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Abstract: In recent years, a variety of multivariate classifier models have been applied to fMRI, with
different modeling assumptions. When classifying high-dimensional fMRI data, we must also regula-
rize to improve model stability, and the interactions between classifier and regularization techniques
are still being investigated. Classifiers are usually compared on large, multisubject fMRI datasets.
However, it is unclear how classifier/regularizer models perform for within-subject analyses, as a
function of signal strength and sample size. We compare four standard classifiers: Linear and Quad-
ratic Discriminants, Logistic Regression and Support Vector Machines. Classification was performed on
data in the linear kernel (covariance) feature space, and classifiers are tuned with four commonly-used
regularizers: Principal Component and Independent Component Analysis, and penalization of kernel
features using L1 and L2 norms. We evaluated prediction accuracy (P) and spatial reproducibility (R)
of all classifier/regularizer combinations on single-subject analyses, over a range of three different
block task contrasts and sample sizes for a BOLD fMRI experiment. We show that the classifier model
has a small impact on signal detection, compared to the choice of regularizer. PCA maximizes repro-
ducibility and global SNR, whereas Lp-norms tend to maximize prediction. ICA produces low reprodu-
cibility, and prediction accuracy is classifier-dependent. However, trade-offs in (P,R) depend partly on
the optimization criterion, and PCA-based models are able to explore the widest range of (P,R) values.
These trends are consistent across task contrasts and data sizes (training samples range from 6 to 96
scans). In addition, the trends in classifier performance are consistent for ROI-based classifier analyses.
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INTRODUCTION

Blood-oxygenation level dependent functional MRI
(BOLD fMRI) is an imaging technique that is sensitive to
the changes in blood oxygenation that accompany neuronal
activity. This is used to localize stimulus-evoked changes in
brain activity, and make predictions about brain regions
implicated in experimental stimuli, in order to characterize
the relationship between brain function and behavior. How-
ever, fMRI is characterized by a weak, complex BOLD
response, and significant noise confounds. Furthermore,
identifying discriminative brain regions in whole-brain
analysis is an ill-conditioned problem, with far more varia-
bles (brain voxels) than observations (time points). There is
therefore a need for sophisticated analysis models, to reli-
ably and accurately measure the predictors of brain-state.

Multivariate classification and brain mapping techniques
have long been applied to functional neuroimaging data
[e.g. Hansen et al., 1999; Haxby et al., 2001; Kustra and
Strother, 2001; Morch et al., 1997; Tegeler et al., 1999], and
have become increasingly popular in fMRI in recent years,
due to their sensitivity to spatially distributed, functionally
connected brain networks. They have proven invaluable in
numerous studies of sensory, motor and cognitive neuro-
science [Berman et al., 2013; Broderson et al., 2012; Carlson
et al., 2003; Davatzikos et al., 2005; LaConte et al., 2005;
Mitchell et al., 2008; Raizada et al., 2010; Shaw et al., 2003;
Shinkareva et al., 2007], neurofeedback and brain-
computer interface [LaConte et al., 2005; Sitaram et al.,
2010; Yoo et al., 2004] and predicting disease state and
recovery in clinical populations [Fu et al., 2008; Menzies
et al., 2007; Modinos et al., 2012; Pagani et al., 2009;
Schmah et al., 2010; Wang et al., 2006; Yoon et al., 2008].
Multivariate classification is well-suited to fMRI studies in
which the activation patterns are not known a priori, and
distributed brain networks are potentially recruited (e.g.
novel experimental designs, complex integrative tasks,
groups with different behavioral profiles, and the complex
effects of disease state); these models allow researchers to
simultaneously localize activated brain areas and measure
their prediction (generalization) to independent test data.

Research in these domains is typically concerned with
both the generalizability of multivariate classifier models,
and the confidence with which we can interpret discrimi-
nant brain maps. Prediction accuracy (P) measures the
generalizability of the classifier model, based on how well
we can predict brain-state for new, independent data. Con-
versely, reproducibility (R) measures the stability of the
discriminating brain maps (or. “sensitivity maps”) across
repeated analyses. That is, how confident we can be in the
identified brain regions that contain discriminative infor-
mation. Both P and R are important measures of model
performance, and their relationship characterizes bias-
variance tradeoffs in the classifier models [Rasmussen
et al., 2012; Strother et al., 2002; Yourganov et al., 2011].

However, the researcher who wishes to employ multi-
variate classification must choose from among a wide vari-

ety of available models, with different underlying
assumptions, and without clear information on the (P, R)
tradeoffs between models. For example, generative models
construct a probability distribution from the data prior to
classification, whereas non-probabilistic classifiers directly
estimate an optimal decision rule on the data. In addition,
the classifier’s decision surface may be a linear function in
the feature space (a hyperplane), or a nonlinear surface.
Despite the proliferation of models, there have been only a
few studies on the impact of classifier choices on fMRI
results, including [Hansen et al., 2001; LaConte et al., 2005;
Lange et al., 1999; Misaki et al., 2010; Rasmussen et al.,
2012; Schmah et al., 2010].

Multivariate classifiers for fMRI must also be regular-
ized, which involves imposing constraints that control
model complexity, to reduce over-fitting, and optimize the
generalizability of the classifier model. Part of model train-
ing is thus to determine the optimal regularization param-
eters. Many regularization strategies have been applied to
fMRI analysis, typically by directly penalizing features of
the fMRI data (e.g. Lp-norm penalties). Other strategies
include component decompositions (e.g. Principal Compo-
nent and Independent Component Analysis); although
they are not often thought of as regularizers, they can be
defined as special cases of Lp penalization [Kustra and
Strother, 2001]. Alternatively, many studies perform a fea-
ture selection step that extracts a subset of brain voxels
during model training (e.g. Haxby et al., 2001; Mitchell
et al., 2004; Pereira et al., 2009; Misaki et al., 2010]. How-
ever, this approach of feature selection driven by task pre-
diction may decrease model sensitivity and
generalizability [Rasmussen et al., 2012]. The effect of reg-
ularizer choice is even less explored than classifier models,
despite evidence that it significantly impacts classifier per-
formance [Churchill et al. 2012; LaConte et al., 2005; Ras-
mussen et al., 2012; Strother et al., 2004].

There are other, practical considerations when selecting
classifiers; namely, how stable are these models as a func-
tion of signal strength and sample size? The majority of
classifier-based studies use large, multisubject experimen-
tal datasets with hundreds of scans, and conservative pre-
processing strategies. This stabilizes classifiers, and
minimizes the influence of noise and artifact. It is not clear
how performance generalizes to within-subject analysis
and small datasets, where only a few scans may be avail-
able per stimulus type. These issues arise when analyzing
brief, single-subject datasets and measuring cognitive
changes over short time scales. They are also relevant for
clinical studies, in which patients may only tolerate a few
minutes of scanning, and a significant portion of the data-
set may be corrupted with head motion and other noise
[Carter et al., 2008]. An additional consideration is the
number of input voxels in the analysis. In general, classi-
fier studies focus exclusively on either whole-brain analy-
sis [e.g. LaConte et al., 2005; Rasmussen et al., 2012;
Schmah et al., 2010;] or focus on smaller, predefined
regions of interest (ROIs) [e.g. Haxby et al., 2001; Misaki
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et al., 2010]. However, it is unclear if the findings of
whole-brain studies are relevant to ROI-driven analysis,
and vice versa.

In this article, we examined the performance of different
classifier/regularizer choices for the analysis of individual
subject datasets, using task battery data collected from
young, healthy subjects. We examined four standard clas-
sifiers: Linear Discriminant (LD), Quadratic Discriminant
(QD), Logistic Regression (LR), and Support Vector
Machines (SVM), all of which have been previously
applied to fMRI data. We also examined the impact of
four different regularization methods: L2 and L1 penalties,
along with two methods of subspace estimation, Principal
Component Analysis (PCA) and Independent Component
Analysis (ICA). All classification and model regularization
was applied to data in the linear kernel space (i.e. the
untransformed covariance matrix between image volumes)
because in our experience, sparse regularizers applied in
the voxel space tend to produce overly sparse activation
maps [Rasmussen et al., 2012]. We compared model per-
formance under a range of different task contrasts, and as
a function of sample size, by sub-sampling from within-
subject datasets. We evaluated the classifier/regularizer
models using measures of (P,R) and global Signal-to-Noise
Ratio (gSNR), estimated in the NPAIRS cross-validation
framework [Strother et al., 2002].

We also measured the relative similarity of brain activa-
tion patterns across the different classifier models, using
DISTATIS, a multidimensional scaling technique that com-
putes bootstrapped confidence estimates of pattern similar-
ity (Abdi et al., 2009]. Finally, we tested whether the
trends in classifier performance for whole-brain analysis
generalized to ROI-based analyses. We do not address the
issue here, but for data on the effects of nonlinear kernels,
see Schmah et al. [2010] and Rasmussen et al. [2012].

METHODS

We begin by reviewing the different classifier models
and regularization methods that are evaluated in this arti-
cle. Afterwards, we describe the experimental data that is
used to test the different models, along with data prepro-
cessing steps. Finally, we discuss the resampling frame-
work and provide details of the metrics used to evaluate
model performance: prediction (P), reproducibility (R),
global Signal-to-Noise Ratio (gSNR) and the DISTATIS
measure of brain map similarity.

Classifier Models

We examined four binary classifiers that are used in
fMRI analyses: Linear Discriminant (LD), Quadratic Dis-
criminant (QD), Logistic Regression (LR), and Support
Vector Machines (SVM). In fMRI analysis, classifiers are
typically used to predict the behavioral task (the “class”)
that was performed during acquisition of a brain image.

This is achieved in a cross-validation framework, with a
labeled training set and an unlabeled test set [Pereira
et al., 2009]. We acquired a set of N image volumes, con-
taining V brain voxels, which are represented as V-dimen-
sional column vectors of X. For ill-conditioned X (V >>N),
we greatly reduce the number of features while preserving
data dimensionality, by classifying on the NxN linear ker-
nel U5XTX; this is the covariance matrix of X, if the mean
is subtracted from each voxel. We emphasize that all clas-
sifier and regularizer combinations (jointly termed
“models”) were applied in the linear kernel space U; this
is in contrast to much of the fMRI classifier literature,
which directly regularizes the voxel features of X, impos-
ing spatial sparsity to achieve a well-posed solution. We
chose our alternate approach, as prior research has dem-
onstrated that voxel-space regularization tends to produce
overly-sparse representations, particularly for weaker task
contrasts [Rasmussen et al., 2012] whereas the effects of
linear kernels are less understood.

The input data includes U, which is treated as a column
matrix U5½/1;/2; :::;/N� where each /n is an Nx1 feature
vector; it also includes class labels y 5 [y1. . .yN] with yn

2{-1,1}, denoting scans acquired during class 1 or 2 stim-
uli, respectively. Each classifier uses training data to esti-
mate a decision boundary D(/n) between the classes,
where D(/n)<0 assigns feature vector /n to class 1, and
D(/n)> 0 assigns /n to class 2. For all models except
SVMs, we assign each data vector /n to the class that max-
imizes posterior probability pðclass ij/nÞ. The decision
boundary is given by the log-ratio of posterior
probabilities:

Dð/nÞ5log
pð/njclass 2Þpðclass 2Þ
pð/njclass 1Þpðclass 1Þ (1)

For current results, we have equal sample sizes in each
class, and assume equal prior probabilities
pðclass 1Þ5pðclass 2Þ. This requires that we only estimate
the conditional distribution pð/njclass iÞ for each class. The
classifier models are defined as follows; see Table I for a
summary of their properties.

Quadratic and linear discriminants

These are generative classifier models, which assume
that the data from each class has a multivariate Gaussian
posterior distribution, with mean vector li and covariance
matrix Ri:

pð/njclass iÞ5 2pð Þ2p=2jRij21=2e21
2ð/n2liÞ

TR21
i ð/n2liÞ (2)

During model training, the maximum-likelihood Gaus-
sian parameters are estimated, including within-class
means m1 and m2, and covariances S1 and S2. For QD, the
decision function D(/n) of Eq. (1) is the ratio of Gaussian
log-likelihoods. This reduces to a quadratic (that is, nonlin-
ear) function of /n:
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Dð/nÞ5
1

2
log
jS1j
jS2j

2
1

2
fð/n2m2ÞTS21

2 ð/n2m2Þ

2ð/n2m1ÞTS21
1 ð/n2m1Þg

(3)

The LD classifier makes the simplifying assumption that
the population covariances of the two classes are equal; in
place of class-specific sample covariances S1 and S2, LD
uses the pooled covariance estimate S 5 (S11S2)/2. This
reduces Eq. (3) to a linear function of /n:

Dð/nÞ5 S21ðm22m1Þ
� �T

/n2
1

2
ðm21m1ÞTS21ðm22m1Þ (4)

This is a decision hyperplane, defined by normal vector
w 5 S21(m2 2 m1) and a bias term b 5 21/2(m2 1 m1)T

S21(m2 2 m1), which can be expressed as

Dð/nÞ5wT/n1b (5)

Note that the LD model produces the same solution as
fitting a least-squares regression onto target variables y,
which minimizes the Gaussian loss function [Hastie et al.,
2005]:

L5
1

2

X
n

yn2w � /n2b
� �2

(6)

Both QD and LD classifiers therefore assign data points
to the class of highest posterior probability, under Gaus-
sian model assumptions.

Logistic regression

This classifier maps the unbounded features of /n onto
the range [0, 1] using the logistic sigmoid function
r{a} 5 1/(1 1 e2a). This is a probabilistic model, derived
by expressing the posterior probability of Class 1 as a
function of the log-odds ratio from Eq. (1):

pðclass 1Þ5 1

11exp 2log pð/njclass 1Þ
pð/njclass 2Þ

n o (7)

Assuming the log-odds decision boundary is a linear
function of the features, we produce a decision hyper-
plane, defined by normal vector w and bias term b (as in
Eq. (5)), with a nonlinear mapping function r{D(/n)}. This
solution requires that we minimize the logistic loss func-
tion, which may be compactly expressed as:

L5
X

n

log 11exp ynðw � /n2bÞf gð Þ (8)

There is no analytic solution to minimize this function,
although a number of iterative methods have been devel-
oped; we employed the Iteratively Reweighted Least
Squares (IRLS) procedure (Bishop, 2006; code developed
in-house), which can be readily adapted to L1 (Lasso) and
L2 (ridge regression) regularized models (applied with
Matlab’s Statistics toolbox (R2007b); see Model Regulariza-
tion for more details).

Support vector machines

These classifiers estimate a hyperplane (defined by Eq.
(7)) in which the distance from D(/n) to the nearest data
point (defined as the “margin”) is maximized. If we penal-
ize misclassification errors using “slack variable” weights
nn for individual data points, this is solved for weight
parameter C and slack variable parameter p by the
condition:

min
w;n;b

1

2
jjwjj21C

X
n

jnnjp
( )

(9)

under the constraint

ynðw � /n2bÞ � 12nn; nn � 0 (10)

That is, scans must be projected onto the correct side of
the decision surface, and also projected beyond the (slack
variable-adjusted) margins of this decision surface. We use
a non-standard SVM approach. Conventionally, Eq. (10) is
defined for voxel-space data (replacing /n with xn) and
the SVM is solved in “dual-space” by re-formulating it as
a function of its kernel U; in standard SVM, vector w rep-
resents voxel weights (e.g. a sensitivity map; referred to as
the “primal weight vector”). We instead transform the
data into kernel space U, and the SVM solves for optimal
weights w on the kernel features themselves. See Con-
structing Voxel Sensitivity Maps below for more details on
how w is transformed into voxel-space. This approach was
chosen to maintain consistency with the other classifier
models, which all estimate the decision boundary on the
kernel-space features. The SVM estimates w as a linear
combination of input vectors:

TABLE I. Properties of the evaluated classifier models

Decision surface Model type Loss function

Linear discriminant (LD) Linear Probabilistic Gaussian
Quadratic discriminant (QD) Nonlinear Probabilistic Gaussian
Logistic regression (LR) Linear Probabilistic Logistic
Support vector machines (SVM) Linear Nonprobabilistic Hinge-loss
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w5
X

n

anyn/n (11)

In general, the solution admits nonzero weights an> 0
for a few /n along the margins of the hyperplane [Ras-
mussen et al., 2012]. These /n are the “support vectors”
which drive discrimination; thus /n which are most diffi-
cult to classify have the most influence on the decision
surface. The misclassification penalty is controlled by
parameter C, where a small C allows the margin to
include more support vectors contributing an> 0 to the
discriminant function. SVM was the only tested classifier
that has no probabilistic interpretation for D(/n). This
model was implemented using svmtrain and svmclassify
functions from MatLab’s Bioinformatics Toolbox R
[2007b].

Constructing voxel sensitivity maps

An important part of classification is to derive a
“sensitivity map” svox, which weights brain voxels based
on their importance in constructing the decision boundary
D(/n). For all models, we used the approach defined in
[Kjems et al. 2002], which estimates svox based on the par-
tial derivative svox 5oDðxÞ=ox, a function of training inputs
x. For LD, LR and SVM, this is given by the linear feature
weighting vector w, that minimizes loss functions in Eqs.
((6), (8), and (10)), respectively [Kjems et al., 2002; LaConte
et al., 2005; Rasmussen et al., 2012]. Because w is solved in
the kernel feature space, we reconstruct the voxel image
via the transformation svox 5 Xw. For example in LD,
svox 5X S21ðm22m1Þ

� �
, where m1, m2 and are the kernel-

space class means and S is the within-class covariance. For
QD, the voxel-space sensitivity map is defined [see Your-
ganov et al., 2010, for details]:

svox 5X S21
2 x2m2ð Þ2S21

1 ðx2m1Þ
� �

Model Regularization

For this article, we classify on the linear kernel U (NxN),
which greatly reduces data dimensionality relative to the
original X(VxN) data space. However, further regularization
is important, given the noisy, often collinear nature of
fMRI data. In this article, we consider “regularization” as
any mathematical constraint that limits classifier model
complexity, in order to stabilize the decision surface. A
variety of such regularization methods are available,
including directly penalizing the kernel-space features,
and projecting data into a lower-dimensional basis space.
For the current article, we examined L1 and L2-norm
penalization on the features of U (i.e. rows of the untrans-
formed NxN covariance matrix), as well as Principal Com-
ponent Analysis (PCA) and Independent Component
Analysis (ICA) subspace selection methods, all of which
are commonly used in the fMRI literature.

L1 and L2 penalization

The Lp-norm methods constrain the decision surface by
directly penalizing the kernel basis weights of U. For LD
and LR models, which have linear decision boundaries
defined by a projection vector w, their loss functions Eqs.
(6) (LD) and (8) (LR) have an added penalty term
k
2

P
ijwijp, which forces the maximum-likelihood solution of

w to have a smaller norm. For example, the penalized LD
loss function is:

L5
1

2

X
n

yn2w � /nð Þ21
k
2

X
i

jwijp (12)

Parameter k dictates the amount of regularization, where
a larger k increases the influence of the penalty function
on our solution.

A linear model with p 5 2 (known as “ridge regression”)

tends to assign uniformly high/low discriminant weights

wi to groups of correlated features. For LD, it is equivalent

to estimating a decision boundary on the regularized

covariance S* 5 (S 1 kI) (13), which produces an increas-

ingly diagonal covariance structure [Kustra and Strother,

2001]. In contrast, the p 5 1 penalty (known as “lasso”)

tends to select only a single feature from among a corre-

lated group of features. This is conceptually similar to

step-wise regression [Efron et al., 2004], and is of interest

because it is able to define a parsimonious subset of pre-

dictors in a regression model. The L1 penalty produces a

non-differentiable objective function, and so its decision

function D(/n) does not have an analytic solution. The

LD–L2 model was solved using standard ridge regression,

and LD-L1 was solved using a modified version of the

computationally efficient LARS procedure [Efron, 2004]

(code from www2.imm.dtu.dk/pubdb/views/publication_

details.p hp?id53897). For LR, we used the Iterative

Reweighted Least-Squares model, which regresses on a set

of adjusted target variables; this model directly performs

ridge/Lasso regression for each algorithm iteration (soft-

ware developed in-house).
For QD, the quadratic decision surface requires alterna-

tive methods to implement L1 and L2-penalties. For L2, in
an analogous extension of the LD model [Eq. (12)], we
directly regularized the within-class covariance matrices
using a fixed k value:

S1 �5ðS11kIÞ;S2 �5ðS21kIÞ (13)

For L1 regularization, we penalized the inverse covari-
ance matrices of Eq. (3) (i.e. precision matrices), using the
“graphical lasso” model [Friedman et al., 2008] (code from
www-stat.stanford.edu/�tibs/glasso). This technique
sequentially fits an L1 regression to each variable 1. . .N of
the inverse covariance matrix, treating all other variables
as predictors. It gives zero weight to elements of multiple
highly collinear (i.e. redundant) variables, producing a
sparse inverse covariance matrix. This is a computationally
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efficient method of applying L1 regularization to the QD
classifier model.

For SVM, we enforce an Lp-norm penalty on the support
vectors, via slack variable parameter p in Eq. (9). The L2-con-
strained model is solved using quadratic programming
methods; the L1-constrained model is solved using the
Sequential Minimization Optimization algorithm [Cristia-
nini et al., 2000; both provided in the MatLab Bioinformatics
Toolbox; R (ver. 2007b; The MathWorks, Inc., Natick, MA).

PCA and ICA decomposition

Both of these models transform the feature-space data U
into a linear subspace of independent and/or orthogonal
components, with the component basis estimated in differ-
ent ways. For all classifiers, we project the data onto a sub-
set of components, and then perform classification in the
new coordinate space.

Principal Component Analysis projects U onto a set of K
orthonormal Principal Components (PCs; for K<N), where
the kth PC explains the greatest possible data variance that
is orthogonal to all preceding PCs 1. . .(k 2 1). This is
expressed as the unique decomposition of the symmetric,
positive definite matrix U:

svdðUÞ5VK2VT (14)

V 5 orthonormal basis vectors, and K 5 diagonal matrix of
associated singular values. The data are represented as
PC-space coordinates Q 5 VTK. We perform classification
on a subspace of 1 to k PCs, where we vary (1 < k < K).
Lower k corresponds to a smaller, more regularized classi-
fier subspace. Strother et al. [in press] have demonstrated
that PCA is an important regularization technique, because
it provides a highly efficient feature extraction that reflects
the first-order, linear covarying network structure of the
brain, as previously shown in Positron Emission Tomogra-
phy studies [Kustra and Strother, 2001; Moeller and
Strother, 1991; Rottenberg et al., 1987].

ICA refers to a broad class of models that linearly decom-
pose U into a set of statistically independent, non-Gaussian
source signals VIC, by estimating the linear “unmixing”
transformation matrix W that produces VIC 5 WU. Unlike
PCs, ICs are not constrained to orthonormality, and ICA
models may enforce independence in the spatial or tempo-
ral domain, producing non-orthogonal temporal or spatial
components, respectively. These models do not have an
analytic solution, requiring iterative estimation; they are
usually estimated on an initial reduced PCA subspace,
which stabilizes the solution and reduces computational
burden. In principle, ICA models allow for flexible model-
ing of signal components, but they are limited by issues of
dimensionality, and solutions tend to be unstable [Yourga-
nov et al., 2011]. In this article, we used the FastICA pack-
age [Hyv€arinen et al., 2000) (research.ics.tkk.fi/ica/fastica,
ver. 2.5), which performs ICA following an initial PCA
decomposition. We employed the “tanh” (hyperbolic tan-

gent) nonlinearity measure, which produced optimal results
out of the available set of constraints, and used the defla-
tion approach to sequentially estimate the ICs. The ICA
components are sensitive to the input PC dimensionality.
Since it has previously been shown that theoretical esti-
mates of the intrinsic dimensionality are suboptimal, we
empirically identified the optimal subspace, by varying
both the input PC subspace and number of ICs used to per-
form classification (see next paragraph).

On the range of regularization

For classification in a PCA subspace, we varied the sub-
space dimensionality of the within-subject analyses from 1
to Kmax, where Kmax is the maximum non-rank deficient
dimensionality �N. Similarly, we varied L1 regularization
to admit 1 2 N nonzero basis weights. For ICA, we tested
all values of 1 to K ICs, for each of K 5 10%, 25% and 50%
of Kmax input PC dimensionality (with ICs ordered by var-
iance). For L2 regularization, we identified the highest and
lowest values of k at which an increment produced no sta-
tistical change in the discriminant maps, and subdivided
this range into Kmax steps, on the log scale. This was done
to ensure that the tested range was comparable to the
other regularization methods.

Experimental Data

In order to evaluate the different classifier/regularizer
models, we analyzed a set of experimental fMRI task con-
trasts. The fMRI dataset, originally presented in [Grady
et al., 2010], included 19 young, healthy adults (mean age
25 6 3 years, range 20–30, eight women), screened using a
health questionnaire to exclude health issues and/or medi-
cations that might affect cognitive function and brain activ-
ity. Images were acquired with a Siemens Trio 3-T magnet.
T2 functional images (TE/TR 5 30/2,000 ms, FA 5 70o,
FOV 5 200 mm) were obtained using echo planar acquisi-
tion. Each image volume consisted of 28 5-mm thick axial
slices with 3.125 3 3.125 mm2 pixels. T1-weighted anatomi-
cal volumes were also obtained using SPGR (TE/TR 5 2.6/
2,000 ms, FOV 5 256 mm, slice thickness 5 1 mm). Subject
brain volumes were nonlinearly co-registered to a common
anatomical template, created from a group-average anatom-
ical reference; this was obtained from an iterative optimiza-
tion procedure that is robust to inter-subject anatomical
variability [Kovacevic et al., 2005]. Functional data were
corrected for slice-timing offsets using AFNI (afni.nimh.-
nih.gov/afni) and motion corrected using AIR (bishopw.lo-
ni.ucla.edu/AIR5). Additional preprocessing consisted of
spatial smoothing with a FWHM57 mm Gaussian kernel
and regressing out white matter time signal, using an aver-
aged white matter time series as a regressor for each voxel/
subject separately; we also performed linear detrending to
control for residual motion and scanner drift effects.

Subjects performed four task runs (total duration of 300
TR 5 600 s, for each run), in which blocks of four different
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stimuli were presented twice in each run, interleaved with fix-
ation blocks; for full details, see [Grady et al., 2010]. The visual
stimuli consisted of bandpass filtered white noise patches
with different center frequencies; for all tasks, when subjects
detected a “target” they pressed 1 of 3 buttons to indicate
where the stimulus appeared. The stimulus types include:

Fixation (FX): the participant observed a dot presented
on the middle of the screen.

Reaction Time (RT): when the participant detected a tar-
get image on a screen, they pressed the corresponding but-
ton as quickly as possible.

Delayed Match to sample (DM): test of working mem-
ory. A target stimulus was presented and then removed
from the screen, followed by a 2.5 s blank-screen delay.
Three stimuli were presented and the participant pressed
the button corresponding to the target.

Attentional Cueing (AT): the participant pressed the
button corresponding to the target image, following a brief
directional cue.

Perceptual Matching (PM): the participant was pre-
sented a target in the upper portion of the screen, and
three stimuli on the lower portion; they pressed the button
corresponding to the one of three stimuli on the lower
portion that matched the target.

During each of the four experimental runs, the FX con-
dition was presented in 83 (10 TR) blocks, producing 32
blocks in total. The other three conditions were presented
in 23 (�20 TR) blocks per run for each condition although
there is some variability due to variance in stimulus tim-
ing; this produced eight blocks in total. For all analyses,
we discarded the first two TRs of each block, producing 8-
TR blocks in the FX condition, and task conditions blocks
that ranged from 16 to 18 TR (except a single block of
14TR in AT). In order to maintain consistency in block
sizes, we therefore trimmed all task blocks to 16TR, dis-
carding scans from the end of the block.

We examined three contrasts, ordered by increasing dif-
ficulty of classification: (1) FXvDM, (2) ATvPM, (3)
PMvDM. We consider (1) to be a “strong” contrast, as we
attempt to classify between relatively large changes in cog-
nitive state, compared to the “weaker” cognitive state dif-
ferences in (2) and (3). This can be confirmed by the
systematically lowered prediction and gSNR in going from
(1) to (3), shown in Figs 2 to 4. We selected these contrasts,
in order to test whether results are consistent across differ-
ent strengths of task contrast, as there is evidence that this
has an impact on optimal image processing and analysis
methods [Churchill et al., 2012; Rasmussen et al., 2012].

Resampling, Performance Metrics, and

Regularizer Optimization

We evaluated model performance for the single-subject
analyses, in a cross-validation framework. The task blocks

constitute our resampling units, as scans within a block are
temporally correlated. The overall structure of the data
consists of four task runs, with two condition blocks per
run (we concatenated pairs of successive FX runs to match
the 16-TR task blocks). Given the four scanning runs, we
performed fourfold cross-validation (CV) on the data. The
(two blocks) 3 (two conditions) from a single run were
designated independent “test” data, and the remaining (six
blocks) 3 (two conditions) were used to perform model
training and validation (i.e. optimize model regularization).
This procedure allowed us to maximize the independence
of “test” data, relative to the training and validation stage.

We performed model training and validation in the
NPAIRS split-half cross-validation framework [Strother et al.,
2002, 2010], in which we randomly split the training and val-
idation data into two pseudo-independent sets of (three
blocks) 3 (two conditions). We trained the classifier model
and generated a discriminant brain map, independently for
each data split. We used split-1 data to estimate decision sur-
face D1(/n) and voxel sensitivity map svox,1, and used split-2
data to estimate D2(/n) and svox,2. Prediction and Reproduci-
bility were used to quantify model performance.

Prediction (P)

P measures how well the decision surface Di(/n) pre-
dicts the experimental condition of data that was not used
to build the decision surface. To estimate prediction, we
use D1(/n) to assign each data-point from split-2 to class 1
or 2. Prediction is measured as the fraction of scans in
split-2 that are assigned to the correct class. We then use
D2(/n) to classify split-1 data, and take the average predic-
tion from both splits, denoted Pvalid. This provides a mea-
sure of classifier generalizability that allows us to compare
probabilistic QD, LD and LR models with the non-
probabilistic SVM. We also tested an alternative prediction
of Bayes’ posterior probability for all models except SVM,
but found no significant differences in model performance
compared with classification accuracy.

Reproducibility (R)

R measures the stability of discriminating brain regions
in svox,i, across (pseudo)independent data splits. This was
estimated as the Pearson correlation of the pairwise voxel
values between svox,1 and svox,2. Under Gaussian signal
and noise assumptions, this R metric has the advantage
of being directly related to the global Signal-to-Noise
Ratio (gSNR) of the brain map, by the relation
gSNR 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=ð12RÞ

p
. We also used split-half results to gen-

erate a reproducible Z-scored Statistical Parametric Map
(rSPMZ) of brain activation, using the bivariate scatter plot
of svox,1 versus svox,2 voxel values. We project voxel values
onto the first PC of the scatterplot (the signal axis) to com-
pute reproducible signal, and normalize by the standard
deviation of the second PC (noise axis), producing a Z-
scored SPM [Strother et al., 2002].
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For a given analysis, we computed (Pvalid, R) across the
range of regularization parameter values, and used
these metrics to select the optimal regularization parameter
(e.g. k for L1 or L2; subspace size k for PCA and ICA). The
(Pvalid, R) metrics reflect important tradeoffs in fMRI classi-
fication in a pseudo-ROC curve [LaConte et al., 2003;
Strother et al., in press]. In general, greater model regulari-
zation leads to decreased model prediction, and large, com-
plex changes in reproducibility (see Fig. 1). An optimal
classifier should jointly optimize Pvalid and R; we chose to

minimize the Euclidean distance D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12Pvalid Þ21ð12RÞ2

q
,

for which smaller D indicates better model performance.
This metric has been previously implemented in model and
preprocessing optimization [e.g. Churchill et al., 2012;
LaConte et al., 2003; Shaw et al., 2003; Zhang et al., 2009].
Furthermore, Rasmussen et al. [2012] demonstrated that the
D metric is an effective compromise between optimizing
exclusively on R or P metrics: it improved the stability of
brain SPMs across different classifier models, while improv-
ing detection of the less predictive nodes of the brain net-
work that underpin motor performance. After selecting the
level of regularization that minimizes D, we used the opti-
mized model to classify data in a held-out “test” run. This
produced Ptest, an independent, unbiased measure of pre-
diction accuracy for comparison with the biased Pvalid.

In this resampling framework, we designated each of
the four runs the “test” dataset in sequence (i.e. fourfold
CV), and we measured average Ptest across the four folds.
For each fold, we performed 25 training/validation resam-

ples (of 1
2

6
3

� �
3 1

2

6
3

� �
5100 possible ways of splitting the

two task conditions) and computed median (Pvalid, R) val-

ues, in order to optimize regularization. When reporting
final results, we computed median P, R, gSNR and
rSPMZs across the 4x25 5100 resampling splits, for each
subject. Note that all figures showing prediction refer to
Ptest, excepting Figure 1, which demonstrates the Pvalid

versus R optimization tradeoff as a function of model
regularization.

Model Performance and Sample Size

We analyzed each of the 19 subjects in the fourfold CV
framework, for all 16 possible classifier/regularizer combi-
nations (LD, QD, LR or SVM)x(L1, L2, PCA, or ICA). This
produced median estimates of Ptest, R, gSNR, and a set of
19 rSPMZs for each subject.

In order to examine the relationship between model per-
formance and sample size, we sampled backward from
the end of each task block, retaining only a subset of Nblock

volumes from every block. We tested a range of
Nblock 5 {1, 2, 4, 8, 16}, which gives effective training sam-
ple sizes per split, for two blocks from each of 3 runs, of
{6, 12, 24, 48, 96}, which was used to build the decision
surface D(/n). For every block size Nblock, we then gener-
ated all of our performance metrics, and we plot perform-
ance as a function of Nblock for every classifier/regularizer
model combination.

We then tested for significant trends in model perform-
ance using nonparametric testing. We used a Friedman
test to identify models that are significantly different based
on ranking. This was depicted using a critical-difference
diagram, with significant differences in models assessed
using the Nemenyi permutation test at a 5 0.05 [see Con-
over et al., 1999 for a review of these procedures]. These

Figure 1.

The impact of regularization choice for a representative subject

in the ATvFX contrast, with the linear discriminant (LD) classi-

fier, for a restricted range of 20 regularizer values. (A) Plots

showing (Pvalid 5 validation prediction, R 5 reproducibility) curves

for regularization via Principal Components (PC), L1 and L2 pen-

alties, and Independent Components (IC). Each curve traces out

(Pvalid, R) as a function of degree of regularization. A “*” indi-

cates the point of weakest regularization; PC and IC with 20

components (both ordered by variance), L1 with nonzero

weights on 20 of the linear kernel features (rows of covariance

matrix U), L2 with k2 5 1028. The optimal point that minimizes

Euclidean distance from (Pvalid 5 1, R 5 1) is circled for each reg-

ularizer. (B) The Z-scored subject SPM produced by each opti-

mized regularizer. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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results were computed separately for each of the three dif-
ferent task contrasts (FXvDM, ATvPM, PMvDM). We
show ranking results for a fixed Nblock516, although
model rankings were generally consistent for smaller
Nblock values.

Additionally, we examined the relative bias of the vali-
dation prediction estimates Pvalid (which are used to opti-
mize model regularization), compared to independent
unbiased test prediction Ptest. We plot median Pvalid and
Ptest for each classifier model, and test whether Pvalid is
significantly higher than Ptest, using nonparametric paired
Wilcoxon tests. A significant difference indicates a consis-
tently biased classifier model. This was evaluated for the
minimum and maximum sample size limits, of Nblock51
and Nblock516, respectively.

The Dynamic Range of Classifier Models

For the previous sections, we chose model regularization
to optimize the metric D(Pvalid, R) of Euclidean distance
from perfect (Pvalid 5 1, R 5 1). This provides a compro-
mise that demonstrates how the different models perform,
under equal weighting of the two metrics. However, this
does not provide information on how models perform at
extremes of regularization, when maximizing either Pvalid

or R alone. That is, what is the maximum attainable Predic-
tion and Reproducibility for each model? We define this
as the effective “dynamic range” of each model. To exam-
ine this, we optimized each classifier/regularizer model by
(A) maximized Pvalid, (B) minimized D(Pvalid, R) and (C)
maximized R, for each individual subject analysis. We
then plotted median (Ptest, R) values of the different mod-
els under these optimization criteria. The results are
shown for a representative LD classifier model, and
ATvPM task contrast, but the findings are consistent for
all classifiers and contrasts. There is evidence that the
brain expresses a range of different task-related activation
patterns as a function of increased regularization, ranging
from the highly reproducible and spatially extensive but
less predictive of the task (e.g. default-mode networks), to
the highly task-predictive and more spatially sparse (e.g.
task-positive networks) [Rasmussen et al., 2012; Strother
et al., in press]. We suggest that an ideal classifier model
should have a wide “dynamic range”, allowing the user to
tune the model to identify this spectrum of network
structures.

Comparing SPM Patterns

Although prediction and reproducibility are valuable
measures of model performance, they provide no informa-
tion on the spatial structure of the SPM patterns them-
selves. In experimental data, two models can provide
similar Ptest and R values, and yet produce significantly
different spatial patterns [Churchill et al., 2012]. To
address this issue, we used the bootstrapped multidimen-

sional scaling method of DISTATIS [Abdi et al., 2007]. This
model identifies consistent trends in the within-subject cor-
relation of model SPMs, and does not directly compare
between subject SPMs. The following steps are performed
to compare 16 different classifier/regularizer models:

1. For the kth subject (1� k� 19), compute the doubly-
centered 16 3 16 correlation matrix Sk, between
SPMs generated by the different classifier/regularizer
models.

2. Form the 19 3 19 matrix C of pairwise similarity
between the Sk matrices, measured using the RV coef-
ficient of matrix similarity.

3. Perform PCA on matrix C. The first eigenvector gives
the set of coefficient weights ak, which indicate how
similar each Sk (and thus the kth subject) is to the
strongest common S-matrix pattern. Then compute
the weighted compromise matrix S15

P
kakSk; this is

the most common 16x16 cross-correlation between
model SPMs across subjects.

4. Perform PCA on S1, and project S1 into the new
PCA basis space.

The models’ rSPM(z)s are expressed as points in 15-
dimensional PCA space, typically reduced to the first two
PC dimensions for visualization. The distance between any
two models’ points represents the Euclidean “distance”
between rSPM(Z)s, with points that are closer together
indicating more similar activation maps. We produced
confidence estimates on the models, by Bootstrap resam-
pling of the subject correlation matrices (1,000 iterations).
The bootstrapped matrices were projected into the same
PC space, and the resultant 95% confidence ellipses were
drawn around the centroids.

We examined model SPMs for clustering, defined as
overlap in the 95% confidence ellipses, which indicates
that the model SPMs are not significantly distinguishable.
This provides a representation of the relative similarity
between classifier/regularizer model SPMs. We applied
DISTATIS to data at Nblock 5 16 sample size, although
trends are consistent for smaller samples.

The Effects of Voxel ROI Selection

As a final test, we examined whether results of whole-
brain analyses generalize to smaller numbers of input
voxels. It is common in many fMRI studies to predefine
a voxel ROI for analysis, particularly if there is an a pri-
ori hypothesis about a specific subset of brain regions. It
remains unclear whether differences between classifiers
are preserved when the number of input voxels (V) are
much less than the number of timepoints (N). We re-ran
the analyses in Model Performance and Sample Size, for
the 16 combinations of classifier/regularizer and a full
sample size Nblock 5 16, comparing (1) whole-brain analy-
sis (21,535 voxels; V >> N), (2) a “liberal” ROI mask of
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dorsal task-positive regions, including parietal lobes and
dorsolateral prefrontal cortex (276 voxels; V � N), and
(3) a “conservative” ROI mask of the bilateral parietal
lobes (29 voxels; V << N). These regions were chosen as
areas typically implicated in overt attention and visual
search, with ROIs predefined using an AAL anatomical
atlas.

The analyses were run for the intermediate ATvPM con-
trast. We plotted median Ptest, R, and gSNR as a function of
the number of input voxels. We also plotted SPMs from
“conservative” ROI results, to demonstrate the importance of
spatial reliability, even in a relatively small subset of voxels.

RESULTS

Model Performance and Sample Size

As a demonstration of the importance of model choice,
Figure 1 plots sample (Pvalid, R) curves as a function of regu-
larization, for a single representative subject (ATvFX con-
trast, with an LD classifier, for a maximum sample size of
Nblock 5 16). As shown in Figure 1(A), the regularizers pro-
duce different curves in (Pvalid, R) space, with different opti-
mization points. For all models except LD-ICA, if we trace
the curve as a function of increasing regularization, we
approach a point of minimum distance from
(Pvalid 5 1,R 5 1), after which overall model performance
declines. Figure 1(B) further demonstrates that the resulting
activation patterns may be quite different, even under a
fixed classifier model. Although there are activations com-
mon to all regularizers (e.g. upper cerebellum; slice 49),
there are also regions of extreme heterogeneity (e.g. superior
frontal, strong signal Z-scores for PCA and L1 only; slice 16).

Figure 2 plots the median prediction accuracy Ptest across
subjects for each classifier/regularizer model, as a function
of sample size. In general, prediction distributions are over-
lapped, indicating relatively large inter-subject variability in
classifier performance. Only the strong FXvDM contrast
shows consistent separation between different models.
However, there are a few reliable trends; the significant dif-
ferences are displayed as critical difference diagrams in Fig-
ure 4. Comparing regularizers, L1 and L2 maximize median
prediction, and PCA generally performs worse. The effects
of ICA are the most classifier-dependent. For LD and LR,
ICA is often comparable to Lp-norm regularizers; for SVM
it only weakly out-performs PCA, and for QD it is the least
predictive model. Comparing different classifiers, trends in
performance depend on the chosen regularizer: for Lp-
norms, SVM>LR,LD>QD, whereas for PCA we generally
observe LD>QD> LR> SVM. These trends are ambiguous
for the weaker task contrasts. Interestingly, the prediction
power curves do not increase monotonically with sample
size, but plateau at Nblock 5 4 to 8 for many models. This is
evidence of within-run heterogeneity: as scans are added to
the block, they increase the variability of the data distribu-
tion, making it more difficult to build a generalizable, pre-
dictive model.

Figure 3 plots median spatial reproducibility and gSNR
for each classifier/regularizer model, as a function of sam-
ple size. We observe much stronger trends in the effect
of regularizer choice compared to prediction, with non-
overlapped inter-quartile error bars. In general,
PCA> Lp> ICA, and PCA shows greater relative benefit
in the weaker task contrasts. We also observe a “cross-
over” effect between L1 and L2: for weaker contrasts, L1

has greater reproducibility for smaller sample sizes (typi-
cally Nblock < 4), but for larger sample sizes it becomes
worse than L2. Therefore, the relative stability of the Lp-
norm regularizers is sample-size dependent. The ICA
model generally gives poor reproducibility and gSNR, and
for QD and SVM classifiers, and gets worse with increased
sample size, indicating that it is prone to over-fitting these
more complex decision functions. Comparing across classi-
fiers, the choice in classifier model has a much smaller
impact on reproducibility and gSNR than regularizer
choice, as classifiers with the same regularization tend to
have similar performance. Finally, with the exception of
ICA, the reproducibility/gSNR curves increase monotoni-
cally with sample size and as a function of condition con-
trast, whereas a much weaker trend with contrast is
observed in the prediction plots (Fig. 2). For example,
SVM-PC prediction plateaus at Nblock 5 4 to 8 for all con-
trasts, but reproducibility monotonically rises with increas-
ing sample size, showing continued improvement in
spatial SNR that may be uncoupled from prediction
performance.

Figure 4 provides statistical significance tests on the rel-
ative performance of the different classifier models. For
prediction Ptest (left), many models are not statistically dis-
tinguishable, with increasing model overlap for weaker
task contrasts. In general, models regularized with L1 and
L2 perform better than PCA, and ICA is highly variable
depending on classifier and task contrast. The SVM-L1,
SVM-L2, and LD-ICA models have consistently optimal
prediction. For reproducibility and gSNR (right), a greater
number of models are significantly different. PC-based
models are not significantly different, and consistently out-
perform all other models. L1 and L2 models offer moderate
performance, and become more similar for weaker con-
trasts, while IC gives lowest performance. The SVM-L1

and SVM-L2 models are unique, as they have moderate R
and gSNR for strong task contrasts, but consistently
decrease in rank for weaker contrasts.

Tables II and III compare Pvalid versus Ptest for the 16
different models as a function of task contrast, for sam-
ple sizes of Nblock 5 1 and 16, respectively. At the small-
sample limit (Table II), there is a strong contrast and
regularizer-dependent effect. For FXvDM, all models are
significantly biased, for ATvPM only PC-based models
(and QD-L2) are not significantly biased, and for
PMvDM, no models are significantly biased. At the
large-sample limit (Table III), there is an interaction
between classifiers and task contrast. For the strongest
contrast (FXvDM), LD models are consistently biased,
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whereas for the weakest contrast (PMvDM), SVM models
are all significantly biased. However, the magnitude of
upward prediction biases tends to be relatively small; in
the most extreme case of FXvDM and Nblock 5 1, the
average magnitude of (Pvalid 2 Ptest) is 0.06 6 0.02 (mean-
6 standard deviation, over all subjects and models; a
mean change of 8%).

The Dynamic Range of Classifier Models

Figure 5 plots the median (Ptest, R) values across subjects
for a representative LD classifier and ATvPM task contrast,
for the four different regularization methods. Results are
shown for three different optimization criteria: (A) maxi-

mized Pvalid, (B) minimized D(Pvalid, R) and (C) maximized
R. PCA regularization consistently produces the greatest
range in (Ptest, R) values as a function of optimization crite-
rion. If optimized with Pvalid (Fig. 5A), it is both the most
predictive and reproducible model; if optimized with
D(Pvalid, R) (Fig. 5B), it dramatically increases reproducibil-
ity at the expense of decreased prediction; if optimized
with R (Fig. 5C),we see a further small mean increase in R
and decrease in Ptest. In contrast, all of the other regular-
izers (L1, L2, and ICA) are highly consistent between the
three panels of Figure 5, indicating that choice of optimiza-
tion metric has little effect on model performance for these
regularizers, which all have relatively low gSNR/R values.
These trends were consistently observed for all task con-
trasts and classifier models.

Figure 2.

Prediction accuracy curves as a function of sample size, for dif-

ferent regularizer/classifier model combinations. Panels repre-

sent different classifiers of linear discriminant (LD), quadratic

discriminant (QD), logistic regression (LR), and support vector

machines (SVM). Each curve represents median prediction

across subjects (with interquartile error bars), for a different

regularization method. Results are shown for three different

task contrasts, going from strongest (top row; FXvDM) to

weakest (bottom row; PMvDM). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Spatial Pattern Effects

Figure 6 shows the DISTATIS-space plots; these are two-
dimensional representations of the relative similarity
between SPMs of the 16 different models. For all task con-
trasts, we observe a “U-shaped” trend. Dimension 1 (hori-
zontal axis; axis of greatest variance) shows that the
largest difference in SPMs is between PCA and ICA-
regularized models. The second dimension of effect (verti-
cal axis) expresses a contrast between component-
regularized (PCA, ICA) versus Lp-norm models. The pri-
mary difference between models is again driven by regu-
larizers, and the ellipses of classifier models for a fixed
regularizer are significantly overlapped. The patterns of L1

and L2-regularized models also tend to be highly similar.
The only outlier in this trend is the SVM-Lp models, which

tend to be more similar to ICA-based models than the
other classifiers.

Figure 7 plots the average Z-scored SPMs for three rep-
resentative models that are most different in DISTATIS
space. For a fixed LD classifier, we show SPMs for L1,
PCA and ICA regularization. PCA consistently provides
the most extensive and highest magnitude activation Z-
scores. There is a contrast-dependent effect: the mean
FXvDM patterns are relatively similar across models,
although the LD-PC model is more sensitive to decreases
in mean activation for DM (increases for FX) that reflect
default network-like regions. For weaker contrasts, LD-PC
consistently produces high, spatially extensive Z-scores,
again with strong activation decreases that reflect default-
network like regions in the states of lower task

Figure 3.

Spatial reproducibility and global signal-to-noise (gSNR) are both

plotted as a function of sample size, for different regularizer/

classifier model combinations; gSNR is a monotonic function of

reproducibility. Panels represent different classifiers of linear dis-

criminant (LD), quadratic discriminant (QD), logistic regression

(LR), and support vector machines (SVM). Each curve represents

median reproducibility across subjects (with interquartile error

bars), for a different regularization method. Results are shown

for three different task contrasts, going from strongest (top

row; FXvDM) to weakest (bottom row; PMvDM). [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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engagement (AT in ATvPM; PM in PMvDM), but these
activations are much weaker for other models.

The Effects of Voxel ROI Selection

Figure 8 plots median prediction accuracy Ptest (Fig. 8A)
and median reproducibility (Fig. 8B) across subjects for each
classifier/regularizer model, as a function number of input
voxels. As the number of voxels decreases, median Ptest also
decreases, and the difference between classifier/regularizer
choices is reduced. However, Lp-norm regularizers still have
generally higher median performance than PC and IC. In
contrast, R is higher for smaller voxel ROIs, and the differen-
ces between regularizers remain consistent across ROI size,
with PC>Lp> IC. Figure 8C demonstrates the importance of
spatial reproducibility for ROI-based analysis. We show sam-
ple SPMs from 3 representative subjects for a “conservative”
ROI mask. The reproducible LD-PC model produces clear
regions of focal activation, with high Z-scored reliability,
showing differential lateralization across subjects. The LD-IC
model patterns are highly diffuse, with no statistical confi-
dence (very low Z-scores) in the pattern of BOLD activity.

DISCUSSION

We compared a set of commonly-used classification and
regularization techniques, for single-subject analyses over
a range of different experimental task contrasts, with
model performance quantified via metrics of prediction
accuracy (P), spatial reproducibility (R), and global Signal-

to-Noise Ratio (gSNR). For reproducibility and gSNR, the
choice of classifier had a relatively small impact, whereas
the regularizer choice had large effects that generalized
across all tested datasets and classifier models. Conversely,
prediction showed complex interactions with classifiers
and regularizers, but the choice of model tended to have a
smaller effect on prediction accuracy, with greater statisti-
cal overlap between models. An important finding in this
article is that researchers should consider their regularizer
choice at least as carefully as their choice of classifier
model, when performing model selection.

Regularizer choices involve a tradeoff between spatial
reproducibility versus prediction accuracy, when these met-
rics are given equal weight during regularization (i.e. opti-
mizing the D metric). A PCA-based model provides a
consistently higher reproducibility and gSNR than all other
regularizers, irrespective of the classifier model, but gener-
ally lower prediction accuracy. The possible advantages of
PCA are demonstrated in Figure 7 where such models are
better able to detect the more variable, but spatially stable,
reduced activity in the states of lower relative task engage-
ment (FX in FXvDM; AT ATvPM; PM in PMvDM), which
are heavily overlapped with default network areas. In com-
parison, Lp-norm regularized models had lower reproduci-
bility and do not show default-mode areas well for the
weaker contrasts, but were more predictive. For LD and LR
(linear, probabilistic models), ICA was most extreme, with
the lowest model reproducibility, but relatively high predic-
tion for LD and LR. This result was unstable for QD and
SVM classifiers, where prediction was also low; this is

Figure 4.

Critical difference diagrams. Each plot shows average ranking of

the 16 different classifier/regularizer models for metrics of Pre-

diction, Reproducibility and gSNR (note that Reproducibility and

gSNR have the same rankings, as they are monotonically related;

see Resampling, Performance Metrics, and Regularizer Optimiza-

tion), computed across subjects. All rankings are significant

(P< 0.01, Friedman test), and models that are not significantly

different are connected by horizontal grey bars (a 5 0.05, Nem-

enyi test). Results are shown for the maximum number of data-

points (Nblock 5 16), for each of the three task contrasts. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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potentially due to interactions with the complex quadratic-
and hinge-loss functions (respectively); regularization with
ICA is most sensitive to classifier choice.

The high reproducibility of PCA is consistent with the
preprocessing optimization studies of Churchill et al.

[2012], which showed that LD-PCA optimization using the
D metric is more sensitive to reproducibility than predic-
tion. This suggests that the variance-driven PCA subspace
is generally robust between data split-halves. This strong
spatial stability also generalizes down to relatively small-

TABLE II. Comparison of classifier prediction accuracy on validation data Pvalid, which is used to optimize model

regularization, versus independent test data Ptest

FXvDM ATvPM MvDM

Pvalid Ptest Signif. Pvalid Ptest Signif. Pvalid Ptest Signif.

LD-L1 0.77 0.68 0.01 0.56 0.51 0.07 0.50 0.51 0.50
LD-L2 0.77 0.72 0.01 0.58 0.53 0.01 0.51 0.52 0.70
LD-PC 0.77 0.68 0.00 0.55 0.52 0.25 0.47 0.50 0.88
LD-IC 0.76 0.71 0.01 0.59 0.52 0.01 0.51 0.50 0.25
QD-L1 0.72 0.67 0.00 0.57 0.51 0.01 0.51 0.50 0.20
QD-L2 0.74 0.68 0.00 0.57 0.54 0.23 0.50 0.50 0.42
QD-PC 0.67 0.60 0.00 0.52 0.51 0.35 0.51 0.50 0.47
QD-IC 0.63 0.59 0.00 0.53 0.51 0.09 0.51 0.50 0.08
LR-L1 0.77 0.70 0.00 0.57 0.51 0.05 0.49 0.51 0.72
LR-L2 0.77 0.72 0.00 0.59 0.53 0.00 0.52 0.53 0.46
LR-PC 0.79 0.70 0.00 0.53 0.51 0.15 0.47 0.49 0.68
LR-IC 0.77 0.72 0.00 0.59 0.53 0.02 0.50 0.51 0.45
SVM-L1 0.77 0.71 0.01 0.60 0.52 0.05 0.51 0.51 0.47
SVM-L2 0.78 0.71 0.02 0.60 0.52 0.07 0.53 0.52 0.40
SVM-PC 0.72 0.65 0.00 0.53 0.52 0.34 0.47 0.49 1.00
SVM-IC 0.72 0.65 0.00 0.57 0.52 0.00 0.52 0.51 0.06

We plot median prediction across subject, for each classifier/regularizer model combination. The models are significantly biased if Pvalid

is consistently higher than Ptest (significance assessed using non-parametric paired Wilcoxon test; significant tests shaded in grey).
Results are shown for the minimum sample size (Nblock 5 1), for the three task contrasts.

TABLE III. comparison of classifier prediction accuracy on validation data Pvalid, which is used to optimize model

regularization, versus independent test data Ptest

FXDM ATvPM PMvDM

Pvalid Ptest Signif. Pvalid Ptest Signif. Pvalid Ptest Signif.

LD-L1 0.77 0.73 0.02 0.55 0.52 0.17 0.53 0.51 0.34
LD-L2 0.76 0.73 0.04 0.54 0.53 0.95 0.52 0.51 0.27
LD-PC 0.77 0.76 0.03 0.55 0.52 0.11 0.53 0.51 0.32
LD-IC 0.69 0.68 0.06 0.55 0.52 0.79 0.52 0.50 0.17
QD-L1 0.79 0.79 0.39 0.60 0.58 0.18 0.55 0.54 0.29
QD-L2 0.76 0.75 0.14 0.56 0.55 0.53 0.54 0.52 0.26
QD-PC 0.79 0.78 0.28 0.58 0.57 0.07 0.55 0.54 0.20
QD-IC 0.79 0.80 0.50 0.58 0.58 0.53 0.54 0.55 0.62
LR-L1 0.79 0.78 0.11 0.57 0.54 0.14 0.54 0.52 0.27
LR-L2 0.74 0.74 0.02 0.55 0.54 0.68 0.53 0.51 0.01
LR-PC 0.80 0.79 0.40 0.57 0.58 0.59 0.54 0.53 0.17
LR-IC 0.80 0.80 0.33 0.58 0.58 0.45 0.54 0.55 0.70
SVM-L1 0.79 0.79 0.81 0.56 0.56 0.30 0.56 0.53 0.07
SVM-L2 0.61 0.60 0.12 0.53 0.51 0.05 0.54 0.51 0.02
SVM-PC 0.81 0.80 0.49 0.57 0.56 0.09 0.55 0.53 0.05
SVM-IC 0.70 0.70 0.29 0.54 0.54 0.16 0.54 0.53 0.03

We plot median prediction across subject, for each classifier/regularizer model combination. The models are significantly biased if Pvalid

is consistently higher than Ptest (significance assessed using nonparametric paired Wilcoxon test; significant tests shaded in grey).
Results are shown for the maximum sample size (Nblock516), for the three task contrasts.
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sample SPMs. However, the experimental data of this
study has been extensively preprocessed, including ICA-
based artifact removal, white matter and CSF regression,
and temporal detrending [Grady et al., 2010]. The PCA
model is sensitive to high-variance, spatially distributed
signal changes, such as motion artifact; therefore, careful
preprocessing may be critical to ensure good performance
when classifying on a PCA basis sensitive to signal var-
iance [Garrett et al., 2011].

The Lp-norm models had consistently higher prediction
accuracy, across a range of task contrasts and sample sizes.

The increased prediction at the expense of reproducibility
is expected, as Lp-norm analyses operate directly on the
linear kernel. The kernel features are non-orthogonal,
allowing models to select the optimal predictors from
among a redundant set of features, but at the expense of
stability in the chosen features. For consistency with PCA/
ICA, we applied Lp penalties to the linear kernel, but most
other studies apply L1 and L2 penalties directly on voxel
features. Interestingly, many such studies have shown that
L1 produces excessively sparse brain maps [Carroll et al.,
2009; Rasmussen et al., 2012; Ryali et al., 2010]. However,

Figure 5.

Plots illustrating the dynamic range of different regularizers in

(Prediction, Reproducibility) space, for representative Linear

Discriminant (LD) classifier, and the intermediate ATvFX con-

trast. Points represent the median (Ptest, R) values for each

model, with upper and lower quartile error bars. We show

median performance metrics under three different optimization

criteria: (A) maximized prediction Pvalid, (B) minimization of the

D(Pvalid, R) metric which equally weights P and R (this is the met-

ric used for all previous results), and (C) maximized reproduci-

bility R. Results are shown for the maximum sample size

(Nblock 5 16). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 6.

DISTATIS multidimensional scaling plot, depicting the relative

similarity of different classifier/regularizer model SPMs. The ellip-

ses denote the 95% Bootstrap confidence bounds for each

model. Ellipses that are closer in DISTATIS space indicate more

similar SPM patterns, and models are not significantly different if

the ellipses overlap. Colors denote different regularizers:

L1 5 blue, L2 5 red, PCA 5 black, ICA 5 green. Results are

shown for the maximum sample size (Nblock 5 16). [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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we found that L1 penalization on the kernel features only
had worse gSNR than L2 for the strongest task contrast
and large sample sizes. It appears that applying L1 to the
kernel features is therefore a more stable implementation
of this regularizer.

We also tested ICA, implemented in the FastICA pack-
age, and found overall poor reproducibility and gSNR for
the resulting classifiers, with high prediction only for LD
and LR. The poor reproducibility is not unexpected, given
that (a) there is risk of model overfitting in ICA, as it esti-
mates higher-order statistical moments, and (b) its compo-
nents tend to be unstable (e.g. performing ICA twice may
not give the same subspace), often requiring additional
computation methods to stabilize the subspace. Since ICA
refers to a variety of different model implementations (e.g.
enforcing independence on spatial vs. temporal domains,
the choice of non-Gaussianity metric, the convergence
algorithm, etc.), these results are not definitive. Nonethe-
less, we have searched over a range of different initial
PCA subspaces (retaining up to 50% of a maximum of
training 96 scans), and our results are consistent with prior
evaluations of FastICA in the MELODIC package, which is
a sub-optimal estimator of the signal subspace in both
simulated [Yourganov et al., 2011] and experimental data
[Churchill et al., 2012].

Our finding that different classifiers offer relatively similar
performance for a fixed regularizer is supported in prior lit-
erature, for less extensive model comparisons. The LD and
SVM classifiers on a linear kernel have comparable classifi-
cation accuracy for many single-subject analyses [Misaki
et al., 2010; Ng and Abugharbieh, 2011; Schmah et al., 2010],

although LaConte et al. [2005] showed that this may be a
strong function of preprocessing choices. Similarly, Rasmus-
sen et al. [2012] showed for group-level analyses that LD,
SVM, and LR on a linear kernel basis produced similar (P,
R) values across a broad range of regularization values.

A number of studies also showed significant differences
between classifiers, particularly linear versus nonlinear mod-
els. For example, [Misaki et al.; 2010] showed better perform-
ance for linear models in standard task analyses, and
[Schmah et al., 2010] demonstrated significantly better predic-
tion for non-linear models for a subset of contrasts. However,
these results were based on optimizing model prediction.
Our results, which show non-linear QD to be comparable to
other models for most regularizers, suggest that some of the
apparent differences may be due to choice in regularizer and
optimization criteria, rather than the classifier itself. In the
case of Schmah et al. [2010], who examined longitudinal and
clinical datasets, it is also possible that there are fundamental
differences in classifier performance that are simply not evi-
dent for some standard task analyses [Carter et al., 2008].

Along with classifier and regularizer choice, the criterion
used to optimize regularization has a strong impact on model
performance. The choice of whether to optimize R, P, or D
metrics, may produce entirely different measures of model
performance (Fig. 7). This has previously been observed in
group analysis [Rasmussen et al., 2012], where L2-regularized
classifiers become increasingly similar if the D metric is chosen
as the optimization criterion. We show that maximizing Pvalid

produces similar (Ptest, R) for different regularizers, but includ-
ing R as an optimization criterion increases the difference
between models. Furthermore, PCA-based regularization

Figure 7.

Average Z-scored SPMs, computed across subjects, for three representative classifier/regularizer

models, seen in the DISTATIS plot of Figure 6. The SPMs are plotted for each of the three differ-

ent task contrasts, at the maximum sample size (Nblock 5 16). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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expresses the widest “dynamic range” of (P, R) values, indicat-
ing that it may be able to explore a greater range of brain states
and potential network patterns, ranging from highly repro-
ducible to highly predictive. Moreover, it is possible to extend
PCA-based models to explore even wider ranges of (P, R) val-
ues, using multistage PCA decompositions that exploit data
heterogeneity [Strother et al., in press].

These findings have implications for multiple research
domains where the user is performing multivariate classi-
fication, including experimental neuroscience, neurofeed-
back, and clinical fMRI studies. Moreover, we tested a
range of different task contrast strengths, sample sizes,
and both whole-brain and ROI-based classification, show-
ing that the results are highly generalizable. We conclude
that when researchers are choosing a classifier model, they
should focus on (a) the type of regularizer and (b) the
optimization criterion. For example, users who are primar-
ily interested in classification accuracy and not underlying

spatial patterns (e.g. neurofeedback with brain-computer
interfaces, many clinical biomarker studies) should either
chose an Lp-norm classifier, which has high prediction
regardless of optimization criterion, or PC subspace opti-
mized on Pvalid. If the user is interested in identifying sta-
ble, coherent brain networks that may support behavioral
performance without requiring optimal classification accu-
racy on experimental conditions (e.g. neuroscience studies
of the temporal dynamics of default-mode networks), a PC
subspace optimized on D(Pvalid, R) is an effective choice.
Finally, in studies where both spatial localization and pre-
diction are important (e.g. clinical neuroscience, such as
some biomarker studies, pre-surgical mapping), we sug-
gest Lp-norm regularization for results that are insensitive
to the optimization criteria but may have a relatively low
gSNR, or a carefully tuned PC-space optimization such as
available with the NPAIRS software [https://code.google.
com/p/plsnpairs/) [e.g. Strother et al., in press].

Figure 8.

(A) Prediction accuracy and (B) spatial reproducibility curves as a

function of number of voxels, for different regularizer/classifier model

combinations. We compared ROI masks of 24 and 276 voxels, against

whole-brain classification (21,535 voxels). Panels represent different

classifiers of linear discriminant (LD), quadratic discriminant (QD),

logistic regression (LR), and support vector machines (SVM). Each

curve represents median prediction across subjects (with interquar-

tile error bars), for a different regularizer. Results are shown for the

representative ATvPM contrast, and maximum sample size of

Nblock 5 16. (C) Reproducible Z-scored activation maps for three

example subjects, showing results of classification analysis for the 29-

voxel ROI mask of the parietal lobes. Results are shown for LD-PC

and LD-IC classifiers, which have comparable prediction accuracy but

the greatest difference in spatial reproducibility. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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