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Abstract: In modern neuroscience there is general agreement that brain function relies on networks
and that connectivity is therefore of paramount importance for brain function. Accordingly, the delin-
eation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and trac-
tography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined
number of areas and/or are limited to small regions of grey matter. However, it is in general not likely
that a single parcellation dividing the brain into a finite number of areas is an adequate representation
of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering
as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that
this method encodes the information of the underlying structure at all granularity levels in a hierarchi-
cal tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the
complexity of the tree with minimal information loss. We show how these trees can be used to
compare the similarity structure of different subjects or recordings and how to extract parcellations
from them. Our novel approach yields a more exhaustive representation of the real underlying struc-
ture and successfully tackles the challenge of whole-brain parcellation. Hum Brain Mapp 35:5000–
5025, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

It is commonly accepted among neuroscientists that the
cerebral cortex can be subdivided into areas according to
various structural criteria, including the distribution of dif-
ferent cell types (cytoarchitecture), the distribution of
myelinated fibers (myeloarchitecture), and the distribution
of different neurotransmitter receptors (receptorarchitec-
ture) [Amunts et al., 2007, 2010; Brodmann, 1909; Vogt,
1910, 1911; Zilles, 2004; Zilles and Amunts, 2009, 2010; Zilles
et al., 2004]. The most widely known such parcellation is
still the cytoarchitectonic map of Brodmann, based on the
specific variation in size and packing density of cell bodies
over the layers of the cortical sheet in one single subject. It is
also generally agreed that brain structure is closely related
to brain function and, therefore, structurally defined cortical
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areas tend to carry functional meaning. Consequently,
many studies have aimed to find the boundaries between
these areas, using a variety of techniques based on local
structural tissue properties. However, the brain is not only a
collection of isolated functional units; the different parts
communicate and interact in a complex network ultimately
resulting in higher cognitive capabilities. The connectivity
pattern of a specific point in the cortex is, therefore, a major
source of information about its function and an important
parameter for the description and distinction of cortical
areas [Barbas and Rempel-Clower, 1997; Kn€osche and Titt-
gemeyer, 2011; Passingham et al., 2002]. The subdivision of
the brain into function-anatomically defined areas is also a
necessary step for the connectome, characterized by elements
(the regions being connected) and the connections between
them [Sporns, 2011].

However, it is unlikely that a single parcellation divid-
ing the brain into a finite number of functional areas
would be an adequate representation of the functional
organization of the brain, in the same way that a political
map subdividing the earth’s land surface is not a perfect
representation of the cultural differences and kinships
amongst its people. The measurable changes of properties
on the cortical surface are often gradual rather than
abrupt. In these cases, we might find different partitions
depending on how we define the minimum structural dif-
ference that just merits distinction, that is, on the required
level of granularity of the partition. Also, even in cases
where these changes are sharp and a partition remains
constant for a wide range of granularities, there can still
exist nested divisions within the regions of this partition.
This is exemplified by the cytoarchitecture work of Cas-
pers et al. [2008] and the tractography work of Ruschel
et al. [in press], where Brodmann’s areas 39 and 40 were
further subdivided. A partition should, therefore, be seen
as an approximation of the similarity structure (e.g.,
expressed by a correlation matrix) of some structural prop-
erties at a particular level of granularity.

Brain connectivity is among the most relevant structural
cues in terms of brain function [Kn€osche and Tittgemeyer,
2011]. The arrival of dMRI, and particularly the ability to
describe the anatomical connectivity pattern of a point in

the cortex by means of tractography, has enabled research-
ers to perform in vivo cortical parcellation based on brain
connectivity [Anwander et al., 2007; Johansen-Berg et al.,
2004]. Classical approaches usually focus on one particular
subdivision of the cortical surface and apply rather strong
constraints and assumptions. For example, target-based
clustering [Behrens et al., 2003] involves the strong
assumption that each parcel should be mainly connected
to one out of a set of predefined target areas. On the other
hand, so-called free clustering algorithms do not have this
assumption, but the number of expected parcels, average
size of clusters, or a similar parameter must be known in
advance [Anwander et al., 2007], posing a classical model
selection problem. The implicit assumption here is that
there is a parcellation that can be considered a reasonably
unique and complete representation of the connectivity
similarity structure, which is rarely likely to be the case.
There have been attempts to deal with non-uniqueness
through having a series of parcellations [Kahnt et al.,
2012], attempting to find an, in some sense, optimal parcel-
lation (Jbabdi et al., 2009], or searching for a space of opti-
mal parcellations [Gorbach et al., 2011; Roca et al., 2009].
However, when faced with a whole-brain approach, the
challenge of not only having a high and unknown
expected number of areas, but also that number being sub-
ject to the desired granularity of the partitioning, arises.

In this work, we propose hierarchical clustering as an
approach to overcome these limitations. Hierarchical meth-
ods have been applied before to partition functional mag-
netic resonance imaging (fMRI) connectivity data [Cordes
et al., 2002; Liu et al., 2012; Stanberry et al., 2003] and
recently also to obtain full cortical fMRI parcellations at
multiple granularities [Blumensath et al., 2013]. In dMRI,
agglomerative hierarchical clustering has been used to per-
form parcellation of white matter pathways by Wasser-
mann et al. [2010] and Guevara et al. [2011].

We aim to demonstrate that hierarchical clustering is also
a promising means by which to characterize the similarity
structure of anatomical connectivity patterns in the human
brain, where the information of the underlying structure at
all granularity levels is encoded in a hierarchical tree or
dendrogram. For this purpose, we implemented and com-
pared several hierarchical methods and the best performing
algorithm, both by data-fit and computational cost criteria,
was selected. It combines hierarchical centroid linkage clus-
tering with a physical neighborhood restriction. Once trees
are obtained, interpreting the large amount of data encoded
and extracting the most relevant information is not an easy
task. To aid this process, a dendrogram pre-processing
pipeline was designed that reduces the complexity of the
resulting trees, while keeping most of its information, to
facilitate further analysis. Finally, we pursue the idea that
these trees can then be sampled to obtain relevant partitions
at different granularity levels.

Another important issue is the comparison of parcella-
tions between subjects. This is a non-trivial issue, since, as
argued above, in each subject many different parcellations

Abbreviations

CPCC cophenetic correlation coefficient
dMRI diffusion magnetic resonance imaging
FA fractional anisotropy
fMRI functional magnetic resonance imaging
GRAPPA generalized autocalibrating partially parallel

acquisitions
SNR signal to noise ratio
SS spread vs. separation
tCPCC tree cophenetic correlation coefficient
TE echo time
TR repetition time
wTriples weighted triples similarity.
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are possible, depending on local and global granularity con-
straints. Also, even if one manages to identify matching par-
cellations in different subjects, the comparison based
thereupon only applies for the respective granularity level,
while for finer or coarser subdivisions the result could be
completely different. On the other hand, the hierarchical
tree is just a compact representation of all possible parcella-
tions. Hence, comparing the entire tree, instead of individ-
ual parcellations, should circumvent the above mentioned
issues. We show how the trees can be used to compare the
similarity structure of different subjects or time points: glob-
ally, using the full connectivity structure information
through dendrogram comparison, and at selected granular-
ity levels through the use of partition finding algorithms.
Importantly, this is performed while remaining in the sub-
ject space without the need to transform the data to a com-
mon space prior to partitioning [Wang et al., 2013].

METHODS

Data Acquisition and Preprocessing

High resolution dMRI images as well as T1- and T2-
weighted images were acquired for four young and
healthy participants (three males and a female) on a Sie-
mens TimTrio scanner with a 32-channel array head coil
and maximum gradient strength of 40 mT/m. For one of
the participants, a second set of images was acquired after
a one-week interval. Written informed consent was
obtained from the subjects in accordance with the ethical
approval from the University of Leipzig.

The dMRI data was acquired using spin-echo echo-pla-
nar imaging, with repetition time (TR) 5 11 s, echo time
(TE) 5 90 ms, 85 axial slices, resolution 1.5 mm isotropic,
GRAPPA/3, and three acquisitions. We used 60 diffusion
gradient directions, which were evenly distributed over
the half-sphere (b-value 5 1,000 s/mm2). The diffusion-
weighted volumes were interspersed by acquisitions with
no diffusion weighting (b0 images) at the beginning and
after each block of 10 volumes (7 volumes). The total scan
time for the dMRI protocol was approximately 45 min.

As a first preprocessing step, the three-dimensional T1-
weighted (magnetization prepared-rapid gradient echo,
TR 5 1,300 ms, time to inversion 5 650 ms, TE 5 3.93 ms,
resolution 1.0 3 1.0 3 1.5 mm, two acquisitions, recon-
structed to 1 mm isotropic resolution) images were reor-
iented to the mid-sagittal plane through the anterior and
posterior commissures and the brain volume was seg-
mented using the Lipsia software package [Lohman et al.
2001]. The 21 images without diffusion weighting were
used to estimate motion correction parameters using rigid-
body transformations [Jenkinson et al., 2002], implemented
in FSL (FMRIB Software Library, Oxford, UK). Motion cor-
rection parameters were interpolated for all 201 volumes
and combined with a global registration to the T1 anatomy
using a mutual information registration algorithm. The dif-

fusion gradient direction for each volume was corrected
using the rotation parameters. The registered images were
linearly interpolated to the new reference frame with an
isotropic voxel resolution of 1 mm and the three corre-
sponding acquisitions and gradient directions were aver-
aged. Next, the diffusion tensor was calculated for each
voxel after logarithmic transformation of the signal inten-
sities [Basser et al., 1994]. Finally, the fractional anisotropy
(FA) of the tensor in each voxel was subsequently deter-
mined, and a multi-slice FA image [Basser and Pierpaoli,
1996] was created. The combined motion correction and
registration to the individual T1 anatomy provided some
advantages. A simple motion correction to the first image
in the diffusion weighted sequence would have introduced
a variable amount of smoothing caused by the interpola-
tion of the images to the reference image. For example, the
first images in the sequence would have needed less inter-
polation and the reduced smoothing would have caused a
directional bias. Using the independent orientation of the
T1 image as reference removed this potential bias. Addi-
tionally, the sampling of the data with a higher spatial
resolution (1mm instead of 1.5mm) allowed keeping more
details of the data compared with a resampling with the
original resolution. In this way, interpolation of the raw
data provided some methodological advantages in the fol-
lowing tractography step.

White Matter Tractography

The brain volume was segmented into white and gray
matter compartments by means of FA thresholding (white
matter: FA� 0.15) and interactive corrections for deep
white matter imperfections. Using an FA based mask
allows to define seed voxels at a clearly defined white
matter boundary. This precession would not have been
possible using the white matter mask from the segmented
T1 image, since the diffusion image shows small non-
linear distortions. Each white matter voxel that neighbored
a cortical gray matter voxel was used as a seed voxel for
the probabilistic dMRI tractography (that is, each single
grey matter/white matter boundary voxel at 1 mm resolu-
tion, between 130,000 and 200,000 seed voxels per brain
depending on size), as proposed by Anwander et al.
[2007]. The tractography algorithm computed a transition
probability of a simulated particle jumping from one voxel
to the next from the diffusion data. Next, the probabilistic
tractography started 100,000 particles in each seed voxel.
The particles propagated in the white matter as guided by
the local transition probabilities, defined by the probability
density function from the diffusion tensor model. The tar-
get space was the whole white matter volume with a reso-
lution of 1 mm3. The diffusion data was not interpolated
in this step and used the interpolation of the raw diffusion
data as computed in the preprocessing steps. Finally, a vis-
itation map was computed from the number of particles
which cross each voxel. The tractography algorithm was
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parallelized and implemented on a consumer PC graphic
board (GPU) and took only a few seconds per seed point.

The three-dimensional distribution of the connectivity
values (visitation map) of a particular seed voxel with all
voxels in the brain is called a tractogram. In these tracto-
grams, which we use as connectivity fingerprints, the value
associated with a particular white matter voxel represents
the visitation fraction, that is, what proportion of all par-
ticles started at the seed voxel went through that particular
voxel. The visitation values ranging between 0 and 100,000
were log transformed to reduce the dynamic range (in order
to palliate the intrinsic bias that visitation-based connectiv-
ity values have towards favoring short connections against
longer distance ones, which are especially problematic for
the computation of similarities between tractograms) and
scaled between 0 and 1 (1 means all, 0 means none of the
started streamlines touched the voxel). These values are
taken as a correlate for the anatomical connectivity between
that voxel and the seed voxel of the tractogram. Although
based on a simple local model (diffusion tensor), this proba-
bilistic tractography can, to a certain extent, account for fan-
ning fibers and fiber crossings. This provides tractograms
with enough overlap area to detect connectivity pattern dif-
ferences between voxels at the discrimination level required
for successful parcellation.

To analyze the effects of a reduced signal-to-noise ratio
(SNR) onto the developed analysis methods, a second set
of tractograms was obtained for the first three subjects
using just a single acquisition of the diffusion data (in con-
trast to averaging the three available acquisitions).

Hierarchical Clustering

In order to characterize the similarity of structural connec-
tivity in a granularity range as wide as possible, agglomera-
tive hierarchical clustering was applied over the tractogram
fingerprints. This type of clustering starts by considering
every object in the dataset as a separate cluster, then it merges
the closest (i.e., most similar) pair of clusters, according to
some similarity criterion, and iterates until all of the data
points belong to one single cluster. The result is essentially a
binary tree, where each position in the x-axis corresponds to a
connectivity fingerprint (also called leaves) and the values in
y-axis where any two leaves join for the first time refer to the
dissimilarity or distance between the two fingerprints as
encoded by the tree. An outline of the clustering process
applied to anatomical connectivity can be seen in Figure 1.

A noncentered variant of Pearson’s correlation coeffi-
cient was used as a similarity metric [Eq. (A1)], as it is bet-
ter suited for structural tractograms, where all values are
positive and different degrees of negative linear depend-
ency values do not hold relevant biological information
(details on this choice can be found in the Appendix).

Different agglomerative methods use different measures
to calculate the new distances when elements are merged
(linked). The most widely used linkage methods in the lit-
erature are the four types of graph methods (single, com-

plete, weighted, and average linkage methods), called so
as they stem from graph theory [Murtagh, 1983]. In all of
these methods it is necessary to calculate the pairwise dis-
tances between all elements. This can prove costly when
there are a large number of elements and the points are in
a very high dimensional space, as is the case in the sce-
nario of connectivity-based whole-brain parcellation using
1 mm resolution.

In order to reduce the computation and memory
requirements, we elected to explore a fifth approach based
on the centroid linkage method [Jain and Dubes, 1988]. In
this method, each cluster is defined by its centroid: a data
point that represents all the points included in the cluster.
In the study presented here, the centroid was computed as
the average of the tractograms in natural space.

If the assumption is made that a connectivity-defined
region in the brain must always be a connected patch of
gray matter, then only mergers between neighboring clus-
ters are allowed, and only those distances have to be com-
puted, drastically reducing the cost of the algorithm (a
neighborhood restriction may also be used in the graph
methods in order to force morphologically continuous
clusters, but the whole distance matrix must still be calcu-
lated and thus it yields no computational advantage). The
concept of spatially constrained hierarchical clustering has
also been exploited for fMRI data [Blumensath et al. 2013], a
modality where this particular restriction has proved of
advantage for parcellation in the past [Craddock et al. 2011].

As an output of these algorithms (both graph and cent-
roid) a binary tree (also called bifurcating rooted tree or

Figure 1.

Schema of the hierarchical clustering process. a) Select gray-mat-

ter/white-matter interface voxels; b) generate probabilistic tracto-

grams of seed voxels; c) compute similarities between tractograms;

d) build-up connectivity tree; e) select partitions within the tree

and map back to the cortex. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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fully resolved dendrogram) is obtained. This tree encodes
the connectivity similarity structure of the dataset at all
granularity levels, transforming into a much-reduced
dimensionality (2n, n being the number of seed elements)
the information of the distance matrix (dimension n2)
obtained from the tractogram space (dimension n�m, m
being the number of white matter voxels).

One of the advantages of this method is the possibility of
comparing the full connectivity structure across datasets
through tree comparison, which we will further develop in
a later subsection. In order to do this, the leaves of the trees
to be compared must first be matched. With this in mind, an
extra restriction was applied to the centroid method during
the initial iterations of the tree building process. The objec-
tive is to ensure that at the lower levels of the tree (that is,
the ones with highest granularity) the clusters are joined in a
homogenous way, with roughly equal sizes, until a certain
number of clusters has been reached. As will be explained
later, this allows for easier leaf matching. There is, however,
no restriction upon the shape of these clusters, and their
merging is still guided by connectivity pattern similarity.
The concept of a 2-stage clustering approach (where first a
maximum granularity partition is obtained from which to
build the hierarchical tree) has also been successfully used
by Gorbach et al. [2011] and Blumensath et al. [2013] to par-
tition dMRI and fMRI data, respectively (although the par-
ticular implementations are substantially different).

For thorough description of the methods implemented
and their mathematical formulations please refer to the
Appendix.

Dendrogram Preprocessing

Even after the optimal linking method has been chosen, the
task of extracting relevant information from the resulting den-
drogram is not simple: the high number of seed voxels
involved could translate into many possible granularity levels
and partitions. The nature of the clustering process also forces
the dendrogram to always have binary bifurcations, whereas
in reality the dataset is likely to have structures nested in a
non-binary way. This means that some of the nodes in the tree
do not contribute any real information about the similarity
structure and are merely a byproduct of the pair-wise agglom-
erative method. Also, as in most real datasets, outliers could
be present. Finally, in the case of the centroid linkage method,
non-monotonic steps can occur, which, although not constitut-
ing an error in themselves, can complicate partition finding
algorithms and make visual interpretation of the tree difficult.

In order to address these problems and ease the infor-
mation extraction, several dendrogram preprocessing steps
were developed and applied: elimination of outliers;
monotonicity correction; limiting the maximum-
granularity captured in the tree and detection of non-
binary structures followed by removal of the correspond-
ing intermediate nodes (see Appendix for details on this
section). These preprocessing methods effectively reduce

the number of branchings, which in turn reduces the tree
complexity and possible confounds in the dendrogram,
while still maintaining maximum usable information. This
also facilitates the task of the information extraction algo-
rithms, which are introduced below.

Tree Comparison Across Measurements

Once the connectivity similarity structure of a brain is
encoded in a dendrogram, there is the possibility of using
the information from the whole tree to assess the struc-
tural differences in brain connectivity between different
subjects or measurements.

Dendrogram comparison techniques are already in use
in other fields, with most efforts being dedicated to the
field of phylogenetics [Critchlow et al., 1996; Restrepo
et al., 2007]. However, these techniques are used to com-
pare different trees built over the same dataset, relying on
a perfect match between the leaf elements of both trees. In
the scenario of brain connectivity trees from different
measurements, this would only be the case if the dendro-
grams being compared originate from the same brain, and
only if there have not been significant changes in morphol-
ogy nor the data acquisition method.

Leaf-matching across trees

In order to be able to apply these comparison methods
when assessing connectivity structure variability across sub-
jects, the problem of leaf identification had to be tackled.
Potentially, there are different possible criteria for the identi-
fication of associated pairs of leafs in two dendrograms, for
example spatial proximity after a more or less sophisticated
co-registration of the images or cortical surfaces derived
from these images. However, as the dendrograms to be com-
pared are based on the similarity of tractograms, it seems
appropriate to use the same criterion for finding matched
pairs of leafs. The solution provided involves several steps:

� First, the trees are preprocessed with the techniques
previously introduced, in order to reduce the number
of leaves and provide a maximum granularity parti-
tion. These maximum granularity partitions are fine-
tuned so that all the trees to be compared have the
same number of meta-leaves. This number is chosen
to obtain an acceptable complexity reduction while
incurring minimal information loss.
� Mean tractograms corresponding to each of the meta-

leaves are obtained for all subjects. The mean tracto-
gram of any given node is calculated as the log-
transformed average of the raw (not log-transformed)
seed tractograms contained in the respective node.
� The subjects’ FA images are non-linearly registered to

a common space, and this transformation is applied to
the mean tractograms. The registration is performed
through the ANTS package [SyN registration
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algorithm; Avants et al., 2008; Klein et al., 2009]. The
mean tractograms are then transformed to the same
common space using the deformation fields obtained
from the FA image registration.
� For each pair of trees being compared, a tractogram

distance matrix between their corresponding meta-
leaves is obtained.
� Matching of the meta-leaves of the trees is done by

applying a greedy algorithm to the distance matrix:
The two tractograms with the highest similarity are
matched and their entries are eliminated from the data.
This step is iterated until there are no more entries in
the matrix. In order to avoid poor matches, restrictions
on minimum tractogram similarity and maximum
Euclidean distance between cluster morphological cen-
ters are applied (minimum mean-tractogram similarity:
0.1 and minimum spatial distance between cluster cen-
ters: 2 cm) Clusters for which no suitable correspon-
dence can be made are discarded and not considered
in the comparison. There are other matching algo-
rithms available, such as the Hungarian method [Kuhn
1955], which tries to optimize the matching in terms of
global rather than local distance between matched ele-
ments. However, this also means higher computation
time and resources. For a first implementation and
proof of the method, we chose the simpler greedy
matching with reduced computation time.

The leaf matching process is outlined in Figure 2.

Tree similarity measures

Two different tree similarity measures were
implemented:

Tree cophenetic correlation coefficient (tCPCC). Farris
[1969] introduced the cophenetic correlation coefficient
(CPCC) to assess the degree to which a tree successfully enc-
odes the similarity information by measuring the correlation
between the pairwise distance matrix obtained directly
from the data and a distance matrix derived from the tree
structure. This principle can be adapted for tree comparison
by instead correlating the distance values encoded by each
of the trees for each pair of corresponding meta-leaves.

Weighted triples similarity (wTriples). An alternative
tree comparison method, described in detail by Bansal
et al. [2011], consists of comparing the joining order of all
possible triples of leaves of each tree. The number of tri-
ples for which the joining order is exactly the same is
divided by the total number of possible triples; obtaining a
value ranging between 0 and 1.

The tCPCC and wTriples comparison methods are (par-
tially) complementary: while the former stresses the simi-
larity of the distance values encoded by both trees, the
latter focuses on the similarity of the hierarchical topolo-
gies of both trees, regardless of the numerical values
encoded. See Appendix for details on their mathematical
implementation for this work.

Partition Selection

As argued above, the tree is suitable for assessing the
structural map of the cortical sheet as a whole. However,
in order to fully appreciate the function-anatomical organi-
zation of the cortex, we also need to map this information
back onto the cortical surface. Because the tree is a multi-
dimensional structure, it cannot be fully projected directly
onto this two-dimensional space. Some strategies have

Figure 2.

Leaf-identification pipeline: maximum effective granularity partitions

are obtained for each subject, i.e., Subjects A and B (a); a mean trac-

togram is computed for each cluster (b); all tracts are registered to

a common space (c); pairwise tract similarity matrix is computed

between the subjects (d); a greedy algorithm is used to extract the

cluster correspondence table from the matrix (e). These clusters

will become the new leaves of the trees. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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been proposed that allow including some degree of multi-
granularity information into surface mapping, such as
using similar color hues for subclusters of a bigger cluster
(for example using reddish, greenish and bluish hues for
subclusters of three main divisions) or hierarchical “space-
blobs” [Cachia et al., 2003]. These approaches, however, are
not suitable for the very high range of granularities and
high number of nodes present in our trees. As an alterna-
tive, representative parcellations (being equivalent to a
complete cut of the tree that severs all connections between
the top node and any leaf) may be found that best approxi-
mate the information encoded in the tree. It is very unlikely
that a single partition can represent the entire similarity
structure of the data. Using a series of partitions at different
granularity levels, which in this case would also be hier-
archically nested, might be a better way to achieve it.

Many different methods for comparing and assessing par-
titions can be found in the literature [Halkidi et al., 2002;
Rand, 1971; Theodoridis and Koutroubas, 1999]. However,
these methods usually refer to the original data, which in
our case would involve operations with high dimensional
tractograms, making them computationally expensive and
slow. Limiting the data used to that contained in the tree
allows fast partition assessment algorithms to be imple-
mented. There is also literature available on tree partition-
ing algorithms [Jain and Dubes, 1988; Langfelder et al.,
2008; Zahn, 1971], but these methods did not translate into
meaningful partitions in the case of the brain connectivity
trees studied here. The most traditional approach to tree
partitioning does, however, deserve introduction.

Minimum guaranteed intracluster similarity (horizon-
tal cut)

By definition, if a horizontal cut is made through a den-
drogram the partition obtained is the one that guarantees,
for a given number of clusters, a lower bound for the
intracluster similarity. Therefore, this cut yields regions
with a certain minimum required consistency (or greater).
In order to select a partition, either a number of desired
clusters, or the distance level where the horizontal cut is
made must be chosen.

Cluster spread vs. separation (SS) index

The horizontal cut method only takes into account the dis-
tance level of the clusters involved in the partition, that is,
the encoded distance between the elements contained in
those clusters, which relates to spread or scatter of the clus-
ters. A more complete partition selection method should also
consider the distance between such clusters related to their
spread. Furthermore, the horizontal cut may only be used
with a pre-defined granularity level and is unable to assess
the quality of a partition. In order to tackle these shortcom-
ings, we introduced a second algorithm presented below.

The overall spread of the clusters in a partition can be
quantified through the formula:

Spread5
1

ST

XN

i

Sidi (1)

where di and Si are the distance level and size of cluster i,
respectively. N is the number of clusters in the partition,
and ST the sum of all clusters sizes in the partition.

The distance level of the parent of a given node in the
tree encodes the separation between the center of that
cluster and that of its closest neighbor. The average sepa-
ration between neighboring clusters for a given partition
can then be expressed as:

Separation5
1

N

XN

i

dpðiÞ (2)

where dp(i) is the distance level of the parent of node i.
Using these two formulas, a partition quality measure is

obtained by calculating the ratio between the mean spread
of clusters in the partition and the mean separation between
neighboring clusters: the spread-separation (SS) index.

SS5
ST

XN

i
dpðiÞ

N
XN

i
diSi

(3)

A higher value will indicate that, for that partition, the
mean separation of clusters is high compared with the sepa-
ration of elements within the clusters. This index can be used
to find global or local maxima in the tree, thus revealing par-
titions of particular significance. Alternatively, it can be
coupled with a required number of clusters, in order to find
the best possible partition of a given desired granularity.

However, due to the data size and the extremely high
number of possible partitions contained in the trees, an
exhaustive assessment of all possible cuts through the tree
would exceed any reasonable computational limits. In order
to obtain partition selection methods fast enough to be inte-
grated into an interactive tree exploration tool, a top-down
hierarchical search algorithm was implemented here. This
means that, starting at the partition defined by the first
branching of the tree (or sub-tree), all possible subdivisions
of each cluster going down up to four branching levels are
considered, and the resulting partitions are evaluated. The
best performing partition is identified, and the correspond-
ing cluster from which division it had derived is subdi-
vided down one level. The process is iterated until the
desired number of clusters has been obtained or the maxi-
mum granularity partition has been reached.

Minimum cluster size difference

Due to the nature of the tractogram similarity measure
used, areas that share long common pathways (like, for
example, the longitudinal fasciculus) will tend to be more
similar to their surrounding areas sharing these large con-
nections than to those with shorter pathways or more local
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connectivity fingerprints (such as the superior frontal
lobe). Such highly cohesive areas tend to remain less parti-
tioned by the spread-separation scheme than areas with
local connectivity. Depending on the purpose of the parti-
tioning, it may be useful to circumvent this side-effect by
obtaining partitions guided by the connectivity structure
encoded in the tree but with an emphasis on clusters of
similar sizes. This can be accomplished by finding parti-
tions that minimize the mean square size difference for a
given number of clusters (using the same partition search
algorithm as described for the previous method). The
objective function to be minimized is expressed as:

SizeDiff 5
2

NðN21Þ
XN21

i

XN

j5i11

ðSi2SjÞ2 (4)

All algorithms described above were included as part of a
fast interactive exploration and visualization tool for hier-
archical characterization of brain connectivity, which simul-
taneously projects the selected partitions onto the brain
surface. This tool was implemented as a module of the open-
source OpenWalnut framework [www.openwalnut.org].

RESULTS

Choosing the Linkage Method

Hierarchical trees were built for both hemispheres of sub-
jects A, B, and C (i.e., six datasets) using each of the graph
linkages and the centroid-neighborhood method proposed.
In order to assess their fit to the data, CPCC values (see
Appendix) were computed for all obtained dendrograms.
The results show that the Average and Centroid linkages
perform well above the rest with no statistically significance
difference between them (with values close to 0.8 over 1
against 0.65 from the next best performing method). Addi-
tional calculation of the computational load for each modal-
ity give the centroid method a clear advantage over the
average method for very large datasets, with three orders of
magnitude less operations needed. Therefore, the centroid
method (with a 26-voxel neighborhood restriction) was
selected for the rest of the study. The dendrogram prepro-
cessing pipeline was applied to the centroid trees obtained,
achieving a complexity reduction of more than 90% with a
loss of information of less than 0.5% (0.15% on average),
making it a remarkably efficient and useful tool for improv-
ing the performance of partition finding and tree compari-
son algorithms. Detailed accounts of the linkage selection
process and dendrogram cleaning pipeline and parameters
are included in the Appendix.

Comparing the Connectivity Structure Across

Datasets

The information encoded in the cleaned trees can be
used as a whole in order to detect structural differences

between datasets. As described in the Methods section,
mean tractograms were obtained for each meta-leaf of the
processed trees and nonlinearly transformed to a common
space, guided by FA registration. Here we morphed the
data of subjects A and B into the space of subject C. For
the within-subject comparisons across hemispheres, the
tractograms of the right hemisphere were flipped and
transformed into the left hemisphere; also guided by a
previous FA registration. Next, the tractogram-distance
matrices were obtained and the greedy leaf-matching algo-
rithm was applied (see Methods). Using the resulting leaf-
matching tables, the tCPCC and the wTriples similarity val-
ues were obtained. In order to test the reliability of the
method and its robustness against noise, the whole process
(starting at tractogram computation and tree building) was
repeated with a noisier version of the same dataset, using
only one, instead of three, repetitions of the MRI acquisi-
tion. Test–retest performance was also assessed using two
datasets obtained from a fourth subject within a short
period of time (1 week), referred to as D1 and D2.

In order to establish a baseline level for the matching
values, a random matching scheme was set up, in which
each meta-leaf of the first tree was matched at random to
a meta-leaf of the second tree whose cluster center was
not further away than 2 cm. Afterwards, tCPCC and wTri-
ples values were obtained. This process was repeated 100
times for each possible subject combination and the aver-
age value was obtained. Distinct baseline values from both
tCPCC and wTriples were computed for inter-subject com-
parisons, left versus right hemisphere comparisons and
high versus low SNR comparisons.

The results are shown in Figure 3, where tCPCC and
wTriples are plotted against the leaf matching quality
(mean tractogram distances between matched clusters)
between the two compared data sets. Several observations
can be made:

� All tree comparison values obtained are well above
their corresponding baseline levels, indicating that the
matchings were not trivial, and that there are nonran-
dom structural similarities between the trees that can
be detected.
� For tCPCC, the information loss by lower SNR and

the variability between separate measurements of the
same subject are smaller (i.e., the tCPCC is higher)
than the differences between different hemispheres or
subjects. This indicates that differences in leaf similar-
ity, as encoded in the trees, are not generally obscured
by noise and can be interpreted. In contrast, wTriples,
which only measures tree topology (joining orders),
seems to be much more susceptible to noise.
� The similarities between the same hemispheres in dif-

ferent subjects and those between different hemi-
spheres in the same subjects are within the same
order of magnitude (between-hemispheres slightly
lower, but not significant).
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� Same-subject comparisons features much better leaf-
matching quality compared with between-hemispheres
comparisons, which in turn match better than between-
subject comparisons.

Single Subject Partitioning

Using the horizontal cut and the spread-separation tree-
partitioning methods (see Methods) nested whole-brain
partitions were obtained at different granularity levels
(defined in this case by a particular number of clusters).
The spread-separation method yielded very similar results
to those of the horizontal cut method. The nested parti-
tions are exemplified in Figure 4, where we show the left
hemisphere of subject A cut at four different granularity
levels, exploring a wide range of hierarchical boundaries.
At very low granularity (15 clusters) the parcellation
seemed to reflect the rough course of major fiber bundles
(e.g., red for the fronto-occipital fascicle, green for the
arcuate fascicle, purple for the cingulum bundle, and cyan
for the cortico-spinal tract). Increasing the granularity to
50 clusters caused further subdivisions, especially in the
dorsolateral and dorsomedial frontal and parietal cortices,
and also in the inferior frontal cortex and around the audi-
tory cortex, reaching area sizes similar to Brodmann areas.
Meanwhile, the cortex near the fronto-occipital fascicle, the
superior part of the arcuate fascicle, and the cingulum
bundle remained largely undivided. To obtain more fine-
grained subdivisions in these regions, the threshold of the
clustering criterion had to be lowered further, allowing for
100 clusters. Further increase of granularity continued

changing details, for example by further subdividing the
inferior frontal gyrus.

In Figure 5, we focused on the subdivision of the left
inferior frontal gyrus (IFG). At relatively low granularity
(50 clusters), only some of the major boundaries between
the opercular and triangular parts (subject A, B) and
between the triangular and orbital parts of the IFG were
revealed. At higher granularity, more subdivisions
appeared, including those that are not covered by the clas-
sical tripartition (into opercular, triangular, and orbital
parts). For the repetitive acquisitions in the same subject
(D1 and D2), the subdivision was highly reproducible. Fig-
ure 6 exemplifies the similarity of our parcellation with
cytoarchitectonic parcellation available from J€ulich
Research Centre (www.jubrain.fz-juelich.de/apps/cyto-
viewer/cytoviewer-main.php).

It appears that, if tree-cutting is based on internal
coherence and mutual separation of the clusters (i.e., hori-
zontal cut or spread separation methods), uninteresting
“background” connectivity by large fiber tracts cause, at
any given level of granularity, some regions of the brain
to remain largely undivided, while others were split into
small sub-areas. This lead to the introduction of the mini-
mized cluster size difference method (see Methods sec-
tion). In Figure 7, the result for this partition method is
depicted for the same subject featured in Figure 4. When
comparing the results of the two partitioning methods,
some clear differences are apparent. At low granularity
(15 clusters), the large temporal-occipital-frontal cluster
(in red, see Figure 4) broke up into smaller areas, espe-
cially on the medial brain surface, while in frontal and
prefrontal cortex fewer clusters were formed. This trend
is also evident at higher granularities. For example, at 250

Figure 3.

Tree similarity values plotted against matching quality for tree comparisons. Baseline levels for

the corresponding matchings are shown below their datapoints in the same color, solid lines cor-

respond to tCPCC baselines, and dotted lines to wTriples ones. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

Parcellations extracted from the hierarchical tree of the left hemisphere of subject A using the

horizontal cut algorithm. The numbers indicate the predefined number of clusters. The red hori-

zontal lines in the trees denote the cutting level. The spread-separation method yields almost

identical results. See text for further explanation. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 5.

Spread-separation subdivision of the inferior frontal gyrus at two different levels of granularity,

for the left hemispheres of subjects A, B, and C (left), as well as the two acquisitions of subject

D (right). See text for further explanation. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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clusters the occipital lobe was more subdivided and the
frontal one was less subdivided than with the horizontal
cut method.

Thus far, we have explored the partitioning methods
that required the input of a global granularity level (here
expressed as number of clusters, but it could also be the
average size of of the clusters, or similar). However, the
question remains: Which granularity levels might be the
most representative ones for the tree? In order to reduce
this arbitrariness, one can use the SS index (see Methods
section) to select partitions. Using the SS partitioning, a
series of parcellations can be obtained with maximum SS
indices for each granularity level. In Figure 8 the SS indi-
ces were plotted as function of granularitiy for all data
sets.

It can be seen that for small numbers of clusters the
index rises steeply, meaning that in this range further sub-
division usually leads to much better parcellations. In
many data sets, this is followed by a shoulder (at about
50–200 clusters), where further subdivision does not
greatly improve, or even slightly reduces, the quality of
the parcellation (as measured by the SS index). Next, there
follows a moderate increase, where subdivisions tend to
(slightly to moderately) improve the SS index, until a max-
imum value is reached at about 200 to 600 clusters. From
there, the curve steadily decreases, meaning that further
subdivisions always lead to worse partitions. Conse-
quently, the relevant range of partitions seems to start at
the edge of the first shoulder and end at the maximum
(where both mergings and subdivisions cause a moderate
decrease of the SS index). Ultimately, the interesting range
of partitions based on the diffusion data seems to be
roughly 20 to 600 clusters.

Figure 9 shows the maximum SS index partitions for all
subjects and hemispheres. These partitions have the maxi-
mum distinctness for the respective data sets, that is, the
best ratio between intra-cluster inhomogeneity and
between-cluster separation. These parcellations feature
small parcels with an extent comparable to the width of a

Figure 6.

Cytoarchitectonic parcellation provided by J€ulich Research Centre

(top), compared with the corresponding subtree of the left hemi-

sphere of subject A at a global horizontal partition for 100 clusters

(bottom; two clusters, one in the IFG, and other in the parietal

cortex over the STG, have been further subdivided once to better

show the corresponding matching). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Minimum size-difference partitioning for the same subject and cluster numbers as depicted in Figure

4. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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major gyrus. It is evident that, at this level of granularity,
the partitions of the two data sets from subject D are quite
similar, while the partitions belonging to different hemi-
spheres and/or subjects appear very different.

DISCUSSION

Tractography-Based Parcellation

As argued before, connectivity is among the most rele-
vant structural cues for the characterization of the functio-
anatomical identity of cortical tissue. Being the only
method that can be applied to healthy human subjects, dif-
fusion tractography is the method of choice for the recon-
struction of these connectivity patterns [Anwander et al.,
2007; Johansen-Berg et al., 2004]. For a thorough discussion
of this issue, see Kn€osche and Tittgemeyer [2011].

The tractography based parcellation requires a robust
tractography method. The local tensor model based on High
Angular Resolution Diffusion Images (HARDI) allows a
reproducible computation of the connectivity profile. The
method is sensitive to small changes in connectivity
between two voxels and is robust to noise which could
affect the local model. Other tractography methods like the
Probabilistic Index of Connectivity (PICo) based on the Per-
sistent Angular Structure (PAS) [Parker and Alexander,
2005] or probabilistic tractography based on spherical
deconvolution [Descoteaux et al. 2009] had shown to better
resolve crossing fiber structures. The more complex local
model might have been less robust to remaining noise in the
diffusion data, which might have affected the local estima-
tion of the fiber orientations [Yo et al. 2009]. While compar-
ing a tensor based tractography with fiber tracking using
spherical deconvolution Kristo et al. [2013] showed a higher
reproducibility for the tensor based tractography. In this ini-
tial study we choose to use the more robust local model.

The fact that probabilistic tractography is employed ensures
that, to a certain degree, fiber crossings and branching are
taken into account. The parcellation method we proposed
could be applied on any other tractography method. The
comparison of the result using different local models and
tractography algorithms will be subject of future investiga-
tions. In addition, all tractography algorithms including the
one used here have a number of adjustable parameters,
which potentially can affect the tractography result and the
parcellation. For example, here we had to make choices on
the number of streamlines, the scaling and the thresholding
of the tractograms and the sharpening of the local diffusion
profile [Anwander et al., 2007]. While a systematic parame-
ter study on this and other tractography algorithms would
certainly be very useful, the previous use of our approach in
a number of parcellation studies yielding neuroanatomi-
cally plausible results provides some confidence [e.g.,
Anwander et al., 2007; Gorbach et al., 2011, 2012; Ruschel
et al., in press; Schubotz et al., 2010].

In most implementations of tractography based parcella-
tion the target space comprises the entire rest of the brain,
including white matter [Anwander et al., 2007; Johansen-
Berg et al., 2004; Mars et al., 2011; Schubotz et al., 2010; Tom-
assini et al., 2007]. A possible alternative is to restrict the tar-
get space to grey matter (or, for technical reasons, the white
matter voxels just adjacent to grey matter) [e.g., Bach et al.,
2011]. It is, however, not clear whether this really improves
the situation. Most tractography methods are iterative algo-
rithms that, especially over long distances, tend to accumu-
late errors and hence are subject to substantial blurring
[Jones, 2010]. So, it is likely that differences between tracts,
which are still quite evident in the intermediate white matter,
become smoothed out at the distant cortical targets. On the
other hand, using the entire brain as target space might also
introduce biases of its own, as the tracts starting from two
spatially distinct cortical elements are different by definition
in their initial sections, even if they finally reach the same tar-
gets. This is especially true, if the tracts start in different gyri.
How much this effect influences the result depends on the
overall extent of the tractogram, that is, the relative weight of
short and long range connections. So, the fact that parcella-
tions often seem to reflect, to some degree, sulcal patterns
(see Figs. 4–9), might have a methodological background. On
the other hand, it is well known that in many cases macroa-
natomical landmarks, such as sulcal lines, are indeed likely
to play a role as function-anatomical boundaries [Hasnain
et al., 2001; Tahmasebi et al., 2012]. To what extent correlation
between gyrification and tractography based parcellation is a
product of methodological peculiarities or reflects neuroana-
tomical reality remains to be investigated.

Advantages and Limitations of Hierarchical

Clustering

In this work, we propose a hierarchical clustering
method for the analysis of high-resolution, whole-brain

Figure 8.

SS indices obtained by the hierarchy search method, plotted

against number of clusters. The red circles denote the maxi-

mums of the curves. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 9.

Partitions with maximum SS index for all subjects’ left (A) and right (B) hemispheres. The top

subpanels show the whole brain parcellation, the bottom subpanels zoom into the superior tem-

poral gyrus area and the precentral gyrus. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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anatomical connectivity data that provides an optimal data
compression with minimal information loss. The method
uses differences in connectivity patterns for drawing a
functio-anatomical map of the cortex without the need to
choose a particular granularity level. This way, almost all
of the information on the connectivity pattern similarities
is retained and all possible parcellations of the cortical
sheet are not only stored, but also related to each other in
a meaningful way. While this concept is not entirely new
[Blumensath et al., 2013; Guevara et al., 2011], it is the first
time that is is applied to whole-brain diffusion based ana-
tomical connectivity data. Compared with classical single-
partition connectivity-based brain parcellation methods
[for a review, see, Kn€osche and Tittgemeyer, 2011], it
offers a number of advantages.

First, it is important to compare functio-anatomical
maps between subjects or between different datasets of the
same subject (e.g., at different ages). With single-partition
parcellation, one has to chose a particular level of granu-
larity in order to obtain a parcellation. This level of granu-
larity can be expressed, for example, by the number of
desired clusters, by the differences between or the homo-
geneity within clusters, or by the sizes of the clusters. All
these criteria can require different values in different data-
sets for defining the same functio-anatomical subdivision.
It is therefore difficult to obtain comparable parcellations.
Moreover, there might be more than one level of granular-
ity relevant for the comparison. Using the whole informa-
tion encoded in hierarchical trees, connectivity similarity
(and therefore functio-anatomical organization of the cor-
tex) can be compared efficiently without any explicit
choices on granularities. Such comparisons can be poten-
tially used to show changes or differences in the functio-
anatomical organization of the brain in a great number of
settings, including disease, development, aging and cogni-
tive abilities. The particular advantage is that one can start
at a general comparison (i.e., comparing the entire trees)
without making any choices or assumptions, and then
gradual zoom into certain parts of the trees (i.e., compar-
ing subtrees) and/or particular levels of detail (i.e., prun-
ing the lower level nodes).

Second, if larger parts of the cortex or the entire brain
are to be parcellated, the definition of a granularity level,
as required by non-hierarchical methods, becomes quite
arbitrary. Even if comparison is not the goal, it is not easy
to say, how many clusters are to be expected or how big
they are. Also, the magnitude of difference between par-
cels depends on the brain region. For example, regions
near large fiber tracts, such as the arcuate fascicle, tend to
exhibit higher similarity in terms of their connectivity pat-
tern, requiring lower thresholds for parcellation. Hierarchi-
cal parcellation circumvents the granularity choice. The
obtained trees can be explored interactively in order to
discover the functio-anatomical organization in different
brain regions. Of course, it remains an important issue to
extract actual partitions of the cortex from the tree (see
below).

Third, the hierarchical trees encode the interrelation
between different levels of description of the functio-
anatomical cortex organization, from relatively local to
very global. In fact, using very high resolution MRI data
one could even imagine bridging the gap between micro-
scopic and macroscopic levels [see Heidemann et al., 2012,
for an intermediate stept into that direction]. This is of
particular importance, if the parcellation is used as a basis
for building a connectome. If the connectome is truly, as
defined by Sporns [2011], “a comprehensive structural
description of the network of elements and connections
forming the human brain,” it essentially has to span multi-
ple levels of detail. Using the parcels of a hierarchical par-
cellation as the elements of the connectome could lead to a
hierarchical connectome that not only describes the brain
network at different levels of detail, but also encodes the
relations between these levels. Note, however, that the
construction of a true connectome relies on adequacy of
the employed connectivity measures in terms of the true
functio-anatomical structure of the brain. Certainly, non-
invasive measures based on MRI, valuable as they may be,
bear significant limitations in that respect. The parcellation
resulting from hierarchical clustering could also be used
as initial regions for global tractography methods like the
recently proposed plausibility tracking method [Schreiber
et al., 2014].

Nevertheless, hierarchical clustering also suffers from
some principled limitations. Given its iterative agglomera-
tive nature, established mergers cannot be undone. The
procedure therefore has some sensitivity to local effects
and errors may propagate, missing on the global optimum,
when considering specific partitions. For this reasons, in
scenarios dealing with small datasets or when only a sin-
gle optimal partition is desired, optimization based meth-
ods such as k-means or model-based methods might be
more adequate. However, for large datasets and a large
number of expected clusters, these other methods may
lead to exploding complexity and computation power
requirements in order to achieve acceptable reliability (by
design in the case of model-based methods, in order to
maintain stability against local effects due to initial condi-
tions in the case of k-means) [Kuncheva and Vetrov, 2006;
Pham et al., 2005]. For these reasons, we strongly believe
that in our scenario of whole brain parcellation, the advan-
tages that hierarchical clustering offers (namely: multiple-
nested-granularity, possibility for whole-structure compari-
son, and scalability with dataset size) greatly compensate
for its limitations.

Meta-Leaf Matching

For the comparison of any cortical map between data-
sets, hierarchical parcellations being no exception, it is nec-
essary to establish a correspondence between the cortical
elements. In other words, we need to decide for each ele-
ment (e.g., voxel) in one dataset, what is the functio-
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anatomically equivalent element in the other dataset. This
is not a big issue when comparing repeated measurements
of the same subject, but due to the natural anatomical vari-
ability [Thompson et al., 1996] it poses quite a challenge if
we want to compare across subjects or hemispheres.
Attempts to obtain such a mapping on the basis of stru-
tural MRI have resulted in numerous linear and non-linear
registration algorithms (e.g., matching of freesurfer surfaces
nodes) [Roca et al., 2010], but the results are not always
satisfactory, in particular if the surfaces differ in terms of
number and orientation of gyri and sulci [Ono et al., 1990].
Here, this problem concerns the meta-leaf identification
between trees, which was achieved by maximizing mean-
tractogram similarities using a greedy algorithm. This
approach relies on the assumption that the connectivity
pattern is a good reflection of the functio-anatomical iden-
tity of an cortical element—the same assumption that
underlies the entire connectivity-based parcellation idea.
For a more detailed discussion of the justification of this
assumption, see Kn€osche and Tittgemeyer [2011]. Our anal-
ysis showed that the meta-leaf similarity method yields
meaningful comparisons between trees. However, at this
stage, intersubject matching is not always stable enough to
quantitatively interpret small variations in them. The leaf
matching is certainly one of the current challenges of the
method. It remains to be investigated whether other match-
ing strategies, like the “Hungarian” method [Kuhn 1955],
yield an improvement. In general, however, it is not likely
that by improved mathematical algorithms alone this issue
is going to be resolved in a satisfactory way. Instead, the
very notion of functio-anatomical equivalence needs to be
refined. A comprehensive and reproducible definition of
the equivalence of elements in two brains would provide
solid ground from which to gauge any difference in struc-
tural properties or functional organization. Such a mapping
would have to be unique, that is, each element in one brain
must be assigned to exactly one element in the other brain,
and vice versa. Furthermore, as the leaf matching criterion
has of course a profound influence of the resulting tree
comparison results, it has to be biologically meaningful. In
other words, only if we have good reason to compare an
element in one brain to just a particular element in the
other brain (and not to any other), it makes sense to inter-
prete their differences in, for example, connectivity or
cytoarchitecture. Similar connectivity to the rest of the
brain is certainly a good starting point for such an equiva-
lence criterion, but it is surely not the ultimate solution. An
interesting option might be guiding mesh matching with
connectivity properties, as proposed (using much smaller
pattern vectors) by Cathier and Mangin [2006] or Petrovic
and Zollei [2011].

Tree Comparison

The hierarchical tree allows for comparison of the whole
connectivity similarity structure across measurements, and

not just particular partitions, which is not possible with the
other methods. Note that the tree does actually contain all
possible partitions together with their mutual relationships.

This comparison measure gives us the degree by which
the structure of the connectivity similarity organization
varies across different measurements. More specifically,
the tCPCC measure focuses on the actual degree of simi-
larity between connectivity patterns, while wTriples meas-
ures topological similarity (for example if the region most
similar to a given selected area is the same in both
measurements).

Unfortunately, compared with repeated measurements,
the quality of meta-leaf matching across subjects or hemi-
spheres inevitably decreases (see above), and so does the
reliability of the comparison. There might be two possible
solutions to this problem: either improving the quality of
the matching by using more sophisticated methods, like
combining surface topology information with connectivity
pattern information (although this is unlikely to boost the
quality to the same level as repeated measurements), or
accepting that, due to the inter-subject variability, a perfect
matching at high granularities is not possible, and trying
to establish suitable levels at which the matching may be
done with sufficient quality (one would have to be aware
that the matching results obtained are only valid at those
granularities).

Extraction of Partitions

Although a hierarchical tree in its entirety comprises the
joint information of all possible partitions and their mutual
relations, concrete anatomical interpretation requires the
generation of actual partitions. As a compromise between
single partitions and the entire tree, we characterized the
hierarchical structure of the trees through series of parti-
tions at different levels of granularity. Several partition
schemes were implemented. Horizontal partitioning was
shown to be a good approximation of the more sophisti-
cated spread separation (SS) partitioning for a given granu-
larity level. These partitions are very stable against noise
and the boundaries have a high degree of reproducibility
across subjects. In order to paliate the tendency of regions
of the cortex that share large common tracts to remain in a
single cluster across a higher range of granularities, a mini-
mum size-difference clustering was implemented. This
method effectively extracts more homogeneous parcellations.

Calculating the SS index for every granularity level, we
showed that for each data set there is an entire range of
similarly good partitions (approximately between 50 and
200 clusters). This fact raises general concerns about the
search for a single optimal partition or even a series of a
few partitions. Although one is able to single out one par-
tition with the highest information content (in some sense)
of all partitions, this information might still be completely
insufficient to describe the entire structure. Hence, one has
to try to find ways to (approximately) represent entire
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classes of parcellations in an effective manner. As each
bifurcation in the tree represents the separation between
two clusters (i.e., a boundary), such a technique could aim
at finding the most relevant or persistent boundaries
rather than entire parcellations. An idea would be to look
at the branch lengths of the nodes involved. The longer
the branch (in absolute value or in relation to the node
height), the more stable that region is in comparison to its
neighboring ones. This way, important boundaries would
be mapped on the cortex, rather than entire parcellations.
However, this principle needs further investigation.

The extracted partitions could be used to do a
connectome-based analysis of connectivity [Hagmann
et al., 2008] or as a priori partition for white matter fiber
analysis [Wassermann et al., 2010]. Within each method,
partitions are always fully nested. This eases the interpre-
tation of the boundary changes from one granularity level
to the next. On the other hand, in an agglomerative
method the information about the fuzzyness of the
changes in connectivity similarity is not as well captured
as in other approaches [Cerliani et al., 2012; Gorbach et al.,
2011], although it might be extracted to a limited degree
from the tree topology.

Relationship to Other Multigranularity Methods

As explained above, multigranularity methods like the
one proposed here offer several general advantages over
single-partition methods: they yield a more exhaustive
representation of the real connectivity similarity structure;
they are preferable for the analysis of larger regions (up
to entire hemispheres or brains), due to the expectation
that different boundaries may be relevant at different lev-
els of granularity; they facilitate comparisons between
data sets; and they allow for adaptive parcellation
depending on the features that we would like to empha-
size. Other researchers have approached multi-
granularity in different ways. For example, Kahnt et al.
[2012] generated a series of k-means based parcellations
from resting-state fMRI data of the orbito-frontal cortex
using different numbers of expected clusters. The funda-
mental difference between their approach and the one
proposed in the current work lies in the fact that the hier-
archical tree imposes a constraint on the relationship
between the different parcellations, in that finer parcella-
tions are nested in the coarser ones. Hence, in our
method any finer subdivision complements, rather than
competes with, the previous parcellation. Moreover, the
embedding of the parcellations into a tree structure yields
immediate clues about the distinctness and stability of
certain boundaries, as well as to the topological relation-
ship between different parcellations. An effort to bring
multiple k-means parcellations at different granularities
into a hierarchy has been presented for fMRI co-
activation data by Clos et al. [2013], where hierarchically
inconsistent voxels from the clusters obtained are
removed resulting in nested partitions.

The work of Gorbach et al. [2011] takes a different
approach to multi-granularity by obtaining a “space” of
optimal parcellations from dMRI data through an informa-
tion bottleneck method, minimizing the tradeoff between
data compression and information preservation. For each
desired granularity, the number of clusters is determined
by a Lagrange multiplier parameter and an upper bound-
ary for the number of clusters. In their approach, while
boundaries are not necessarily nested across granularities,
they seem more stable. The method may have an advant-
age over agglomerative methods at granularity levels
where changes are gradual and boundaries fuzzy. It offers
a solution between nested partitions and single partition-
ing at multiple levels. However, computational costs also
escalate for growing datasets and granularities.

In comparison, our approach tries to characterize the
whole connectivity similarity information in a compact
tree, which is then easy to process. As demonstrated by
the high CPCC values, most information of the connectiv-
ity similarity matrix (N2 floating points, with N being the
number of tractogram seed voxels) is sucessfully encoded
with only a fraction of the size (2N floating points plus 2N
integers, easily stored as an ASCII text file). Furthermore,
the number of tractogram similarities that must be com-
puted in order to obtain the tree is 3 orders of magnitude
lower than that needed to compute the matrix. This is an
important advantage, given that tractogram similarity
computation is a costly operation, if, like in our case, all
the white matter is used as target space and high resolu-
tion (1 mm) is used (amounting to more than 15 3 105

floating point operations).
However, the use of multigranularity methods does not

yet solve the problem of selecting relevant partitions. Clus-
ter number selection remains an open problem in
connectivity-based clustering literature. Various solutions
have been proposed to solve it, such as visual inspection
of reordered connectivity matrices [Johansen-Berg et al.,
2004], consistency across subjects [Ruschel et al., in press],
correspondence with cytoarchitectonic maps [Anwander
et al., 2007], hierarchical consistency (when using optimi-
zation methods for different numbers of expected clusters)
[Clos et al., 2013], variation of information [Clos et al.,
2013; Kahnt et al., 2012], information-based model selec-
tion [Gorbach et al., 2012], consistency across modalities
[Kelly et al. 2012] and the tree-based methods we propose
here, which are especially suitable for whole brain parcel-
lation. The hierarchical tree method is actually open to all
these approaches, while offering a much richer stock of
available partitions, among which to select.

Biological Validity

Here we made a proposal how to account for the struc-
tural organization of the cortex based on anatomical con-
nectivity measures. A key question that remains is the one
for the biological relevance of the obtained results. First of
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all, our method is primarily a way to represent given
information in a convenient way. Hence the validity and
relevance of the parcellations hinges on the appropriate-
ness of the underlying diffusion tractography. However,
on top of this, also the construction of the tree and the
selection of partitions need to be evaluated.

As this is a proof-of-principle study we only offer some
preliminary evaluation of the neurobiological significance
of the results, for example by comparing the inferior fron-
tal gyrus parcellation with cytoarchitectonic maps. Much
remains to be done in future studies. In particular, within-
subject validation will be crucial as it avoids the inevitable
uncertainties of comparing different brains. For example,
functional localizer tasks in fMRI experiments could be
used to gauge the functional significance of parcellations
[Johansen-Berg et al., 2004; Schubotz et al., 2010]. Alterna-
tively, resting-state functional connectivity [Kelly et al.,
2012] and meta-analytic co-activation studies [Clos et al.,
2013] also offer promising comparison possibilities. For
example, one might apply the same method to structural
and functional connectivity measurements. In vivo Brod-
mann mapping [Bazin et al., in press] based on quantita-
tive T1 imaging might offer another option.

Outlook

As pointed out before, this study aims at proposing a
novel technology for parcellating the brain and offering ini-
tial proof-of-principle validation. Obviously, much remains
to be done. First, there are a number of methodological
issues that require further attention. As detailed out above,
these especially involve the tree comparison technique (espe-
cially the leaf matching) and the partition extraction method.

Second, we believe that this technology can be used to
build a hierarchical function-anatomical atlas or a hier-
archical connectome of the brain, which of course will
require a much more numerous and representative cohort
of brains. Here, the issue of neurobiological validation
requires substantial attention. For example, it has to be
investigated to what extent features that are not easily cap-
tured by agglomerative trees, such as gradation or non-
nested hierarchies, are present in the brain and how our
method reacts to them.

Third, although we have conceived and used our meth-
ods for the analysis of diffusion based anatomical connec-
tivity, they should also be useful for the study of other
kinds of multidimensional data, like resting-state func-
tional connectivity. Whole brain parcellation methods have
already been successfully used for the study of resting-
state fMRI signals [Blumensath et al., 2013] and our
approach might also bring new insights and possibilities
to these approaches.
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APPENDIX

Tractogram Distance Measure

In order to perform any kind of clustering a distance
measure between the object points must first be defined.
Here, this distance quantifies the similarity between the
connectivity patterns of two seed points. It must satisfy
the properties of symmetry (d(x,y) 5 d(x,y) for any x,y),
non-negativity (d(x,y)� 0 for any x,y) and identity of indis-
cernibles (d(x,y) 5 0, if x 5 y). If the triangle inequality is
also satisfied (d(x,y)� d(x,z) 1 d(y,z) for any x,y,z) the dis-
tance measure is also a metric.

While the Euclidean distance is one of the most com-
monly used ones for low-dimensional data, it does not
score well for scaling patterns or very high dimensionality
[Beyer et al., 1999; Wang et al., 2002].

The correlation coefficient is a convenient way to mea-
sure the dependency between two variables (linearly) and
it has been previously used as a similarity measure
between tractograms [Anwander et al., 2007]. Correlation
as such can also produce negative values, which cannot be
sensibly interpreted for spatial connectivity patterns (two
uncorrelated patterns are just as dissimilar as two nega-
tively correlated ones). That is why we modified the mea-
sure by omitting the centering. However, the fact that our
tractograms contain very many zeros causes the mean val-
ues to be very small. In consequence the differences
between our measure and classical Pearson’s correlation
are minimal.

The distance measure is then defined by

dðx; yÞ512
Riðxi � yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Riðxi
2Þ � Riðyi

2Þ
p ; (A1)

where xi is the ith element of tractogram x and
P

is the
summation operator. The working principle in this mea-
sure is the same as in the traditional correlation, widely
established, with the difference that negative correlations
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are disregarded and the discerning power is focused in
positive correlations, which is better suited for comparison
of anatomical tracts, that have no negative linear depend-
encies. Same as the traditional correlation, the proposed
distance measure is not a metric since it does not satisfy
the triangle inequality, but this does not lead to any short-
comings in clustering. Geometrically speaking, the pro-
posed measure relates to the scaled projection of one
vector on the other, while the correlation relates to the
cosine of the angle between the vectors. Both measures are
closely related.

In order to render the similarity measure robust to ran-
dom artifacts in the probabilistic tractography, connectivity
values smaller than 0.4 (less than 100 out of 100,000
seeded particles, as visitation values are log transformed
and normalized) are set to 0 prior to computing the simi-
larity [Anwander et al., 2007]. This value was chosen in
order to eliminate only minimal noise and remain conserv-
ative (as any target voxel visited by more than 0.1% of the
seeded particles will be considered), but the best threshold
for probabilistic tractography is still an open question in
literature [Jones, 2010].

Agglomerative Hierarchical Clustering

Graph linkage methods

In the graph linkage methods, distances between clus-
ters are calculated from the individual distances between
their component elements. There are four types of these
linkages, governed by the following equations:

Single linkage: d xy; zð Þ5min d x; zð Þ; d y; zð Þð Þ (A2a)
Complete linkage: d xy; zð Þ5max d x; zð Þ; d y; zð Þð Þ (A2b)
Weighted linkage: d xy; zð Þ5 d x; zð Þ1d y; zð Þð Þ=2 (A2c)
Average linkage: d xy; zð Þ5 Sx � d x; zð Þ 1Sy � d y; zð Þ

� �
= Sx1 Sy

� �

(A2d)

where x and y are the clusters being merged, xy is the
resulting new cluster, z is a cluster not being merged at
that particular step, and Si is the size or number of ele-
ments contained in cluster i. In the single linkage method,
the new distance to a third cluster will be the smallest of
the two distances to that third cluster before merging [Eq.
(A2a)]; in the complete linkage method, it will be the
greatest of those distances [Eq. (A2b)]; in the weighted
linkage method, it will be the mean of the distances of the
joining clusters [Eq. (A2c)], and in the average linkage
method, it will be the mean of the distances of the joining
clusters weighted by the number of elements each cluster
holds, in other words, the new distance will be the aver-
age of all the pairwise distances between elements con-
tained in clusters x and y with the elements of cluster z
[Eq. (A2d)] [Murtagh, 1983].

These methods require the calculation of the pairwise
distances between all elements in the dataset. In our
study this translates to an extremely high amount of dis-

tance calculations (�63109) where each of these requires
106 floating point operations (the number of seed voxels
per hemisphere ranges from 65,000 to 100,000 and the size
of each tractogram-the number of white matter voxels-
ranges from 600,000 to 800,000 points, depending on brain
size).

Centroid linkage method

In this linkage, when two clusters merge, the mean trac-
togram of the new cluster is computed, and the new dis-
tances to the rest of the clusters are recalculated.

Centroid linkage: xy5RiðSx � xi1Sy � yiÞ= Sx1 Sy

� �
(A3)

where the symbols have the same meaning as in the
graph methods. In principle, this involves an extra com-
puting effort, as the new distances that must be calcu-
lated in every merging step involve high-dimensional
mean tractograms. However, it can also be used to
avoid the necessity of calculating the whole pairwise
distance matrix by means of applying a neighborhood
restriction.

Neighborhood restrictions implemented for the centroid
method. With the neighborhood restriction, only tracto-
grams with neighboring seed voxels are compared are and
merged (or clusters where any of their included seed vox-
els are neighbors).

Several neighborhood levels may be chosen. The fol-
lowing neighborhoods were implemented in this study:
18 (dv 5 �2), 26 (dv 5 �3), 32 (dv 5 2), 92 (dv 5 2�2) and 124
(not defined by a value of dv) where dv stands for the
maximum distance (in voxel units) of a neighbor voxel
center from the seed voxel. A three-dimensional represen-
tation of the implemented neighborhoods can be seen in
Figure A1.

As we worked with high resolution 1 mm images, there
was no risk of adjacent voxels corresponding to the gm/
wm interface of opposite gyri. In the case of the 92 and
124 neighborhoods, however, which expanded to nonadja-
cent voxels, there was a risk of considering an element as
a neighbor that resides in a different gyrus. To avoid this,
the algorithm was implemented as the convolution of two
smaller neighborhoods kernels: 18 3 18 yields a 92 neigh-
borhood, while 26 3 26 leads to 124 neighbors. In this
sense, the smaller neighborhood was scanned, and if
neighbors were detected, the respective neighborhood of
each one of them was considered as well. This way, neigh-
bors are considered as such only if they form a continuous
sheet around the seed voxels. The results are analogous to
what would be obtained through surface analysis with
only a fraction of the cost.

Pseudocode for final centroid method (including neighbor-
hood and initial size restrictions). Pseudocode for the
final centroid algorithm is shown in below. For
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simplicity, from this point on, this modified algorithm
including neighborhood restriction and initial homogene-
ous merging stage will just be referred to as the cent-
roid method or cXX where XX indicates the
neighborhood level used.

Assessing the quality of the trees: the Cophenetic correla-
tion coefficient. In order to measure the goodness of fit
of the dendrograms generated (that is, how well does the
dendrogram resemble the original similarity data) the
Cophenetic Correlation Coefficient (CPCC) [Farris, 1969]
was used. This measure quantifies how much information
from the pairwise similarities between individual elements
is present in the hierarchical tree, by calculating the
degree of agreement between the distances encoded in the
tree (named cophenetic distances, obtained by looking at
the distance value of the merger where the desired ele-
ments are found in the same cluster for the first time) and
the pairwise distances obtained from the original
tractograms:

CPCC5
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where n is the total number of elements and dij and cij are
the distance values between elements i and j, as computed
from the tractograms or obtained from the tree, respec-
tively (cij is then the y-axis value where the paths of leaves
i and j meet in the tree). The range of CPCC is [21, 1]. The
higher the value, the better the fit between the tree and
the data, a value of 1 indicating that the matrix and the
tree contain exactly the same information (there is a linear
dependence between both, which is not possible unless
the distances between all the tractograms are equal) and a
value of 0 meaning that the tree contains none of the origi-
nal information (due to the nature of the hierarchical
agglomerative method, negative CPCC values will not
occur).

Choosing the Linkage Method

Pairwise tractogram distance matrices were obtained for
both hemispheres of subjects A, B, and C (i.e., six data-
sets). Hierarchical trees were built over these matrices
using each of the graph methods proposed. Trees were
also built directly from the tractograms, using the
centroid-neighborhood method for each of the different
neighborhood levels. For the centroid trees, the number of
clusters at where to stop the initial size-restricted merging
stage was optimized in one of the datasets. This optimiza-
tion looked to minimize information loss and provide a
sufficiently high maximum granularity level while reduc-
ing tree complexity (and facilitating many steps of the tree
processing). The optimized number of initial clusters was

Figure A1.

Neighborhood models implemented: 18, 26, 32, 92, and 124.

The 92 and 124 neighborhoods are obtained through the convo-

lution of two 18 or 26 neighborhood kernels, respectively.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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set at 5,000. This same value was applied to the remaining
datasets with similar results. As will be shown below, the
information loss was also minimal for the rest of the data-
sets. Additionally, in order to test the outcome of the tree
building algorithms over unstructured data, a set of artifi-
cial tractograms (equal in number to those obtained from
the real datasets) was generated in a way that they would
yield a distance matrix of random values uniformly dis-
tributed between 0 and 1 (that is, a dataset without any
hierarchical structure). This was achieved by creating trac-
tograms representing points uniformly distributed over
the surface of a sphere in n-dimensional space. However,
in order to ensure this uniformity in a reasonable genera-
tion time, the dimension of the random tractograms was
limited to n 5 10. When testing the centroid method
(which requires physical neighborhood information), each
of the three random tractogram sets was assigned coordi-
nates from a different real dataset.

It was not possible to detect significant differences in the
overall topology of the trees obtained with the different
methods by mere visual inspection, except perhaps that the
distance values for the single and complete linkage meth-
ods tend to be much lower and much higher, respectively,
than the ones for the other methods (Figure A2). Numerical
analysis is, therefore, necessary to assess their fit to the
data. For this purpose, CPCC values were computed for all
obtained dendrograms. In order to set a baseline level for

the CPCC values, trees were also built from unstructured
datasets (using artificially generated tractograms that yield
random uniformly distributed distance matrices, as
explained in the previous section), and their CPCC values
computed. The results are shown in Figure A3.

The results show that, for the real datasets the single
linkage method performs worst, the complete and
weighted linkage methods are not a very good match to
the data either, and the average and centroid methods
provide the best fit to the original data, obtaining high
and very similar CPCC scores, with no statistically signifi-
cance difference between them. Moreover, there was no
significant improvement in quality using wider neighbor-
hoods in the centroid method. In all cases the values
obtained were well above their baseline levels, especially
in the case of the centroid method.

Also, as a test of the information loss introduced by the
homogeneous merging phase, CPCC values were com-
puted for centroid trees built with equal parameters, but
without merging restrictions (not shown). No significant
change in the CPCC value was observed, meaning that the
homogeneous merging stage with the selected parameter
did not deteriorate the quality of the obtained tree (aver-
age CPCC difference was of 0.75% with a standard devia-
tion of 0.65%).

The computational load incurred for obtaining each tree
was empirically derived as the number of tractogram simi-
larities computed, and the results are plotted in Figure A4.
As can be seen, an average of 4.3 3 104 3 N tractogram
similarity operations were necessary to build up the graph
linkage trees (value out of axis range), with N being the
size of the dataset from which the trees were computed
(the complexity of the graph methods is N(N 2 1)/2 and
the datasets used are in the range of 6.5 3 104 to 10 3 104

points). On the other hand, centroid methods required
only 15N to 50N operations, three orders of magnitude
less than the graph methods.

Figure A2.

Trees obtained from the left hemisphere data of subject A for

each of the graph methods plus the centroid method with a 26

neighborhood. Note that a particular position on the x-axis

does not identify a particular seed voxel; this may change in

order to allow for the representation of the structure in tree

form without any line crossings.

Figure A3.

Average CPCC values for trees obtained from each hemisphere

of subjects A, B, and C, and from the three random tractogram

sets. The first four pairs of columns refer to the single, com-

plete, weighted, and average linkage methods. C18 to C124

refers to the centroid method with different degrees of neigh-

borhood. See Methods section for more details. The error bars

indicate the standard deviations. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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It is clear from these results that from the methods con-
sidered, average and centroid linkages are the best fit to
the data, with the latter having the further advantage of
incurring far less computational load. Within the centroid
methods, the computational load increased almost linearly
with the number of neighboring voxels considered.

The 26 neighborhood centroid method (c26) was chosen
as the optimal trade-off between the quality of the tree
and the computational cost, and was the only method
used for the remainder of the study.

Confounds and Challenges for Dendrogram

Interpretation

The resulting dendrograms serve two purposes: on the
one hand they are a compression of the pairwise similar-
ities between connectional fingerprints, and on the other
hand they also hold information on the similarities
between clusters at every possible granularity and the
hierarchical relationships between them, allowing for easy
and quick partition generations. They are, however, com-
plex structures and their interpretation and partition selec-
tion are not always straightforward. In addition, several
factors might add confounds and complicate the analysis.

Artefactual datapoints

As in most types of clusterings, these can produce
unwanted outliers that obscure the data and introduce
errors in the analysis. In our particular case errors and
spatial discontinuities in the mask of seed voxels might

result in unusable tractograms characterized by a very lim-
ited number of target voxels reached. This results in a
very low similarity of these tractograms to the rest.

Non-monotonicity

In the most widely used linkage methods, the distance
between a newly merged group of elements and the rest
of the set are computed as a weighted average of the dis-
tance between elements (as in the graph methods, where
the type of weighting defines the type of linkage). This
means that this distance is always equal or greater than
the distance between the groups that existed prior to the
merge, resulting in a monotonic tree. In the centroid
method, however, this is not always the case. As each
group of elements is represented by a new representative
centroid, this centroid could be closer to other elements
than any of its components were before the merging [Mor-
gan and Ray, 1995], which is called an inversion. In other
words, it can happen that the intra-cluster distance
exceeds the inter-cluster distance (see Figure A5a for a
graphical clarification). These inversions or non-monotonic
steps can appear when more than two points in the data
have very similar distances to each other, and indicate
areas with no clear binary cluster structure [Gower, 1990].
As a toy example, if we consider points in two-
dimensioanl space positioned like vertices of a roughly
equilateral triangle and use Euclidean distance, the cent-
roid of two merging points will be closer to the third point
than any of them were before. While these inversions do
contain information about the distances encoded (when
the tree is seen as a compression of the similarity matrix)
they do not provide any additional information on the
hierarchy structure, and they make interpretation of the
hierarchy and tree analysis difficult and inconvenient
[Murtagh, 1985].

Hierarchy-resolution limitation at highest

granularities

The proposed method produces connectivity profiles
with a very high spatial sampling resulting from seeding
tractography at the white matter boundary with a voxel
resolution of 1 mm. This produces an oversampling of the
diffusion profiles compared with the limited spatial reso-

lution of the diffusion acquisition and the uncertainty of

the tractogram computation. As a result seed points with a

very high similarity cannot be distinguished (for this rea-

son, neighboring seed points with very high similarity are

grouped together to base-areas as part of the proposed

tree-building algorithm). The hierarchical relationships

within these base-areas are characterized by several con-

secutive mergers with very small distance change indicat-

ing the non-separability of these regions and the

irrelevance their internal structure for the hierarchical tree,

while adding to the complexity of the tree.

Figure A4.

Average computational complexity (expressed as the number of

tractogram distance operations performed normalized by the

size of the dataset N) of the tree building methods applied to

the real datasets (graph linkage in red, centroid method with dif-

ferent neighborhood levels, 18 to 124, in blue). For interpret-

ability, the bar for the graph linkage methods is truncated and

the numerical value is indicated. Error bars show the standard

deviation. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Forced binary structure

As mentioned before, the iterative nature of the cluster-
ing process forces the dendrogram to always have binary
bifurcations, whereas in reality the dataset may have struc-
tures nested in a non-binary way. This means that some of
the nodes in the tree do not contribute to any real infor-
mation about the similarity structure and are merely a
byproduct of the pair-wise agglomerative method.

Dendrogram Preprocessing Pipeline

In order to address the aforementioned problems and
ease the information extraction, the following tree prepro-
cessing steps were developed and applied.

Outlier elimination

Isolated leaves resulting from faulty tractograms can
easily be detected and eliminated without negative influ-
ence on the whole brain coverage. Data points with a dis-
tance value compared with their most similar neighbor
higher than a threshold were discarded and removed from
the analysis. This step was actually implemented as part
of the tree building algorithm, in order to prevent the out-
liers from affecting the value of the centroids. Removing
these outliers in general stabilizes the tree and the cluster-
ing result and simplifies its interpretation.

Monotonicity correction

As inversions occur when more than two elements are
at similar distances from each other, it is possible to trans-
form the non-monotonic trees of the centroid method into
monotonic ones with little information loss. This is accom-
plished by merging every two nodes where an inversion
occurs, creating a nonbinary branching with more than
two nodes joining simultaneously into one (Figure A5b).
This nonbinary structure more parsimoniously describes
the original information present in the data. For each cor-
rection, the level value of the simplified node is calculated

as the mean of the levels of the original nodes, weighted
by their respective sizes in terms of number of leaves. Cor-
rections are applied starting at the root node and working
through the tree down to the leaf level.

Limiting maximum granularity

In terms of tree processing, the small differences
between the leaves in the base-areas are ignored and the
tree is transformed in a so-called rose tree, where the
meta-leaves branch into single voxels (leaves, Figure A5c).
The partition defined by these meta-leaves would then
represent the maximum effective granularity achievable
from the data. While rose-trees can be computed directly
from data [Blundell et al., 2010], the computation costs are
far greater than with the method proposed here.

Figure A5.

Dendrogram pre-processing: example raw tree (a), monotonicity

correction (b), limiting the highest granularity encoded (c), and

collapse of non-binary structures (d). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure A6.

Average tree information loss (top) and complexity reduction (bot-

tom) of each step in the pre-processing pipeline, relative to the sta-

tus before applying that particular step. The last column of each

chart represents the overall added effect of the complete pipeline.

Information loss is measured as being the relative decrease in CPCC

index value in each step. Complexity reduction is measured as

being the relative number of inner nodes eliminated. Error bars

show the standard deviation. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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In our implementation, the meta-leaves are the homoge-
nous clusters obtained during the first stage of the proposed
centroid algorithm. All branchings within those nodes are
then eliminated and their contained data points joined
simultaneously at the original node level. Additionally, this
grouping sharpens the connectivity profiles of the meta-
leaves and allows for a better identification of connectivity
similarities and differences between neighboring regions.

Collapse of non-binary structures

Cases where non-binary structures are present in the
data are generally characterized in the tree by merges
where the distance change is much smaller than the abso-
lute distance level of the nodes being merged (when not
resulting in an inversion). The dependency on the distance
level accounts for the fact that the significance of distance
change is the lower the higher a node stands in the tree
hierarchy. A similar leveling concept to the one used with
the non-monotonic steps was used here, flattening any
merging with a distance change smaller than a certain pro-
portion of the absolute distance value of the node consid-
ered. Constant and square dependencies were also
considered, but the linear solution proved the best trade-
off between complexity reduction and information loss.
The resulting tree will be a better representation of the
original data and will have a considerably reduced num-
ber of internal nodes, making it easier to identify natural
divisions in the data (Figure A5d).

The preprocessing methods described in this section
effectively reduce the number of branchings, which in
turn reduces the tree complexity and possible confounds
in the dendrogram, while still maintaining maximum usa-
ble information (shown quantitatively in the Results sec-
tion). This also facilitates the task of the information
extraction algorithms, which is introduced below.

Effects of Dendrogram Preprocessing

The tree preprocessing steps described above were
applied to the c26 dendrograms of each hemisphere from
subjects A, B and C. Parameter values were optimized for

Figure A7.

Tree corresponding to the connectivity structure of the left

hemisphere of subject A before (top) and after (bottom) tree

preprocessing.

Figure A8.

Detail of the clusters contained by the sub-tree covering the

IFG region of the left hemisphere of subject A (upper left) and

its position in the complete tree (lower left) as well as a view of

the zoomed-in sub-tree (lower center). The meta-leaves con-

tained in the mentioned sub-tree have been projected onto the

inflated surface (upper right) and the zoomed-in sub-tree (lower

right). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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one of the datasets by testing multiple values and select-
ing those who performed best, achieving further complex-
ity reduction without significantly adding any
information loss. The optimized parameters were then
applied to the remaining datasets and a similar effective-
ness verified.

Firstly, those data points with distances greater than 0.1
to their nearest neighbor were considered as outliers and
excluded, resulting in a rejection of an average of 0.5% of
the data points (this step is actually integrated into the
tree building process). Next, non-monotonicity was cor-
rected and the maximum granularity was limited by merg-
ing all inner nodes of the 5,000 homogeneous sub-trees
obtained during the first phase of tree construction, effec-
tively transforming these nodes into non-binary meta-
leaves; non-binary structures at all levels of the tree were
detected and flattened using a parameter of l 5 0.05
(nodes with branches shorter than 5% of the node height
were eliminated). These parameters were empirically
selected in order to obtain additional complexity reduction
at higher levels of the tree (measuring complexity as the
number of branchings or inner nodes in the tree) while
keeping the total information loss in the same order range
(<1%). In order to quantitatively assess the complexity
reduction and the information loss caused by the pre-
processing, inner node count and CPCC values were
obtained for the trees at each processing step, and their
relative changes in relation to the previous states were
evaluated (Figure A6). The results show that neither of the
first two steps (monotonicity correction and limiting of
maximum granularity) significantly reduced the amount
of information contained in the trees, while the second
step achieved a complexity reduction of almost 90%. The
third step (flattening of non-binary structures) further
reduced the complexity by 5%, while introducing an aver-
age of 0.2 % of information loss (without statistical signifi-
cance). Overall, the whole pre-processing pipeline
achieved a complexity reduction of more than 90% with a
loss of information of less than 0.5% (0.15% on average),
making it a remarkably efficient and useful tool for
improving the performance of partition finding and tree
comparison algorithms. It can also ease interpretation of
the trees through visual inspection, although this still
remains a challenging task. Visual changes on tree struc-
ture caused by the pre-processing are exemplified in Fig-
ure A7. An example of the obtained meta-leaves in one of
the subjects is shown in Figure A8.

Measures for Dendrogram Comparison

Tree cophenetic correlation coefficient (tCPCC)

As different meta-leaves may have different sizes (in the
sense of containing a different number of seed voxels), the
CPCC factor [Farris 1969, Eq. (A4)] was modified in order
to include a weighting with cluster size. This way the rele-
vance of the distance value between two meta-leaves was
proportional to the fraction of the total seed voxels con-
tained in them. The mathematical formula for the tCPCC
resulted as follows:
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where xij is the distance between meta-leaves i and j as
encoded in tree X and Sxij is the sum of the sizes of meta-
leaves i and j for tree X.

As with the tCPCC, a value of 1 would indicate that the
distance values between single meta-leaves encoded by
both trees are linearly dependent (meaning that both trees
contain the same information encoded in their distance
values), and a value of 0 means that the trees do not share
any common information.

Weighted triples similarity (wTriples)

As with the tCPCC, a weighting was included into the
basic formula (Bansal et al., 2011] to account for meta-leaf
size, and the final formula was expressed as:
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with ftopði; j; kÞ
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if topology ðjoining orderÞ matches:

if topology does not match:
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