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Abstract: Using functional neuroimaging techniques two aspects of functional integration in the
human brain have been investigated, functional connectivity and effective connectivity. In this study
we examined both connectivity types in parallel within an executive attention network during rest and
while performing an attention task. We analyzed the predictive value of resting-state functional con-
nectivity on task-induced effective connectivity in patients with prodromal Alzheimer’s disease (AD)
and healthy elderly. We found that in healthy elderly, functional connectivity was a significant predic-
tor for effective connectivity, however, it was frequency-specific. Effective top-down connectivity
emerging from prefrontal areas was related with higher frequencies of functional connectivity (e.g.,
0.08–0.15 Hz), in contrast to effective bottom-up connectivity going to prefrontal areas, which was
related to lower frequencies of functional connectivity (e.g., 0.001–0.03 Hz). In patients, the prediction
of effective connectivity by functional connectivity was disturbed. We conclude that functional connec-
tivity and effective connectivity are interrelated in healthy brains but this relationship is aberrant in
very early AD. Hum Brain Mapp 35:954–963, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

In the recent years brain connectivity has been studied
via numerous methods and with regard to different
modalities. The most commonly used MRI-based methods
to address brain connectivity were (i) fractional anisotropy
(FA) revealed from Diffusion Tensor Imaging (DTI) for
structural connectivity (for review see Mori and Zhang,
2006), (ii) resting state networks (RSNs) determined from
resting-state fMRI (rs-fMRI) for functional connectivity (for
review see Van den Heuvel and Hulshoff Pol, 2010), and
(ii) Dynamic Causal Modeling (DCM) determined from
task-fMRI for effective connectivity (for review see
Stephan and Friston, 2010). For a better understanding of
the nature of brain connectivity, measures of the different
modalities have been combined.

With regard to the relation between RSNs and structural
connectivity, for example, it is widely believed that RSNs
are more or less based on fiber architecture. As RSNs indi-
cate neuronal connectivity between distant brain regions,
‘‘these regions must use neuronal connections to carry the
associated information flow. To allow for such communi-
cation between nodes of brain networks there must be a
white matter fiber path connecting them. This pathway
does not have to be direct, but nevertheless one expects
that functional connectivity must in some manner be de-
pendent on the strength of the relevant anatomical neuro-
nal connection’’ [Damoiseaux and Greicius, 2009;
Skudlarski et al., 2008]. Using seed regions from functional
connectivity maps of the default mode network (DMN) in
DTI analyses, Greicius et al. [2009] found strong fiber
tracts between network regions concluding that RSNs
‘‘reflect’’ the anatomical fiber architecture [Greicius et al.,
2009]. A close relation has been reported for the DMN
[Greicius et al., 2009; Skudlarski et al., 2008], as well as for
the executive/dorsal attention network [Fox et al., 2009;
Ystad et al., 2011]. In the diagnostic context, this methodo-
logical approach has shown great benefit: For example,
Wee et al. [2011] applied a classification algorithm on com-
bined DTI and rs-fMRI data of healthy elderly and indi-
viduals at risk for amnestic mild cognitive impairment
(aMCI). They were able to improve classification accuracy
significantly compared to classification results from a
unimodal approach [Wee et al., 2011].

To date the relation between effective and structural con-
nectivity has not been addressed very often. Findings were
rather theoretical than empirically proven. For instance, in
the theory of effective dysconnection in schizophrenia [Ste-
phan et al., 2009] an indirect influence of effective connectiv-
ity on fiber architecture has been described in terms of
impairments in effective connectivity (dysconnectivity) might
lead to alterations in the fiber architecture over the course of
time. The assumed mechanism is that effective connectivity
reflects synaptic plasticity and alterations in synaptic activity
might influence fiber architecture [Stephan et al., 2009].

With regard to functional and effective connectivity,
both measures characterize functional integration within

the human brain. However, while functional connectivity
describes statistical dependencies between data effective
connectivity rests on a mechanistic model of causal effects
that generated the data [Stephan et al., 2010]. In short,
functional connectivity between regions within RSNs is
determined by spatially coherent, spontaneous fluctuation
in the blood oxygen level-dependent signal and is made
up of regional patterns commonly involved in functions
such as sensory, attention, or default mode processing.
RSNs are networks identified by a data-driven approach
(independent component analysis, ICA). In addition, pre-
vious studies investigating RSNs have used region-of-in-
terest (ROI)-based analyses [Fox et al., 2005; Salvador
et al., 2005; Wang et al., 2006]. The signal time course of a
selected ROIs, e.g., the local maxima of RSN regions, are
correlated with remaining network areas resulting in pair-
wise functional connectivity coefficients. Effective connec-
tivity, in general, describes the causal influence that neural
units exert over another [Friston, 1994], specified ‘‘in the
simplest possible circuit diagram that would replicate the
observed timing relationships between recorded neurons’’
[Aertsen and Preibl, 1999]. In the DCM procedure models
are a priori defined and compared with regard to the best
fit (or better ‘‘highest evidence,’’ a combination between fit
and complexity, Stephan et al., 2010). Two types of con-
nectivity are specified (i) endogenous connectivity as the
fixed connectivity among the network regions in the ab-
sence of input, and (ii) modulatory input: the change in
connectivity induced by the input of exogenous influences
(e.g., psychological stimulation via an experimental para-
digm). Resulting connectivity parameters are pair-wise
coefficients describing the influence from one region to a
second. The empirical combination of effective and func-
tional connectivity, so far, mainly consisted of an exchange
of methods, such as determining RSNs from task-fMRI
data [Ozaki et al., 2011] and applying effective connectiv-
ity parameters from rs-fMRI data [Granger causality: Liao
et al., 2010; a DCM-like procedure: Havlicek et al., 2011].
The main idea of these studies was to better characterize
the functional architecture of RSNs and reveal possible dy-
namical changes within the same.

However, the questions whether functional connectivity
reflects effective connectivity or better, whether rs-fMRI
parameters might predict network dynamics during task-
fMRI have not been addressed in these studies. Especially
with regard to the clinical benefit of rs-fMRI, this subject
might be interesting (rs-fMRI as a diagnostic tool for cog-
nitive state or psychiatric diseases?).

In this study we examined the relation between func-
tional connectivity from rs-fMRI and effective connectivity
from task-fMRI within an executive/dorsal attention net-
work. We chose this network as it has been robustly found
in numerous studies using both fMRI techniques [for
reviews see Van Dijk et al., 2010; Rossi et al., 2009]. To
address the clinical question we analyzed not only data of
healthy subjects (n ¼ 16) but also psychiatric patients suf-
fering from aMCI (n ¼ 24). In aMCI and Alzheimer’s
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disease (AD), attention deficits have been associated with
a frontal disconnection as described by Perry and Hodges
[1999]. In a recent study of our lab, we could furthermore
show, that effective connectivity, emerging from parietal
areas and going to frontal and cingular regions was also
reduced, hinting towards not only a frontal but also a pari-
etal disconnection in the context of AD [Neufang et al.,
2011]. In addition, numerous studies showed altered func-
tional connectivity within the dorsal/executive attention
network in aMCI patients [e.g., Sorg et al., 2007] as well as
in AD patients [i.e., Wang et al., 2006].

To be able to directly combine both connectivity parame-
ters in regression models, we determined functional connec-
tivity from RSNs using the ROI-based partial coherence
(pC) analysis. We raised the questions (i) whether func-
tional connectivity from rs-fMRI could predict the strength
of effective connectivity during cognitive processing and (ii)
if so, would it also be possible in affected brains such as in
aMCI patients. On the basis of the introduced findings of a
strong connection between RSNs and fiber architecture
[Damoiseaux and Greicius, 2009; Greicius et al., 2009; Sku-
dlarski et al., 2008; Wee et al., 2011; Ystad et al., 2011] and
the assumed relation between effective connectivity and
structural connectivity [Ozaki et al., 2011; Liao et al., 2010;
Havlicek et al., 2011; Stephan et al., 2009] we hypothesized
to find a significant correlation between RSNs and DCM
estimates. Inferring from our previous findings [Neufang
et al., 2011] we expected aMCI-related alterations, if present,
more prominent within fronto-parietal connections than
those associated with the cingulate cortex.

MATERIALS AND METHODS

Subjects

Sixteen healthy controls (HC) (6 females, aged from 63
to 73 years) and twenty four patients diagnosed with
amnestic mild cognitive impairment (aMCI) participated
in the study. Fifteen patients developed AD-related de-
mentia in annual clinical follow-up evaluations within two
years after this examination (NINCDS-ADRDA criteria for
AD) [McKhann et al., 1984]. Data analysis of the clinical
group was restricted to these 15 participants (9 females,
aged from 58 to 73 years), so the study patients can be

defined as prodromal Alzheimer’s disease (pAD) patients.
HC subjects and pAD patients were matched for age, edu-
cation and gender (see Table I)

Patients were recruited from the Memory Clinic of the
Department of Psychiatry, Technical University Munich,
Germany, controls by word-to-mouth advertising. Exami-
nation of every subject included medical history, neurolog-
ical examination, neuropsychological assessment (CERAD
battery, Consortium to Establish a Registry for AD [Morris
et al., 1989], informant interview (patients only), and struc-
tural MRI. Patients met criteria for aMCI [Gauthier et al.,
2006] which contained reported and neuropsychologically
assessed memory impairments, largely intact activities of
daily living, and excluded dementia (see Table I).

Six control subjects and three patients were treated for
hypercholesterolemia (statins). None of the subjects had
diabetes mellitus and none received psychotropic medica-
tion, especially cholinesterase inhibitors. Further exclusion
criteria for entry into the study were other neurological,
psychiatric, and systemic diseases (i.e., stroke, depression,
alcoholism, and hypertension) anytime before or at the ex-
amination date, or clinically remarkable MRI (e.g., stroke
lesions). The study was approved by the Medical Ethics
Committee of the Faculty of Medicine, Technical Univer-
sity Munich, Germany. All participants provided informed
consent in accordance with the Human Research Commit-
tee guidelines of the Klinikum Rechts der Isar, Technical
University Munich.

fMRI Paradigms

Resting-state fMRI

All subjects underwent four minutes of resting-state
scan. Subjects were instructed simply to keep their eyes
closed, not to think of anything in particular, and not to
fall asleep.

Task fMRI

The task-fMRI session included an attention and a mem-
ory task, which followed the resting-state scan. In this
study, we will focus on the attentional paradigm and the
resting-state scan; the memory task will not be part of this
study.

TABLE I. Sample description

HC (n ¼ 16) pAD (n ¼ 15) Analysis

Age [years] 68.1 � 3.8 68.5 � 6.6 t(2,29) ¼ �0.24, n. s.
Sex [male/female] 9 / 7 6/9 Q2 ¼ 0.82, n. s.
education [</> 12 years] 9 / 7 7/8 Q2 ¼ 0.54, n. s.
CDR (sum of boxes) – 2.6 � 0.9
MMSE 29.6 � 0.5 27.4 � 1 t(2,29) ¼ 7.8, P < 0.01
CERAD [delayed recall- no of items] 7.4 � 1.3 3.7 � 2.3 t(2,29) ¼ 5.6, P < 0.01

Mean and standard deviations of demographical and neuropsychological parameters. Data are presented as Mean � Standard Deviation.
MMSE, Mini-Mental State Exam; CERAD, consortium to establish a registry for Alzheimer’s Disease; CDR, Clinical Dementia Rating.
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In the MR scanner subjects performed the Attention
Network Task [ANT, Fan et al., 2005], which measured the
three different attentional functions alertness, spatial ori-
enting and conflict processing. Network-specific stimula-
tion was realized via a variation of cue—target
combinations covering the four cue conditions ‘‘no cue,’’
‘‘central cue,’’ ‘‘double cue,’’ and ‘‘spatial cue" as well as
the three target conditions ‘‘congruent targets,’’ ‘‘incongru-
ent targets,’’ and ‘‘neutral targets.’’. The cues consisted of
one or two asterisks presented either in the center of the
screen (central, double), above the central position (spa-
tial_up), or below it (spatial_down). Cues without spatial
information such as the central cue and the double cue
were implemented in the task in order to provoke an alert-
ing reaction in the subject (alertness: central cue> no cue,
double cue > no cue). Cues with spatial information indi-
cated the upcoming target position (under or above the
screen center) and intended to initiate an orienting of the
attentional focus onto the indicated position (orienting:
spatial_up cue>no cue, spatial_down cue>no cue). The
congruent and incongruent target stimuli were composed
of a row of five horizontal black arrows, with the arrow-
heads pointing either leftward or rightward. To introduce
a conflict resolution component, the central arrow was
‘‘flanked" on either side by two arrows in the same direc-
tion (congruent condition) or in the opposite direction
(incongruent condition), effecting a conflict situation the
way that the participants had to focus on the target arrow
while ignoring the context arrows (conflict: incongruent>
congruent targets). Neutral targets were a single arrow
pointing either to the right or the left side. The partici-
pants’ task was to identify the direction of the centrally
presented arrow by pressing a button with the index fin-
ger of the right hand for the left direction and a button
with the middle finger of the right hand for the right
direction (see also Supporting Information, Fig. S1).

Although three different networks were stimulated in
this paradigm, we focus on the conflict network in this
study. Thus, the attention networks alerting and orienting
will not be considered. With regard to the conflict net-
work, we expect an increase in brain activation within a
cingulo-fronto-parietal network during the processing of
incongruent targets compared to congruent trials.

The paradigm was presented as an event-related design
with cue-target intervals varying from 500 ms to 12 s (av-
erage interval of 3 s) and intertarget intervals between 3
and 20 s (mean interval was 8 s). Cues were presented for
200 ms, targets were shown for 2,000 ms. Totally, 128 trials
were presented (56 congruent/incongruent trials, 16 neu-
tral; 20 trials of each cue, 48 ‘‘no cue" trials) within one
single run; the scanning time was about 18 min.

Imaging Data Acquisition

Imaging was performed on a 1.5 T Siemens Symphony
system. Structural images were acquired using an isotropic

T1-weighted MPRAGE (magnetization-prepared rapid ac-
quisition gradient echo) sequence with the following pa-
rameters: TR ¼ 1,500 ms, TE ¼ 3.93 ms, TI ¼ 760 ms, flip
angle ¼ 5�; FOV ¼ 256 mm2; matrix ¼ 256 � 256; 160 sli-
ces, slice thickness 1 mm, voxel size ¼ 1 � 1 � 1 mm3).

Functional data were collected by using a gradient echo
EPI sequence (EPI) with the following parameters: TR
(repetition time) ¼ 3,000 ms, TE (echo time) ¼ 50 ms, TI
(inversion time) ¼ 2,630 ms, 33 4-mm-thick axial slices
with a 0.4-mm gap, matrix size ¼ 64 � 64, field of view
(FoV) ¼ 200 mm2, flip angle ¼ 90�. The first three volumes
were discarded to allow for T1 equilibration effects. For
each subject, 360 functional whole-brain images were
acquired in the task session, 80 volumes in the resting-
state scan.

fMRI Data Analysis

Data preprocessing and statistical analyses were per-
formed using the Statistical Parametric Mapping (SPM)
software (http//www.fil.ion.ucl.ac.uk/spm). Data of both,
resting-state scan and task measurements, were motion-
corrected, coregistered onto the individual anatomical T1,
spatially normalized into the stereotactic space of the Mon-
treal Neurological Institute (MNI) (T1 template, 2 � 2 � 2
mm voxel resolution) and spatially smoothed with an 8 �
8 � 8 mm Gaussian kernel full-width-half-maximum to
accommodate inter-subject anatomical variability (for more
information see Supporting Information).

Functional connectivity-partial coherence analysis

In this study, we focused on ROI-based pC analyses
within the executive/dorsal attention network. All preced-
ing analyses including the identification of RSNs using
ICA and their statistical analyses have been described in
an earlier study [Sorg et al., 2007, for details see also Sup-
porting Information]. For our ROI-analysis we used the
significantly coactivated network regions of the executive/

TABLE II. fMRI activations patterns in resting state

fMRI and task fMRI, reported are coordinates of the

local maxima (x,y,z) and statistical power (Z-score)

Region of
interest

Resting-state fMRI Task-fMRI

X y z Z x y z Z

rMFG 54 9 45 5.2 54 6 39 4.7
lSPG �63 �30 24 6.2 �36 �48 42 4.7
rSPG 18 �66 54 5.7 21 �72 51 4.6
rRZCa 6 18 33 4.1 6 21 42 3.8

Z-values are reported FWE-corrected for multiple comparisons.
rMFG, right middle frontal gyrus; lSPG, left superior parietal
gyrus; rSPG, right superior parietal gyrus; rRCZa, right rostral
cingulate zone, part anterior. Coordinates were reported in MNI-
space.
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dorsal attention network (see Table II and Fig. 1, red dots;
Supporting Information Fig. S2), located within the right
and left superior parietal gyri, the right middle frontal
gyrus as well as within the right anterior cingulate cortex.
We constructed spherical regions (r ¼ 10 mm) around the
peak voxel of the significant clusters within these ROIs
and extracted the voxelwise BOLD time courses (tc). For
each tc the first eigenvector was derived with singular
value decomposition yielding the most prominent propor-
tion in the BOLD signal. The signal from global gray mat-
ter, CSF and deep white matter was removed from the tc
through linear regression in the time domain [Fox et al.,
2009]. A Z-transformation of the resulting time courses
was applied to yield normal distribution. Using these tcs,
pair-wise connectivity parameters for right fronto-parietal
connections, fronto-cingular, and inter-parietal connections
were determined. We chose the methodological approach
of pC [e.g., Kaminski, 2006; Salvador et al., 2005; Sato
et al., 2009; Sun et al., 2004], as in contrast to simple time
series correlations, pC is a multivariate approach, treating
fMRI data as a set of voxel changing their state in time
[for discussion see Sun et al., 2004, Appendix A]. Mathe-
matically, pC estimations are repeated for each region in
the context of inter-regional relations:

In the frequency domain a function analogous to corre-
lation is coherence K. K compares common behavior of
components of signals � and y at different frequencies f. It
is a function of the power spectral density (PSD) Pxx and
Pyy and the cross power spectral density (CPSD)Pxy

Kðx; y; f Þ ¼
Pxyðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pxxðf ÞPyyðf Þ
p

The modulus of ordinary coherence takes values in the
[0, 1] range. It describes the amount of in-phase compo-

nents in both signals at frequency f (0 indicates no rela-
tion). When a system consists of more than two channels
there is always the possibility that some channels may
influence others indirectly which results in a significant
amount of coherence between those channels although
they are not directly related to each other. Functions which
help to decompose complex relations between signals
and describe only direct ones are called partial functions
[Jenkins and Watts, 1998]. All relations which can be
explained by linear combinations of other data channels
will not be shown by this measure.

Cxyðf Þ ¼
Mxyðf Þ

Mxxðf ÞMyyðf Þ

Its modulus takes values within the [0, 1] range similar
to the ordinary coherence, but it is nonzero only when the
relation between x and y is direct. Mxy is a minor of the
spectral matrix P with i-th row and the j-th column
removed.

Pðf Þ ¼

P11 P12 � � � P1n

P21 P22 � � � P2n

..

. ..
. . .

. ..
.

Pn1 Pn2 � � � Pnn

2
6664

3
7775

To examine coherence profiles between the ROIs we
determined pC coefficients for each pair of ROIs, obtaining
4 x 4 coherence matrix. Because of the used sampling rate
of TR ¼ 3 s, the tcs had a bandwidth of 0.001–0.15 Hz. For
statistical analysis, frequencies were summarized accord-
ing to Garrity et al. [2007] into the following four fre-
quency bins (fb1 ¼ 0.001–0.03 Hz, fb2 ¼ 0.04–0.08 Hz, fb3
¼ 0.09–0.13 Hz, fb4 ¼ 0.13–0.15 Hz).

Effective connectivity-dynamic causal modeling

Like in the analyses of pC coefficients from rs-fMRI,
effective connectivity analyses were based on fMRI-data
processing (e.g., specification of condition-specific contrasts
on the single subject level, group analyses using one sample
t-Tests and group comparisons), which has been reported
in an earlier study (for a detailed description see Neufang
et al., 2011, and Supporting Information). For the DCM, we
used DCM10 as implemented in the SPM8 software. The
regions, which entered the DCM analysis were conflict-
associated activations in the right middle frontal gyrus
(MFG), bilaterally in the superior parietal gyrus (SPG) and
the right anterior cingulate cortex, more precisely in the ros-
tral cingulate zone, part anterior (RCZa), revealed from
fMRI analyses (see Table II, and Supporting Information).
Subjects entered the analysis if the subjects-specific maxima
were located (i) within a radius of 10 mm around the group
maxima and (ii) within the same gyrus (see Table II and
Fig. 1, blue dots). Regional time series were extracted as the

Figure 1.

Regions of interest of the cingulo-fronto-parietal network. Blue

dots represent regions for effective connectivity; red dots indi-

cate the regions for functional connectivity analyses.
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first eigenvariate of all activated voxel within a 10 mm
radius around the subject-specific maximum.

Connectivity parameters were estimated within the
identified model of highest evidence (for model selection
see Neufang et al., 2011 and Supporting Information)
including bidirectional endogenous connectivity (eC)
between the right MFG and parietal areas (rMFG!rSPG,
rMFG!lSPG, rSPG!rMFG, lSPG!rMFG), interparietal
connections (lSPG!rSPG, rSPG!lSPG), and unilateral
connectivity from the right MFG to the right RCZa
(rMFG!rRCZa). Modulatory input (mI), the change of
connectivity strength due to external stimulation, was
modeled for the connections from the right MFG to parie-
tal areas and the right RCZa assuming a direct, linear,
frontal top-down modulation. Estimates for eC and mI
were then calculated.

Statistical Analysis

To reveal the relation between both connectivity param-
eters, we specified regression models using frequency-spe-
cific pC coefficients as independent variables and either
eC or mI as dependent variables. To compare regression
coefficients between groups’ regression coefficients were
transformed with the Fisher Z-transform and compared in
relation to the sample size. The two effective connectivity
parameters yielded 10 connectivity variables (7 eC and 3
mI); combined with four frequency-specific pC coefficients
per connection, we specified 40 regression models. Result-
ing regression models were:

• eC (rMFG!rRCZa) * pC (rMFG$rRCZafb1), . . ., pC
(rMFG$rRCZafb4)

• eC (rMFG!rSPG) * pC (rMFG$rSPGfb1), . . ., pC
(rMFG$rSPGfb4)

• eC (rMFG!lSPG) * pC (rMFG$lSPGfb1), . . ., pC
(rMFG$lSPGfb4)

• eC (lSPG!rMFG) * pC (rMFG$lSPGfb1), . . ., pC
(rMFG$lSPGfb4)

• eC (rSPG!rMFG) * pC (rMFG$rSPGfb1), . . ., pC
(rMFG$rSPGfb4)

• eC (rSPG!lSPG) * pC (rSPG$lSPGfb1), . . ., pC
(rSPG$lSPGfb4)

• eC (lSPG!rSPG) * pC (rSPG$lSPGfb1), . . ., pC
(rSPG$lSPGfb4)

• mI (rMFG!rRCZa) * pC (rMFG$rRCZafb1), . . ., pC
(rMFG$rRCZafb4)

• mI (rMFG!rSPG) * pC (rMFG$rSPGfb1), . . ., pC
(rMFG$rSPGfb4)

• mI (rMFG!lSPG) * pC (rMFG$lSPGfb1), . . ., pC
(rMFG$lSPGfb4)

As each of the 10 effective connectivity parameter
entered into 4 regression models (for each frequency
band), we used FDR-correction (Benjamini and Hochberg,
1995) to correct for 40 tests.

RESULTS

Predicting Task-Induced Effective Connectivity

Based on Resting-State Coherence in HC

Subjects

As hypothesized, we found a significant relation between
functional connectivity from rs-fMRI and effective connec-
tivity from task-fMRI within a cingulo-fronto-parietal net-
work. By correlating pC coefficients and eC parameters we
found significant associations bidirectional between the
right MFG and the right SPG (ec_rMFG!rSPG*rMFG$
rSPG, eC_rSPG!rMFG*rMFG$rSPG), from the right MFG
to the right RCZa (eC_rMFG!rRCZa*rMFG$ rRCZa) and
to the left SPG (eC_rMFG!lSPG*rMFG$lSPG), as well as
from the left SPG to the right SPG (eC_lSPG!rSPG*lSPG$
rSPG). With regard to the relation between mI estimates and
pC coefficients we found a significant correlation in the
connection from the right MFG to the right RCZa
(mI_rMFG!rRCZa*rMFG$rRCZa) (see Table III).

Interestingly, correlations between eC / mI estimates
and pC coefficients systematically varied between top-
down and bottom-up connections: whereas (top-down)
connectivity emerging from the right MFG correlated with
pC coefficients in bins of high frequencies (fb3 and fb4),
(bottom-up) connections going to the right MFG and inter-
parietal connections correlated with pC coefficients in the
lowest frequency bin (fb1) (Table III, Fig. 2).

Impaired Relation Between Task-Induced

Effective Connectivity and Resting-State

Coherence in pAD Patients

In the pAD group, there was no significant correlation
between eC/mI estimates and pC coefficients, neither in
these bins, where HC controls showed a significant
relation nor in differing frequency ranges. The statistical
comparison between connectivity parameters in those con-
nections, identified as significantly correlating in the HC
group, revealed significant group differences between
regression coefficients in all but one of the connections:
whereas in the HC group eC/mI estimates were signifi-
cantly correlated with pC coherence, pAD patients showed
either no relation between both parameters or a weak rela-
tion in the opposite direction (see Table III, Fig. 3). In the
connectivity emerging from the right MFG to the right
SPG; however, pAD patients showed a weaker, but not
significantly impaired relation.

DISCUSSION

In this study, we examined the relation between func-
tional connectivity from rs-fMRI and effective connectivity
from task-fMRI. We raised the questions (i) whether rest-
ing-state connectivity could predict the strength of effec-
tive connectivity during cognitive processing and (ii) if so,
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was this also the case in clinical populations such as pAD
patients.

We found, that resting-state functional connectivity was
significantly related to task-induced effective connectivity
in healthy subjects. This relation was valid for several con-
nections within the examined cingulo-fronto-parietal net-
work. On the basis of our findings, we can say, that the
relation (i) was frequency-specific and (ii) disrupted in
pAD patients.

With regard to the role of frequencies in rs-fMRI, low
frequency BOLD signal fluctuations have been mainly
described between 0.01 and 0.08 Hz [Salvador et al., 2008]
or <0.1 Hz [Biswal et al., 1997], and also higher frequency
bands (up to 0.16 Hz) have been identified as RSN-rele-
vant [Niazy et al., 2011]. These frequency ranges seemed
to be both, independent of the used functional connectivity
measure [small world, Achard et al., 2006; Supekar et al.,
2009, 2008; wavelet-based networks parameters, Ginestet
and Simmons, 2011; resting state networks, Lagioia et al.,
2010] and valid for different age groups [infant brain,
Smyser et al., 2010; children and young adults, Supekar
et al., 2009; adolescents, Lagioia et al., 2010; elderly, Supe-
kar et al., 2008]. Furthermore, some studies report net-
work-specific frequency ranges, for example Smyser et al.
[2010] found highest signal peaks within the sensori-motor
cortex at 0.02–0.04 Hz, in contrast to much broader range
of 0.01–0.05 Hz in visual networks. For attention networks,
however, no frequencies have yet been reported. We
found, that bottom-up connections (from parietal to frontal
regions as well as interparietal connections) were associ-
ated with frequencies within the rs-fMRI frequency range.
In our study, these frequencies might reflect the task-

induced spatial processing of the direction judgement
from the task instruction and cue-based attentional orient-
ing. In contrast, top-down connectivity was associated
with frequencies, higher than the described (>0.08 Hz),
which might be interpreted as the reflection of an active,
more intensive cognitive processing compared with resting
brain activities. Based on the findings from EEG, these
interpretation seemed plausible, however, a systematical
analysis of frequency bands in fMRI lacks until today.

In pAD patients, in contrast, the relation between func-
tional connectivity and effective connectivity was more

Figure 2.

Sketch of four-area network. Circles represent the structures,

the arrows the modelled pair-wise connection. Arrows are la-

beled with these frequency ranges, in which functional connec-

tivity significantly predicts effective connectivity in healthy

control subjects.

TABLE III. Frequency bins of significant correlation between partial coherence (pC) coefficients and DCM

estimates of endogenous connections (eC)

Connectivity Fb [Hz] eC pC Beta P

Top-down
eC_rMFG ! rRCZa fb3 (0.08–0.13) HC: .02 � .10 HC: .55 � .09 HC: .62, P < 0.05 P < 0.05*

pAD: .01 � .07 pAD: .61 � .09 pAD: -.08, n. s.
mI_rMFG ! rRCZa fb3 (0.08–0.13) HC: -.01 � .20 HC: .61 � .09 HC: -.63, P < 0.05 P < 0.05*

pAD: .06 � .17 pAD: .54 � .09 pAD: .03, n. s.
eC_rMFG ! lSPG fb3 (0.08–0.13) HC: .06 � .14 HC: .62 � .10 HC: -.53, P < 0.05 P < 0.05*

pAD: .04 � .12 pAD: .58 � .12 pAD: .16, n. s.
eC_rMFG ! rSPG fb4 (0.13–0.15) HC: .05 � .23 HC: .14� .09 HC: .53, p<.05 n. s.

pAD: .03 � .19 pAD: .13 � .06 pAD: .33, n. s.
mI_rMFG ! lSPG No significant correlation in any frequency bin
mI_rMFG ! rSPG No significant correlation in any frequency bin
Bottom-up

eC_rSPG ! rMFG fb1 (< .03) HC: .13 � .15 HC: .17 � .10 HC: .59, P < 0.05, P < 0.05*
pAD: .14 � .11 pAD: .23 � .19 pAD: -.27, n. s.

eC_lSPG ! rSPG fb1 (< .03) HC: .06 � .14 HC: .13 � .09 HC: -.62, P ¼ 0.01 P < 0.05*
pAD: .06 � .19 pAD: .11 � .07 pAD: .25, n. s.

eC_rSPG ! lSPG no significant correlation in any frequency bin
eC_lSPG ! rMFG no significant correlation in any frequency bin

*P < 0.05, FDR-corrected for 40 tests; rMFG, right middle frontal gyrus; lSPG, left superior parietal gyrus; rSPG, right superior parietal
gyrus; rRCZa, right rostral cingulate zone, part anterior; HC, healthy controls, pAD, prodromal Alzheimer’s Disease.
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inconclusive: (i) in the connection from the right MFG to
the right SPG pAD patients showed a similar, although
weaker, pattern like HC subjects (correlation with pC coef-
ficients at a ‘‘higher" frequency band), (ii) in other fronto-
cingulo-parietal connections, regression coefficients dif-
fered significantly from those of the HC subjects. In line
with our hypotheses, we found significantly different rela-
tions in fronto-parietal connections. This finding reflected
the results from the group comparisons, reported in earlier
studies [Neufang et al., 2011; Sorg et al., 2007]. However,
in contrast to our hypothesis of a preserved cingulate-asso-
ciated connectivity, we did find reductions also between
fronto-cingulo connections. This is also in contrast to stud-
ies reporting changes in the cingulate being associated
rather with age than AD pathology [Raji et al., 2009].

However, as the cingulate was affected via fronto-cingulo
connections, it might rather be due to frontal disconnec-
tion, reported by Perry and Hodges [1999] than an
impaired integration of the cingulate cortex itself.

The limitations of this study are that our findings
remain on the descriptive level, which means that assump-
tions of basic mechanisms, leading to a disruption between
RSNs and task-induced connectivity patterns in early AD,
remains speculative. Candidates for these pathological
processes are, for example pathology-induced alterations
in rs-frequency bands. For example, Garrity et al. [2007]
reported heightened frequencies within the DMN in schiz-
ophrenic patients compared to HC subjects, and Stam
et al. [2005] reported reduced synchronicity in AD patients
during rs-EEG in the alpha band (10–13 Hz) and beta

Figure 3.

Sketch of the four-area network. Circles represent the struc-

tures, the arrows the modelled pair-wise connection. The black

solid arrows mark the connection in which functional connectiv-

ity predicted effective connectivity in pAD patients, dotted

arrows indicate the connections, where functional connectivity

did not predict effective connectivity in pAD patients. The scat-

ter plots show group-specific correlations for these connections.

Dotted line marks the regression line in pAD patients, the solid

line the regression line for HC subjects.
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band (13–30 Hz). Alternatively, network integration weak-
ened due to morphometrical alterations. In an earlier
study, we could show that effective connectivity declined
in function of regional gray matter volume [Neufang et al.,
2011; Sorg et al., 2007]. Likewise, studies combining fMRI
and FDG-PET reported impaired RSN connectivity in
areas of high amyloid deposition in healthy elderly
[Drzezga et al., 2011; Sperling et al., 2009] as well as AD
patients [Sheline et al., 2010]. Thus, it might be that AD-
related changes in the brain tissue might have something
to do with the disrupted relation between functional con-
nectivity and effective connectivity.

In summary, we report findings with regard to the rela-
tion between two different modalities of cerebral connec-
tivity. We demonstrated that they were related in healthy
subject, but impaired in pAD patients. Furthermore, con-
nectivity parameters were frequency-specific, hinting
towards a crucial role of frequencies in the study of
networks.

ACKNOWLEDGMENTS

The authors thank the reviewers for constructive sugges-
tions. This work is supported by the German Federal Min-
istry of Education and Research (BMBF) grant 01EV0710
(AMW) and SN is supported by the Kommission für Klini-
sche Forschung of the university hospital Klinikum Rechts
der Isar, grant C21-09 / 8762753. VR is supported by the
Alzheimer Forschung Initiative (AFI) grant 08860 and by
the KKF grant 8762754.

REFERENCES

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006):
A resilient, low-frequency, small-world human brain func-
tional network with highly connected association cortical hubs.
J Neurosci 26:63–72.

Aertsen A, Prei�l H (1999): Dynamics of activity and connectivity
in physiological neuronal networks. In: HGS, editor. Nonlinear
Dynamics and Neuronal Networks. New York: VCH Publish-
ers. pp281–302.

Benjamini Y, Hochberg Y (1995): Controlling the false discovery
rate: A practical and powerful approach to multiple testing.
J Roy Stat Soc 57:289–300.

Biswal B, Van Kylen J, Hyde JS (1997): Simultanous assessment of
flow and BOLD signals in resting-state functional connectivity
maps. NMR Biomed 10:165–170.

Calhoun VD, Adali T, McGinty VB, Pekar JJ, Watson TD, Pearlson
GD (2001): fMRI activation in a visual-perception task: Net-
work of areas detected using the general linear model and in-
dependent components analysis. Neuroimage 14:1080–1088.

Damoiseaux JS, Greicius MD (2009): Greater than the sum of its
parts: a review of studies combining structural connectivity
and resting-state functional connectivity. Brain Struct Funct
213:525–533.

Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T,
Sullivan C, Schultz AP, Sepulcre J, Putcha D, Greve D, Johnson
KA, Sperling RA (2011): Neuronal dysfunction and disconnec-

tion of cortical hubs in non-demented subjects with elevated
amyloid burden. Brain 134:1635–1646.

Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005):
The activation of attentional networks. Neuroimage 26:471–
479.

Fox MD, Zhang D, Snyder AZ, Raichle ME (2009): The global sig-
nal and observed anticorrelated resting state brain networks. J
Neurophysiol 101:3270–3283.

Fox MD, Snyder AZ, Barch DM, Gusnard DA, Raichle ME (2005):
Transient BOLD responses at block transitions. Neuroimage
28:956–966.

Friston KJ (1994): Functional and effective connectivity in neuroi-
maging: A synthesis. Human Brain Mapp 2:56–78.

Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Cal-
houn VD (2007): Aberrant ‘‘default mode’’ functional connec-
tivity in schizophrenia. Am J Psychiatry 164:450–457.

Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich
K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings
JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens
P, Tierney MC, Whitehouse P, Winblad B; International Psy-
chogeriatric Association Expert Conference on mild cognitive
impairment (2006): Mild cognitive impairment. Lancet 367:
1262–1270.

Greicius MD, Supekar K, Menon V, Dougherty RF (2009): Resting-
state functional connectivity reflects structural connectivity in
the default mode network. Cereb Cortex 19:72–78.

Ginestet CE, Simmons A (2011): Statistical parametric network
analysis of functional connectivity dynamics during a working
memory task. Neuroimage 55:688–704.

Havlicek M, Friston KJ, Jan J, Brazdil M, Calhoun VD (2011):
Dynamic modeling of neuronal responses in fMRI using cuba-
ture Kalman filtering. Neuroimage 56:2109–2128.

Jenkins GM, Watts, DG. 1998. Spectral analysis and its applica-
tions. Boca Raton: Emerson-Adams Press. 525 p.

Kaminski M (2007): Multichannel data analysis in biomedical
research. In: Jirsa VK, McINtosh AR, editors. Handbook of
Brain Connectivity. Heidelberg: Springer Verlag. pp327–356.

Lagioia A, Van De Ville D, Debbané M, Lazeyras F, Eliez S (2010):
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Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Laer L,
Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM
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