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Abstract: Brain activation estimated from EEG and MEG data is the basis for a number of time-series
analyses. In these applications, it is essential to minimize “leakage” or “cross-talk” of the estimates among
brain areas. Here, we present a novel framework that allows the design of flexible cross-talk functions
(DeFleCT), combining three types of constraints: (1) full separation of multiple discrete brain sources, (2)
minimization of contributions from other (distributed) brain sources, and (3) minimization of the contribu-
tion from measurement noise. Our framework allows the design of novel estimators by combining knowl-
edge about discrete sources with constraints on distributed source activity and knowledge about noise
covariance. These estimators will be useful in situations where assumptions about sources of interest need
to be combined with uncertain information about additional sources that may contaminate the signal (e.g.
distributed sources), and for which existing methods may not yield optimal solutions. We also show how
existing estimators, such as maximume-likelihood dipole estimation, L2 minimum-norm estimation, and
linearly-constrained minimum variance as well as null-beamformers, can be derived as special cases from
this general formalism. The performance of the resulting estimators is demonstrated for the estimation of
discrete sources and regions-of-interest in simulations of combined EEG/MEG data. Our framework will
be useful for EEG/MEG studies applying time-series analysis in source space as well as for the evaluation
and comparison of linear estimators. Hum Brain Mapp 35:1642-1653, 2014.  © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Electro- and magnetoencephalography (EEG and MEG)
provide neuroscientists with millisecond-by-millisecond
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measures of brain activation, while spatial resolution is
inherently limited due to the non-uniqueness of the
inverse problem [Hémaéldinen et al, 1993; Sarvas, 1987].
Many previous studies, in particular those using event-
related potentials (ERPs), have therefore mainly focused
on timing aspects of perceptual and cognitive processes in
signal space. However, separating time courses for distinct
brain regions is still highly desirable. For example, in con-
nectivity analysis it is essential to distinguish relationships
between time series due to “leakage” or “cross-talk” from
those due to true activation of different sources [e.g.
Lachaux et al., 1999; Michalareas et al., in press; Schoffelen
and Gross, 2009]. Unless cross-talk can be ruled out, it is
not possible to infer with certainty that two (or more) time
series from different regions are independent or correlated.
This problem represents the fundamental ill-posedness of
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the EEG/MEG inverse problem: there is not enough infor-
mation in the data to estimate activity independently for
more sources than there are degrees of freedom in the
measurements [e.g. Bertero et al., 1985].

In a number of applications, spatial filters are applied to
the data in order to extract the signal of interest (and con-
versely, to suppress the signals of no interest). The degree of
leakage or cross-talk between brain regions for spatial filters
can be evaluated by means of cross-talk functions (CTFs)
(also previously called averaging kernels or resolution ker-
nels) [Backus and Gilbert, 1968; Grave de Peralta Menendez
et al., 1997; Liu et al., 2002; Schoffelen and Gross, 2009]. For
a spatial filter designed to extract activity from one target
location in the brain, a CTF describes how activity from
other locations leaks into the estimate at the target location.
In the theoretical part of this paper, we will describe a novel
framework for incorporating three different types of con-
straints into the design of spatial filters:

1. Suppress cross-talk within a small set of target loca-
tions or ROIs

2. Minimize cross-talk from other locations anywhere in
the brain

3. Minimize the effect of noise.

Several authors have already pointed out relationships
among existing methods [Grave de Peralta Menendez
et al., 1997; Gross and loannides, 1999; Hauk, 2004; Imada,
2010; Mosher et al., 2003; Sekihara et al., 2005; Wipf and
Nagarajan, 2009]. However, to our knowledge none of
these studies has used all three of the constraints pre-
sented above simultaneously. The combination of all three
constraints opens the door for the design of novel spatial
filters not previously described in the literature. These
novel estimators may be particularly useful when a priori
knowledge needs to be combined with more general con-
straints, as we will illustrate below.

Spatial resolution of linear estimates from EEG/MEG
measurements is already limited by the fact that one cannot
separate more sources than there are independent measure-
ments, ie. at most the number of sensors. In reality, the
number of independent sources is far less. For example, the
standard settings in the Neuromag Maxfilter software used
in the preprocessing pipeline of Elekta Neuromag MEG sys-
tems include 64 signal components [Taulu and Simola, 2006].

Despite the limitations of the EEG/MEG inverse prob-
lem, we have some degrees of freedom for finding the
optimal compromise of competing constraints, e.g. to
extract activity from some regions of interest, while sup-
pressing activity from other sources and noise. As an illus-
tration, we may be interested in connectivity between
anterior temporal lobe (ATL) and inferior frontal gyrus
(IFG). We assume that both are active in our experiment
and would therefore like to find a way to separate their
activities. We cannot assume that they are the only sources
of our signal, so we would also like to minimize the con-

tribution of any other brain sources as much as possible.
At the same time, we are sure that posterior temporal and
parietal areas are the least likely to contribute to our sig-
nal. We may therefore want to improve separability
between IFG and ATL at the expense of larger cross-talk
from posterior areas, while at the same time suppressing
noise as much as possible.

The most straightforward way to separate activity from
different regions of interest is to model activity only for
these regions, for example by seeding dipole sources at
the locations from where we assume activity to arise.
Dipole strengths can then for example be estimated using
a maximum-likelihood approach [Liitkenhoner, 1998]. This
means that the model tries to explain all data using only
these sources. As long as the number of parameters of the
resulting model is lower than the degrees of freedom of
the measurements, the model is overdetermined and has a
unique solution [Bertero et al., 1985; Scherg, 1994]. Such a
model would have ideal properties if it fitted reality, but
may fail completely if not—i.e. when it does not account
for some sources that significantly contribute to the signal.
In the example above, we may seed dipoles into the ATL
and IFG, plus possibly other regions that we suspect to
contribute to our signal. If, against our expectations, a
source in the posterior temporal lobe also contributes to
the signal, our estimates may be misleading.

A more general approach is taken by distributed source
models [Fuchs et al., 1999; Grave de Peralta Menendez and
Gonzalez Andino, 1998; Hamaildinen and Ilmoniemi, 1984;
Michel et al, 2004]. In the least constrained case, they
assume that sources are equally likely to be active anywhere
in the brain, and attempt to find a source distribution that
explains the data under further global constraints, such as
that overall source strength is minimal according to some
norm. For classical L2 minimum norm estimation (MNE) it
can be shown that it does not only yield the source distribu-
tion with minimal source energy that accurately predicts the
data, but also that it provides optimal spatial filters in the
sense that the spatial spread of CTFs is minimized under
the assumption that all sources are equally likely to be
active [Backus and Gilbert, 1968; Grave de Peralta Menen-
dez et al.,, 1997; Hauk, 2004; Menke, 1989]. MNE optimizes
the spread of CTFs under the assumption that activity could
arise from anywhere—not only from a few regions of inter-
est. In the example above, we may apply MNE to our data
and then extract the signals from sources in ATL and IFG.
We may even look at CTFs for different locations within
ATL and IFG, and pick those that we think are maximally
independent from each other. However, there is now no
guarantee that sources in IFG can be sufficiently sup-
pressed—the best may still not be good enough.

Beamformer-type methods have become increasingly
popular for time-series analysis of MEG data [Barnes
et al., 2006; Brookes et al., 2008; Sekihara et al., 2005; Van
Veen et al., 1997]. They are usually introduced as spatial fil-
tering methods that maximally focus on the activity of inter-
est while separating it from other sources and noise. In this
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general form this is a feature of all linear source estimation
procedures. The crucial assumption of the most commonly
used linearly-constrained minimum variance (LCMV) beam-
former is that all activity is captured in the data covariance
matrix [Van Veen et al., 1997]. Due to this dependency on the
data beamformers are sometimes called “adaptive”: while
minimum-norm-type methods only depend on the source
and head model (except for regularization procedures that
take into account noise covariance as well), beamformers cru-
cially depend on the covariance matrix of the data to be ana-
lyzed. As with the above-mentioned dipole models, this type
of method has ideal properties as long as the underlying
assumptions are met. It is not straightforward to test the
assumptions about the data covariance matrix; determining
the generators of the data covariance matrix is subject to the
same inverse problem as determining the generators of the
signal. In our ATL/IFG example, the general application
strategy would be similar to minimum-norm-type methods:
spatial filters are computed either for a priori selected loca-
tions, or for locations with maximum signal power. These
CTFs will depend on the data covariance matrix, and there is
no guarantee that they will be optimal for our particular pur-
pose of separating ATL and IFG.

The purpose of this study is not to exhaustively compare
and judge these different methods. Rather, we will provide
a general framework that will make explicit under which
assumptions different estimators are optimal. Moreover, we
will provide tools to design novel spatial filters for situa-
tions that have so far not been covered by existing methods.

METHODS
Concepts and Terminology

In this section, we introduce the basic concepts needed
for the design and interpretation of spatial filters. Bold
small letters (w) refer to vectors, and matrices are indi-
cated by capital bold letters (“F”). Superscripted “T” and
“~1” (i.e. " and ') denote vector or matrix transposition
and inversion, respectively. In order to minimize the use
of vector or matrix transpositions, some vectors will be
introduced as column vectors (e.g. with dimension m x 1),
and some as row vectors (1 x m).

The generators of EEG and MEG signals are commonly
modeled as primary current density [Hamaéldinen et al.,
1993]. For most numerical implementations of source esti-
mation methods, it is necessary or advantageous to discre-
tize this continuous distribution into a limited number of
homogeneously distributed point-like dipoles (hundreds to
thousands), e.g., at vertices of the triangulated cortical sur-
face or in voxels of the brain volume. For each of these
point sources, one can compute the signal at the m sensors
that this source would produce if it were active with unit
strength, resulting in the forward solution vector or lead
vector f; (m x 1, index i of n sources). In the following, we
will also refer to this as topography of source i. The signal
y (m x 1) produced by a continuous primary current dis-

tribution can then be approximated as the weighted sum
of all individual lead vectors

y=) sif @
i1

where s; are the strengths of the i sources. For simplicity, we
do not distinguish between fixed and free orientations here:
In the case of fixed orientations, # is the number of locations
on the cortical surface; for free orientations, the sum may
include 2 or 3 forward solutions at each location. Organizing
all f; vectors as columns of the forward solution matrix F (m
X n, usually just called “forward solution” or “leadfield ma-
trix”), one can formulate this equation in more compact form

y = Fs,

i.e. y is a linear combination of the columns of F weighted
by the elements of s (1 x 1).

In EEG/MEG source estimation, we are given the data
d (m x 1)' that consist of activity from the brain as well as
measurement noise n (m x 1):

d=y+n=Fs+n. )

Linear estimators, or linear spatial filters, attempt to pro-
duce estimates §; of the source strengths s; by multiplying
the data d (m x 1) with a vector w; (1 x m):

§,‘ = Wid (3)

This vector should ideally project only on the lead vector
of the target source, and not at all on those of other sour-
ces or on noise. This would require w; to be orthogonal to
(n — 1) lead vectors, which is not possible when the num-
ber of modeled sources 7 is larger than the number of sen-
sors (and dimension of w;) m (and in reality the degrees of
freedom in the data are smaller than m). This fundamen-
tally limits the spatial resolution of any source estimation
technique. A combination of Egs. (1)-(3) yields

n
5i=w;d=w,(y+n)=w;(Fs+n) = w,—Zsjf]- +w;n

j=1

= Z sj(w;f;) +wn, 4)
=1

meaning that an estimated source strength is the sum of
weighted projections of the spatial filter on all lead vec-
tors, and its projection on the noise.

If the spatial filter w; cannot be orthogonal to all col-
umns of the lead field matrix F, this means that some
sources of no interest may “leak” into the estimate of the
source of interest. If we can be sure that those sources that
could leak into our estimate are not active in our experi-
ment, this is not a problem. However, this information

INote that linear estimators are applied sample-by-sample, i.e. we
can treat the data as a column vector without loss of generality.
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cannot come from the data, but has to be established a pri-
ori. If we do not have this information, we would like to
find ways to minimize contributions from sources of no in-
terest and noise as much as possible. The effect of all sour-
ces on our estimate can be described by the “cross-talk
function” (CTF), i.e. by applying our spatial filter w; to all
vectors in the forward solution matrix F:

CTF, = w/F,

where CTF; (1xn) describes how much sources represented
by each lead vector (or column of F) leak into the estimate
for source i, i.e., Eq. (4) can be written as

§ =

(4b)

n
SjCTF,‘]' —+ w;n.
j=1

In the noiseless case, the estimate 5; is therefore a weighted
sum of the real source strengths s, where the weightings
are given by the CTF. For the original case of continuous
functions it was therefore called “averaging kernel”
[Backus and Gilbert, 1968].

The CTF can also be expressed as

m
CTF, =w;F = wF, ®)
j=1

which shows that the CTF is a weighted sum of the rows
of the forward solution F, i.e. the leadfields of individual
sensors. This imposes a fundamental constraint on the type
of CTFs we can achieve for any linear estimator or spatial
filter. It also indicates why adding more sensors, especially
from different sensor types, can improve spatial resolution:
The more leadfield vectors there are in Eq. (5), and the
more mutually independent they are, the more flexibility
there is for designing the shape of a CTF. However, adding
more sensors that add only little independent information
(e.g. more electrodes to an already dense electrode array)
may only have very minor effects on resolution.

So far, we have only referred to one spatial filter w; for
one target source. We can of course compute spatial filters
for all target sources, i.e. for indices i between 1 and n.
These can be arranged as rows of an inverse operator
matrix G (n x m), such that the estimates for all sources §;
can be computed as a vector:

§ =Gd =G(y+n)=GFs+ Gn =Rs+ Gn. (6)

The matrix R=GF (n x n) is the “resolution matrix”
which describes the relationship between the real sources
s and the estimated sources s in the absence of noise
[Grave de Peralta Menendez et al., 1997; Hauk, 2004; Liu
et al., 2002; Menke, 1989]. The rows of R are the CTFs. The
columns of R are the “point-spread functions” (PSFs) that
describe how the estimate of the activity of a point source
with unit strength is spread across all other sources.

An interesting special case is the L2 minimum-norm
estimate

Gune = FI(FFT +220) 7, 7)

where 22C is a regularization term that will be explained
in more detail later. Its resolution matrix is

Ryine = GuneF = FT (FFT +1.C)'F. (8)

This matrix is symmetric (given that C is symmetric),
meaning that, for MNE, CTFs and PSFs for a source i are
identical.

Noise normalization procedures have been suggested to
improve localization accuracy of MNE estimators [Dale
et al., 2000; Lin et al., 2006; Pascual-Marqui, 2002]. Their
general principle is to weight the MNE inverse operator
matrix with a diagonal matrix that transforms the corre-
sponding solution into signal-to-noise ratios, i.e.

Gn = WGMNE, )

where W is an n X n diagonal matrix that contains noise-
based correction factors for each source. This changes the
resolution matrix to

Ry = GNF = WGMineF = WRyine. (10)

Because W is diagonal, each row of Ryng—i.e., each
CTF—is just multiplied by one element of the diagonal of
W. This only affects the CTFs” overall amplitude, but not
their shapes. For PSFs, however, it can affect amplitude as
well as shape [Hauk et al., 2011]. This means that noise nor-
malization procedures such as dSPM or sSLORETA have the
same leakage or cross-talk as the non-normalized MNE.

The effect of leadfield weightings (e.g. depth weighting
[Lin et al., 2006]) on CTFs is not straightforward to predict.
These approaches have so far mainly been evaluated using
point-spread functions, but since the corresponding resolu-
tion matrices are not necessarily symmetric, the results
may not generalize to CTFs. A detailed comparison of
these approaches is beyond the scope of this paper.

Designing Optimal Spatial Filters

Here, we introduce a general framework for the design
of optimal CTFs under three different constraints. We are
looking for a linear estimator w (1 x m, m = number of
sensors; we omit the subscript index i in the following)
that fulfills the following constraints:

1) Discrete Source Constraint: We would like to separate
activity of the target source from that of a few a priori
selected sources. Thus, we would like to make sure
that the projection on several topographies is exactly
predicted:

wP =1, (11)
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where P is a m X p matrix with p horizontally con-
catenated forward solutions, and i a target vector
(1 X p). Choosing i to contain the value 1 in one ele-
ment (the target) and 0 in all others would corre-
spond to complete separation of the target source
from the other sources. The topographies in P can for
example be obtained for isolated dipole sources,
regions-of-interest, or from the measured data.

2) Distributed Source Constraint: Any other brain sour-
ces should contribute to the estimate as little as possi-
ble. This can be achieved through the following
minimization constraint:

min |wF — t|*= (WF — t)(wF — )" (12)
with F as leadfield matrix (m X n) and t (1Xn) as a
target vector in source space. This constraint
expresses that we wish the CTF to be as close as pos-
sible in the least-squares sense to the desired target t.
For example, t may contain the value 1 in a target
location and 0 everywhere else.

3) Noise Constraint: Noise should affect our estimate as
little as possible. This results in the following minimi-
zation constraint:

min (WCWT) , (13)
where C (m X m) is a covariance matrix that should
contain all sources that are to be suppressed, for exam-
ple estimated from pre-stimulus baseline intervals.

Constraint 1) should be fulfilled exactly. 2) and 3) are
both minimization constraints, and can be combined into

one constraint by introducing a regularization parameter
22

min((wF — t)? + 22wCw') = min(wSw’ — 2wFt’) (14)

with § = FF' +2*C
The exact constraint (1) under the minimization constraint
[Eq. (14)] can be solved using the method of Lagrange mul-
tipliers [see Appendix, and e.g. Menke, 1989]:

w = (tF + (i — tF'S 'P)(PTs'P) 'PT)S 1 (15)
with S as above.

In the literature on spatial filtering, it is common to use
the term “pass-band” for signals from sources of interest
(i.e. whose signal is supposed to pass the spatial filter),
and “stop-band” for signals that should be suppressed (i.e.
they should be stopped by the spatial filter) [e.g. Van
Veen et al., 1997]. In our framework, choices of i and t
(and in particular where they are zero and non-zero)
reflect which signals are classified as pass-band or stop-
band. In experimental work, these choices should be justi-
fied by sound a priori knowledge about the neuronal
generators.

Generalizations

Any weighting that is applied to the data before source
estimation also needs to be applied to the projection
matrix P, the leadfield matrix F and the covariance matrix
C: if the data are transformed by d = W,d, then P and F
should be replaced by F = W,F and P = W,P, respectively.
This may be necessary, for example, when combining dif-
ferent sensors types such as gradiometers, magnetometers
and EEG using pre-whitening [Fuchs et al., 1998; Molins
et al., 2008].

It is also possible to add a weighting matrix D to Eq.
(12), such that min |wF — t||*= (WF — ) D(wF — t)". Contri-
butions from different parts of the source space can then
be penalized differently. This changes Eq. (14) to

min(wSw’ — 2wFDt") with S = FDF" + A°C

that can be solved in the same way using Lagrange multi-
pliers. For simplicity, we did not use the weighting matrix
D in our simulations.

Special Cases

In this section, we present three special cases derived
from Eq. (15): 1) maximum-likelihood estimates for fixed
dipole models, 2) L2 minimum-norm estimates, and 3) lin-
early constrained minimum-variance (LCMV)
beamformers.

1) We assume that the only sources that contribute to
our signal are captured in Eq. (11) (discrete sources
constraint), i.e. their forward solutions are arranged
as columns in the matrix P. Therefore, we ignore the
source space constraint by setting F and t to zero. i at
this point can be arbitrary but non-zero. In addition,
we want to suppress noise, as specified in Eq. (3).
Equation (15) then simplifies to

w=i(P"Cy'P) PTGy, (16)
where Cy is the noise covariance matrix. The expres-
sion following i is the maximum likelihood estimate for

a fixed dipole model. Note that this expression without

i provides the matrix for all sources in the model. Mul-

tiplying it with i provides a spatial filter for the target

source. For example, if we want to fully separate a tar-
get source from other sources in P, and therefore define

a target vector i that includes only zeros, and the value

1 only for the target source, then w is just one row of

the maximum likelihood estimate for all sources

(PTC_lP) 'pTel. Furthermore, note that if P only

contains one column, e.g. the forward solution of one

target source Fj, then the resulting estimator is

To-1

_ — _ F.’CN
w = (FIC'F)) 'FiC! =

=N (16b)
T-1
FIC,'F,
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2). We assume that all sources are equally likely to con-
tribute to the signal. We do not have a specific dis-
crete source constraint, but for each target source, we
would like to minimize the contribution from all
other sources as much as possible. In the distributed
source constraint [Eq. (12)], let the target be the
source that corresponds to the jth column of the for-
ward solution matrix F, i.e. F;. Equation (11) can be
used as a normalization constraint, for example
requiring wF; =1, ie. i = 1 and P =F,;. The ideal
CTF in this case would contain zeroes everywhere
except at the location of the target source, i.e.
tr=0forallk #j, tr=1fork=j. We would also
like to minimize the effect of noise on our estimate,
as in Eq. (13). Noting that in this case tF = F?, we
find that Eq. (15) simplifies to

w=(tF' +(i—tF'S"'P)(P'S'P)"'PT)S!
= (F+(1-FjS™'F,)(FjS'F))'F})s !
:F5571 . (F?Sile)_lF?]jsil _ (F§S—1FA].)(F?S*lF_]-)—lF?Sfl
=(FIS™'F;) 'Fis™!
FI(FFT +2.Cy) "'

= = (17)
FI(FF" +1.Cn) 'F,

The nominator of this solution is the L2 minimum
norm estimate for source index j. The denominator is
a result of our initial normalization constraint i = 1.
Note that this normalization only affects the ampli-
tude, but not the shape of CTFs.

3). Assume that we neither have a specific discrete
source nor distributed source constraint, but we
assume that all sources contributing to our signal are
captured in the data covariance matrix C,. We want
a spatial filter that projects on a source of interest, e.g.
column j of our lead field matrix F, i.e. F;, while at
the same time minimizing its projection on the data
covariance matrix, which contains contributions from
the source of interest, other to-be-suppressed brain
sources as well as noise. In this case, we can choose
i =1 and P=F,; as before, ignore the distributed
source constraint by setting t and F to zero, and use
the data covariance matrix C, as the noise constraint.
We then obtain

w = ((FC'F)) 'F})Cp!
_ FG
- -1
F/Cp'F;

(18)

which is the linearly constrained minimum variance beam-
former [Van Veen et al., 1997]. The success of this estima-
tor depends on whether the data covariance captures all
sources that may be simultaneously active with the source
of interest. Note that this expression is formally identical
to the maximum likelihood estimator for a single dipole

source in Eq. (16b), except that matrix C is the data covari-
ance matrix in one case and the noise covariance matrix in
the other.

In a more specific case, we may want to apply the above
constraint, while at the same time completely suppress the
activity from a separate source. In this case, we can add
the topography of the to-be-suppressed source as a col-
umn to matrix P, and choose vector i = [1, 0]. The result-
ing spatial filter will have zero projection on the to-be-
suppressed topography. This is the principle of the “null-
beamformer” [Mohseni et al.,, 2010] or “multiple con-
strained minimum-variance beamformer with coherent
source region suppression (LCMV-CSRS)” [Popescu et al.,
2008]. Some authors have used more than one to-be-sup-
pressed components, e.g. from a singular-value decompo-
sition of the leadfield for a region-of-interest [Dalal et al.,
2006; Popescu et al.,, 2008]. However, these approaches
have not made use of the “distributed source constraint”
in our framework.

Regions Versus Locations

In many situations, especially in experiments on higher
cognitive functions, we are interested in “regions” of inter-
est (ROIs) rather than “locations” of interest: We expect ac-
tivity extended over a larger brain area (e.g. anterior
temporal lobe), rather than a point source at a specific
location with a specific orientation. Our framework allows
handling this problem flexibly: One may represent each
ROI by one or more topographies in the projection matrix
P, e.g.,, from a singular value analysis of all forward solu-
tions within an ROI. In other words, we can take the sub-
matrix of the leadfield matrix F that contains all forward
solutions of an ROI, and reduce it to one or a few of its
principal components. A similar approach has been used
in Dalal et al. [2006] and Popescu et al. [2008]. Visualiza-
tion of the corresponding CTFs will inform us to what
degree activity from particular ROIs is either extracted or
suppressed.

SIMULATIONS

In this section, we illustrate the use and performance of
our framework with three simulated examples. We would
especially like to demonstrate the flexibility of linear esti-
mation techniques in designing estimators that are tailor-
made for a specific purpose. The examples are built in
proof-of-concept manner; the aim is to both illustrate the
concepts used in the framework and propose novel ways
for building inverse estimators.

In our first example, we illustrate the crosstalk of mini-
mum-norm (MN) estimates between sources in ATL and
IFG regions and demonstrate the benefit of adding the
stop-band constraint of our framework. In the second
example, we build a more complex spatial filter that
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focuses on one region while suppressing some crosstalk
from multiple other regions. Finally, in the third example,
we illustrate a case, in which the desired CTF cannot be
obtained due to the inherent ill-posedness of the inverse
problem.

All simulations were carried out using the sample data-
set of MNE software (http://www.martinos.org/mne/)
that comprises anatomical MR images obtained with an
MPRAGE sequence, reconstructed cortical surfaces and
boundary surfaces for the skull and scalp, and MEG/EEG
data acquired with an Elekta Neuromag Vectorview sys-
tem (306 MEG sensors and 60 EEG sensors). The forward
model F and noise covariance matrix C were built with
MNE tools as described in the MNE manual: The source
space was defined by tessellating the cortical surface into
two meshes with a total of 8192 vertices. The MR set and
boundary surfaces were semiautomatically co-registered
with the sensors. The surfaces of skull and scalp were tes-
sellated with 2562 vertices per surface, and a 3-shell
boundary-element model was built. At each vertex of the
source space, a dipole oriented normally with respect to
the cortical surface was placed, and for these dipoles, a
lead field matrix F for MEG and EEG sensors was con-
structed. The noise covariance matrix C was assembled
from pre-stimulus data. The cortical source meshes, F, and
C were then imported to Matlab, where all further proc-
essing was carried out. In all examples, combined EEG +
MEG data were used; the combining of different sensor
types was done by pre-whitening the lead fields with the
matrix C~'/? [Fuchs et al., 1998].

In all examples, we have used regions-of-interest (ROlIs)
for setting either the target of the filter (pass-band) or the
region from which the crosstalk is to be suppressed (stop-
band). Compared with model optimization using lead-
fields of individual vertices, the ROI approach adds model
realism for cases where brain activation must be assumed
to be spatially extended. It is important to note that when-
ever brain activation is averaged (or otherwise combined)
across vertices within an ROI, the CTF for this average is
the average of the individual CTFs. Analyzing ROIs
instead of individual vertices can therefore make the prob-
lem of cross-talk or leakage worse. Our framework can
take this into account, as we will explain below.

The ROIs were defined with the help of a graphical user
interface: the cortical (source) mesh was visualized, and
the vertices in a region were selected using the mouse
pointer. After defining the ROI, the lead-vectors corre-
sponding to the sources in the ROI could, in principle, be
directly used for defining the signal-space constraint
matrix P of Eq. (11). Depending on the size and shape of
the ROI, the forward solutions for different vertices are
correlated with each other to some degree (e.g., forward
solution for vertices on opposite walls of a sulcus will
have a strong negative correlation). In order to efficiently
reduce the number of components in matrix P, while still
allowing for variability within the ROI, we applied stand-
ard singular-value-decomposition (SVD) to P and selected

the most dominant singular vectors which explained a
large amount of variance for the ROIL Note that this does
not affect the interpretation of the estimator—the resulting
CTF is all that matters for its application to data.

Combining Discrete and Distributed Source
Constraints

This example addresses the case already discussed in
the Introduction. We assume that there is activity in both
anterior temporal lobe (ATL) and inferior frontal gyrus
(IFG), and we would like to separate them from each
other. In Figure la, the CTF of the MN estimator for a
source at vertex 7 in ATL is shown (indicated by blue dot).
Most of the contribution to the estimate comes from the
ATL region (indicated by cloud of black dots), as intended.
However, there is also considerable leakage from the infe-
rior frontal gyrus (cloud of white dots), which we would
like to suppress.

In order to suppress the leakage from IFG, we use the
discrete source constraint of Eq. (11) by setting the projec-
tion of w on the six first SVD components in the IFG
region to zero. In addition, we use the distributed-source
and noise constraints as in the derivation of the MN esti-
mator, targeting at vertex i and minimizing the contribu-
tion of noise. The CTF of the resulting spatial filter is
visualized in Figure 1b. Leakage from IFG is now signifi-
cantly suppressed. In addition, overall leakage from supe-
rior temporal lobe and middle frontal lobe has decreased
as well, while leakage from pre-central cortex has slightly
increased.

Spatial Filters for Regions-of-Interest

In this example, we illustrate how spatial filters can be
focused to a certain region of interest. Assume we are
interested in signals from the tip of the occipital lobe
(“V1”), independently from higher-level object vision areas
in the left occipital (LO) cortex. Therefore, we would like
to focus the estimator on the tip of V1 while suppressing
leakage from LO and surrounding areas. In Figure 2a, we
present the CTF of the MN estimator for the tip of V1,
computed as the sum of CTFs for the vertices in the
region. It still contains contributions from surrounding
areas, e.g. around the black and white dots, that we would
like to suppress. We therefore designed a spatial filter on
the target region using the following criteria:

1. Discrete source constraint for the pass-band: the pro-
jection of w on the first SVD component of lead vec-
tors from the target region (marked with blue points)
was forced to one, in order to make sure the estima-
tor is focused on our target ROL

2. Discrete source constraint for the stop-band: the pro-
jection of w on lead vectors of a set of sources with
high crosstalk in the MN estimator (sources in the LO
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marked with white points, other sources with black
points) was forced to zero, in order to explicitly sup-
press signals from sources that we assume may be
active, but would confound the result of our
estimate.

3. Distributed-source and noise constraints: the filter

response to all sources and noise was minimized
according to Eq. (14) with t set to zero, in order to mini-
mize the leakage from all other possibly active sources
and noise.

Figure I.

Cross-talk functions (CTFs) for two different spatial filters
aimed at extracting signals from anterior temporal lobe (ATL)
while suppressing signals from inferior frontal gyrus (IFG). a)
CTF for a classical minimum norm estimator (i.e. using the dis-
tributed source constraint) created for a target source (blue
dot) in ATL. The CTF has largest amplitudes in ATL as desired.
However, it also shows leakage from more distant locations,
such as IFG. The area with largest leakage is indicated by a cloud

0.15

of white dots. b) CTF for a novel estimator, derived by combin-
ing the distributed source constraint of a) with a discrete source
constraint for IFG. The estimator was designed to optimally
project on signals from the target location (blue dot), to sup-
press leakage from the IFG region (white dots), and to minimize
leakage from all other brain areas. This had the intended effect
that leakage from inferior frontal areas is reduced. Both images
are presented with the same color scale.

b

Figure 2.

CTFs for two spatial filters aimed at extracting activity from the
tip of the occipital lobe (“VI,” blue dots), while suppressing leak-
age from surrounding higher-level visual areas. a) CTF for a clas-
sical minimum norm estimator (i.e. using the distributed source
constraint) created for an ROI (blue dots) around VI. The CTF
is centered around VI, but shows leakage from several areas
outside the target ROI (e.g. around the black dots, and with a

clear peak at some distance highlighted by white dots). b) CTF
for a novel estimator, which combined the distributed source
constraint with the discrete source constraint. The estimator
was designed to optimally project on signals from the ROI
around VI (blue dots), while explicitly suppressing leakage from
surrounding areas (black and white dots). The resulting CTF is
more focused around VI, as intended.
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Figure 3.

lllustration of a case where leakage suppression has been unsuc-
cessful. a) The CTF optimized for VI as in Figure 2b, zoomed
closer into VI. White and black dots indicate areas for which
leakage was supposed to be suppressed; b) novel estimator,
which in addition to a) also attempts to suppress leakage from

The CTF of the resulting spatial filter is shown in Figure
2b. The filter is better focused around the V1 tip than the
previous estimator (Fig. 2a). Leakage from the LO is
clearly suppressed, and leakage from the vertices marked
in black is zero. Some new leakage is introduced for exam-
ple at locations inferior to the ROI, and with lower ampli-
tude at larger distances.

Cross-Talk Suppression Gone Wrong

The flexible design of cross-talk functions is obviously
only possible within general resolution limits of EEG/
MEG measurements. In the last example, we therefore
illustrate that our framework cannot circumvent the inher-
ent ill-posedness of the inverse problem: if there are active
sources with highly correlated forward solutions, it may
be impossible to satisfyingly distinguish between the activ-
ities arising in these regions.

In the previous example, some increased leakage was
introduced close to the target region. In Figure 3a, the
resulting CTF of the previous example is shown, rotated
and zoomed in closer to the tip of V1. Below the target
region (marked with blue dots) the CTF shows two peaks
(green dots), which ideally we would like to remove, using
exactly the same method as in the previous example. In
this case, we therefore added two new lead vectors
(marked with green dots) to the discrete-source constraint
of the stop-band. The CTF of the resulting filter is shown
in Figure 3b. The estimator is now sensitive to large
regions outside the target area, and overall the CTF is very
patchy. Clearly, the filter is not focused at the tip of V1

two locations close to VI (light green dots). Although the
imposed constraints are fulfilled (see CTF values in the direct
vicinity of white, black and green dots), the CTF is very wide-
spread and patchy, and not focused around V| as desired.

anymore. This highlights the importance of visualizing
and evaluating CTFs for specific estimators.

A likely explanation for the failure to design a satisfying
estimator in this case is that the correlation coefficients
between the pass-band vector and the new suppression
points are —0.96 and 0.85, while the corresponding (abso-
lute values of) correlations for the original suppression
points were between 0.1 and 0.46. This means that topog-
raphies in the stop-band and pass-band are very similar,
and trying to fully separate them leads to a spatial filter
with large spatial variation among sensors.

DISCUSSION

We presented a new framework for the design of flexi-
ble cross-talk functions (DeFleCT). In contrast to existing
spatial filtering methods, the framework allows the combi-
nation of constraints for multiple discrete as well as dis-
tributed sources and noise, and comprises several existing
spatial filtering methods as special cases (minimum norm
estimation, maximum likelihood dipole strength estima-
tion, linearly-constrained minimum variance beamformer,
and null-beamformer). Importantly, it allows the design of
novel spatial filters where specific a priori information
needs to be combined with more general constraints. This
was demonstrated in simulations using a realistic head
model and a combined EEG/MEG measurement
configuration.

CTFs describe the effect of all sources in the model (e.g.
distributed across the cortical surface) on the output of a
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spatial filter [Backus and Gilbert, 1968; Grave de Peralta
Menendez et al., 1997; Liu et al., 2002; Menke, 1989]. Spa-
tial resolution of EEG/MEG depends on a number of vari-
ables such as source location, depth, and orientation
[Fuchs et al., 1999; Grave de Peralta-Menendez and Gonza-
lez-Andino, 1998; Hauk et al., 2011; Molins et al., 2008]. In
our view, no matter which method was used to create a
spatial filter, evaluating spatial resolution by means of
CTFs for individual measurement configurations and spe-
cific purposes is the key for avoiding misinterpretation of
results. However, inspection of CTFs for existing methods
may reveal that they are not suitable for a particular pur-
pose, e.g. that there is leakage among brain areas that are
supposed to be separated in the analysis. In this case, we
may want to change the properties of our spatial filter
based on further a priori knowledge, e.g. minimizing leak-
age from some areas while allowing more leakage from
areas that we consider the least likely to contribute to the
signal. Our novel approach enables us to do this, as we
illustrated in our simulations.

It is important to note that designing spatial filters with
associated CTFs for a specific purpose is not biased or circu-
lar. By designing a CTF with specific properties we make
our assumptions explicit (e.g. about where we do or do not
expect activation), and the CTF tells us objectively which
sources may or may not contribute to our result. In contrast,
focusing on point-spread functions (PSFs) and determining
that an inverse estimator produces a peak at the correct loca-
tion when the true source is at this location is not very in-
formative, because it does not tell us whether other sources
(or combinations of sources) may be mislocalized to this
location [Grave De Peralta Menendez et al., in press].

The concept of CTFs is, in principle, independent from
the methods used to derive a spatial filter. A spatial filter
may have been designed for the purpose of estimating the
strength of one source under the assumption that there are
no other active sources (as in maximum likelihood dipole
estimation). One can still ask, looking at the CTF, how
other sources would project on this estimate if they were
active. There is a fundamental difference between the case
in which we assume there only is one source, and the case
in which we are only interested in one particular source,
while other (potentially unknown) sources may still con-
tribute to the signal. If we design a spatial filter for the for-
mer case, we should not be surprised if its CTF is not
satisfactory for the latter. A priori assumptions do not
change the fundamental physical limitations of our meas-
urements—our belief that there is no source in IFG does
not change the fact that if there were, it would still project
on the estimate for activation in ATL. If we think CTFs are
relevant for the interpretation of our spatial filter, then we
admit that we are expecting multiple or distributed sour-
ces. In such a case, the design of a spatial filter should al-
ready take these cases into account. Our novel approach
allows a large range of constraints to be implemented.

As has been pointed out previously, normalization pro-
cedures that have previously been suggested to improve

localization properties of minimum norm estimates (e.g.
dSPM [Dale et al.,, 2000] or sLORETA [Pascual-Marqui,
2002]) do not affect the shape of CTFs [Hauk et al., 2011].
For example, the correlation between time courses
extracted for different dipole sources should be the same
for any of these methods (although in practice some differ-
ences may occur due to different regularization criteria).
These methods are therefore not providing the flexibility
with respect to CTFs as the approach introduced here. In
our simulation section, we also presented an approach
that deals with spatially extended ROIs rather than iso-
lated dipolar sources, similar to previous studies [Dalal
et al., 2006; Popescu et al., 2008]. Topographies for sources
at different voxels or vertices within an ROI can vary sub-
stantially depending on location and orientation. Repre-
senting an ROI by means of principal components of the
corresponding subsection of the leadfield provides a prin-
cipled way of dealing with this problem.

There are still physical limits as to what can be achieved
with EEG/MEG measurements, which we demonstrated
in our final simulation example. CTFs are necessarily lin-
ear combinations of the rows of the leadfield matrix
[Backus and Gilbert, 1968; Grave de Peralta Menendez
et al., 1997; Menke, 1989]. The row of the leadfield matrix
associated with one sensor is its sensitivity profile with
respect to sources of unit strength at each source location
(vertices or voxels). A CTF that cannot be described as a
linear superposition of these distributions cannot be
designed with any method. Therefore, the more leadfields
(i.e. the more sensors) there are, the better our chances to
at least approach the ideal CTF. Furthermore, the more in-
dependent the leadfields are, the more likely we are to
achieve a wide range of CTF shapes. Therefore, different
sensor types (e.g. gradiometers, magnetometers, EEG elec-
trodes) with independent or orthogonal leadfields are
advantageous. However, there will still be limits to what
can be achieved, no matter how many sensors or sensor
types we use.

We did not systematically investigate the influence of
noise on spatial filters in the present study. All common
linear estimation methods incorporate noise in a similar
way: the projection of the spatial filter on the noise covari-
ance matrix is minimized. The trade-off between noise-
sensitivity and spatial resolution is well-documented
[Backus and Gilbert, 1968], and common to all linear esti-
mators [e.g. Bertero et al., 1988]. As a general rule, we can
assume that the more emphasis we put on noise suppres-
sion, the more we have to sacrifice with respect to spatial
resolution.

In order to allow generalizable conclusions, method
comparisons must specify the purpose for which the meth-
ods are selected, such as the estimation of a single active
source, or a source of interest in the presence of other pos-
sibly active sources. Therefore, illustrations of results from
real data may not be informative for purposes of method
comparisons. The fact that one method works well with
one particular data set does not mean that it will work
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well with other data sets, where source distributions or
noise structure may be different. We therefore need a
framework that demonstrates whether methods are
designed for similar or different purposes. Our framework
fulfills this requirement.

The fact that several existing methods fall out of our frame-
work under different starting assumptions shows that one
can only find the “best” spatial filter for a clearly specified
purpose. The methods should follow the assumptions, not
vice versa. For example, if we expect leakage from all brain
locations with equal probability, then the MN estimator pro-
vides an optimal CTF, with minimal cross-talk across all
sources. If we know that our signal is produced by only a
few dominant sources (dipoles or ROIs), then the maximum
likelihood estimator provides zero cross-talk from the speci-
fied sources. In our framework, an LCMV beamformer can
be interpreted as a spatial filter that attempts filtering out the
signal from one source (or ROI), while suppressing all other
sources that contribute to the data covariance matrix. From
this, it follows the well-known finding that beamformers per-
form best for uncorrelated sources. Furthermore, they assume
that all sources that contribute to the signal are captured in
the data covariance matrix. This assumption may be difficult
to justify in the case of evoked responses, where the sources
of interest may be short-lived (e.g. tens of milliseconds), while
the covariance matrix is computed for intervals of several
hundreds of milliseconds or more. A more detailed compari-
son of different estimators must be left for future studies.

We hope that our approach will prove useful both for
the evaluation and comparison of methods, as well as for
EEG/MEG studies applying time-series analysis in source
space.
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APPENDIX: LAGRANGE MULTIPLIERS

The method of Lagrange multipliers is a standard tech-
niques for solving linear optimization problems [e.g. Aster
et al., 2011; Menke, 1989]. In our framework, the problem
is to find the linear estimator w that fulfills

wP =i (A1)

under the minimization constraint of Eq. (14)
min(wSw’ — 2wFt").
First, one defines the Lagrange function:
A(w) = wSwT — 2wFt! 4 a(PTw! —iT).
The derivative of this function with respect to w is:

dA(w) _ 2wS — 2FT 4+ oPT.
dw

Lagrange’s method consists of

1. Determining w that yields % =0.

2. Substituting the result into Al, solving for o.

3. Substituting o into 1, yielding the final solution for w.
This results in

w = (tLT + (i — TF'S~'P)(PTs~'P) 'PT)S 1.
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