
how regularized the signal is because it is being driven by
task presentation. However, future work is needed to
determine the upper and lower bounds of reliability and
task influence on heritability estimates. Hence, the same
methods need to be applied to the data in a great variety
of paradigms to determine if there are networks that are
both strongly heritable and consistently impervious to task
modulation.

Nevertheless, the present findings support a notable
level of familiality worth investigating further. The heat-
maps of ICN correlations show a clear diagonal, which
indicates that the highest (hottest) scores were those
between cotwins and the t-test and permutation test vali-
dated the significance of this finding. In particular, the
area V1/simple visual stimuli network was not only fami-
lial, but also significantly related to task in both the HI
and the VG paradigms, and showed strong consistency
within and across tasks in all three domains (V1 was
prominent in almost all analyses). Hence, it is possible that
the primary visual cortex is the most robust marker of
functional connectivity as it was well captured by the ICA,
could be modulated by exogenous activity, but also pre-
served a level of consistency, as well as genetic covariance
in its morphology, timecourse, and coherence.

It is interesting that area V1 was one of the networks
that exhibited the most robust network consistency and
heritability estimates, given the recent observation that
interparticipant variability in internetwork coherence is
lowest in visual areas and highest in frontoparietal net-
works [Mueller et al., 2013]. These authors argue that indi-
vidual differences in internetwork connectivity are related
to the phylogenetic development of brain structures, which
makes variability highest in multimodal association cortex
areas, but lowest in unimodal sensory regions. One way to
contextualize these findings is to note that although it is

true that having zero variability precludes the observation
of any familiality, high interparticipant variability does not
automatically imply familiality, as other studies have
found that there is an increase in discordance in certain
brain regions and functions in twins over time and experi-
ence [Lessov-Schlaggar et al., 2012; Wallace et al., 2006]. In
addition, it has been shown that brain activity in visual
areas is heritable, which implies that if the reduction of
variability in sensorimotor regions means that they are
less sensitive to nongenetic influences, instead of driving
down familiality this would actually boost familiality
[Park et al., 2012].

Limitations

One relevant aspect of this discussion that these results
could not directly assess is the proportion of covariance in
twins that might be attributable to shared environment as
the participants were all monozygotic twins and no dizy-
gotic twins were recruited for this study. In addition,
although the sample size is comparable to other fMRI twin
studies, this study is underpowered when compared to
larger behavioral genetic heritability models. Finally, we
administered only two tasks and this limits the generaliz-
ability of the results. In the HI and VG paradigms, the par-
ticipants could not be rated on how well they were
performing the tasks and, as a result, we cannot infer how
ICN consistency or familiality was reflected in behavior.
Hence, future study will need to be done to include tasks
in many more domains, including tasks that have measur-
able behavioral output.

CONCLUSIONS

This study advances the current understanding of the
trait-like nature of ICN-based metrics pertaining to task
relevance, consistency, and familiality. In this study,
monozygotic twins completed two dissimilar and stereo-
typical tasks that were designed to produce activation in
discrete brain regions by using stimuli that would drive
activity in specific brain networks. Hence, these tasks
have an identical design and periodicity and share an
identical button press “off” state, but they are quite dif-
ferent in their cognitive demands. As a result, they have
provided a useful means for exploring and contrasting
the ways in which exogenous demands can affect the
characteristics of ICNs. We found that the ICA-derived
ICNs detected across two different task states were sta-
ble across time within each task, highly similar in their
morphology and coherence across tasks, and their time-
courses reflected task-dependent modulation selectivity
in networks with functional relevance to each task.
Based on the present analyses, it appears that the extent
to which an ICN is driven by the task does not deter-
mine its familiality, but rather this familiality seems to
be selectively expressed and its detection may be
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somewhat limited by the network’s consistency. Taken
together, these results suggest that it is possible that the
familiality of ICNs is related to the variability or com-
plexity of the underlying neuronal architecture, but
more work needs to be done to further establish and
explore this principle.
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