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Abstract: Phase consistent neuronal oscillations are ubiquitous in electrophysiological recordings, and
they may reflect networks of phase-coupled neuronal populations oscillating at different frequencies.
Because neuronal oscillations may reflect rhythmic modulations of neuronal excitability, phase-coupled
oscillatory networks could be the functional building block for routing information through the brain.
Current techniques are not suited for directly characterizing such networks. To be able to extract
phase-coupled oscillatory networks we developed a new method, which characterizes networks by
phase coupling between sites. Importantly, this method respects the fact that neuronal oscillations have
energy in a range of frequencies. As a consequence, we characterize these networks by between-site phase
relations that vary as a function of frequency, such as those that result from between-site temporal delays.
Using human electrocorticographic recordings we show that our method can uncover phase-coupled
oscillatory networks that show interesting patterns in their between-site phase relations, such as travel-
ling waves. We validate our method by demonstrating it can accurately recover simulated networks from
a realistic noisy environment. By extracting phase-coupled oscillatory networks and investigating pat-
terns in their between-site phase relations we can further elucidate the role of oscillations in neuronal
communication. Hum Brain Mapp 36:2655–2680, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Oscillations are a prominent feature of neuronal signals
[Buzsaki and Draguhn, 2004]. When measured at multiple
sites, these site-specific signals are very often phase consist-

ent. As these sites may measure multiple sources, they can

reflect phase-coupled oscillatory networks. Because oscilla-

tions may reflect rhythmic modulations of neuronal excit-

ability [Buzsaki et al., 2012; Fries, 2005], phase-coupled

oscillatory networks could be the functional building block
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for routing of information in the brain [for reviews see Palva

and Palva, 2012; Schnitzler and Gross, 2005; Siegel et al.,
2012]. These networks will overlap at least partially in
space, frequency and time, forming a complex structure in
which the routing of information depends on phase rela-
tions at multiple frequencies [Akam and Kullmann, 2014;
Canolty et al., 2010; Canolty and Knight, 2010; Miller et al.,
2012; Schyns et al., 2011; van der Meij et al., 2012].

Networks of functionally connected brain regions have
been studied for more than a decade using the hemody-
namic response measured by functional magnetic resonance
imaging [fMRI; for a review see Deco and Corbetta, 2011].
Networks of coupled sites have also been found using elec-
trophysiological signals, on the basis of correlations
between envelopes of oscillatory amplitudes at different fre-
quencies [Brookes et al., 2011; de Pasquale et al., 2010; Hipp
et al., 2012]. Crucially, between-site amplitude envelope cor-
relations do not reflect between-site phase consistency, and
therefore, cannot be interpreted in terms of phase-coupled
fluctuations of neuronal excitability.

Characterizing coupling between sites using fluctuations
in neuronal excitability with existing methods is a tremen-
dous challenge if there are no strong hypotheses about
which neuronal populations are likely to interact. This is
because existing methodology is based on pair-wise meas-
ures, such as coherence [Rosenberg et al., 1998], Granger-
causality [Bernasconi and Konig, 1999], phase-locking
value [Lachaux et al., 1999], and others. Such measures
quantify the strength and/or direction of phase coupling
at the level of site-pairs, and therefore, do not reveal the
spatial distribution of phase-coupled networks, at least not
without prior information about a seed region and the fre-
quency band in which this phase-coupling occurs.

To investigate phase-coupled oscillatory networks it is
crucial to appreciate the fact that brain rhythms have
energy in a range of frequencies. This has important impli-
cations for the between-site phase relations. For instance,
networks with consistent between-site time delays have
between-site phase relations that are a linear function of
frequency. We developed a new method that is capable of
extracting such networks from electrophysiological data.

In the following, we present, apply and validate a method
that extracts phase-coupled oscillatory networks. This
method is grounded in a plausible model of a neurobiologi-
cal rhythm: a spatially distributed oscillation with energy in
a range of frequencies and involving between-site phase
relations that vary as a function of frequency. The method is
useful because electrophysiological data almost always
involve multiple networks, overlapping in both space and
frequency. Our method separates these networks and char-
acterizes them in a neurobiologically informative way. To
demonstrate that our method works we apply it real data,
and validate it using simulations. Using ECoG recordings
we show that it is capable of uncovering networks and char-
acterizing them in an informative way. Using simulated
data we show that it is capable of uncovering ground truth
networks in the context of neurobiologically realistic noise.

MATERIALS AND METHODS

Extracting Phase-Coupled Oscillatory Networks

Using SPACE

To extract phase-coupled oscillatory networks we devel-
oped a new decomposition technique, denoted as Spatially
distributed PhAse Coupling Extraction (for SPACE). It is
inspired by complex-valued PARAFAC [Bro, 1998; Carrol
and Chang, 1970; Harshman, 1970; Sidiropoulos et al.,
2000]. In this section, we provide a brief introduction into
the method. A full description of the method and the
underlying algorithm is provided in the Appendix.

We extract phase-coupled oscillatory networks using two
models: the time delay model and the Frequency-Specific
Phases model (for FSP). Both models follow our characteri-
zation of phase-coupled oscillatory networks presented in
the Results Section and extract networks that consist of a
frequency profile, a spatial amplitude map, an epoch pro-
file, and an array of phase offsets. The time delay model
(SPACE-time) describes phase relations between sites by
temporal delays between sites, in a spatial time-delay map.
The FSP model (SPACE-FSP) describes these phase rela-
tions by FSP, in spatial phase maps. Below, we present
both models in more detail. The two models are comple-
mentary. The time delay model is capable of directly
revealing the temporal structure of, traveling waves, and is
therefore, suited for targeted analyses of temporal dynam-
ics. The FSP model can extract networks with any kind of
phase structure, and is therefore most useful in explorative
analyses. Both models extract networks from a three-way
array of Fourier coefficients Xjkl, with dimensionality sites
(J), frequencies (K), and epochs (L), obtained from a spectral
analysis of electrophysiological recordings. Phase-coupled
oscillatory networks can partially overlap in their spatial
configuration, spectral content, and temporal pattern. Our
method separates such networks by their different structure
over the spatial, spectral and temporal dimensions of the
input array, that is, on the basis of their different spatial
maps, frequency profiles, and epoch profiles.

The time delay model (Fig. 1A; see Appendix) is formu-
lated as follows in element-wise notation:

SPACE2time : Xjkl ¼
XF

f¼1

ajf � exp i2pukrjf

� �
� bkf

� clf � exp i2psklf

� �
1Ejkl

The Fourier coefficient Xjkl is described as a sum over F
network-specific complex-valued numbers. The amplitude
of each network-specific complex-valued number is the
product of ajf , bkf , and clf , which refer to, respectively, the
spatial amplitude map, the frequency profile and the
epoch profile. The phase of each network-specific com-
plex-valued number is the product of an element of the
spatial time-delay map and a phase offset: exp i2pukrjf

� �
and exp i2psklf

� �
. Here, 2pukrjf describes the site-,
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frequency-, and network-specific phases, in which uk denotes
the k-th frequency (in Hz) and rjf denotes the site- and
frequency-specific time delay. 2psklf describes the frequency-,
epoch-, and network-specific phase offset. The time delay
model is based on the assumption that between-site phase
differences are the result of between-site time delays. To
make this concrete, let r be the time delay between two sites
and let u be frequency. Then, the between-site phase differ-
ence is u � r, which increases linearly with frequency. In the
FSP model (Fig. 1B; see Appendix), the spatial phase maps
replace the spatial time-delay maps. For this model, the phase
of each network-specific complex-valued number is the prod-
uct of an element of the spatial phase maps and a phase off-
set: exp i2pkjkf

� �
and exp i2psklf

� �
. The FSP model is

formulated as follows in element-wise notation:

SPACE-FSP: Xjkl¼
XF

f¼1

ajf �exp i2pkjkf

� �
�bkf �clf �exp i2psklf

� �
1Ejkl

Except for the site-, frequency- and network-specific
phases kjkf , this model has the same parameters as the
time delay model. In contrast to the time delay model, no
constraints are imposed on the between-site phase differ-
ences as a function of frequency. The parameters of both
models can be estimated using an alternating least squares
(ALS) algorithm, which monotonically decreases a least
squares (LS) loss function. For this algorithm, new optimi-
zation techniques were developed which are fully
described in the Appendix.

To be estimable, all parameters of the two models
have to be normalized (see Appendix). Because of this
normalization, the individual amplitudes ajf , bkf , clf ,
and the individual phases/time delays kjkf , rjf , are
not meaningful. Crucially, however, amplitude ratios,
and time delay differences and phase differences
between sites, frequencies, and epochs, are not
affected by these normalizations, and reveal important
characteristics of the extracted phase-coupled oscilla-
tory networks.

Figure 1.

SPACE: describing phase-coupled oscillatory networks by

FSP and time delays. We developed a new decomposition tech-

nique that extracts phase-coupled oscillatory networks, SPACE.

Networks are extracted using two models, the time delay model

and the FSP model. The time delay model (SPACE-time) describes

phase relations between sites by temporal delays between sites, in

a spatial time-delay map. The FSP model (SPACE-FSP) describes

these phase relations by FSP, in spatial phase maps. A: The time

delay model describes networks by a spatial amplitude map, a fre-

quency profile, a spatial time-delay maps, an epoch profile, and

phase offsets. The equation in A is the element-wise formulation

of the time delay model, and it shows how each Fourier coeffi-

cients Xjkl of site j, frequency k, and epoch l is described. The

example shows the same network as in Figure 3. The time-delay

maps describe all phase differences by site-specific time delays. In

the example, each site row has a time delay of 50 ms from top to

bottom. These 50 ms steps produce the same phases as shown in

B, and match the time delays in Figure 3A. B: The FSP model

describes networks by a spatial amplitude map, a frequency profile,

an epoch profile, phase offsets, and frequency-specific spatial phase

maps. The spatial phase maps describe all phase differences

between sites, matching those in Figure 3A. No constraint is

placed on phases over frequencies, in contrast to the time delay

model. For a detailed description see Materials and Methods and

Results Section: Characterizing Phase-Coupled Oscillatory Net-

works In Terms of Frequency Profiles, Spatial Maps, and Epoch

Profiles. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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In the three-way array of Fourier coefficients, every
epoch is described by a single Fourier coefficient per site
and frequency. However, it is often desired to control the
frequency resolution by means of multitaper estimation.
When using multitaper estimation, every epoch has multi-
ple tapers, and each of these tapers produces one Fourier
coefficient. These taper-specific Fourier coefficients are
organized in an additional dimension, turning the three-
way array into a four-way array of Fourier coefficients.
However, because frequencies and epochs can differ in
their number of tapers, this four-way array may be par-
tially empty, and the three-way formulation of the models
cannot accommodate this aspect of the data array. Fortu-
nately, we can make use of the cross-product formulation
of our models to deal with this. This is the formulation of
the models that is used in the remainder of the article, and
it is fully described in the Appendix. Crucially, the cross-
product formulation does not affect the spatial amplitude
maps, the frequency profiles, the epoch profiles, nor the
spatial phase maps or spatial time-delay maps, as
described above and in the Results Section. The phase off-
sets, however, are parameterized differently (see Appen-
dix). An important difference with the models for the
three- and four-way arrays of Fourier coefficients is that in
the cross-product formulation of these models, between-
network coherence is explicitly modeled. Although this
can be of great benefit, it also has an undesirable conse-
quence: if the between-network coherences are treated as
estimable parameters, then a distributed phase-coupled
oscillatory network can be described by an arbitrary num-
ber of coherent subnetworks. To avoid this, we force
between-network coherence to be zero (see Appendix).

The number of networks F that are extracted needs to
be estimated. The number of networks that should be
extracted cannot be determined analytically. To find the
optimal F, we can make use of an index of the reliability
with which the networks can be estimated from the data,
as described by Maris et al. [2011].The number of net-
works that are extracted can be increased incrementally
until this reliability index drops below a preset level. A
conservative approach is to split the data into two halves,
extract networks from both halves, and stop increasing the
number of networks when they start to differ between
halves. We use this approach for analyzing the ECoG data,
and it is described in detail below. Other methods of esti-
mating the optimal F are also possible [see Bro, 1998, for
examples from the perspective of PARAFAC/2].

Experimental Paradigm and Preprocessing of

ECoG Recordings

Three pharmacoresistant epilepsy patients (1 male, 2
female) were implanted with subdural grid and strip elec-
trodes prior to undergoing resective surgery. Informed
consent was obtained from the patients or their guardians
if they were underage. The research protocol was

approved by the appropriate institutional review boards at
the Children’s Hospital (Philadelphia, PA) and the Univer-
sity Clinic (Freiburg, Germany). Some of the datasets have
been analyzed before [see e.g., Jacobs and Kahana, 2009;
Maris et al., 2011; Raghavachari et al., 2006; Rizzuto et al.,
2003; van der Meij et al., 2012; van Vugt et al., 2010].
Patients performed a Sternberg working memory task
[Sternberg, 1966] while ECoG recordings were obtained.
Patients were presented with a series of letters (with vari-
able length from 1 to 6) on a computer screen, and they
were instructed to remember these. The trial started with
the presentation of a fixation cross, followed by a letter for
700 ms and by 275–350 ms (uniformly distributed) of blank
screen. Every additional letter was presented for 700 ms
and followed by 275–350 ms of blank screen, except for the
last letter which was followed by a reten tion in terval of
425–575 ms (uniformly distributed as well). After the reten-
tion interval, a probe letter was presented. Patients were
required to indicate by means of key press whether the
probe letter was part of the previously presented letter
series. We analyzed the period between the fixation cross
and the onset of the probe letter, a period during which the
patients were actively engaged in the task. We did not dis-
tinguish between the cognitive operations encoding and
retrieval, which occur in this period. The main purpose of
the current analyses was to demonstrate that plausible
phase-coupled oscillatory networks can be extracted.

ECoG recordings were sampled at 256 Hz and rerefer-
enced to the common average. Artifact rejection was per-
formed by visual inspection. All trials and/or electrodes
contaminated by epileptiform activity were removed. The
data was band-stop filtered with 1 Hz windows at 50 and
60 Hz (depending on continent) and at other frequencies
containing line noise. Recordings were additionally band-
pass filtered between 0.01 and 100 Hz. All filters were
fourth-order Butterworth. Subsequently, the mean and the
linear trend were removed from each trial. To suppress
the 1/fx pattern in the power spectrum, the data was pre-
whitened by taking the first temporal derivative. Electrode
locations were determined by coregistering a postoperative
computed tomography scan with a higher resolution pre-
operative magnetic resonance image. Patients’ brains were
normalized to Talairach space [Talairach and Tornoux,
1988]. All preprocessing and spectral analysis was per-
formed using custom analyses scripts and the FieldTrip
open-source MATLAB toolbox [Oostenveld et al., 2011].

Extracting Phase-Coupled Oscillatory Networks

from ECoG Recordings

Spectral analysis was performed for 2–30 Hz with
equally spaced 0.5 Hz bins and a Welch multitapering
approach [Welch, 1967] to control frequency resolution.
First, each trial was cut into several 2 second segments,
such that each next segment would have a temporal over-
lap of 75% with the previous segment (incomplete
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segments at the end of a trial were not used). Each of the
2 second segments was multiplied with a Hanning win-
dow, followed by a Discrete Fourier Transform (DFT).
These multiple 2 second segments of each trial are the sep-
arate Welch tapers. Each epoch used in the analyses corre-
sponds to three consecutive trials and we combined the
Fourier coefficients obtained from these trials. This
resulted in 30 epochs out of 92 trials for patient 1, 54
epochs out of 163 trials for patient 2, and 89 epochs out of
270 trials from patient 3. Combining tapers of multiple tri-
als was necessary because our method requires that the
smallest number of tapers per epoch is larger than the
number of networks extracted. Because we wanted to esti-
mate the number of networks using a high frequency reso-
lution, this sometimes lead to a larger number of networks
than tapers when defining each trial as an epoch.

The same preprocessing procedure was used for displaying
single trials at the peak frequency of the example networks
(see Results Section). The resulting time series were then con-
volved with a complex-valued wavelet at the selected fre-
quencies. This wavelet was constructed by an element-wise
multiplication of a three-cycle complex exponential and a
Hanning taper of equal length. The real part of the resulting
complex-valued time series was then used for display.

Fourier coefficients resulting from spectral analysis were
arranged to form a four-way array and decomposed using
the cross-product formulation of both SPACE-time and
SPACE-FSP (see Appendix). To avoid local minima, each
algorithm was randomly initialized 20 times, and the solu-
tion with the highest explained variance was selected
(explained variance over initializations is shown in Sup-
porting Information Fig. S1). To avoid degenerate decompo-
sitions from unfortunate initializations, all decompositions
were run with an orthogonality constraint (Dk ¼ I; see
Appendix). The number of networks to extract (four, two,
and four for patient 1, 2, and 3, respectively) was deter-
mined on the basis of a split-half approach using the out-
put of SPACE-time. In this procedure, the number of
networks was increased until the networks extracted from
the odd numbered trials were no longer similar enough to
the networks extracted from the even numbered trials. As
such, the number of networks that is extracted depends on
the networks that are consistently activated by the task.
Similarity was evaluated on the basis of a number of split-
half reliability coefficients. One coefficient was calculated
for each of the parameter sets.

This split-half reliability coefficient was computed for
the spatial amplitude map and the frequency profiles as
the normalized network-specific inner-product. For the
spatial time-delay maps, the split-half reliability coefficient
was constructed in two steps:

split2half coefficient:

PK
k¼1

���<A1 �exp i2pukr
1ð Þ; A2 �exp i2pukr

2ð Þ>
A1 �A2

����B1
k
1B2

k

2

� �
PK

k¼1
B1

k
1B2

k

2

h i
(1)

First, per split-half s and frequency k, a complex-valued
spatial time-delay map exp i2pukr

sð Þ was computed and
weighted with the split-half specific spatial amplitude map
As. Then, the normalized inner-product h; i was taken
between both halves. The final reliability coefficient for the
spatial time-delay maps was then constructed by comput-
ing the average over frequencies of the absolute value
(denoted by jj) of this inner-product, weighted by the
average of the frequency profiles Bs

k of both split-halves.
For the spatial phase maps, the reliability coefficient was
constructed by replacing ukr

s by ks
k in the above equation.

When either this coefficient or that of the spatial ampli-
tude map or the frequency profile fell below 0.7, the proce-
dure was stopped, and the previous number of networks
was set as the final number of networks. As Dk ¼ I, it was
not part of the split-half reliability coefficient.

We additionally computed a similarity coefficient that
was used to compare networks extracted using the time
delay model to networks extracted using the FSP model.
This coefficient was similar to the split-half coefficient
described above. For the spatial amplitude map, the fre-
quency profiles, and the epoch profile the coefficient was
computed as the normalized inner-product. For the spatial
time-delay map and the spatial phase maps the coefficient
was constructed as in Eq. (1), except that the spatial time-
delay map of the second network exp i2pukr

2
� �

was
replaced by the spatial phase maps exp i2pk2

k

� �
. The simi-

larity coefficient for the whole network was then obtained
as the average of the coefficients for spatial amplitude
map, the spatial phase map, the frequency profile, and the
epoch profile.

Simulating Phase-Coupled Oscillatory Networks

To show that both our method is capable of extracting
networks from noisy data we simulated three phase-
coupled oscillatory networks travelling over a 5 3 5 sites
grid. Each network had a spatial amplitude map that was
nonzero for a selected set of sites, with overlap between
the networks. There was one network in the theta range
(4–8 Hz), one in the alpha range (8–12 Hz), and one in the
beta range (10–25 Hz). Every network was present in 15
out of 25 epochs, with overlap between the epochs. Per
epoch, we generated a signal that propagated over the
involved sites with a fixed time delay, thus forming a trav-
elling wave. The time delay step size (i.e., the time delay
between two adjacent sites) was systematically varied over
the values 5, 25, 50, and 100 ms. We additionally varied
the signal-to-noise ratio (SNR) and the spatial noise corre-
lation, as described below.

The signal was generated as follows. First, 1.5 (theta) or
1 s (alpha and beta) of white noise was generated using
MATLAB’s pseudorandom number generator. Then, after
taking the DFT, all Fourier coefficients not belonging to
the network’s frequency band were set to zero. Subse-
quently, the signal was transformed back to the time
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domain using the inverse DFT, and the resulting signal
was multiplied with a Hanning window of equal length
and padded out to 3 s. This resulted in an oscillatory sig-
nal within the specified frequency band. Then, again using
a DFT, the amplitudes of the Fourier coefficients were
scaled such the amplitude spectrum was proportional to
1/f, giving the power spectrum a 1/f2 shape [Miller et al.,
2009]. The resulting signal was then transformed back to
the time domain using the inverse DFT. The site-specific
signals were obtained by shifting this time domain signal
in accordance with the order of the site in travelling wave
and the time delay step size. To every site, we added 3 s
of noise. These noise signals were generated in the same
way as the source signals but without the removal of par-
ticular frequencies, and independently for each site. We
varied the amount of spatial noise correlation by generat-
ing new site-specific noise signals as a weighted average
of the initial noise signals. These weights were propor-
tional to a bivariate Gaussian of which the full-width half
maximum [the width of the Gaussian at the point where
its magnitude is at the half of its maximum; full-width
half-maximum (FWHM)] was systematically varied over
the values 0, 10, 20, and 40 mm (simulated sites were
spaced 10 mm apart). This results in a FWHM that encom-
passed 0, 3, 5, and 9 sites, respectively. We also systemati-
cally varied noise strength. This was achieved in a final
step by setting the SNR of the time series at each site to be
4, 0.16, 0.04, or 0.01.

Analyzing the Simulated Data

Except for artifact removal, the simulated data were pre-
processed in the same way as the ECoG data. First, the
mean and the linear trend were removed from each epoch.
Next, to suppress the 1/fx shape of the power spectrum,
the data was prewhitened by taking the first temporal
derivative.

Spectral analysis was performed for 2–30 Hz with
equally spaced 1 Hz bins. First, each 3 second epoch was
cut into several 1 second segments, such that each next
segment would have a temporal overlap of 75% with the
previous segment. For 2–16 Hz, each of the 1 second seg-
ments was multiplied with a Hanning window, followed
by a DFT. For 17–30 Hz, each segment of each epoch was
multiplied several times with different tapers prior to tak-
ing the DFT. These tapers were the first 3 tapers of the Sle-
pian sequence [Percival and Walden, 1993] of order 4,
resulting in a frequency resolution of approximately 2 Hz.

The Fourier coefficients of all segments were then col-
lected per epoch, and arranged in a four-way array. This
array consisted of 25 sites, 29 frequencies, 25 epochs, and
57 tapers for every simulation run. Each four-way array of
Fourier coefficients resulting from one simulation run was
decomposed using the cross-product formulations of both
SPACE-time and SPACE-FSP. To avoid local minima, each
algorithm was randomly initialized 10 times, of which the

solution with the highest explained variance was retained
(explained variance over initializations is shown in Sup-
porting Information Fig. S1). As for the analyses of the
ECoG data, all decompositions were run with an ortho-
gonality constraint (Dk ¼ I; see above). All preprocessing
and spectral analysis was performed using custom analy-
ses scripts and the FieldTrip open-source MATLAB tool-
box [Oostenveld et al., 2011].

Coefficients for Evaluating the Goodness-of-

Recovery of the Simulated Networks

We calculated a number of coefficients to assess the
goodness-of-recovery of the simulated networks. We use
four different coefficients: (1) one for the spatial amplitude
maps, frequency profiles and epoch profiles, (2) one for
the spatial phase maps, (3) one for the spatial time-delay
maps, and (4) one for the temporal order of the time
delays. The first coefficient is the Pearson correlation coef-
ficient, which ranges from 21 to 1. The other three coeffi-
cients were constructed for the purpose of this study, and
will be described in more detail in the following. Each of
the four coefficients was computed per network and per
simulation run and subsequently averaged.

The recovery coefficient for a network-specific spatial
time-delay map was calculated as follows:

recovery :

PK
k¼1

��� hAsim�exp i2pukrð Þ; Asim�exp i2pukr
simð Þi

jAsimj2

��� � Bsim
k

� �
PK

k¼1 Bsim
k

First, the inner-product h; i is taken between the spatial
time-delay map of the extracted network and its simulated
counterpart, weighted by the simulated spatial amplitude
map. The coefficient is then constructed as the sum over
frequencies of the absolute value of this inner-product,
weighted by the simulated frequency profile. Here, Asim

denotes the simulated spatial amplitude map, ukr the
loading vector containing the spatial time-delay map of an
extracted network r multiplied by frequency uk in Hz, uk

rsim its simulated counterpart, and Bsim
k the frequency-

specific loading of the simulated frequency profile of the
same network. This coefficient is sensitive to the similarity
between the extracted spatial time-delay map and its
simulated counterpart, with a weighing that amplifies the
contribution of the sites and the frequencies that are
strongly involved in the simulated network. It is similar to
the coefficient described in the split-half procedure, except
that only the simulated spatial amplitude map and simu-
lated frequency profile are used for weighting.

The recovery coefficient for the spatial phase maps is
constructed similarly as for the spatial time-delay maps,
except ukr is replaced by kk, and ukr

sim by ksim
k . Here, kk

denotes the frequency-specific spatial phase map, and ksim
k

its simulated counterpart. This coefficient is sensitive to
the similarity between FSP generated by the extracted
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phases and their simulated counterparts, again with a
weighing that amplifies the contribution of the sites and
the frequencies that are strongly involved in the simulated
network.

The recovery coefficient for the temporal order of the
spatial time-delay map is calculated as the proportion of
site-pairs that are in agreement with respect to their esti-
mated and simulated temporal order:

recovery :

PJsim21
j1¼1

PJsim

j2¼j1
xj1 2xj2

� �
¼¼ xsim

j1
2xsim

j2

� �
Jsim� Jsim21ð Þ

2

Here, xj denotes the position of the j-th site in the
ordered set of time delays from an extracted network, and
xsim

j denotes its simulated counterpart. Only sites were
used that were part of the simulated network, as defined
by the sites that have nonzero simulated values: Jsim refers
to the total number of involved sites. The numerator of
this coefficient is the sum of the site-pairs that have identi-
cal ordinal distances between the estimated site-pairs
(xj1 2xj2 ) and their simulated counterparts (xsim

j1
2xsim

j2
).

This sum is then divided by the total number of possible
agreements, such that the coefficient expresses agreement
as a proportion relative to perfect agreement.

RESULTS

Characterizing Phase-Coupled Oscillatory

Networks In Terms of Frequency Profiles,

Spatial Maps, and Epoch Profiles

Neuronal oscillations are ubiquitous in electrophysiolog-
ical recordings, and their phase is very often consistent

between sites. A phase-coupled oscillatory network is said
to be present when this phase coupling is spatially distrib-
uted, and its phase relations are stable over multiple cycles
of this oscillation. This network is not required to be pres-
ent throughout a recording; it may be present in some
epochs and absent in others. An epoch refers to a temporal
segment such as an experimental trial or part of a resting-
state recording, and a site refers to any location at which
neuronal signals are recorded. To identify these networks,
we obtain electrophysiological measurements from multi-
ple sites and multiple epochs (Fig. 2A), and perform a
spectral analysis on these data. In the frequency domain,
the average oscillatory activity in each epoch is described
by a single complex-valued Fourier coefficient per fre-
quency (Fig. 2B). Because we analyze signals from multi-
ple sites, using multiple frequencies, and from multiple
epochs, we obtain Fourier coefficients that can be arranged
in a three-way array, with a spatial, spectral, and epoch
dimension (Fig. 2C). This three-way array captures the
average oscillatory activity in each epoch, and is the start-
ing point for extracting phase-coupled oscillatory
networks.

The three-way array of Fourier coefficients describes
variation over sites, frequencies and epochs in the ampli-
tudes and phases of oscillations generated in the underly-
ing neural tissue. Phase consistency between sites in this
three-way array allows us to extract phase-coupled oscilla-
tory networks (Fig. 3). Because the three-way array
describes the average oscillatory activity in each epoch,
these networks describe the average network activity in
each epoch. We characterize a phase-coupled oscillatory
network using the following parameters: a frequency pro-
file, a spatial amplitude map, a spatial time-delay map (or
frequency-specific spatial phase maps), an epoch profile,

Figure 2.

A three-way spatio-spectro-epoch array of Fourier

coefficients. To identify and characterize phase-coupled oscillatory

networks we obtain electrophysiological recordings from multiple

sites and epochs, depicted schematically in A. We perform spectral

analysis to describe oscillations at multiple frequencies, depicted in

B. In the frequency domain, the average oscillatory activity in each

epoch is described by a single complex-valued Fourier coefficient per

frequency. Fourier coefficients per site, frequency and epoch can be

arranged in a three-way array of Fourier coefficients, depicted in C.

This three-way array is the starting point for extracting phase-

coupled oscillatory networks. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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and epoch-specific phase offsets per frequency (Fig. 3B–G).
All these parameters will be described below in detail.
Importantly, this characterization follows from the
assumption that oscillatory networks can be conceived as
spatially distributed neuronal sources measured at a

number of sites. The sources induce phase-consistent oscil-
lations measurable at different sites, within the frequencies
that characterize the network. The phases of the
frequency-specific Fourier coefficients can vary both over
sites and epochs but, because we assume phase-

Figure 3.

Phase-coupled oscillatory networks describe spatially

distributed patterns of phase coupling. A: Schematic of elec-

trophysiological measurements reflecting a phase-coupled oscillatory

network. Phase-coupled neuronal oscillations are measured at multi-

ple sites, at multiple frequencies, and at multiple epochs. Measure-

ments are arranged in a three-way array of Fourier coefficients. Each

column of sites in the grid displays underlying sources with increas-

ing strength from left to right, and with increasing temporal delays

from top to bottom. This delay results in frequency-specific phase

relations that increase with frequency, and with site row. Phase dif-

ferences between sites are depicted in the phase differences diagram

at 4, 6, and 8 Hz. Colors correspond to those in F. We define the

network by a frequency profile (B), a spatial amplitude map (C), an

epoch profile (D), a spatial time-delay map (E), spatial phase maps

(F), and phase offsets (G). B: frequency profile describing the aver-

age frequency band of the oscillations in A. C: spatial amplitude map

describing the involvement of each site in the network. Circle size

reflects the oscillatory amplitude in A. D: epoch profile describing

the strength of the network in each epoch. The schematic network

loads stronger in condition A than in B. E: spatial time-delay map

describing the temporal relation between sites producing the phase

differences in A. Circle color reflects the relative time delay of each

site, with respect to all other sites. This matches the time delay

observable in the left-hand side of A. F: frequency-specific spatial

phase maps describing the phase differences in A. Circle color

reflects the relative phase of each site, and matches the first row of

the diagram in A. From the spatial phase maps, all frequency-specific

phase differences can be reconstructed. G: Phase offsets capture fre-

quency- and epoch-specific phase offsets resulting from epoch-

specific temporal offsets. Note, as these phase offsets are not of

interest when characterizing phase-coupled oscillatory networks,

they are shown in gray. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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consistency, the between-site phase relations are identical
for all epochs (Fig. 3A). Crucially, we characterize a net-
work by multiple frequencies, which is in line with the
general observation that neuronal oscillations always have
energy in a band of frequencies. These frequencies can
form a narrow range, for example, 4–8 Hz (the theta
band), or a very broad range, for example, 30–60 Hz (the
gamma band). Which frequencies are involved in a net-
work is specified in the frequency profile.

A frequency profile (Fig. 3B) specifies the degree to
which different frequencies are involved in the network. It
is described by a vector of positive real numbers, which
are high for frequencies that are strongly involved, and
close to zero for those that are weakly involved. A spatial
amplitude map (Fig. 3C) specifies the degree to which the
different sites reflect the network, and is also described by
a vector of positive real numbers. An epoch profile (Fig.
3D) specifies the degree to which the different epochs
reflect the network, also described by a vector of positive
real numbers. The frequency profile, the spatial amplitude
map, and the epoch profile (Fig. 3B–D) together describe
the degree to which the network is determined by each of
the 3 dimensions of the three-way array of Fourier coeffi-
cients. All phase characteristics of the network are
described by the spatial time-delay map (Fig. 3E; or spatial
phase maps, Fig. 3F), and the phase offsets (Fig. 3G). The
latter of these, the phase offsets (Fig. 3G), capture the tem-
poral offset of the network within each epoch. These phase
offsets are frequency-specific. The spatial time-delay map
(Fig. 3E; or frequency-specific spatial phase maps, Fig. 3F)
specifies the consistent between-site phase relations.
Importantly, we present a model for coupled oscillatory
networks in which any two interacting sites is character-
ized by phase differences that may vary as a function of
frequency (within the frequency band that characterizes
this network). The way these phase differences vary over
frequencies can provide important insights into how two
sites interact. For instance, if there would be a consistent
time delay between two interacting sites, then this would
result in phase differences that increase linearly with fre-
quency. These phase differences are jointly characterized
by the spatial time-delay map (Fig. 3E). A spatial time-
delay map is the map from which the time delay between
any pair of sites can be obtained by taking the difference
between the corresponding coefficients in the map. By
multiplying this time delay with the frequency of interest,
we obtain the between-site phase difference for that fre-
quency. The spatial phase maps (Fig. 3F) specify the
between-site phase differences more directly, without the
constraint of a linear relation with frequency. These maps
are frequency-specific spatial maps from which the con-
sistent between-site phase differences can be obtained by
simple subtraction between the sites. Because the spatial
phase maps do not enforce a particular pattern on the
between-site phase differences (e.g., a linear relation with
frequency), they are most useful in explorative studies.
The spatial time-delay maps are more useful for a targeted

investigation of temporal dynamics. Importantly, although
phase coupling at the level of site pairs can be recon-
structed from both types of spatial maps, the maps them-
selves describe phase coupling at the level of individual
sites. This is useful, because it can directly reveal the spa-
tial structure of the network.

Together, the frequency profile, the spatial amplitude
map, the epoch profile, the spatial time-delay maps or spa-
tial phase maps, and the phase offsets, characterize a
phase-coupled oscillatory network. That is, they describe
that part of the three-way array of Fourier coefficients that
originates from a particular phase-coupled oscillatory net-
work. To extract and characterize these networks, we
developed a new method, denoted as SPACE. This method
is briefly described in the Materials and Methods Section,
and a full description of the method and the underlying
algorithm is provided in the Appendix. The method is
based on two models: the time delay model (SPACE-time)
that characterizes networks using spatial time-delay maps,
and the FSP model (SPACE-FSP), that characterizes net-
works using spatial phase maps. In the following, we first
describe example networks extracted from ECoG record-
ings. Next, we provide evidence for the robustness of the
method, by recovering simulated networks from realistic
noisy data. In each section, both models are used and their
results compared.

SPACE Extracts Phase-Coupled Oscillatory Net-

works from Human ECoG Recordings

We now present three example networks extracted from
ECoG recordings of three epilepsy patients while they
were performing a Sternberg working memory task (see
Materials and Methods; Fig. 4). We analyzed the task
period during which the patients were engaged in the
task. We did not distinguish between the cognitive opera-
tions encoding and retrieval occurring in this period, as
the main purpose of the current analyses was to demon-
strate that plausible phase-coupled oscillatory networks
could be extracted.

Fourier coefficients of each of the three datasets were
obtained using a Welch tapering approach with multiple
overlapping 2 second windows per trial, yielding a four-
way array of Fourier coefficients with a 0.5 Hz frequency
resolution and a taper dimension (in contrast to the three-
way array introduced above, see Materials and Methods).
Each of the three datasets was analyzed using both
SPACE-time and SPACE-FSP. Because the four-way arrays
of Fourier coefficients were obtained using multitaper esti-
mation, we used the cross-product formulation of both
models (see Materials and Methods and Appendix).
Because we wanted to estimate the number of networks
using a high frequency resolution (0.5 Hz), each epoch
was constructed by combining the tapers of three consecu-
tive trials (see Materials and Methods). The number of
extracted networks was determined on the basis of their
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reliability as evaluated by a split-half procedure (see Mate-
rials and Methods). This involves that only networks were
extracted that could be identified in two independent data-
sets, obtained by randomly splitting the trials in two
halves. This resulted in four, two, and four extracted net-
works from the recordings of patient 1, 2, and 3, respec-
tively. We selected one network of each patient and show
its description by the time delay and the FSP model (Fig.
4), all other networks are presented in Supporting Infor-
mation Figs. S2–S4. We quantitatively compare both

descriptions by a similarity coefficient (see Materials and
Methods), which ranges from 0 to 1. The networks shown
were selected because they reflect neurophysiologically
interesting patterns, such as travelling waves. The three,
one, and three non-selected networks showed many differ-
ent patterns, such as spatial amplitude/phase maps domi-
nated by a few electrodes with little phase diversity and
spatial amplitude/phase maps with multiple groups of
electrodes exhibiting phase diversity both within and
between groups.

Figure 4.
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From patient 1, we extracted a network that shows a
travelling alpha wave over parieto-temporal electrodes
(Fig. 4A–C). The network extracted using the time delay
model (Fig. 4A) closely corresponds to the one extracted
using the FSP model (Fig. 4B): (1) the frequency profile
and the epoch profile of the two networks are very similar
(similarity coefficient 5 0.91) and (2) the progression of
phases over electrodes and over frequencies generated
from the time delay network follows the spatial phase
maps of the FSP network, with the time delay and the FSP
network both showing the alpha wave travelling in the
posterior to anterior direction. The only clear difference is
that the spatial amplitude map of the FSP network
includes more electrodes than the one of the time delay
network. We also show the travelling wave in the trial
with the highest amplitude at the peak frequency of the
network (�11 Hz). We do this for a selection of electrodes
that lie in the direction of the travelling wave (Fig. 4C).
This example shows that, at the level of a single trial, there
is a close match between the time delays extracted using
the time delay model (calculated over all trials) and these
single trial time delays. We additionally computed the
speed of the travelling wave using the network from the
time delay model. This was done by computing the distan-
ces between all electrode-pairs (using Talairach coordi-
nates), dividing these distances by the between-electrode
time delays, and subsequently averaging the resulting
speeds. (We calculated a weighted average with the

weights being the product of the spatial amplitude map
loadings of all electrode-pairs.) This resulted in an average
speed over electrode-pairs for this travelling alpha wave
of 4.38 m/s. This is similar to speeds reported by Massi-
mini et al. [2004] in extracranial human recordings, but is
much faster than those reported by Rubino et al. [2006] in
ECoG recordings of monkey motor cortex. The direction of
the wave is given by the temporal order of the time
delays, provided that none of the between-site time differ-
ences exceeds 2 s (a critical time delay that depends on
the frequency resolution, which is 0.5 Hz for our analysis;
see Appendix).

From patient 2, we extracted a dipolar alpha network
over fronto-parietal electrodes of which the spatial phase
maps are dominated by phase relations that are either 0
or p (Fig. 4D–F). The network extracted using the time
delay model (Fig. 4D) closely corresponds to the one
extracted using the FSP model (Fig. 4E; similarity coef-
ficient 5 0.96), except for the spatial time-delay maps. The
phase differences that are implied by the spatial time-
delay maps are much smaller than the phase relations
that were estimated under the FSP model. We also show
phase relations in the trial with the highest amplitude at
the peak frequency of the network (�11 Hz) for a selec-
tion of electrodes from the two clusters (Fig. 4F). The sin-
gle trial phase differences between the two clusters of
electrodes closely match the dipolar phase relations esti-
mated under the FSP model.

Figure 4.

Example phase-coupled oscillatory networks from

human ECoG recordings. We show three-phase-coupled

oscillatory networks from ECoG recordings during a Sternberg

working memory task from three epilepsy patients (see Materials

and Methods). Networks are displayed on a Talairach template

brain. The first network shows a travelling alpha wave over

parieto-temporal electrodes (A,B,C). The second network

shows an alpha network with phase relations dominated by 0 or

p over fronto-parietal electrodes (D,E,F). The third network

shows a travelling beta wave over parieto-frontal electrodes

(G,H,I). Each dataset was analyzed using the cross-product for-

mulation of SPACE-time (A,D,G) and SPACE-FSP (B,E,F) and the

extracted networks were compared (see Materials and Meth-

ods). The Fourier coefficients were obtained from Welch-

tapered signals of 2 s, and therefore had a frequency resolution

of 0.5 Hz. We also show single trial observations of the networks

(C,F,I). Only those grids/strips with high amplitudes in the spatial

amplitude map are shown. A: Travelling alpha wave described by

the time delay model. Frequency and epoch profiles are shown in

the top left. The full grid is shown in the center on a Talairach

template. The spatial time-delay map is shown on the right side.

Electrode size reflects the spatial amplitude map. Electrode color

reflects the time delay relative to the strongest electrode. The

displayed frequencies are selected from the gray band in the

frequency profile. Spatial phase maps are shown on the left to

compare phases resulting from the time delay model to those of

the FSP model. These maps were generated by multiplying each

time delay by 2puk, where uk reflects the k-th frequency. B: Trav-

elling alpha wave corresponding to the one in A described by the

FSP model. Frequency and epoch profiles are shown on the top

left. The spatial phase maps are displayed in the center. Electrode

size reflects the spatial amplitude map. Electrode color reflects

the phase relative to the strongest electrode in A. C: Single trial

oscillations displaying the travelling alpha wave at the peak fre-

quency (�11 Hz) in the strongest trial. The top panel displays the

selected trial, frequency, and electrodes. The bottom panel

shows excerpts from this trial. Instantaneous amplitude is col-

ored by instantaneous phase. The gray solid line reflects the time

delay between electrodes. Oscillations matching the time delays

cross this gray line at their peaks. Black arrows denote the direc-

tion of the travelling wave. D,E: same as A,B but for a dipolar

alpha network with 0 or p phase relations. F: same as in C but for

the dipolar alpha network shown in D and E (�11 Hz), using the

estimates for the FSP model. The dashed gray line is now straight.

Oscillations matching the spatial phase maps cross this line at

their troughs for the top three electrodes and at their peaks for

the bottom three electrodes. G,H: same as A,B but now for a

travelling beta wave. I: same as C but now for the travelling beta

wave (�19 Hz) shown in G and H. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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From patient 3, we extracted a network that shows a
travelling beta wave over fronto-parietal electrodes (Fig.
4G–I). For all parameters, the network extracted using the
time delay model (Fig. 4G) closely corresponds to the one
extracted using the FSP model (Fig. 4H; similarity coef-
ficient 5 0.99). Importantly, the progression of phases over
electrodes and over frequencies generated from the time
delay network follows the spatial phase maps of the FSP
network, with the time delay and the FSP network both
showing the beta wave travelling in the anterior to poste-
rior direction. We also show the phase relations in the trial
with the highest amplitude at the peak frequency (�19
Hz) for a selection of electrodes that lie in the direction of
the travelling wave (Fig. 4I). The average speed over
electrode-pairs of this travelling beta wave was 5.19 m/s.

SPACE Recovers Phase-Coupled Oscillatory Net-

works from Realistic Noisy Signals

We performed simulations to test the ability of our
method to recover phase-coupled networks from noisy sig-
nals. To accurately recover simulated networks, our
method needs to fulfill two important requirements: (1) its
solutions need to be unique and (2) it needs to be robust
against biologically realistic noise. Although we cannot
provide a theoretical proof of uniqueness, in the Appen-
dix, we show the results of a simulation study that
strongly suggest uniqueness. To investigate the second
requirement, we conducted simulations using realistic
noisy signals. These signals were obtained by adding spa-
tially correlated noise to time-domain signals that were
generated under the time delay model. This spatially cor-
related noise reflects scattered neuronal sources without a
consistent oscillatory phase coupling structure in some fre-
quency range. These scattered sources distort the structure
that is induced by the simulated networks because they
cannot be fitted parsimoniously by our models. By increas-
ing noise strength and spatial correlation, we create an
environment where it becomes increasingly difficult to dis-
tinguish the networks of interest from the background
activity. The importance of spatial correlation of the noise
became very obvious when we performed pilot simulation
studies with uncorrelated noise. We observed that it was
trivially easy to accurately and uniquely recover networks
in this situation. For instance, we simulated data in the fre-
quency domain by directly generating the three-way (and
four-way) array of Fourier coefficients using the parame-
ters of both models. Adding large amounts of uncorrelated
complex-valued noise had a very weak effect on the recov-
ery of the networks. To test our method under more chal-
lenging and more realistic conditions, we generated data
in which we controlled both the amount and the spatial
correlation of the noise.

We simulated phase-coupled oscillatory networks with
varying noise strength, spatial noise correlation, and time
delays across a 5 3 5 sites grid (Figs. 5–7; for a detailed

description see Materials and Methods). Using these simu-
lations, we investigated (1) how network recovery varies
as a function of noise strength and correlation and (2) how
recovery varies as a function of the time delays. To this
end we performed two sets of simulations: (1) fixed
between-site time delays but varying noise strength and
spatial noise correlation and (2) varying time delays, vary-
ing noise strength but fixed spatial noise correlation. The
SNR was varied over 4 levels: 4, 0.16, 0.04, and 0.01. Spa-
tial noise correlation was determined by the FWHM of a
bivariate Gaussian distribution at 0, 10, 20, or 40 mm.
These distances are evaluated relative to the inter-site dis-
tances of our 5 3 5 grid, which had a 10mm spacing.
Finally, between-site time delays were varied over the fol-
lowing 4 levels: 5, 25, 50, and 100 ms. In the following, we
first briefly describe how we simulated phase-coupled
oscillatory networks, and how we assessed the similarity
between the extracted and simulated networks. Next, we
present the results of the two parts of our simulation
study.

We simulated three-phase coupled oscillatory networks
travelling on a 5 3 5 sites grid, which were partially
repeated over 25 epochs (Fig. 5). The three networks had
different but partially overlapping frequency profiles: one
in the theta, one in the alpha, and one in the beta band
(Fig. 5B). Each network was further characterized by a
spatial amplitude map specifying which sites showed the
oscillatory signal and a spatial time-delay map specifying
the time and phase relations between these sites (Fig. 5A).
Spatial amplitude maps were partially overlapping. Per
network and epoch, a 1–1.5 s source signal was randomly
generated as band-pass filtered brown-noise (see Materials
and Methods), which was subsequently mapped to the
sensor level (the 5 3 5 sites grid) according to the spatial
amplitude and the spatial time-delay map for that net-
work. Per network, the frequency profile to-be-recovered
was set as the average amplitude spectrum (over all
epochs; Fig. 5B). Epochs varied with respect to whether or
not a particular network was involved, and this was speci-
fied by the network’s epoch profile (Fig. 5B). Each network
was present in 15 out of 25 epochs. Noisy 3 second signals
were created by adding randomly generated brown noise
to the model signals that were generated as phase-coupled
oscillatory networks (after zero padding the 1–1.5 s model
signals to 3 s). In Figure 5C, we show a set of example
epochs with varying noise strength. For each of the simu-
lation parameter combinations (4 SNR levels, four noise
correlation levels and four time delays), we generated 100
data sets; each of these simulations will be denoted as a
run. Per run, Fourier coefficients were obtained using a
Welch tapering approach with multiple overlapping 1 sec-
ond windows per epoch. This yielded a four-way array of
Fourier coefficients with a taper dimension and a 1 Hz fre-
quency resolution for frequencies below 17 Hz and, using
additional tapering, 2 Hz for frequencies of 17 Hz and
above (see Materials and Methods). These four-way arrays
were subsequently analyzed using both SPACE-time and
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SPACE-FSP. Because the four-way arrays of Fourier coeffi-
cients were obtained using multitaper estimation, we used
the cross-product formulation of both models. We com-
puted recovery coefficients, expressing how well the
extracted FSP and time delay model parameters recovered
the simulated values (see Materials and Methods). These
coefficients were computed per network per run. For the
spatial amplitude maps, the frequency profiles, and the
epoch profile of SPACE-time/FSP, this coefficient ranges
from 21 to 1. For the spatial phase maps and the spatial
time-delay maps, this coefficient ranges from 0 to 1. The
recovery of the temporal order of the time delays (i.e.,

disregarding the quantitative differences) extracted by the
time delay model was indexed by a coefficient that ranges
from 0 to 1.

To investigate the effect of noise on the recovery of the
networks, we simulated networks with a 25 ms time delay
between adjacent sites and varying levels of noise strength
and noise correlation (Fig. 6). This 25 ms time delay
resulted in a delay of 125, 225, and 225 ms between the
first and the last site for the theta, alpha, and the beta net-
work, respectively. Recovery coefficients were calculated
per network per run, and averaged over the three net-
works per run. Subsequently, the average and standard

Figure 5.

Simulation of phase-coupled oscillatory networks in a

realistic noisy environment. To show that SPACE is able to

recover networks surrounded by noise, we simulated a theta, alpha,

and beta phase-coupled oscillatory network on a 5 3 5 site grid

with variable noise strength and spatial correlation (see Materials

and Methods). Each network consisted of an oscillatory signal that

progressed over sites with a time delay in a fixed order, and with

partially overlapping sites. Signals were generated in three frequency

bands, theta (4–8), alpha (8–12), and beta (10–25), and were present

in 15 out of 25 epochs of 3 s. Each signal was constructed as band-

passed randomly generated brown noise per epoch, and lasted 1–

1.5 s. Randomly generated brown noise was added to the signal.

Both signal and noise had a 1/f2 shaped power spectrum. A: 5 3 5

site grid with 10 mm spacing showing simulated network progres-

sion and spatial correlation profile. The spatial amplitude maps had

equal nonzero values for a subset of the sites. Amount of spatial cor-

relation (right-hand side of grid) was determined by a bivariate

Gaussian with a FWHM of 0, 10, 20, and 40 mm. B: Frequency pro-

file and epoch profile of simulated networks showing partial overlap.

The frequency profile shows the average amplitude spectrum

(shaded area 5 std-dev) over epochs, over simulations. Colors indi-

cate network identity and correspond to those in A. C: example

epochs at various noise levels of a site displaying the theta network.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Uncovering Phase-Coupled Oscillatory Networks r

r 2667 r

http://wileyonlinelibrary.com


deviation over runs was calculated. We show these results,
separately for SPACE-time (Fig. 6A) and SPACE-FSP (Fig.
6B). We observe that (1) without spatial noise correlation,
recovery is highly accurate even for very high noise levels,
(2) recovery decreases with noise strength, (3) this
decrease is stronger with higher noise correlation, and (4)
overall, SPACE-FSP model performs better than SPACE-
time. To also give a visual impression of the goodness-of-
recovery, we show the extracted frequency profiles for dif-
ferent levels of noise strength and noise correlation (Fig.
6A, B). Note that the recovery of the frequency profiles
does not approach a perfect fit, both when using the time
delay and the FSP model. This is because we obtained the

frequency profile to-be-recovered indirectly by averaging
the frequency spectra of the simulated time domain sig-
nals, instead of directly specifying the frequency profile
and inserting it in the model equation (formulated in the
frequency domain). Therefore, when evaluating the
goodness-of-recovery, we do cannot compare the esti-
mated profiles to the ground truth.

On the basis of these simulation results, we can formu-
late some guidelines for applications of SPACE to real
data. For that, we consider a goodness-of-recovery coeffi-
cient of 0.75 to be sufficient for the label acceptable. Then,
for an acceptable network recovery using the FSP model,
it is sufficient to have an SNR of 0.16. The spatial noise

Figure 6.

SPACE recovers simulated networks under noisy

conditions. To investigate the effect of noise on the recovery of

the simulated networks, we simulated networks with 25 ms time

delay between adjacent sites, with variable noise strength, and spatial

noise correlation (see Materials and Methods). SNR was systemati-

cally varied over 4, 0.16, 0.04, and 0.01. Spatial noise correlation was

determined by a Gaussian with a FWHM at 0, 10, 20, or 40mm. For

each combination of simulation parameters, we simulated 100 data

sets. Each simulated data set was analyzed using the cross-product

formulation of SPACE-time and SPACE-FSP. The Fourier coefficients

were obtained from Welch-tapered signals of 1 s, and using addi-

tional Slepian tapering had a frequency resolution of 1 or 2 Hz (see

Materials and Methods). We computed several coefficients reflecting

the accuracy of recovery of the simulated networks. These range

from 21 to 1 for spatial amplitude maps, frequency profiles, and

epoch profiles. For spatial phase maps and spatial time-delay maps,

these range from 0 to 1. We additionally analyzed recovery of tem-

poral order of time delays, with a coefficient ranging from 0 to 1. All

coefficients were averaged over the three networks, per run. A:

Average (over runs) recovery coefficients for SPACE-time. Shading

indicates standard-deviation. Inserts in frequency profiles show the

average extracted frequency profile. B: Same as in A but for SPACE-

FSP. A,B: the graphs show that (1) recovery is very accurate when

noise is uncorrelated even when noise strength is high, (2) recovery

decreases with noise correlation, (3) this decrease is stronger with

higher noise strength, and (4) overall, SPACE-FSP performs better

than SPACE-time. Note: the recovery of the frequency profiles does

not approach a perfect fit. This is because we obtained the fre-

quency profile to-be-recovered from a frequency analysis of the

simulated time domain signals (band-pass filtered brown noise).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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correlation can then correspond to a noise FWHM cover-
ing 9 recording sites (i.e., 40 mm FWHM in the above). If
the SNR is only 0.04, an acceptable network recovery
requires that the noise FWHM covers at most 5 recording
sites (a 20 mm FWHM in the above). For an acceptable
network recovery using the time delay model, the spatial
noise correlation has to be less: with an SNR of 0.16 or
0.04, the noise FWHM must cover at most 5 or 3 recording
sites, respectively.

To investigate the effect of the between-site time delays
on network recovery, we varied the time delay step size
together with noise strength at a fixed spatial noise corre-

lation (20 mm FWHM). We simulated networks with a 5,
25, 50, and 100 ms delay between adjacent sites (Fig. 7. In
this simulation study, we did not average the recovery
coefficients over networks, as the frequency content of the
different networks could have an influence on the ability
to extract them. We show the recovery results for SPACE-
time (Fig. 7A) and SPACE-FSP (Fig. 7B), separately for
every network. For the purpose of presentation, we aver-
aged the recovery coefficients for the spatial amplitude
map, the frequency profile, and the epoch profile, and did
this for each network in each run. We observe that (1)
SPACE-FSP is much less affected by the between-site time

Figure 7.

Recovery of simulated networks using SPACE for

increasingly larger time delays between sites. To investigate

the influence of time delay step size between adjacent sites on net-

work recovery, we varied the time delay step size together with

noise strength at a constant noise correlation (20 mm; see Materials

and Methods. We simulated networks with 5, 25, 50, and 100 ms

time delays between sites. SNR was set at 4, 0.16, 0.04, or 0.01. For

each combination of simulation parameters, we simulated 100 data

sets. Each simulated data set was analyzed using the cross-product

formulation of SPACE-time and SPACE-FSP. Fourier coefficients

were calculated as in Figure 6. We quantified recovery using the

same coefficients as in Figure 6. A: Average (over runs) recovery

coefficients for SPACE-time for the theta, alpha, and beta networks.

Shading indicates standard deviation. An average recovery coefficient

was computed per run over the spatial amplitude maps, frequency

profiles, and epoch profiles. B: Same as in A but for SPACE-FSP. We

observe that (1) SPACE-FSP is much less affected by the between-

site time delays than SPACE-time, (2) goodness-of-recovery

decreases with between-site time delay and this decrease is much

stronger for SPACE-time, and (3) between-site time delay and net-

work frequency have interacting effects on goodness-of-recovery for

SPACE-time: with increasing time delay, goodness-of-recovery for

the alpha network decreases more than for the theta and the beta

network. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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delays than SPACE-time, (2) goodness-of-recovery
decreases with between-site time delay and this decrease
is much stronger when using the time delay model, and
(3) between-site time delay and network frequency have
interacting effects on goodness-of-recovery when using the
time delay model: with increasing time delays, goodness-
of-recovery for the alpha network decreases more than for
the theta and the beta network. We therefore conclude
that, when expected time delays are large, using the FSP
model is preferred over the time delay model.

In sum, we have shown that SPACE can recover net-
works from signals that contain spatially correlated noise.
For the FSP model, an SNR of 0.16 suffices to produce an
acceptable recovery even when the spatial noise correla-
tion encompasses 9 recording sites. If the SNR is only 0.04,
an acceptable network recovery requires that the spatial
noise correlation encompasses at most five recording sites.
For an acceptable network recovery using the time delay
model, the spatial noise correlation has to be substantially
less. Additionally, when the expected time delays of a
phase-coupled oscillatory network are large relative to
cycle length of the network oscillation, then SPACE-FSP
can more accurately recover the between-site phase rela-
tions generated from the time delays.

DISCUSSION

We developed a method capable of extracting phase-
coupled oscillatory networks. Our contribution involves
four-key elements. First, we provide a precise definition of
a phase-coupled oscillatory network in terms of six param-
eters: a frequency profile, a spatial amplitude map, spatial
phase maps or a spatial time-delay map, an epoch profile,
and phase offsets (or an equivalent parameter in case of
the cross-product formulation). Crucially, this definition
respects the fact that brain rhythms involve a range of fre-
quencies, and cannot be characterized by line spectra. Sec-
ond, we developed a method that extracts these networks
from electrophysiological data. Third, we demonstrate that
this method is able to extract networks with a revealing
phase structure from ECoG data. And fourth, using a sim-
ulation study, we quantify the robustness of this method
against violations of the phase-coupling structure imposed
by the model. This demonstrates the method’s usefulness
in practical applications.

Neuronal networks realize the many processes that
underlie cognitive functions: selecting and routing infor-
mation, keeping the information in working memory, stor-
ing and retrieving information from a more permanent
store, and so forth. All these processes involve interactions
between anatomically distinct but connected brain regions.
This is the prime motivation for the development of meth-
ods that extract these networks from neurobiological data.

Compared to electrophysiology, the fMRI community
has a long tradition in identifying functional networks.
Networks of coactivated brain regions can be found using

the spontaneous covariation of the blood oxygenation level
dependent signal measured at rest, that is, in absence of
stimulation or a task [Biswal et al., 1997; Deco and Cor-
betta, 2011; Fox et al., 2005; Honey et al., 2009; Raichle
et al., 2001; Smith et al., 2009]. These networks are usually
referred to as resting state networks [RSNs; Beckmann
et al., 2005]. An important observation constraining the
possible functional role of these fMRI-derived RSNs is that
they also exist in the absence of consciousness during
anesthesia and sleep [Vincent et al., 2007].

Recently, RSNs have begun to be investigated using mag-
netoencephalography (MEG) recordings [Brookes et al.,
2011; de Pasquale et al., 2010]. This is important progress,
because MEG directly measures electrophysiological brain
activity, bypassing the indirect hemodynamic response.
Crucially, the RSNs that were identified did not depend on
oscillatory phase coupling. As a part of the analyses, MEG
recordings were transformed into time series of band-
limited power (BLP) in several frequency bands. These BLP
time series were then correlated using a seed-based
approach [de Pasquale et al., 2010] or decomposed using
independent component analysis [Brookes et al., 2011].
With this approach, it was shown that RSNs could be
extracted using BLP time series (especially in the beta band;
15–25 Hz) that were highly similar to those found in fMRI
signals [Brookes et al., 2011; de Pasquale et al., 2010].

Another recent method to identify networks is based on
phase-amplitude coupling [Maris et al., 2011; van der Meij
et al., 2012]. Contrary to a correlation between BLP time
series, phase-amplitude coupling does depend on oscilla-
tory phase coupling: it indexes the preference for ampli-
tude envelopes at a certain frequency (equivalent to a BLP
time series) to have high values at a certain phase of a
slower phase-providing oscillation. Most reports focus on
the coupling between amplitude-providing and phase-
providing oscillations obtained from the same site [Bruns
and Eckhorn, 2004; Canolty et al., 2006; Chrobak and Buz-
saki, 1998; Cohen et al., 2009; Mormann et al., 2005; Schack
et al., 2002]. However, focusing on between-site phase-
amplitude coupling inspired the development of methods
with which networks could be identified [Maris et al.,
2011; van der Meij et al., 2012]. With these methods,
revealing differences between amplitude-providing and
phase-providing networks could be identified.

The method presented in this article allows for an iden-
tification of networks using phase coupling between oscil-
lations alone. Crucially, this method respects the fact that
brain rhythms have energy in a range of frequencies, and
therefore allows between-site phase differences to vary
over frequencies. As we have illustrated in the Results Sec-
tion, this property allows us to distinguish different net-
work configurations. One such example is a travelling
wave (e.g., the networks in Fig. 4A, G, and the simulated
networks in Figs. 527). This wave could be generated by a
distributed oscillatory source in which the many subpopu-
lations interact with a temporal delay. The signals gener-
ated by such a distributed source can be described by our
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time delay model. A second example, which can be
described by our FSP model, involves a source that is
small relative to its distance from the sensors, as is often
the case in macroscopic measurements like MEG and elec-
troencephalography (EEG), but is also present in more
local measurements such as ECoG (see Results Section).
Such a distant source generates a dipolar potential distri-
bution (two groups of sites whose potentials have opposite
signs) over sites that are at the same distance from this
source (e.g., the network in Fig. 4E, network 2 in Fig. S2B,
and network 1 Fig. S3B). The phase differences between
these sites are either 0 (synchrony) or p (antiphase) and,
importantly, do not vary as a function of frequency. This
example shows that the spatial phase maps can depend on
the recording technique. The dependence of the spatial
distribution of the measurements on the recording tech-
nique has been put forward by other authors, starting
from the spatial filtering characteristics of the measure-
ment technique [Nunez et al., 2001]. A third example is a
network driven by thalamocortical interactions [Suffczyn-
ski et al., 2001], which has elements of the above two
examples. A possible scenario involves multiple cortical
populations that are driven by a common thalamic pace-
maker. The timing of the input to these cortical popula-
tions will differ as a function of the delay in the axonal
connection with this thalamic pacemaker. As a result, the
phase relations between these cortical populations will be
larger than the phase relations within them (which are 0
in the idealized scenario of no within-population differen-
ces in axonal delay). The essential difference with this
example configuration and the previous dipolar configura-
tion is that between-site phase differences are not only 0
or p, but can take any value in between (as determined by
the difference in thalamocortical delay). Such a network
can be described by both of our models.

Between-site phase relations in electrophysiological
recordings may be of crucial importance for the under-
standing of neuronal communication. Electrophysiological
recordings of neural activity (local field potentials (LFPs),
ECoG, EEG, MEG) reflect synchronized membrane poten-
tial fluctuations. Importantly, membrane potential fluctua-
tions reflect fluctuations in neuronal excitability. This
implies that oscillations may reflect rhythmic fluctuations
in neuronal excitability. It has therefore been proposed
that effective communication between two neuronal popu-
lations depends on whether or not the spike input from
the sending population arrives at an excitable phase of the
receiving population [Borgers and Kopell, 2008; Fries,
2005; Tiesinga et al., 2008]. This idea can easily be general-
ized to motifs that involve more than two neuronal popu-
lations, of which some pairs can effectively communicate
and others cannot, depending on their phase relations
[Fries, 2005]. Thus, neuronal populations forming net-
works by phase-coupled oscillations could be a key mech-
anism for interareal communication and selective routing
of information through the brain. In line with this hypoth-
esis, it has been shown that local field potentials at one

site coordinate spikes in task-relevant neurons at a remote
site [Canolty et al., 2010, 2012b].

From a methodological point of view, it is important to
distinguish our multivariate approach from the more com-
mon bivariate approach, in which oscillatory phase cou-
pling is evaluated by pair-wise measures such as
coherence [Mormann et al., 2000], imaginary coherence
[Nolte et al., 2004], phase-locking value [Lachaux et al.,
1999], pair-wise phase consistency [Vinck et al., 2010], the
phase-slope index [Nolte et al., 2008], and Granger causal-
ity [Bernasconi and Konig, 1999; Kaminski et al., 2001].
Some methods can make use of a full multivariate descrip-
tion of the data, but nevertheless only provide a quantifi-
cation at the level of site-pairs, using the multivariate
description to partial out for the contribution of other sites.
This holds for phase coupling estimation [Canolty et al.,
2012a], partial coherence [Rosenberg et al., 1998], Granger
causality [Bernasconi and Konig, 1999; Kaminski et al.,
2001], Transfer Entropy [Schreiber, 2000], and Phase Trans-
fer Entropy [Lobier et al., 2014]. This quantification at the
level of site-pairs is unfortunate, as pair-wise measures do
not directly reveal the spatial distribution of phase-
coupled networks, unless there is prior information about
a seed region via which the other nodes of the network
can be identified.

A method that shares several aspects with the method
presented in this article is shifted CP [SCP; Morup, et al.,
2008]. This method builds on earlier work in which PAR-
AFAC [Carrol and Chang, 1970; Harshman, 1970] was
used to decompose spatio-spectro-temporal electrophysio-
logical data [Miwakeichi et al., 2004; Morup et al., 2006].
Importantly, in these earlier studies, PARAFAC was only
applied to the amplitudes of the Fourier coefficients; the
phase information was ignored. The novel method, SCP,
decomposes the complex-valued raw Fourier coefficients
over sites, frequencies and epochs into multiple compo-
nents. Each SCP component is described by a real-valued
spatial map, a complex-valued frequency profile, and a
real-valued epoch profile. Importantly, each component is
additionally described by a set of epoch-specific time-
shifts, which allows the method to model between-epoch
differences in the temporal onset of a network. However,
as between-site phase relations are not explicitly modeled,
only networks with between-site phase differences of 0
and 6p are extracted (by allowing for negative values in
the spatial maps). Though this makes SCP suitable for
extracting dipolar potential distributions, other types of
phase-coupled oscillatory networks cannot be accurately
described.

What holds for the comparison with shifted CP, also
holds for the comparison with other decompositions, such
as independent component analysis (ICA) [Bell and Sej-
nowski, 1995] and regular PARAFAC for complex-valued
data [Sidiropoulos et al., 2000]: our method improves on
these alternatives because it is grounded in a plausible
model of a neurobiological rhythm, a spatially distributed
signal with energy in a limited range of frequencies and
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involving between-site phase relations that vary as a func-
tion of frequency. For example, we could apply complex-
valued PARAFAC to a three-way array of raw Fourier
coefficients obtained from electrophysiological data. To
our knowledge, this has not been reported yet, but there is
nothing that prevents it. However, when applying this
model, it imposes the restriction that the between-site
phase relations in a network are identical for all frequen-
cies. In contrast, our method extracts phase-coupled oscil-
latory networks that are characterized by a single spatial
amplitude map and multiple frequency-specific spatial
phase maps, as is required for modeling brain rhythms
whose between-site phase relations depend on frequency.

Our method estimates spatial maps and frequency pro-
files without applying constraints on the shape of the spa-
tial or spectral distribution. This is not necessarily optimal,
and future improvement of our method could involve
such constraints. Especially smoothness constraints could
turn out to be beneficial, and improve the interpretability
of the extracted spatial structure and spectral content of
networks. Such constraints have been applied successfully
before in source reconstruction methods, such as LORETA
[Pascualmarqui et al., 1994].

It is useful to compare our approach to the more theory-
driven approach of computational neuroscientists that
build networks of spiking model neurons, often with the
objective of explaining correlated neuronal activity [e.g.,
Borgers and Kopell, 2003; Kopell et al., 2000; Whittington
et al., 2000]. These networks of spiking model neurons
serve as the neurobiological motivation for network mod-
els at a coarser level of description, typically involving
weakly coupled Kuramoto oscillators [Brown et al., 2004;
Ermentrout and Kopell, 1990; Hoppensteadt and Izhike-
vich, 1997; Kuramoto, 1984, 1997]. Networks of Kuramoto
oscillators are characterized by their phase interaction
function (PIF), which specifies how the oscillators affect
each other’s phase velocity. These networks describe
dynamics in phase relations and therefore can be used to
model non-stationary processes. SPACE can also be
applied to non-stationary processes, but can accommodate
non-stationarity only by adding networks, because every
network can only model a stationary pattern of phase
relations.

Ideally, we would be able to motivate our method by
establishing the relation between the parameters of the
uncovered networks and a set of PIFs that may underlie
these parameters. This would ground the output of our
method in the well-developed mathematical theory of Kur-
amoto models. Unfortunately, it is unclear what the rela-
tion is between, on the one hand, the phase configurations
induced by a Kuramoto model (e.g., different types of
travelling waves), and on the other hand, Fourier coeffi-
cients (the raw frequency domain observations when
actual data are collected). This state of affairs limits the
application of Kuramoto models to a comparison between
observed and simulated/fitted phase configurations, as is
possible for instance using Bayesian model comparison

[see Penny et al., 2009, for an example of this approach].
This differs from our approach in which we estimate the
full networks from the raw Fourier coefficients.

In conclusion, our work starts from a precise defini-
tion of a phase-coupled oscillatory network that is in
agreement with the fact that brain rhythms have energy
in a range of frequencies. Crucially, this definition and
the associated method allow for between-site phase rela-
tions that vary as a function of frequency. This allows us
to distinguish different network configurations. Our
method identifies networks on the basis of between-site
phase coupling. This is an important contribution
because (1) the existing bivariate methods can only indi-
rectly reveal networks (using a seed region approach)
and (2) the existing multivariate methods can only iden-
tify networks using amplitude envelope correlations.
When identifying networks of oscillatory brain activity,
it is crucial to take into account between-site phase rela-
tions. Because oscillations may reflect rhythmic fluctua-
tions in neuronal excitability, phase-coupled oscillatory
networks could be the functional building block for
inter-areal communication and selective routing of infor-
mation throughout the brain.

APPENDIX

SPACE: An Alternating Least Squares Algorithm

for Extracting Phase-Coupled Oscillatory

Networks

We developed a method for extracting phase-coupled
oscillatory networks from a three- or a four-way array of
Fourier coefficients. This algorithm is denoted as SPACE.
It is inspired by complex-valued PARAFAC [Bro, 1998;
Carrol and Chang, 1970; Harshman, 1970; Sidiropoulos
et al., 2000], an N-way decomposition technique. PAR-
AFAC describes the structure in an N-way array by sets of
loading vectors (one vector per dimension), which are
jointly denoted as components. These components are
extracted without requiring statistical constraints like
orthogonality or independence, and are unique up to triv-
ial indeterminacies. PARAFAC formed the base from
which our new method was build, and it inherits many of
its aspects.

SPACE uses two models to extract phase-coupled net-
works, which are described below (see the Materials
and Methods and Results Sections for a concise graphical
introduction to the method). Extracting phase-coupled
oscillatory networks starts with electrophysiological meas-
urements Vjl tð Þ (electrical potentials or magnetic field
strength) as a function of time t, at multiple sites j, and in
multiple epochs l. Then, by performing a spectral analysis
on Vjl tð Þ we can describe the average (over the epoch)
oscillatory activity at site j and in epoch l by a complex-
valued Fourier coefficient Xjkl, per frequency k. These Fou-
rier coefficients can then be arranged in a three-way array,
with dimensions sites (J), frequencies (K), and epochs (L).
This three-way array of Fourier coefficients is the starting
point for our method to extract phase-coupled oscillatory
networks. These networks describe spatially distributed
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patterns of phase-coupling, by a spatial amplitude map, a
frequency profile, an epoch profile, a spatial phase map
per frequency, and a set of phase offsets.

SPACE uses two models to extract networks: SPACE-
time and SPACE-FSP, which differ in how they describe
the between-site phase relations per frequency. SPACE-
time describes all phase differences (which vary as a func-
tion of frequency) by site-specific time delays, forming a
spatial time-delay map. SPACE-FSP describes the
between-site phase differences by site- and FSP, forming a
spatial phase map per frequency. Importantly, the phase
differences at the level of the site-pairs are calculated from
the spatial time-delay map and spatial phase maps (repre-
sentations at the level of the sites, instead of site-pairs).
The element-wise formulations of these two models are as
follows:

SPACE2time : Xjkl ¼
XF

f¼1

ajf � exp i2pukrjf

� �
� bkf � clf

� exp i2psklf

� �
1Ejkl

SPACE2FSP : Xjkl ¼
XF

f¼1

ajf � exp i2pkjkf

� �
� bkf

� clf � exp i2psklf

� �
1Ejkl

The Fourier coefficient Xjkl is described as a sum over F
network-specific complex-valued numbers. For both mod-
els, the amplitude of each network-specific complex-val-
ued number is the product of ajf , bkf , and clf , which refer
to, respectively, the spatial amplitude map, the frequency
profile and the epoch profile. For the time delay model the
phase of each network-specific complex-valued number is
the product of an element of the spatial time-delay map
and a phase offset: exp i2pukrjf

� �
and exp i2psklf

� �
. Here, 2

pukrjf describes the site-, frequency-, and network-specific
phases, in which uk denotes the k-th frequency (in Hz)
and rjf denotes the site- and frequency-specific time delay.
2psklf describes the frequency-, epoch-, and network-
specific phase offset. For the FSP model, the phase of each
network-specific complex-valued number is the product of
an element of the spatial phase maps and a phase offset:
exp i2pkjkf

� �
and exp i2psklf

� �
. Compared to the time delay

model, ukrjf is replaced by kjkf . Using the above parame-
terization of phase-coupled oscillatory networks our model
sparsely describes an array of 2JKL elements (with the 2
reflecting the complex-valued nature of the input data) by
sets of 2J1K1L1KL (SPACE-time) or J1JK1K1L1KL
(SPACE-FSP) elements.

All parameters are estimated using an ALS algorithm.
Within each ALS iteration, we alternate over the five
parameter sets characterizing the networks, obtaining a
new LS estimate of each, while keeping the other four
parameter sets fixed. After all parameters are updated, a
single iteration is completed. This process continues until
a predetermined convergence criterion is reached.

We now describe the calculations within a single ALS
iteration. Whereas the estimation of the spatial amplitude
maps, the frequency and the epoch profiles uses known
equations, the estimation of the time delays, FSP, and

phase offsets requires new algorithms, and these are
described in a separate paragraph below.

All parameters are initialized by random starting values.
Importantly, like PARAFAC, the algorithm can converge
to a local minimum of the LSs loss function. These subop-
timal decompositions can be avoided by starting the algo-
rithm multiple times. When the algorithm repeatedly
converges to the same optimal solution starting from mul-
tiple random starting points, it can be assumed that the
global minimum is reached. Besides local minima, as a
consequence of an unfortunate starting point, the algo-
rithm may also get trapped in a degenerate solution, in
which networks become highly correlated, and the model
estimates become arbitrarily large. This is a well-known
problem in PARAFAC [see Bro, 1998, and the references
therein] and can be dealt with using multiple random
starts. Another strategy to avoid degeneracy is presented
below in the section describing the cross-product formula-
tion of both models.

The algorithm(s) described below will be made available
in a public GitHub (www.github.com) repository termed
nwaydecomp. Additionally, it will be made available
through the FieldTrip open-source MATLAB toolbox [Oos-
tenveld et al., 2011].

Obtaining the Least Squares Estimates of the

Spatial Amplitude Maps, the Frequency and the

Epoch Profiles

The LS estimation of the spatial amplitude maps (ajf ),
frequency profiles (bkf ) and epoch profiles (clf ) resembles
an ALS step in PARAFAC, however with two important
differences. First, these maps and profiles are real-valued
parameters in a complex-valued LSs minimization prob-
lem. As will be described in more detail in the next para-
graph, this requires that the real and imaginary parts of
some complex-valued matrices are concatenated, resulting
in an expanded real-valued matrix. Second, we cannot
make use of the regular Khatri–Rao product formulation,
which plays a central role in the ALS algorithm for PAR-
AFAC. This is due to the fact that the phases resulting
from the time delays, the spatial phase maps and the
epoch-specific phase offsets are frequency-specific. As a
consequence, the LSs estimates of the spatial amplitude
maps (ajf ), frequency profiles (bkf ), and epoch profiles (clf )
are obtained separately for every site, frequency, and
epoch. We first describe the estimation of the spatial
amplitude maps; the estimation of the frequency and the
epoch profiles has exactly the same structure. The LSs esti-
mate of the parameters of the j-th site are obtained as
follows:

Aj ¼ Xcat
j � Zcat � ZcatT � Zcat

� �21
(2)

Aj is a vector of size 13F, T denotes the regular trans-
pose and 21 denotes the inverse. Here, Zcat and Xcat

j refer
to Real Zð Þ; Imag Zð Þ
	 


and Real Xj

� �
; Imag Xj

� �	 

, which

are the row-wise and column-wise concatenation of the
real and imaginary parts of Z and Xj, respectively. Matrix
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Xj is the unfolded matrix of Fourier coefficients for site j,
with unfolding over the frequency and epoch dimensions.
This results in a matrix with dimensions 13KL (with K
and L being the number of frequencies and epochs, respec-
tively). Matrix Z is a complex-valued matrix formed in
two steps. In the first step, the amplitude of the elements
of Z are calculated, and in the second step, their phase.
The amplitude of Z is given by Cj � jB, the Khatri–Rao
product of the epoch and frequency profiles, C and B. The
matrices C and B contain as their columns, respectively,
the frequency and the epoch profiles of the different
networks. The Khatri–Rao product j � j is defined as
follows:

Cj � jB ¼ c1 � b1 c2 � b2 . . . cF � bF½ �

This applies to any matrix C and B with an equal num-
ber of columns F: The Kha tri-Rao product is defined as
the concatenation of the Kronecker tensor products � of
column 1 to F of C and B. The phases of the elements of Z
are calculated as element-wise products of the spatial
phase maps (for the time delay model obtained from the
spatial time-delay maps) and the phase offsets. These
products are calculated in such a way that the indices of
the frequencies and the epochs correspond to the ampli-
tudes as calculated by the Khatri–Rao product.

The LSs estimate of the frequency and epoch profiles
are calculated similarly to the spatial amplitude maps. For
the frequency profile Xcat

j is replaced by Xcat
k . X is now a

matrix unfolded over the site and epoch dimensions, hav-
ing dimensions 13JL (with J being the number of sites).
The amplitude of matrix Z is now calculated as Cj � jA,
with A containing in its columns the spatial amplitude
maps. The phases of Z are again calculated as a product
of the phase parameters described above, with the indices
corresponding to the Khatri-Rao product. For the epoch
profiles, Xcat

j is replaced by Xcat
l , and the Khatri–Rao prod-

uct for the amplitude of Z by Bj � jA. The procedure for
the phases of Z is adjusted accordingly.

Obtaining the Least Squares Estimates of Time

Delays and Frequency-Specific Phases

The time delays and FSP are estimated using a method
that starts from a rewriting of the LS loss function as a
sum of trigonometric functions. This sum can be mini-
mized using a combination of a steepest descent and a
modified Newton–Raphson algorithm. The entire proce-
dure is described below for a three-way array. It is
straightforward to adjust this procedure to a four-way
array with a taper dimension.

First, the LS loss function is rewritten as a linear combi-
nation of trigonometric functions, with r or k, and s as
parameters. We now show how this can be done:

Loss function for r : jjEjkljj2 ¼
������Xjkl2

XF

f¼1

ajf � bkf � clf � exp i2pukrjf 1i2psklf

� �������2

Loss function for k : jjEjkljj2 ¼
������Xjkl2

XF

f¼1

ajf � bkf � clf � exp i2pkjkf 1i2psklf

� �������2

Here, jj jj denotes the norm. By substituting 2pukrjf with
Ujkf and 2pkjkf with Ujkf , both equations can be described
jointly by:

jjEjkljj2 ¼
������Zjkl � exp iWjkl

� �
2
XF

f¼1

Ẑjklf � exp iUjkf 1iTklf

� �������2

where Tklf denotes 2psklf , Ẑjklf denotes ajf � bkf � clf , and Zjkl

�exp iWjkl

� �
denotes Xjkl. Then, using Euler’s formula, and

substituting Ujkf 1Tklf with Ŵjkl, this becomes:

jjEjkljj2 ¼
�����
����� Zjkl � cosWjkl

	 

2
XF

f¼1

Ẑjklf � cosŴ jkl

h i0
@

1
A

1i Zjkl � sinWjkl

	 

2
XF

f¼1

Ẑjklf � sinŴ jkl

h i0
@

1
A
�����
�����
2

Replacing the squared norm by a sum of squares, we
get:

jjEjkljj2 ¼ Zjkl � cosWjkl

	 

2
XF

f¼1

Ẑjklf � cosŴjkl

h i0
@

1
A

2

1 Zjkl � sinWjkl

	 

2
XF

f¼1

Ẑjklf � sinŴjkl

h i0
@

1
A

2

In the next step, we complete the square and simplify
the resulting equation. Then, using the angle addition
identity, the Pythagorean identity, replacing Ŵjkl by
Ujkf 1Tklf , and using trigonometric symmetry, we get:

jjEjkljj2 ¼ Z2
jkl1Ẑ

2

jklf 1
XF

f¼1

2ZjklẐjklf cos Ujkf 1 Tklf 2Wjkl1p
� �� �

1
XF21

f¼1

XF

n¼f 11

2Ẑjklf Ẑjklncos Ujkf 2Ujkn1 Tklf 2Tkln

� �� �

The least squared error of Ujkf is computed by summing
over k; l. Applying the sum, and using the harmonic addi-
tion identity, the equation reaches its final form used for
optimization:

XK

k¼1

XL

l¼1

jjEjkljj2 ¼ aj1
XK

k¼1

XF

f¼1

bjkf cos Ujkf 1fjkf

� �h i

1
XK

k¼1

XF21

f¼1

XF

n¼f 11

gjkfncos Ujkf 2Ujkn1hjkfn

� �h i (3)

The parts of the above equation are as follows:

aj ¼
XK

k¼1

XL

l¼1

Z2
jkl1

XF

f¼1

Ẑ
2

jklf

2
4

3
5
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bjkf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1

2ZjklẐjklf cos Tklf 2Wjkl1p
� � !2

1
XL

l¼1

2ZjklẐjklf sin Tklf 2Wjkl1p
� � !2

vuut

fjkf ¼ atan2

PL
l¼1 2ZjklẐjklf sin Tkln2Wjkl1p

� �
PL

l¼1 2ZjklẐjklf cos Tkln2Wjkl1p
� �

 !

gjkfn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1

2Ẑjklf Ẑjklncos Tklf 2Tkln

� � !2

1
XL

l¼1

2Ẑjklf Ẑjklnsin Tkln2Tklnð Þ
 !2

vuut

hjkfn ¼ atan2

PL
l¼1 2Ẑjklf Ẑjklnsin Tklf 2Tkln

� �
PL

l¼1 2Ẑjklf Ẑjklncos Tklf 2Tkln

� �
 !

In the last equation, atan2 refers to the four-quadrant
arctangent and Ujkf , denotes either 2pukrjf or 2pkjkf .

By minimizing the function in Eq. (3) with respect to rjf

(time delay model) or kjkf (FSP model) we obtain their LS
estimates. We use different nonlinear optimization proce-
dures for the FSP and the time delay model. For every
site-frequency pair (j; k) in the FSP model, we perform an
F-dimensional minimization with respect to the kjkf of all
F networks. First, we decrease the LS loss function by
means of steepest descent until the Hessian matrix of this
function becomes positive definite. Subsequently, we mini-
mize the loss function using modified Newton–Raphson.
The step size used in steepest-descent and modified New-
ton–Raphson is determined such that the loss function
decreases with every step.

For the time delay model, we perform a one-dimensional
minimization with respect to rjf for every site-network pair
(j; k). As for the FSP model, this minimization is performed
using a combination of steepest descent and modified New-
ton–Raphson. Importantly, the loss function for the rjf

parameter is rhythmic, and contains many local minima.
Therefore, to find the global minimum, an initial estimate
has to be found which is in the same cycle that also con-
tains the global minimum. This initial estimate is found by
an informed sparse grid search. The sparse grid search is
informed by the cycle length of the term in Eq. (3) with the
highest frequency, which is the term with the fastest rhyth-
mic component of the LS loss function. The resolution of
the grid involves a trade-off between computation time and
the probability of finding the global minimum. In practice,
a resolution of 16 steps inside a cycle of the fastest rhyth-
mic component is sufficient and the global minimum is
almost always found.

Obtaining the Least Squares Estimates of the

Phase Offsets

The phase offsets capture the arbitrary temporal offset
of the phase-coupled oscillatory network relative to the

start of each epoch. The LS estimates of these offsets are
found in a procedure nearly identical to the one for the
the FSP model. Eq. (3) shows how a site- and frequency-
specific phase (2pukrjf or 2pkjkf ) is a function of the data
and all the other parameters. An equation of identical
form as Eq. (3) can be derived for the phase offsets 2psklf

simply by swapping Ujkf and Tklf in the derivation. Then,
the LS estimates of the phase offsets are found by a proce-
dure analogous to finding the FSP model: for each epoch,
the frequency-specific phase offsets are found by a
combination of steepest descent and modified Newton–
Raphson.

Extracting Networks from A Four-Way Array of

Fourier Coefficients Using the Cross-Product

Formulation of SPACE

Using multiple tapers [e.g. Welch [1967] or Slepian [Per-
cival and Walden, 1993] in a spectral analysis allows for
controlling the frequency resolution. Using multiple tapers
adds a fourth dimension to the array of Fourier coeffi-
cients. It is straightforward to extend SPACE from three-
way arrays to four-way arrays: include an epoch-specific
taper profile and phase offsets that are also taper-
dependent. However, there are two reasons for consider-
ing an alternative. First, because tapers are not a dimen-
sion of interest in electrophysiological studies, it is not
necessary to estimate taper-specific phases and ampli-
tudes. Second, the four-way spatial-spectral-epoch-taper
array is not always complete: higher frequencies often
have more tapers than lower frequencies. We therefore
formulated an FSP and a time delay model for cross-
products of the two-dimensional sites-by-tapers slices
from the four-way array of Fourier coefficients. In these
cross-products, the tapers are the inner dimension and
therefore the taper-specific parameters disappear from the
model. This approach is inspired by PARAFAC2 [Harsh-
man, 1972; Kiers et al., 1999]. The cross-product formula-
tion, similar to PARAFAC2, also estimates between-
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network coherences using an additional parameter set.
However, as we describe below, these coherences are set
to zero to avoid splitting up networks into an arbitrary
number of sub-networks. In the following, we will first
describe the models for the cross-products and then
describe how we can find the LS estimates of their
parameters.

The cross-products are obtained from two-dimensional
sites-by-tapers slices Xkl (of size J3M, with M denoting
the number of tapers) taken from the four-way array of
Fourier coefficients. The cross-product is Xkl � X�kl, with �

denoting the complex conjugate transpose, and its two
models are the following:

SPACE2time : Xkl � X�kl ¼ ASk � diagBk � diagCl �Dk

�D�k � diagCl � diagBk � AS�k1Ekl

SPACE2FSP : Xkl � X�kl ¼ ALk � diagBk

� diagCl �Dk �D�k � diagCl � diagBk � AL�k1Ekl

For the time delay model, ASk denotes the complex-
valued matrix formed by A8exp i2pukRð Þ, with A being
the spatial amplitude map, R a matrix with time delays
r as columns, and 8 denoting the dot-product. Similarly,
for the FSP model, ALk denotes the complex-valued
matrix formed by A8exp i2pKkð Þ, with A being the spatial
amplitude map, Kk a matrix with spatial phase maps kk

of the k-th frequency as columns., The frequency- and
epoch-specific loadings appear in the equations as,
respectively, the diagonal matrices diagBk and diagCl. In
the center of the equations, there is the matrix product
Dk �D�k . This matrix product, having size F3F, is the
frequency-specific between-network coherency matrix. It
captures interactions between networks. When all net-
works have different frequency profiles, they cannot
interact. In this case, Dk �D�k equals an identity matrix,
that is, the networks are incoherent. There are also other
situations in which it is worthwhile to constrain net-
works to be incoherent. Consider the case of a distrib-
uted network, which can by definition be described by
an arbitrary set of coherent sub-networks. Without the
constraint that the extracted networks must be incoher-
ent, this distributed network would be split into these
smaller networks when the number of networks
increases. Their coherence is then captured by Dk �D�k .
By enforcing that Dk �D�k ¼ I, this split up can be pre-
vented. An additional useful property of this constraint
is that degenerate solutions resulting from unfortunate
initializations can no longer occur.

It is important to note that the cross-product models
and the regular models have many parameters in com-
mon. However, they also have some unique parameters.
The regular models involve epoch- and frequency-specific
phase offsets (which would be taper-, epoch- and
frequency-specific when using multitapering). The cross-
product models do not involve phase-offsets. Instead, they
describe the average between-site phase relations, and
these do not depend on the phase offsets. Additionally,
the between-network coherence is explicitly modeled by
the coherency matrix Dk �D�k . In the regular models, this is

not explicitly modeled, although it can be calculated from
the phase offsets.

We now describe how to find the LS estimates of the
parameters of the cross-product models. It can be shown
that these LS estimates can be obtained in an indirect way,
by estimating a model for the Fourier coefficients Xkl

(rather than directly estimating the model for their cross-
products; see Kiers et al. [1999], for a proof for PAR-
AFAC2). The following models for Xkl are estimated:

SPACE2time : Xkl ¼ ASk � diagBk � diagCl �Dk � P�kl1Ekl

SPACE2FSP : Xkl ¼ ALk � diagBk � diagCl �Dk � P�kl1Ekl

In these equations, there is a crucial role for the matrices
Pkl, which are constrained to be orthonormal [Kiers et al.,
1999]. Pkl has size F3M, and it contains information
about the phase and amplitude of the unobserved
network-level signal in each frequency and epoch. Given
the matrices Pkl, the LS estimates of the cross-product
model can be found using a straightforward extension of
the algorithm for three-way arrays of Fourier coefficients.
In the next paragraph, we will show how this can be
done. Thereafter, we will describe how the matrices Pkl

can be estimated.
Assuming the matrices Pkl to be known, we can con-

struct a four-way array Y of size J3K3L3F from the four-
way array X of size J3K3L3M. Array Y is constructed by
replacing every matrix Xkl by Xkl � Pkl. Here, Xkl has dimen-
sions J3M, and Pkl has dimensions M3F. Importantly,
array Y does not have empty cells, regardless of whether
X has is partially empty due to a frequency-specific num-
ber of tapers. The parameters of the cross-product models
can now be obtained from this four-way array Y using a
straightforward extension of the algorithm for three-way
arrays. In this extension, when estimating the spatial
amplitude map, the amplitude of matrix Z in Eq. (2) is
now of the form Dj � jCj � jB. However, because matrix D
is frequency-specific, a different Dk needs to be used for
each Bk, which cannot be achieved using the Khatri–Rao
product. As such, a matrix of the same form is constructed
with the appropriate indices. The phases of this matrix are
constructed similarly. For the estimation of the frequency
and epoch profiles, similar adjustments have to be made.
The spatial time-delay maps and spatial phase maps can
be estimated using the algorithm described previously.
However, it is applied to slightly different quantities,
resulting from the fact that the LS loss function now also
involves a sum over the levels of the fourth dimension
(corresponding to the matrix Dk). Matrix Dk is either held
at Dk ¼ I, or is estimated as a complex-valued frequency-
specific matrix of the same size. In the latter case, Dk is
estimated using regular complex-valued LS.

The matrices Pkl have to be estimated from the data,
and we do this as a part of the same ALS algorithm that
we use to estimate the parameters of the cross-product
model. That is, we estimate Pkl on the basis of the data
(the matrices Xkl of Fourier coefficients) and the current
parameters of the cross-product model. Following Kiers
et al. [1999], the LS estimate of Pkl is the following:
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Pkl ¼ U � V�

Here, U;V denote the left and right singular vectors
obtained from the following singular value decomposition:

SPACE2time : U; S;V ¼ svd X�kl � ASk � diagBk � diagCl �Dk

� �
SPACE2FSP : U;S;V ¼ svd X�kl � ALk � diagBk � diagCl �Dk

� �
After calculating new estimates of the Pkl matrices, in a

new ALS iteration, new estimates of model parameters cal-
culated from a new matrix Y. Note, the input to this SVD
should be of full column rank. As such, the number of
tapers cannot be lower than the number of networks.

Uniqueness of Extracted Networks

SPACE, like PARAFAC, has a permutation and scaling
indeterminacy. This means that there is an ambiguity in
the order of the extracted networks, in the scaling of their
parameters, and in their phases. For the interpretation,
these indeterminacies are of little consequence, and by
placing certain constraints on the parameters, a unique LS
solution can be found. The permutation indeterminacy is
resolved by sorting the networks by their explained var-
iance. To resolve the scaling indeterminacy, we must
impose constraints at level of the parameter sets, and these
will be described below. The scaling indeterminacy
involves that the model fit is not affected when a parame-
ter of a network (e.g., the spatial amplitude map) is multi-
plied by a single real-valued number, as long as another
parameter of the same network is multiplied with its
inverse. This indeterminacy is resolved by scaling the spa-
tial amplitude map and the frequency profile such that
their norm equals 1 and their mean is positive. The epoch
profile is estimated without any constraint and its squared
norm reflects the amount of variance explained by the cor-
responding network. As such, this norm can be used to
express the strength of a network relative to the other net-
works. For display purposes however, the epoch profile is
always normalized.

Our spatial amplitude maps, frequency profiles and
epoch profiles can have both positive and negative ele-
ments, which leads to a phase ambiguity. We resolve this
ambiguity by restricting all amplitudes to be positive. For
the spatial amplitude maps of the FSP model, this involves
that the signs of all negative amplitudes are reversed and
the corresponding phases in the spatial phase maps are
shifted by 180�. For the frequency and the epoch profiles,
the way the ambiguity is resolved depends on whether a
three-way or four-way array is decomposed. For a three-
way array, the ambiguity is again resolved by reversing
the signs of all negative amplitudes, but now phase-
shifting by 180� is performed on the frequency- and
epoch-specific phase-offsets that correspond to the fre-
quencies and epochs whose sign is reversed. For a four-
way array, the resolution of the ambiguity depends on
how matrix Dk is formulated. When Dk is the identity
matrix, the 180� phase shifts are applied to the appropriate
frequency- and epoch-specific matrices Pkl. When Dk is
complex-valued, the ambiguity only involves the fre-

quency profile, and the 180� phase shifts are applied to
the appropriate frequency-specific Dk.

The spatial time-delay maps, spatial phase maps, and
phase offsets suffer from a phase indeterminacy. This
results in two ambiguities, which are the result of (1)
phase being circular and (2) a trade-off between the spatial
time-delay maps (or spatial phase maps) and the phase
offsets. For SPACE-time, increasing all time delays with
the same amount results in a phase shift for all frequen-
cies, and this can be compensated by appropriate opposite
phase shifts in the phase offsets. For the FSP model, each
spatial phase map can be phase-shifted if the correspond-
ing phase offsets are shifted in the other direction. To
resolve this phase indeterminacy, a harmless constraint is
imposed on the spatial time-delay maps and the spatial
phase maps. These constraints are harmless, because they
do not affect the between-site phase differences or time
delay differences. For the spatial phase maps, there are
two possible convenient constraints: (1) the phases are
rotated such that the average phase (weighted by the spa-
tial amplitude map) is 0 for each frequency or (2) such
that the strongest site in the spatial amplitude map has a
phase of 0. For the spatial time-delay maps, the constraint
is related to the notion of a circularity point. Because time
delays determine circular phases, they are circular as well.
Their cycle length depends on the frequencies that are
used in their estimation. When using frequencies that are
all integer multiples of some number then, for a certain
time delay, the spatial phase maps for all frequencies are
0. The smallest non-zero time delay with this property is
equal to 1 over the greatest common divisor of all frequen-
cies, and it will be denoted as the circularity point. For
example, when the frequencies used are 2–30 Hz in 2 Hz
bins the greatest common divisor is 2 Hz, and the circular-
ity point is 0.5 s. Given this circularity point, there are two
possible convenient constraints for the spatial time-delay
maps: (1) the time delays are rotated such that the average
time delay (weighted by the spatial amplitude map) is
halfway between 0 and this circularity point or (2) the
time delays are rotated such that the strongest site in the
spatial amplitude map has a time delay of 0. The circular-
ity point is also involved in an ambiguity with respect to
the temporal order of the time delays. If the time delay
difference between any two sites is larger than the circu-
larity point, then their order is undetermined. For exam-
ple, given a circularity point of 0.5 s, the time delays 0.3
and 0.1 s generate identical phases (for all frequencies) as
the time delays 0.3 and 0.6 s, of which the order is
reversed. The same holds for 0.3 and 1.1 s, and so on. The
consequence of this ambiguity is that the order of the time
delays in the spatial time-delay map can only be inter-
preted under the assumption that none of the time delay
differences exceeds the circularity point.

There is currently no proof showing that the solutions
of our method are unique. Uniqueness implies that, for a
given least-squares optimization problem (i.e., a given
dataset), our method produces only a single solution. To
assess uniqueness empirically we performed a set of simu-
lations. We randomly generated 10.000 small parameter
sets for a three-network time delay and FSP model for
four-way arrays (with Dk ¼ I). Each parameter set is
denoted as a run. Parameters were generated between 0
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and 1 except for the time delays, which were generated
between 0.125 and 0.375. This resulted in 10.000 four-way
arrays of Fourier coefficients for each model, consisting of
6 sites, 5 frequencies, 4 epochs, and 3 tapers (frequencies
equally spaced between 2 and 10 Hz). We then decom-
posed these four-way arrays using both models, randomly
initiating each algorithm five times and then selecting the
solution with the highest explained variance. The average
explained variance over 10.000 runs was >99.99%
(SD 5 0.137%) for the time delay model and >99.99%
(SD 5 0.037%) for the FSP model. This shows that our
method is able to find at least one solution of the least-
squares optimization problem. We then computed the
average absolute difference between the simulated and
recovered parameters, with averaging over sites, frequen-
cies, epochs and networks. The average absolute deviation
was 1.86*1024 (SD 5 2.35*1023) for the time delay model,
and 4.16*1024 (SD 5 1.83*1023) for the FSP model. This
small average absolute deviation shows that the solution
of our method is most likely unique. Additional evidence
for uniqueness is provided by the results of our recovery
study (see Results and below).
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