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Abstract: Automated tract-based analysis of diffusion MRI is an important tool for investigating tract
integrity of the cerebral white matter. Current template-based automatic analyses still lack a compre-
hensive list of tract atlas and an accurate registration method. In this study, tract-based automatic anal-
ysis (TBAA) was developed to meet the demands. Seventy-six major white matter tracts were
reconstructed on a high-quality diffusion spectrum imaging (DSI) template, and an advanced two-step
registration strategy was proposed by incorporating anatomical information of the gray matter from
T1-weighted images in addition to microstructural information of the white matter from diffusion-
weighted images. The automatic analysis was achieved by establishing a transformation between the
DSI template and DSI dataset of the subject derived from the registration strategy. The tract coordi-
nates in the template were transformed to native space in the individual’s DSI dataset, and the micro-
structural properties of major tract bundles were sampled stepwise along the tract coordinates of the
subject’s DSI dataset. In a validation study of eight well-known tracts, our results showed that TBAA
had high geometric agreement with manual tracts in both deep and superficial parts but significantly
smaller measurement variability than manual method in functional difference. Additionally, the
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feasibility of the method was demonstrated by showing tracts with altered microstructural properties
in patients with schizophrenia. Fifteen major tract bundles were found to have significant differences
after controlling the family-wise error rate. In conclusion, the proposed TBAA method is potentially
useful in brain-wise investigations of white matter tracts, particularly for a large cohort study. Hum
Brain Mapp 36:3441–3458, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: diffusion spectrum imaging; tractography; tract-based analysis; large deformation diffeo-
morphic mapping; template
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INTRODUCTION

Diffusion magnetic resonance imaging (MRI) can be
used to probe the microstructural properties of the white
matter in vivo [Basser and Pajevic, 2003; Conturo et al.,
1999; Jones et al., 1999; Lee et al., 2005]. When diffusion
MRI is aided with tractography, the microstructural prop-
erties along a specific fiber tract bundle can be determined.
Such tract-based analysis is often performed using manual
tractography. However, this approach has technical limita-
tions that hamper wide applications to neuroscience
research. Manual tractography is highly operator depend-
ent and time-consuming [Huang et al., 2004; Zhang et al.,
2010a]. Furthermore, manual tractography performed on
individual subjects is prone to reconstruction errors, owing
to poor signal-to-noise ratio (SNR), complex fiber geometry
and subject’s head motion [Wakana et al., 2007].

Several automated methods have been proposed for
image-based population studies [Goodlett et al., 2009; Gue-
vara et al., 2012; Li et al., 2010; O’Donnell and Westin,
2007; Smith et al., 2006; Suarez et al., 2012; Taquet et al.,
2014; Wang et al., 2011b; Wassermann et al., 2010; Yendiki
et al., 2011; Zhang et al., 2010b]. The automated methods
for tract-specific analysis can be categorized into two
approaches. One approach is the template-based approach
in which a template is constructed and all subjects’ images
are registered to the template [Goodlett et al., 2009; Smith
et al., 2006; Taquet et al., 2014; Zhang et al., 2010b]. Fiber
tracts or tract skeletons, either reconstructed directly on
the template or on individual datasets followed by averag-
ing them on the template, are transformed to diffusion
datasets of individual subjects. The index of microstruc-
tural property such as fractional anisotropy (FA) or mean
diffusivity is sampled within the targeted tracts. Another
approach performs local deterministic tractography or
global tractography [Guevara et al., 2012; Li et al., 2010;
O’Donnell and Westin, 2007; Suarez et al., 2012; Wang
et al., 2011b; Wassermann et al., 2010; Yendiki et al., 2011]
on the diffusion dataset of each individual subject. Tract-
specific analysis is achieved by sampling microstructural
property index within the tracts reconstructed on individ-
ual datasets. Both approaches address limitations of the
manual approach and are potentially useful for a large
cohort study. The template-based approach has high SNR
from the registered datasets. It has the advantage of recon-

structing robust fiber pathways that are common to all
subjects. This approach, however, depends on the accuracy
of the registration techniques, and overlooks the individ-
ual variations of fiber pathways. In contrast, the
individual-based approach preserves the individual details
of fiber pathways, but may be subjected to variations of
reconstruction outcome due to variable image quality on
individual datasets. In this article, we aimed to improve
the template-based approach by proposing an advanced
registration algorithm and a comprehensive list of fiber
pathways reconstructed on a diffusion spectrum imaging
(DSI) template.

To date, there is no template that provides a comprehen-
sive list of major tract bundles of the human brain for the
whole brain tract-based analysis. Currently, operators
need to reconstruct their targeted tracts on their own dif-
fusion template. They may have difficulties in producing
the correct tracts due to limited angular resolution of the
diffusion template. Even if a high-angular resolution diffu-
sion template is available, operators still require sufficient
knowledge in neuroanatomy and skills of tractography to
reconstruct the targeted tracts. Although an atlas compris-
ing 30 long fibers and 29 short U-fibers has been provided
by Zhang et al. [2010b], as the authors acknowledged, the
atlas was reconstructed based on diffusion tensor imaging
(DTI) datasets and may miss important connections, lead-
ing to inaccurate estimation of fiber orientations.

Besides the lack of a comprehensive list of tracts, accu-
rate registration of diffusion-weighted (DW) images are
crucial in population analyses [Taquet et al., 2014]. Previ-
ous works have demonstrated that orientation information
derived from full tensor provided superior results for con-
nectional anatomy in intersubject registration [Park et al.,
2003; Ruiz-Alzola et al., 2002; Suarez et al., 2012]. How-
ever, other studies suggested that superior registration
results could be obtained using structural information
derived from T1-weighted (T1W) images [Smith et al.,
2012; Zollei et al., 2010]. Another approach performs two-
step image transformation using b0 image and FA map.
However, unsatisfactory registration was noted at the
superficial part of the white matter tracts due to insuffi-
cient information of cortical anatomy in diffusion datasets
[Zhang et al., 2010b]. Previous studies already found that
accurate alignment of the brain anatomy between diffusion
weighted images can be achieved if high-resolution
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anatomical images such as T1W images are incorporated
in image registration [Greve and Fischl, 2009; Robinson
et al., 2014; Studholme, 2008]. This kind of registration
strategy can provide more accurate transformation in
regions close to cortical regions than the registration based
on DW images only. High SNR and high anatomical defi-
nition of the T1W images can aid morphological registra-
tion of DW images. Such registration strategy, however,
has not been applied to the automated template-based
approach yet.

In this study, we proposed a new automatic method,
called tract-based automatic analysis (TBAA), to analyze
microstructural properties along most of major fiber tract
bundles of the whole brain. The proposed method accom-
plishes this via two key developments. First, we built a
tract atlas comprising 76 major fiber tract bundles on a
high-quality DSI template, NTU-DSI-122 (see Supporting
Information I) [Hsu et al., 2015]. Second, we developed a
novel strategy for registration of DSI datasets by incorpo-
rating anatomical information of the T1W images and
microstructural information of the DSI datasets. With these
two developments, the predefined tract bundles in the DSI
template could be transformed to native space in the indi-
vidual’s diffusion datasets accurately, allowing reliable
sampling of the microstructural properties along the tracts.

To test the accuracy of the TBAA method and demon-
strate its clinical feasibility, the paper was organized into
three parts. First, we described the fiber tract bundles
reconstructed on the DSI template, two-step registration
strategy, and TBAA procedures. Second, validation studies
were performed to test the geometric agreement between
the tracts reconstructed on the DSI template and those
reconstructed manually. In addition, within-group vari-
ability of the sampled values derived from the TBAA
method was compared with those derived from the man-
ual method. Finally, we demonstrated the feasibility of the
TBAA method in patients with schizophrenia.

MATERIALS AND METHODS

Reconstruction of 76 Major Tract Bundles on

NTU-DSI-122 Template

DSI tractography on the NTU-DSI-122 template was
performed using a streamline-based algorithm adapted
for DSI data, and 76 major tract bundles were recon-
structed by a multiple region-of-interest (ROI) approach
[Huang et al., 2004]. To select ROIs for each targeted
tract objectively, we used an automated anatomical label-
ing (AAL) system [Tzourio-Mazoyer et al., 2002] from
WFU Pickatlas (version 3.0.4) to define 58 cortical and
subcortical regions as ROIs on the Montreal Neurobiol-
ogy Institute (MNI) template and then transformed ROIs
to the NTU-DSI-122 template. These ROIs were placed by
two coauthors (W.Y.I.T. and Y.C.L.) who were familiar
with the brain structures and experienced in DSI

tractography for more than seven years. Each targeted
fiber bundle was constructed by assigning 2 or 3 ROIs,
and the streamlines passing through all of the associated
ROIs were segmented as the targeted tract. The ROIs
associated with each tract were selected based on ana-
tomical knowledge.

The 76 major white matter tract bundles were catego-
rized into association, projection, and commissural tract
systems according to anatomical definitions. The details of
the tract bundles and associated ROIs for each tract bundle
are listed in Table I. The entire fiber tracking was per-
formed using the DSI Studio software (http://dsi-studio.
labsolver.org). The details of tractography procedure are
described in the Supporting Information II.

Once constructed, the tract was verified to ensure that
the entire trajectory follows the anatomical landmarks
based on the knowledge of brain structures [Haines, 2008;
Nolte, 2009; Nolte and Angevine, 2013; Schmahmann and
Pandya, 2007]. For the tracts that had been constructed on
DTI templates, we checked the compatibility of our tracts
with those derived from DTI data [Catani and Thiebaut de
Schotten, 2008; Makris et al., 2005; Mori et al., 2008;
Wakana et al., 2005]. For each tract bundle, the lengths of
the reconstructed streamlines were restricted to within a
certain range; the difference among streamlines was less
than 10 steps (1 step 5 1 mm). Each streamline of the tract
bundle was subdivided into evenly spaced steps; the num-
ber of steps was determined by the mean number of steps
of the tract bundle. The step coordinates along the stream-
lines were saved as the sampling coordinates of the tract
bundle.

Registration Strategy

A two-step registration strategy was used in the TBAA
method including anatomical information provided by
the T1W volume images and microstructural information
provided by DSI datasets [Hsu et al., 2012]. First, a tissue
probability map (TPM) is calculated from the T1W
images of each subject using the method of unified seg-
mentation provided from SPM12 [Ashburner and Friston,
2005]. During this step, the DSI dataset of each partici-
pant, j (DSIj), is registered to its own TPMj by performing
rigid body transformations between the b0 volume of DSIj

and TPMj. The registration here is performed by minimiz-
ing the normalized mutual information between these
two imaging modalities. A mean TPM (TPMmean) is esti-
mated from the average of the TPMj; and the transforma-
tion, uj; is obtained between TPMmean and TPMj by using
the method of geodesic shooting provided from SPM12
[Ashburner, 2009; Ashburner and Friston, 2011; Miller
et al., 2006]. The individual DSIj is then transformed into
mean TPM space according to uj; and the q-space signals
are reoriented using the rotational component of the Jaco-
bian of uj [Hsu et al., 2012], which results in a registered
DSI dataset. An intermediate DSI template is constructed
by averaging all of the registered DSI datasets.
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TABLE I. List of 76 white matter tracts

No. System Subgroup Name Connected ROIs Connected ROIs

1 Association L_AF L_inferior frontal gyrus opercu-
lar part

L_superior temporal gyrus

2 Association R_AF R_inferior frontal gyrus opercu-
lar part

R_superior temporal gyrus

3 Association L_cingulum of main
body component

L_cingulate gyrus (anteri-
or 1 middle parts)

L_cingulate gyrus posterior
part

4 Association R_cingulum of main
body component

R_cingulate gyrus (anteri-
or 1 middle parts)

R_cingulate gyrus posterior
part

5 Association L_cingulum of hippo-
campal component

L_cingulate gyrus posterior
part

L_hippocampus

6 Association R_cingulum of hippo-
campal component

R_cingulate gyrus posterior
part

R_hippocampus

7 Association L_frontal aslant tract L_SMA L_inferior frontal gyrus opercu-
lar part

8 Association R_frontal aslant tract R_SMA R_inferior frontal gyrus opercu-
lar part

9 Association L_fornix L_mammillary body L_hippocampus
10 Association R_fornix R_mammillary body R_hippocampus
11 Association L_IFOF L_orbitofrontal gyrus Occipital lobe
12 Association R_IFOF R_orbitofrontal gyrus Occipital lobe
13 Association L_ILF L_temporal pole Occipital lobe
14 Association R_ILF R_temporal pole Occipital lobe
15 Association L_perpendicular

fasciculus
L_angular gyrus L_temporal-parietal gyrus

16 Association R_perpendicular
fasciculus

R_angular gyrus R_temporal-parietal gyrus

17 Association L_SLF I L_superior frontal gyrus L_precuneus
18 Association R_SLF I R_superior frontal gyrus R_precuneus
19 Association L_SLF II L_inferior frontal gyrus trian-

gular part
L_middle occipital gyrus

20 Association R_SLF II R_inferior frontal gyrus trian-
gular part

R_middle occipital gyrus

21 Association L_SLF III L_inferior frontal gyrus opercu-
lar part

L_angular gyrus

22 Association R_SLF III R_inferior frontal gyrus opercu-
lar part

R_angular gyrus

23 Association L_stria terminalis L_septal nuclei L_amygdala
24 Association R_stria terminalis R_septal nuclei R_amygdala
25 Association L_UF L_orbitofrontal gyrus L_superior temporal pole
26 Association R_UF R_orbitofrontal gyrus R_superior temporal pole
27 Projection CST L_CST of hand Brain stem L_primary motor cortex of

hand component
28 Projection CST R_CST of hand Brain stem R_ primary motor cortex of

hand component
29 Projection CST L_CST of trunk Brain stem L_ primary motor cortex of

trunk component
30 Projection CST R_CST of trunk Brain stem R_ primary motor cortex of

trunk component
31 Projection CST L_CST of mouth Brain stem L_ primary motor cortex of

mouth component
32 Projection CST R_CST of mouth Brain stem R_ primary motor cortex of

mouth component
33 Projection CST L_CST of toe Brain stem L_primary motor cortex of toe

component
34 Projection CST R_CST of toe Brain stem R_primary motor cortex of toe

component
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TABLE I. (continued).

No. System Subgroup Name Connected ROIs Connected ROIs

35 Projection CST L_CST of geniculate
fibers

Brain stem L_primary motor cortex of
throat component

36 Projection CST R_CST of geniculate
fibers

Brain stem R_primary motor cortex of
throat component

37 Projection FS L_FS of OFC L_striatum
(putamen 1 caudate)

L_orbitofrontal gyrus

38 Projection FS R_FS of OFC R_striatum
(putamen 1 caudate)

R_obritofrontal gyrus

39 Projection FS L_FS of VLPFC L_striatum
(putamen 1 caudate)

L_inferior frontal gyrus 1 mid-
dle frontal gyrus

40 Projection FS R_FS of VLPFC R_striatum
(putamen 1 caudate)

R_inferior frontal gyrus 1 mid-
dle frontal gyrus

41 Projection FS L_FS of DLPFC L_striatum
(putamen 1 caudate)

L_medial frontal gyrus 1 supe-
rior frontal gyrus

42 Projection FS R_FS of DLPFC R_striatum
(putamen 1 caudate)

R_medial frontal gyrus 1 supe-
rior frontal gyrus

43 Projection FS L_FS of precentral
gyrus

L_striatum
(putamen 1 caudate)

L_precentral gyrus

44 Projection FS R_FS of precentral
gyrus

R_striatum
(putamen 1 caudate)

R_precentral gyrus

45 Projection L_Medial lemniscus Brain stem L_thalamus
46 Projection R_Medial lemniscus Brain stem R_thalamus
47 Projection TR L_TR of VLPFC L_thalamus L_obritofrontal gyrus 1 middle

frontal gyrus 1 inferior frontal
gyrus

48 Projection TR R_TR of VLPFC R_thalamus R_obritofrontal gyrus 1 middle
frontal gyrus 1 inferior frontal

gyrus
49 Projection TR L_TR of DLPFC L_thalamus L_medial frontal gyrus 1 supe-

rior frontal gyrus 1 SMA
50 Projection TR R_TR of DLPFC R_thalamus R_medial frontal gyrus 1 supe-

rior frontal gyrus 1 SMA
51 Projection TR L_TR of precentral

gyrus
L_thalamus L_precentral gyrus

52 Projection TR R_TR of precentral
gyrus

R_thalamus R_precentral gyrus

53 Projection TR L_TR of postcentral
gyrus

L_thalamus L_postcentral gyrus

54 Projection TR R_TR of postcentral
gyrus

R_thalamus R_postcentral gyrus

55 Projection TR L_TR of auditory nerve L_thalamus L_Heschl’s gyrus
56 Projection TR R_TR of auditory nerve R_thalamus R_Heschl’s gyrus
57 Projection TR L_TR of optic radiation L_thalamus L_superior occipital gyrus
58 Projection TR R_TR of optic radiation R_thalamus R_superiro occipital gyrus
59 Commissure Anterior commissure Front column of fornix Bilateral cerebral hemispheres
60 Commissure Posterior commissure Dorsal aspect of the upper end

of the cerebral aqueduct
Bilateral cerebral hemispheres

61 Commissure CC CC of genu L_orbitofrontal gyrus R_orbitofrontal gyrus
62 Commissure CC CC of DLPFC L_medial frontal gyrus 1 supe-

rior frontal gyrus
R_medial frontal gyrus 1 supe-

rior frontal gyrus
63 Commissure CC CC of VLPFC L_inferior frontal gyrus 1 mid-

dle frontal gyrus
R_inferior frontal gyrus 1 mid-

dle frontal gyrus
64 Commissure CC CC of SMA L_supplementary motor areas R_supplementary motor areas
65 Commissure CC CC of precentral gyrus L_precentral gyrus R_precentral gyrus
66 Commissure CC CC of paracentral

lobule
L_paracentral lobules R_paracentral lobules

67 Commissure CC CC of inferior parietal
lobule

L_inferior parietal lobules R_inferior parietal lobules
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Second, each registered DSI dataset is normalized to the
intermediate DSI template by LDDMM DSI [Hsu et al.,
2012], which generates deformation maps, uj. A final study
specific template (SST) is then constructed by averaging all
of the normalized DSI datasets. The combination of these
two transformations constitutes the transformation, uj

8 uj,
between each individual DSI dataset and SST. By applying
the two-step registration, the major transformations among
subjects are estimated and coregistered using high-
resolution information of T1W volume images throughout
the first step. Slight alignments of fiber orientations and
slight spatial correspondence of white matter structures
among subjects are improved throughout the second regis-
tration step of LDDMM-DSI using the full DSI data to
allow high-definition construction of the SST [Hsu et al.,
2012].

The registration between SST and NTU-DSI-122 tem-
plate is based on the same rationale of two-step registra-
tion. First, the TPMmean is registered to MNI space using
unified segmentation, which obtains a transformation, /.
The SST is transformed into MNI space according to /,
reorients the q-space signals with the rotational compo-
nent of the Jacobian of /. Second, the transformed SST is
then registered to the NTU-DSI-122 template by LDDMM
DSI. This results in a deformation map, v. The combina-
tion of these two transformations, w 8 v, constitutes the
transformation between the SST and the NTU-DSI-122
template.

TBAA Procedures

The procedures of the TBAA method are displayed in a
flow chart in Figure 1 and described below. The proposed

registration strategy is used in (1) and (2) of the proce-
dures and the proposed atlas is used in (3) of the
procedures.

1. DSI data of a group of subjects are registered using
two-step registration strategy to create a single SST.
The SST is used to address the bias from group dif-
ferences in disease or age which may happen if indi-
vidual DSI data were registered directly to the DSI
template.

2. The SST is registered to the NTU-DSI-122 template
according to the two-step registration described
above.

3. Sampling coordinates are transformed from the NTU-
DSI-122 template through the SST to individual DSI
data via the composition of the transformation,
uj

8 uj
8w 8 v.

4. Once the sampling coordinates are transformed, the
generalized FA (GFA), an index reflecting the micro-
structural properties of the fiber tract [Fritzsche et al.,
2010; Gorczewski et al., 2009], is sampled along the
transformed coordinates in native space. The sampled
GFA values along each tract bundle form a one-
dimensional series of GFA values or so called GFA
profile. The GFA value at each step is the average of
the GFA values at the same step of the streamlines.
For each subject, the GFA profiles of the tract bundles
throughout the entire brain following a systematic
categorization form a 2D array comprising 76 rows of
information of GFA values, which is referred to as a
“connectogram.” The number of GFA values for each
row is determined as the steps of each reconstructed
tract at the NTU-DSI-122 template. This 2D

TABLE I. (continued).

No. System Subgroup Name Connected ROIs Connected ROIs

68 Commissure CC CC of postcentral
gyrus

L_postcentral gyrus R_postcentral gyrus

69 Commissure CC CC of superior parietal
lobule

L_superior parietal lobules R_superior parietal lobules

70 Commissure CC CC of superior tempo-
ral gyrus

L_superior temporal gyrus R_superior temporal gyrus

71 Commissure CC CC of middle temporal
gyrus

L_middle temporal gyrus R_middle temporal gyrus

72 Commissure CC CC of temporal pole L_temporal poles R_temporal poles
73 Commissure CC CC of hippocampus L_hippocampus R_hippocampus
74 Commissure CC CC of amygdala L_amygdala R_amygdala
75 Commissure CC CC of precuneus L_precuneus R_precuneus
76 Commissure CC CC of splenium L_occipital lobe R_occipital lobe

AF: arcuate fasciculus; CC: corpus callosum; CST: corticospinal tract; DLPFC: dorsal lateral prefrontal cortex; FS: frontal-striatum; IFOF:
inferior frontal occipital fasciculus; ILF: inferior longitudinal fasciculus; L: left; OFC: orbitofrontal cortex; R: right; SLF: superior longitu-
dinal fasciculus; SMA: supplementary motor area; TR: thalamic radiation; UF: uncinate fasciculus; VLPFC: ventral lateral prefrontal
cortex.
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connectogram is a standardized format that contains
tract-specific information along the 76 tract bundles.
The directions of the profiles are defined as anterior
to posterior for association fibers, right to left for
commissural fibers, and inferior to superior for pro-
jection fibers. A 3D connectogram is obtained after
stacking the 2D connectogram data of all the studied
subjects.

Validation of TBAA

We tested the accuracy and variability of the TBAA
method by comparing it with the manual method. The
tracts reconstructed in the NTU-DSI-122 template were
superimposed with those reconstructed by manual tractog-
raphy to evaluate the geometric agreement of the two
methods. In addition, the within-group variability of the

GFA profiles derived from the TBAA method was com-
pared with those derived from the manual method. The
validation was performed in 20 healthy adults (age:
25.3 6 4.5, range: 19–31, 10 males, 10 females) without a
history of psychiatric disorders.

Acquisition of DSI Data

All images were acquired on a 3T MRI system (Trio, Sie-
mens, Erlangen, Germany) with a 32-channel phase array
head coil. T1W imaging was performed using a 3D
magnetization-prepared rapid gradient echo (MPRAGE)
sequence: repetition time (TR)/echo time (TE) 5 2000 ms/3
ms, flip angle 5 98, field of view (FOV) 5 256 3 192 3

208 mm3, acquisition matrix 5 256 3 192 3 208, resulting in
isotropic spatial resolution of 1 mm3. A single-shot spin-echo
echo-planar imaging sequence, embedded with twice-
refocused diffusion-sensitive gradients for reducing the

Figure 1.

The flow chart of the tract-based automatic analysis procedures. SST: study-specific template;

GFA: generalized fractional anisotropy. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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eddy-current induced distortions [Reese et al., 2003], was
employed for DSI acquisition. The following imaging param-
eters were used: TR/TE 5 9600/130 ms, FOV 5 200 mm, slice
thickness 5 2.5 mm, slice number 5 54 and in-plane spatial
resolution 5 2.5 mm. The diffusion acquisition scheme com-
posed of 102 diffusion-encoding directions corresponding to
grid points located in a half sphere of diffusion-encoding
space (q-space) within a radius of 3 units, which corresponds
to a bmax of 4000 s mm22 [Kuo et al., 2008].

Head motion may occur during DSI acquisition due to a
relatively long scanning time. In the presence of strong
diffusion-sensitive gradients, especially those with high b-
values, jerky head motion induces signal loss in the DW
images. For the DSI datasets with severe signal loss, the
lost signals cannot be completely restored through post-
processing methods and should be discarded. Therefore,
all DSI datasets underwent a quality assurance procedure
by counting the number of DW images that had significant
signal dropout. All of the acquired DSI datasets [54 slices
3 (101 directions DWI 1 1 null image) 5 5508 images]
were scrutinized by calculating the signals in the central
square (20 3 20 pixels) of each image. If the average signal
intensity of an image (after correcting for its b value) was
lower than two standard deviations from the mean of all
images, the image was considered as signal loss. We previ-
ously found that the DSI dataset with more than 90 images
of signal loss caused significant reduction of GFA values
and should be discarded.

Reconstruction of DSI Data

For each voxel of the DSI dataset, the 102 diffusion-
attenuated signals of a half-sphere were projected to fill
the other half of the sphere based on the fact that the data
in q-space are real and symmetrical around the origin
[Kuo et al., 2008]. A 3D Fourier transform was performed
to obtain a probability density function (PDF). An orienta-
tion distribution function (ODF) was obtained by comput-
ing the second moment of the PDF along each of the 362
radial directions in a sixfold tessellated icosahedron. To
determine the local tract directions within each voxel, an
iterative approach was used to decompose the ODF into
several constituent Gaussian ODFs [Yeh and Tseng, 2013].
The GFA at each voxel was quantified using the following
formula: GFA 5 (standard deviation of the ODF)/(root
mean square of the ODF) [Tuch, 2004].

Geometric Agreement of Tracts between

NTU-DSI-122 Template and Manual

Tractography

In native space of each subject’s DSI data, we per-
formed manual tractography using the same approach as
that used for tract reconstruction in the NTU-DSI-122
template. The bilateral AF, the main body component of
bilateral CG, bilateral corticospinal tracts from the trunk

of the primary motor cortex (CST of the trunk), genu and
splenium of the corpus callosum were reconstructed.
Dice coefficients were calculated to assess the geometric
agreement of the tracts reconstructed on the template
and those reconstructed by manual tractography [Dau-
guet et al., 2007]. To evaluate the geometric agreement of
the tracts close to cortical regions, target tracts were
divided into two parts, the deep white matter part and
superficial white matter part. The superficial white mat-
ter part was defined as the 10% portion of the tract that
approaches cortical regions. In this way, the superficial
white matter parts was selected as the 10% portions at
the two ends of the AF, genu, and splenium, and the
10% portion of the CST close to the motor cortex. The
remaining portion of the tracts was assigned as deep
white matter part.

Dice coefficient D was defined as

D a;bð Þ ¼ 2 Va \ Vbð Þ
Va1Vbð Þ ;

where Va and Vb were the voxels traversed by tract bun-
dle a and tract bundle b, respectively. All of the recon-
structed tracts, including the template tracts and those
made by manual tractography in the individual’s native
space, were transformed to the SST to compute the Dice
coefficient.

Within-Group Variability of GFA Profiles Derived

from TBAA and Manual Methods

Functional difference (FD) between two different tracts
were calculated following the methods provided by Gout-
tard et al. to assess the functional variability of the GFA
profiles derived from the TBAA method and those derived
from the manual method [Gouttard et al., 2012].

Functional difference (FD) was defined as

FD ¼ 1

n

Xn

i¼1

jfa tið Þ2fb tið Þj3
1

fmean

where fa tið Þ and fb tið Þ were the measured GFA values at
step ti for tract bundle a and tract bundle b (i 5 1, 2, . . ., n,
where n was the number of steps of the tract bundle),
respectively, and the fmean was the GFA value of the same
tracts averaged over 20 subjects. The FD indicated the
mean absolute difference between 2 GFA profiles, that is,
fa tið Þ and fb tið Þ. The comparison of FD values was per-
formed in native space. GFA profiles were measured in
the individual’s native space using either the sampling
coordinates transformed from the DSI template to native
space or the coordinates obtained from the manually
reconstructed tracts. For each studied tract bundle in the
TBAA method, there were 20 GFA profiles sampled in
native space of 20 individuals. Therefore, 190 FD values
were derived from all possible pairs of profiles. Similarly,
there were 190 FD values that were derived from the GFA
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profiles using the manual method. A Student t-test was
performed to compare the differences in FD values
between these two methods.

To demonstrate that two GFA profiles of the same tract
were consistent, Pearson correlation coefficients were ana-
lyzed for 190 pairs of GFA profiles that were derived from
either the TBAA method or manual method.

Demonstration of TBAA

We tested the feasibility of the TBAA method by show-
ing its capability of detecting aberrant tracts in patients
with schizophrenia. A stepwise comparison of the connec-
tograms between the patients with schizophrenia and
healthy controls were performed and the familywise error
rate (FWER) was controlled to correct probable false posi-
tives owing to multiple comparisons. The results were
compared with previous results in the literature on
schizophrenia.

Fifty-four patients with schizophrenia and 54 healthy
controls matched in age and gender were selected for anal-
ysis (patients age: 34.4 6 8.6, range: 19–52, 29 males, 25
females; controls age: 32.3 6 9.0, range: 19–49, 28 males, 26
females). Patients who met the criteria listed in the Diag-
nostic and Statistical Manual of Mental Disorders, Fourth
Edition for schizophrenia were recruited by attending psy-
chiatrists at the National Taiwan University Hospital. The
diagnosis of schizophrenia was confirmed based on the
semistructured Diagnostic Interview for Genetic Study—
Chinese Version. Community volunteers without a history
of psychiatric disorders were recruited as healthy controls.
All participants were Han Chinese, right-handed and free
of neurological abnormalities, physical deformities, sub-
stance abuse problems or mental deficits. The institutional
review board of the hospital approved the study, and
informed consent was obtained from all participants
before examination.

Statistical Analysis of TBAA Results in Patients

with Schizophrenia

Having obtained the 2D connectogram for each subject, a
stepwise comparison was performed between the two
groups. The group difference of GFA was standardized for
each step of a fiber tract bundle using a t-statistic, which
was weighted using threshold-free cluster enhancement
(TFCE) for further analysis [Smith and Nichols, 2009]. A
permutation test (5000 times) based on a TFCE-weighted
statistical image was used for statistical inference. A maxi-
mal statistic approach was used to control the FWER [Nich-
ols and Hayasaka, 2003] (see Supporting Information III).

A Specificity Test of the TBAA Method

To test the specificity of the TBAA method, we per-
formed leave-N-out analysis to compare the difference

between two subgroups of control subjects and the differ-
ence between a subgroup of control subjects and a
subgroup of patients. For the controls-vs.-controls compar-
ison, 27 controls randomly selected from the control group
were paired with the rest of 27 controls. For the controls-
vs.-patients experiment, 27 controls randomly selected
from the control group were paired with 27 patients ran-
domly selected from the patient group. A total of 100 com-
binations of control-vs.-control pairs and 100 combinations
of control-vs.-patient pairs were selected. We performed
the TBAA method and the same statistical analysis to cal-
culate the segments with significant difference for each
pair. Significant segments cumulated over 100 combina-
tions produced a cumulant map of tract alteration, ranging
from 0 to 100.

RESULTS

Reconstruction of 76 Tract Bundles on NTU-DSI-

122 Template

A total of 76 major fiber tracts were reconstructed on the
NTU-DSI-122 template (Table I). Thirteen pairs of associa-
tion fibers were segmented into the arcuate fasciculus, the
cingulum of main body component, cingulum of hippocam-
pal component, frontal aslant tracts, the fornix, the superior
longitudinal fasciculus (SLF) I, SLF II, SLF III, the inferior
longitudinal fasciculus, the inferior frontal-occipital fascicu-
lus, the uncinate fasciculus, the stria terminalis, and the per-
pendicular fasciculus. Thirty-two projection fibers were
classified into 10 portions of the corticospinal tracts, two
medial lemniscus, eight frontal-striatal tracts, and 12 tha-
lamic radiations. The 18 commissural fibers included the
anterior commissure, the posterior commissure, and 16 seg-
ments of callosal fibers which passed through the corpus
callosum (Fig. 2). The reconstructed fiber tracts were ren-
dered in 3D images overlaid with 2D cross sectional images
of brain structures (Fig. 2 and please visit http://140.112.
137.122/TBAA_tractatlas, for Windows and Mac systems).

Geometric Agreement and within-Group

Variability between Template Tracts and Manual

Tractography

Eight fiber tracts, that is, the bilateral AF, bilateral CG of
the main body component, bilateral CST of the trunk,
genu and splenium, from the template tracts were selected
to compare with the same tracts reconstructed by manual
tractography. Dice coefficients evaluated in 20 individuals
were very high (mean 0.73 6 0.14) in both the deep white
matter part (mean 0.73 6 0.14) and the superficial white
matter part (mean 0.73 6 0.15) (Table II).

The mean FD of the TBAA method was significantly
lower than the mean FD of the manual method in all of
the tracts except genu (Table III).

To visualize the above results, Figure 3 shows the GFA
profiles of 20 subjects derived from TBAA and those from
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Figure 2.

The tract atlas containing 26 association tracts (a), 32 projection

tracts (b) and 18 commissural tracts (c). (a1) Uncinate fasciculus

in red, cingulum bundle of the main body component in light blue,

cingulum bundle of the hippocampal component in pink, fornix in

green and inferior longitudinal fasciculus in orange. (a2) Inferior

frontal-occipital fasciculus in light blue, arcuate fasciculus in green,

superior longitudinal fasciculus (SLF) I in red, SLF II in pink and

SLF III in yellow. (a3) Frontal aslant tract in orange, stria terminalis

in red, and perpendicular fasciculus in purple. (b1) Medial lemnis-

cus fiber tracts in green and corticospinal tract from the primary

motor cortex of the toe in red, trunk in blue, hand in yellow,

mouth in orange and throat (geniculate fibers) in purple. (b2)

Frontal striatum of the orbital frontal cortex in pink, ventral lateral

prefrontal cortex (VLPFC) in green, dorsal lateral prefrontal

cortex (DLPFC) in blue and precentral component in yellow. (b3)

Thalamic radiation of VLPFC in purple, DLPFC in yellow, precen-

tral component in light blue, postcentral component in green,

auditory nerve in red and optic radiation in orange. (c1) Corpus

callosum (CC) of the genu in light blue, DLPFC in yellow, VLPFC

in pink, supplementary motor area in light purple, precentral com-

ponent in orange, paracentral component in blue, anterior com-

missure in red and posterior commissure in green. (c2) CC of

inferior parietal lobule in green, postcentral component in light

blue, superior parietal lobule in pink, hippocampus in yellow, amyg-

dala in red and precuneus in blue. (c3) CC of superior temporal

cortex in yellow, temporal pole in green, middle temporal cortex

in red and splenium in light blue. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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the manual method. It is clear that the GFA profiles
derived from the manual method had larger within-group
variability than those from the TBAA method.

Comparisons of the Pearson correlation coefficients (r)
between each pair of GFA profiles showed that the GFA
profiles derived from the TBAA method were more con-
sistent (r values from 0.915 to 0.971) than those derived
from the manual method (r values from 0.713 to 0.927).

Aberrant Tracts in Patients with Schizophrenia

There was no significant difference in signal dropout
counts between patients and controls (21 6 22 vs. 20 6 21;
P 5 0.53). A collection of 2D connectograms was obtained
from 108 studied subjects and could be visually presented
in a normalized format as a 3D array matrix (Fig. 4).

This 3D array matrix is a standardized format of data,
which can be reduced to two 2D arrays by projecting the
data along the subject-axis or step-axis, respectively. The
2D array on the left is a 2D connectogram that is averaged
across subjects. This array shows the variation in GFA pro-

files for the two groups. The 2D array on the right is a 76
3 108 matrix presenting the mean GFA values for 76 tracts
in each subject. This array presents variations in the mean
GFA of tract bundles for each individual subject.

After applying TFCE and controlling the FWER, we
found 20 clusters located in 15 fiber tracts that showed sig-
nificant differences (FWER adjusted P< 0.05) between the
schizophrenia and control groups. As shown in Figure 5,
11 tracts contained clusters with GFA values that were sig-
nificantly higher in the control group than the schizophre-
nia group (red clusters in the connectogram and red
shadows in the GFA profiles), 3 tracts contained clusters
with GFA values that were significantly lower in the con-
trol group than the schizophrenia group (green clusters in
the connectogram and green shadows in the GFA profiles),
and 1 tract contained clusters with both significantly
higher and lower GFA values.

In the association fiber tracts, the bilateral fornices,
bilateral uncinate fasciculus, and right inferior frontal
occipital fasciculus contained significant clusters. In the
commissural fiber tracts, clusters were identified in the
anterior commissure and four components of the corpus
callosum, including the genu, dorsal lateral prefrontal
cortex, temporal pole and bilateral hippocampi. In the
projection fiber tracts, significant clusters occurred in the
bilateral frontal-striatum tracts of the orbital frontal cor-
tex, left thalamic radiation of the ventral and optical com-
ponents and right thalamic radiation of the precentral
component.

The cumulant map of the control-vs.-control comparison
showed 19 non-zero segments, ranging from 1 to 3, in 17
tracts. The maximal cumulant value of 3 was distributed
in 3 tracts only (Fig. 6a). In contrast, the cumulant map of
the controls-vs.-patient comparison revealed 40 non-zero
segments in 38 tracts, ranging from 1 to 97 (Fig. 6b). Fur-
thermore, the pattern of the cumulant map appeared very
similar to the map of significant difference between 54
patients and 54 controls in our original results (Fig. 5). The
test results indicate that the TBAA method has high
specificity.

DISCUSSION

In this study, we proposed an automatic method,
TBAA, to analyze the microstructural properties along
fiber tract bundles. The TBAA method accomplishes the
task using two developments. First, it uses a comprehen-
sive list of major tract bundles in the human brain which
were reconstructed on a DSI template, NTU-DSI-122. Sec-
ond, it uses an accurate registration strategy between indi-
vidual DSI datasets and the DSI template. Using this
registration strategy, TBAA showed high geometric agree-
ment between the manual tracts and template tracts, even
at the superficial part of the fiber tract bundles. Moreover,
the method showed smaller within-group variability of
GFA measurement as compared to the manual method.

TABLE II. Dice coefficients of the template and manual

tracts in the deep and superficial white matter

Deep white
matter

Superficial
white matter

Left arcuate fasciculus 0.70 6 0.15 0.71 6 0.13
Right arcuate fasciculus 0.69 6 0.16 0.70 6 0.15
Left cingulum 0.75 6 0.11 None
Right cingulum 0.73 6 0.11 None
Left corticospinal tract 0.73 6 0.13 0.77 6 0.15
Right corticospinal tract 0.74 6 0.15 0.78 6 0.16
Genu 0.71 6 0.12 0.69 6 0.14
Splenium 0.75 6 0.14 0.73 6 0.13

TABLE III. Comparison of functional differences

between TBAA and manual methods

TBAA method
(Mean 6 SD)

Manual method
(Mean 6 SD) P value

Left arcuate
fasciculus

0.125 6 0.035 0.150 6 0.042 <0.0001b

Right arcuate
fasciculus

0.128 6 0.037 0.149 6 0.040 <0.0001b

Left cingulum 0.121 6 0.040 0.187 6 0.057 <0.0001b

Right cingulum 0.123 6 0.038 0.175 6 0.053 <0.0001b

Left corticospinal
tract

0.067 6 0.021 0.104 6 0.031 <0.0001b

Right corticospinal
tract

0.071 6 0.026 0.125 6 0.035 <0.0001b

Genu 0.124 6 0.044 0.129 6 0.045 0.379
Splenium 0.122 6 0.034 0.138 6 0.051 0.007a

aP-value< 0.01.
bP-value< 0.0001.
TBAA: tract-based automatic analysis.
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Figure 3.

Generalized fractional anisotropy (GFA) profiles of 20 healthy individuals derived from the tract-

based automatic analysis method and those derived from the manual method. The thin curves indi-

cate GFA profiles of individual subjects and thick curves indicate the average GFA profiles over 20

subjects. AF: arcuate fasciculus; CG: cingulum bundle; CST: corticospinal tract; L: left; R: right.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In the feasibility test, TBAA yielded satisfactory sensitivity
and specificity in differentiating aberrant tracts in patients
with schizophrenia. The TBAA method addresses the limi-
tations of the manual approach and provides an enhanced
version of automated approach for tract-based analysis. It
enables high throughput and objective analysis of the
microstructural properties of the major tract bundles over
the whole brain.

In the proposed TBAA method, the trajectories of the
tracts were verified to be consistent with the anatomy of
known fiber pathways. Once the coordinates of these tracts
were transformed to individual DSI data, they were used
to automatically sample the tract integrity of each individ-
ual subject. Such knowledge-based information greatly
reduces the requirement for operator expertise and
ensures highly reproducible results (Table II). Approxi-
mately 30–40 min are required to complete the registration
of each set of DSI data on a personal computer (e.g., CPU:
i7 3.4GHz with 8 GB RAM). Compared with the manual
approach, this is an extremely short period of time to per-
form a tract-based analysis of the entire brain. Addition-
ally, virtually no manpower is required because most of
the TBAA procedures are automatic.

In the present study, we performed detailed segmenta-
tion of the tracts over the whole brain and made a com-
prehensive list of tract bundles. The success lies in the
fact that the tract bundles were reconstructed on the
NTU-DSI-122 template [Hsu et al., 2015] rather than a DTI
template. DTI models water diffusion as a 3D Gaussian,
which can be characterized by a symmetric rank two ten-
sor [Basser et al., 1994]. The Gaussian model limits DTI to
define only one single tract orientation for each voxel,
which makes deterministic tractography extremely diffi-
cult in regions of the white matter containing complex
fiber crossings. DSI models the diffusion signal as the
Fourier pair of the PDF [Wedeen et al., 2005]. Fiber cross-
ings can be resolved by determining the maximal orienta-
tion(s) of the PDF in situ. With the high-quality (high
SNR and high angular resolution) DSI template, we suc-
cessfully reconstructed most of the known major tract
bundles compatible with neuroanatomy, and we also
identified thin tract bundles that are difficult to be tracked
using DTI data. For instance, CG bundles that we identi-
fied contain medial and dorsal prefrontal connections as
well as temporal and parietal connections via parahippo-
campal part of CG which is very difficult to reconstruct

Figure 4.

The output of the tract-based automatic analysis (TBAA), a standardized matrix of 3D array con-

nectogram which contains a stack of 2D connectograms of a group of subjects. GFA: generalized

fractional anisotropy. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 5.

Whole brain tract comparison between patients with schizo-

phrenia and healthy controls using tract-based automatic analy-

sis. The 2D array in the upper panel shows enhanced t value

maps (in gray levels) computed from the threshold free cluster

enhancement. Tracts with significant difference among 76 tracts

are shown in red in the list on left and the generalized fractional

anisotropy (GFA) profiles of these tracts are shown in the lower

panel (profiles of controls in red and profiles in patients in

green). The red areas show the segments containing significantly

higher GFA values in controls than in patients. The green areas

show the segments containing significantly lower GFA values in

controls than in patients. AC: anterior commissure; CC: corpus

callosum; DLPFC: dorsal lateral prefrontal cortex; FS: frontal-

striatum; IFOF: inferior frontal occipital fasciculus; OFC: orbito-

frontal cortex; TR: thalamic radiation; UF: uncinate fasciculus.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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completely [Metzler-Baddeley et al., 2012]. We also identi-
fied the fornix connecting mammillary bodies and hippo-
campus. Notably, the columns of the fornix that arch
downward behind the anterior commissure and end in
the mammillary body were clearly shown in our atlas.
Moreover, the frontal aslant tracts connecting supplemen-
tary motor area and Broca’s area [Catani et al., 2013] were
also identified in our atlas. Another thin tract, stria termi-
nalis, which was difficult to be reconstructed in the DTI
template [Li et al., 2010], was determined in our atlas
showing the connection between septal nuclei and amyg-
dala. For the projection fiber system, the medial lemniscus
carried sensory information passing through the brain-
stem to the thalamus was found in the present study. Fur-
thermore, we separated the corticospinal tracts into five
components comprising the toe, trunk, hand, mouth, and
geniculate fibers according to different body parts of the
cortical homunculus in the primary motor cortex. The
white matter tract atlas embedded in the TBAA method is
comprehensive and potentially valuable for brain research
and clinical applications.

Compared with traditional tractography, the TBAA
method showed high geometric agreement between the
template tracts and manual tracts in both the deep white
matter and superficial white matter parts for all of the
eight tested tracts (Table II). The high agreement of tract
positions implies that our registration strategy, which
incorporates anatomical information of T1W images into
registration, indeed helps. To implement the anatomical
information, we created an intermediate template first
using high resolution T1W images by nonlinear registra-
tion and performed the second registration using DW

images by LDDMM DSI [Hsu et al., 2012]. By performing
this registration strategy, our results showed high geomet-
ric agreement between the template tracts and manual
tracts not only at the deep white matter part (Dice coef-
ficient 5 0.73 6 0.14), but also at the superficial white mat-
ter part (Dice coefficient 5 0.73 6 0.15). This strategy is
compatible with a recent report that the tractography
improves the termination of the pathways close to the
gray–white matter junction if the white matter TPM
derived from high-resolution T1W images is incorporated
[Smith et al., 2012].

Recent studies suggest that variations in FA or GFA val-
ues along a tract bundle may be more informative than
the average value of the entire tract [Johnson et al., 2013;
Maddah et al., 2008; Smith et al., 2006; Taquet et al., 2014].
Compared with the manual method, the TBAA method
presented larger variation of the GFA values along the
tracts (Fig. 3) and smaller within-group variability of the
GFA values (Table III). The correlation coefficients of GFA
profiles also showed higher functional agreements of the
measured GFA values in the TBAA method than the man-
ual method. The small variability and high correlation of
GFA values ensure the applicability of the stepwise analy-
sis in the TBAA method.

To test the feasibility of the TBAA method, we per-
formed a stepwise comparison of the tract integrity
between schizophrenia patients and healthy subjects.
Because this involves multiple comparisons, TFCE was
used to weight the t-statistic and the FWER was con-
trolled. We found significant differences in 20 clusters
involving 5 association fibers and 5 callosal fibers. These
tracts have been consistently reported in previous studies

Figure 6.

The cumulant maps of (a) the control-vs.-control comparison and (b) the control-vs.-patient

comparison. To visualize cumulant values of the segments, the range of the grayscale level in

each map was adjusted to an appropriate range. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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[Boos et al., 2013; Camchong et al., 2011; Wang et al.,
2011a]. Notably, we also detected clusters with significant
differences in projection fibers, such as in frontostriatal
tracts and thalamic radiation, which are seldom reported
in the literature. Our results demonstrate that the TBAA
method is a feasible and sensitive method that can be
used to differentiate the integrity of aberrant tracts in the
brains of a large cohort of patients with schizophrenia.

According to our methodology, TBAA is primarily used
for the tract-based analysis of DSI data. However, it also
applies to high angular resolution diffusion imaging
(HARDI) and DTI data. Specifically, a DTI dataset can be
derived from NTU-DSI-122 by sampling the DW volume
images with b-value 1000 s/mm2 along 18 noncolinear
directions via linear interpolation. The 18 interpolated DW
volume images and the b0 volume image can be processed
using linear fitting to generate the tensor map. Each indi-
vidual DTI dataset can be registered to the DTI template
via linear transformation [Friston et al., 1995], followed by
a nonlinear registration algorithm, LDDMM-DTI [Cao
et al., 2006]. The existing tract coordinates can be trans-
formed from the DTI template to native DTI space via a
transformation between the template and individual DTI
datasets. A similar approach can also be applied to
HARDI data.

TBAA improves the template-based approach by pro-
viding a comprehensive list of white matter tract bundles
on a DSI template, NTU-DSI-122, and an advanced regis-
tration algorithm that ensures accurate registration in both
image and diffusion domains. The trajectories of the recon-
structed tract bundles have been confirmed to follow the
anatomical landmarks on the accompanying T1W images
of the template. A two-step registration strategy is used to
register a group of DSI datasets to create a SST, and to
register the SST to the NTU-DSI-122 template. By trans-
forming the sampling coordinates from the template space
to the native space, the microstructural property index of
the tract bundles is extracted for each individual dataset.
One should note that TBAA belongs to the template-based
approach which assumes that the tract bundles recon-
structed on the template, once transformed to the individ-
ual’s native space, can represent individual’s tract
bundles. Comparing to the individual-based automated
tractography, TBAA overlooks the individual variations of
fiber pathways but provides a common trunk of the path-
ways for comparisons. Comparing to the approach that
estimates the structural connectivity [Daducci et al., 2012;
Hagmann et al., 2007], TBAA and other tract-specific anal-
yses focus on measuring microstructural property of each
individual tract bundle, whereas the structural connectiv-
ity approach emphasizes the network property of the con-
nected brain regions.

The TBAA method has limitations. First, the method is
not applicable to subjects with macroscopic brain lesions,
such as brain tumors and congenital anomalies, or to sub-
jects that have experienced a stroke. These lesions would
cause large errors in the spatial registration of the brain

images and provide incorrect localization data of white
matter sampling. Second, the NTU-DSI-122 template was
developed from healthy adults that were 20–40 years old.
The registration error between individual DSI data and the
DSI template may increase if the age of the studied sub-
jects deviates from this age range. This limitation can be
ameliorated by building a series of age-dependent tem-
plates with similar tract coordinates that are transformed
for various ages. Third, in the current version of TBAA,
only 76 major tract bundles are reconstructed. This may
not meet the needs for finer tracts that connect specific
brain regions. Nonetheless, one could perform diffusion
tractography to reconstruct tracts of interest on the DSI
template and apply the tract coordinates using the TBAA
method. Finally, this study only uses GFA as an index of
microstructural property. Other voxel-based indices that
are more specific to other aspects of microstructural prop-
erties are readily applicable to the TBAA method.

In conclusion, we proposed an automatic method, TBAA,
for tract-based analysis over the whole brain. Compared
with previous tract-specific analyses, TBAA provides a com-
prehensive list of the white matter tracts in the human brain
and an accurate registration strategy for spatial normaliza-
tion. In the validation experiment, TBAA shows high geo-
metric agreement with the tracts reconstructed manually on
individual datasets. It also shows small within-group vari-
ability of the measured GFA values. In the feasibility dem-
onstration on patients with schizophrenia, TBAA is capable
of detecting aberrant tracts that are consistently reported
previously. Therefore, TBAA is potentially valuable for sys-
tematic investigation of tract integrity over the whole brain,
particularly in a large cohort study.

REFERENCES

Ashburner J (2009): Computational anatomy with the SPM soft-
ware. Magn Reson Imaging 27:1163–74.

Ashburner J, Friston KJ (2005): Unified segmentation. Neuroimage
26:839–51.

Ashburner J, Friston KJ (2011): Diffeomorphic registration using
geodesic shooting and Gauss-newton optimisation. Neuro-
image 55:954–67.

Basser PJ, Mattiello J, LeBihan D (1994): Estimation of the effective
self-diffusion tensor from the NMR spin echo. J Magn Reson B
103:247–54.

Basser PJ, Pajevic S (2003): A normal distribution for tensor-
valued random variables: Applications to diffusion tensor
MRI. IEEE Trans Med Imaging 22:785–94.

Boos HB, Mandl RC, van Haren NE, Cahn W, van Baal GC, Kahn
RS, Hulshoff Pol HE (2013): Tract-based diffusion tensor imag-
ing in patients with schizophrenia and their non-psychotic sib-
lings. Eur Neuropsychopharmacol 23:295–304.

Camchong J, MacDonald AW, 3rd, Bell C, Mueller BA, Lim KO
(2011): Altered functional and anatomical connectivity in schiz-
ophrenia. Schizophr Bull 37:640–50.

Cao Y, Miller MI, Mori S, Winslow RL, Younes L (2006): Diffeo-
morphic matching of diffusion tensor images. Proc IEEE Com-
put Soc Conf Comput Vis Pattern Recognit 2006:67

r Chen et al. r

r 3456 r



Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A,
Wieneke C, Thompson CK, Thiebaut de Schotten M,
Dell’Acqua F, Weintraub S, Rogalski E (2013): A novel frontal
pathway underlies verbal fluency in primary progressive apha-
sia. Brain 136(Pt 8):2619–2628.

Catani M, Thiebaut de Schotten M (2008): A diffusion tensor
imaging tractography atlas for virtual in vivo dissections. Cor-
tex 44:1105–32.

Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony
JS, McKinstry RC, Burton H, Raichle ME (1999): Tracking neu-
ronal fiber pathways in the living human brain. Proc Natl
Acad Sci USA 96:10422–10427.

Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L,
Gigandet X, Meuli R, Hagmann P, Thiran JP (2012): The con-
nectome mapper: An open-source processing pipeline to map
connectomes with MRI. PLoS One 7:e48121

Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK,
Born R, Westin CF (2007): Comparison of fiber tracts derived
from in-vivo DTI tractography with 3D histological neural tract
tracer reconstruction on a macaque brain. Neuroimage 37:
530–538.

Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD,
Frackowiak RSJ (1995): Spatial registration and normalization
of images. Hum Brain Mapp 3:165–189.

Fritzsche KH, Laun FB, Meinzer HP, Stieltjes B (2010): Opportuni-
ties and pitfalls in the quantification of fiber integrity: What
can we gain from Q-ball imaging? Neuroimage 51:242–51.

Goodlett CB, Fletcher PT, Gilmore JH, Gerig G (2009): Group anal-
ysis of DTI fiber tract statistics with application to neurodevel-
opment. Neuroimage 45:S133–S142.

Gorczewski K, Mang S, Klose U (2009): Reproducibility and con-
sistency of evaluation techniques for HARDI data. MAGMA
22:63–70.

Gouttard S, Goodlett CB, Kubicki M, Gerig G (2012): Measures for
validation of DTI tractography. Proc Soc Photo Opt Instrum
Eng 8314:83140J.

Greve DN, Fischl B (2009): Accurate and robust brain image align-
ment using boundary-based registration. Neuroimage 48:63–72.

Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P,
Le Bihan D, Leboyer M, Houenou J, Mangin JF (2012): Auto-
matic fiber bundle segmentation in massive tractography data-
sets using a multi-subject bundle atlas. Neuroimage 61:1083–
1099.

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli
R, Thiran JP (2007): Mapping human whole-brain structural
networks with diffusion MRI. PLoS One 2:e597

Haines DE (2008): Neuroanatomy: An Atlas of Structures,
Sections, and Systems. Philadelphia: Wolters Kluwer Health/
Lippincott Williams & Wilkins. p 341.

Hsu YC, Hsu CH, Tseng WY (2012): A large deformation diffeo-
morphic metric mapping solution for diffusion spectrum imag-
ing datasets. Neuroimage 63:818–834.

Hsu Y-C, Lo Y-C, Chen Y-J, Wedeen VJ, Tseng W-YI (2015): NTU-
DSI-122: A diffusion spectrum imaging template with high
anatomical matching to the ICBM-152 space. Hum Brain Mapp
doi: 10.1002/hbm.22860.

Huang H, Zhang J, van Zijl PC, Mori S (2004): Analysis of noise
effects on DTI-based tractography using the brute-force and
multi-ROI approach. Magn Reson Med 52:559–65.

Johnson RT, Yeatman JD, Wandell BA, Buonocore MH, Amaral
DG, Nordahl CW (2013): Diffusion properties of major white

matter tracts in young, typically developing children. Neuro-
image 88C:143–154.

Jones DK, Simmons A, Williams SC, Horsfield MA (1999): Non-
invasive assessment of axonal fiber connectivity in the human
brain via diffusion tensor MRI. Magn Reson Med 42:37–41.

Kuo LW, Chen JH, Wedeen VJ, Tseng WY (2008): Optimization of
diffusion spectrum imaging and q-ball imaging on clinical
MRI system. Neuroimage 41:7–18.

Lee SK, Kim DI, Kim J, Kim DJ, Kim HD, Kim DS, Mori S. (2005):
Diffusion-tensor MR imaging and fiber tractography: A new
method of describing aberrant fiber connections in develop-
mental CNS anomalies. Radiographics 25:53–65; discussion
66-8.

Li H, Xue Z, Guo L, Liu T, Hunter J, Wong ST (2010): A hybrid
approach to automatic clustering of white matter fibers. Neu-
roimage 49:1249–1258.

Maddah M, Kubicki M, Wells WM, Westin CF, Shenton ME,
Grimson WE (2008): Findings in schizophrenia by tract-
oriented DT-MRI analysis. Med Image Comput Comput Assist
Interv 11:917–924.

Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R,
Caviness VS Jr., Pandya DN (2005): Segmentation of subcom-
ponents within the superior longitudinal fascicle in humans: A
quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869.

Metzler-Baddeley C, Jones DK, Steventon J, Westacott L, Aggleton
JP, O’Sullivan MJ (2012): Cingulum microstructure predicts
cognitive control in older age and mild cognitive impairment.
J Neurosci 32:17612–17619.

Miller MI, Trouve A, Younes L (2006): Geodesic shooting for com-
putational anatomy. J Math Imaging Vis 24:209–228.

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria
AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR,
Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta J
(2008): Stereotaxic white matter atlas based on diffusion tensor
imaging in an ICBM template. Neuroimage 40:570–582.

Nichols T, Hayasaka S (2003): Controlling the familywise error
rate in functional neuroimaging: A comparative review. Stat
Methods Med Res 12:419–446.

Nolte J (2009): The Human Brain: An Introduction to its Func-
tional Anatomy. Philadelphia, PA: Mosby/Elsevier. xii, p 720.

Nolte J, Angevine JB (2013): The Human Brain in Photographs
and Diagrams. Philadelphia, PA: Elsevier/Saunders. xiii, p
258.

O’Donnell LJ, Westin CF (2007): Automatic tractography segmen-
tation using a high-dimensional white matter atlas. IEEE Trans
Med Imaging 26:156221575.

Park HJ, Kubicki M, Shenton ME, Guimond A, McCarley RW,
Maier SE, Kikinis R, Jolesz FA, Westin CF (2003): Spatial nor-
malization of diffusion tensor MRI using multiple channels.
Neuroimage 20:1995–2009.

Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003): Reduction of
eddy-current-induced distortion in diffusion MRI using a
twice-refocused spin echo. Magn Reson Med 49:177–182.

Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC,
Harms MP, Smith SM, Van Essen DC, Jenkinson M (2014):
MSM: A new flexible framework for multimodal surface
matching. Neuroimage 100:414–426.

Ruiz-Alzola J, Westin CF, Warfield SK, Alberola C, Maier S,
Kikinis R (2002): Nonrigid registration of 3D tensor medical
data. Med Image Anal 6:143–161.

Schmahmann JD, Pandya DN (2007): The complex history of the
fronto-occipital fasciculus. J Hist Neurosci 16:362–377.

r Automatic Whole Brain Tract-Based Analysis r

r 3457 r

info:doi/10.1002/hbm.22860


Smith RE, Tournier JD, Calamante F, Connelly A (2012): Anatomi-
cally-constrained tractography: Improved diffusion MRI
streamlines tractography through effective use of anatomical
information. Neuroimage 62:1924–1938.

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols
TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ,
Matthews PM, Behrens TE (2006): Tract-based spatial statistics:
Voxelwise analysis of multi-subject diffusion data. Neuroimage
31:1487–1505.

Smith SM, Nichols TE (2009): Threshold-free cluster enhancement:
Addressing problems of smoothing, threshold dependence and
localisation in cluster inference. NeuroImage 44:83–98.

Studholme C (2008): Dense feature deformation morphometry:
Incorporating DTI data into conventional MRI morphometry.
Med Image Anal 12:742–51.

Suarez RO, Commowick O, Prabhu SP, Warfield SK (2012): Auto-
mated delineation of white matter fiber tracts with a multiple
region-of-interest approach. Neuroimage 59:3690–700.

Taquet M, Scherrer B, Commowick O, Peters JM, Sahin M, Macq
B, Warfield SK (2014): A mathematical framework for the
registration and analysis of multi-fascicle models for popula-
tion studies of the brain microstructure. IEEE Trans Med Imag-
ing 33:504–517.

Tuch DS (2004): Q-ball imaging. Magn Reson Med 52:1358–1372.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,

Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15:273–289.

Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M,
Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van
Zijl P, Mori S (2007): Reproducibility of quantitative tractogra-
phy methods applied to cerebral white matter. Neuroimage 36:
630–644.

Wakana S, Nagae-Poetscher LM, Jiang H, van Zijl P, Golay X,
Mori S (2005): Macroscopic orientation component analysis of
brain white matter and thalamus based on diffusion tensor
imaging. Magn Reson Med 53:649–657.

Wang Q, Deng W, Huang C, Li M, Ma X, Wang Y, Jiang L,
Lui S, Huang X, Chua SE, Cheung C, McAlonan GM, Sham
PC, Murray RM, Collier DA, Gong Q, Li T (2011a): Abnor-
malities in connectivity of white-matter tracts in patients
with familial and non-familial schizophrenia. Psychol Med
41:1691–1700.

Wang X, Grimson WE, Westin CF (2011b): Tractography segmen-
tation using a hierarchical dirichlet processes mixture model.
Neuroimage 54:290–302.

Wassermann D, Bloy L, Kanterakis E, Verma R, Deriche R (2010):
Unsupervised white matter fiber clustering and tract probabil-
ity map generation: Applications of a gaussian process frame-
work for white matter fibers. Neuroimage 51:228–241.

Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM
(2005): Mapping complex tissue architecture with diffusion
spectrum magnetic resonance imaging. Magn Reson Med 54:
1377–1386.

Yeh FC, Tseng WY (2013): Sparse solution of fiber orientation dis-
tribution function by diffusion decomposition. PLoS One 8:
e75747.

Yendiki A, Panneck P, Srinivasan P, Stevens A, Zollei L,
Augustinack J, Wang R, Salat D, Ehrlich S, Behrens T, Jbabdi
S, Gollub R, Fischl B (2011): Automated probabilistic recon-
struction of white-matter pathways in health and disease using
an atlas of the underlying anatomy. Front Neuroinform 5:23.

Zhang Y, Wang C, Zhao X, Chen H, Han Z, Wang Y (2010a): Dif-
fusion tensor imaging depicting damage to the arcuate fascicu-
lus in patients with conduction aphasia: A study of the
Wernicke-geschwind model. Neurol Res 32:775–778.

Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K,
Rosa-Neto P, Pike GB, Evans A, Toga AW, Woods R,
Mazziotta JC, Miller MI, van Zijl PC, Mori S (2010b): Atlas-
guided tract reconstruction for automated and comprehensive
examination of the white matter anatomy. Neuroimage 52:
1289–1301.

Zollei L, Stevens A, Huber K, Kakunoori S, Fischl B (2010):
Improved tractography alignment using combined volumetric
and surface registration. Neuroimage 51:206–213.

r Chen et al. r

r 3458 r


	l

