
Resting-State Oscillatory Dynamics in
Sensorimotor Cortex in Benign Epilepsy With

Centro-Temporal Spikes and Typical Brain
Development

Loes Koelewijn,1* Khalid Hamandi,1 Lisa M. Brindley,1 Matthew J. Brookes,2

Bethany C. Routley,1 Suresh D. Muthukumaraswamy,3 Natalie Williams,4

Marie A. Thomas,4 Amanda Kirby,4 Johann te Water Naud�e,5

Frances Gibbon,5 and Krish D. Singh1

1CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
2Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, Univer-

sity of Nottingham, Nottingham, United Kingdom
3Schools of Pharmacy and Psychology, University of Auckland, Auckland, New Zealand

4Dyscovery Centre, University of South Wales, Newport, United Kingdom
5Child Health, University Hospital of Wales, Cardiff, United Kingdom

r r

Abstract: Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy
associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS
often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive
impairments. To better understand the neural profile of BECTS, we studied background brain oscilla-
tions, thought to be integrally involved in neural network communication, in sensorimotor areas. We
used independent component analysis of temporally correlated sources on magnetoencephalography
recordings to assess sensorimotor resting-state network activity in BECTS patients and typically
developing controls. We also investigated the variability of oscillatory characteristics within focal pri-
mary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that back-
ground oscillations would differ between patients and controls in the sensorimotor network but not
elsewhere, especially in the beta band (13–30 Hz) because of its role in network communication and
motor processing. The results support our hypothesis: in the sensorimotor network, patients had a
greater variability in oscillatory amplitude compared to controls, whereas there was no difference in
the visual network. Network measures did not correlate with age. The coefficient of variation of rest-
ing M1 peak frequency correlated negatively with age in the beta band only, and was greater than
average for a number of patients. Our results point toward a “disorganized” functional sensorimotor
network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings fur-

Additional Supporting Information may be found in the online
version of this article.

Contract grant sponsor: The Waterloo Foundation; Contract grant
sponsor: MRC UK MEG Partnership Grant; Contract grant num-
ber: MR/K005464/1; Contract grant sponsor: MRC Doctoral
Training Grant; Contract grant number: MR/K501086/1; Contract
grant sponsor: Cardiff and Vale University Health Board and a
Wales Government, NISCHR AHSC Award (K.H.)

Loes Koelewijn and Khalid Hamandi are joint equal first authors.

*Correspondence to: Loes Koelewijn; Cardiff University Brain
Research Imaging Centre (CUBRIC), School of Psychology,
Cardiff University, Park Place, Cardiff CF10 3AT, UK.
E-mail: koelewijnL@cardiff.ac.uk

Received for publication 16 January 2015; Revised 29 May 2015;
Accepted 15 June 2015.

DOI: 10.1002/hbm.22888
Published online 14 July 2015 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 36:3935–3949 (2015) r

VC 2015 Wiley Periodicals, Inc.



ther suggest that investigating the variability of oscillatory peak frequency may be a useful tool to
investigate deficits of disorganization in neurodevelopmental disorders. Hum Brain Mapp 36:3935–
3949, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Benign Epilepsy with Centro-Temporal Spikes (BECTS) is
a common childhood epilepsy characterized by sensorimo-
tor seizures affecting mouth and face and high amplitude
centro-temporal spikes [Gobbi et al., 2006; Panayiotopoulos
et al., 2008]. Children with BECTS usually develop symp-
toms before the age of 11 and seizures tend to resolve at
adolescence, regardless of medication [Hughes, 2010; Pan-
ayiotopoulos et al., 2008]. BECTS is associated with deficits
in several neurocognitive domains, particularly language
skills [Overvliet et al., 2010, 2011; Smith et al., 2012], but
also motor skills [Overvliet et al., 2011], attention [Giordani
et al., 2006; Smith et al., 2012], memory [Giordani et al.,
2006; Pinton et al., 2006], and audition [Lundberg et al.,
2005; Smith et al., 2012]. Some of these, such as motor
development and language impairment, may correlate
[Overvliet et al., 2011]. Recent evidence that neurocognitive
deficits do not always fully recover by adolescence have
challenged the benign nature of BECTS and sparked debate
about the necessity for treatment [Hughes, 2010].

Centro-temporal spikes have received much attention in
neurophysiological investigations of BECTS [Archer et al.,
2003; Kamada et al., 1998; Lin et al., 2003; Pataraia et al., 2008;
van der Meij et al., 2001], which have shown that the neural
source of centro-temporal spikes is generally located in the pri-
mary sensorimotor cortices. However, BECTS is thought to be
part of a spectrum of neurodevelopmental disorders, rather
than having a distinct aetiology [Gobbi et al., 2006; Overvliet
et al., 2010; Tsai et al., 2013]. Siblings of BECTS patients show
similar neurocognitive impairments [Smith et al., 2012; Ver-
rotti et al., 2013] and centro-temporal electroencephalography
(EEG) spikes are also seen in other childhood developmental
disorders [Holtmann et al., 2003] and in more complex epi-
lepsy syndromes [Vears et al., 2012]. Nevertheless, sensorimo-
tor cortex is thought to be the source of epileptiform activity.
Ictal activity may spread from sensorimotor cortex to other
areas, particularly the lateral sulcus [Overvliet et al., 2010,
2011]. The lateral sulcus hosts language processing areas,
which display abnormal functional lateralization in BECTS
[Lillywhite et al., 2009]. Downstream effects of ictal activity
may thus eventually lead to disruption of functional neural
systems, and neural adaptation or compensation may further
disrupt normal brain function in children with BECTS.

The above evidence suggests that the neuropathology of
BECTS cannot be solely characterized by spikes and, if we are
to gain a better understanding of the disease, it is essential to

study resting-state activity in the sensorimotor network. It has
frequently been shown that resting-state networks can be stud-
ied using functional magnetic resonance imaging (fMRI), with
the primary finding of several consistent networks involved in
specific functional processing [Biswal et al., 1995; Damoiseaux
et al., 2006; Greicius et al., 2003]. Using fMRI, a number of stud-
ies have found abnormalities in resting activity in language
areas in BECTS, in connectivity between language and sensori-
motor areas [Besseling et al., 2013a,b], and in local coherence of
the blood oxygenation level dependent signal in several areas
including sensorimotor cortex [Tang et al., 2014]. Unfortu-
nately, the indirect nature of the fMRI measurement (which is
related to blood flow) means that it cannot assess directly elec-
trophysiological activity in the networks in question [Murphy
et al., 2013]. In particular, neural oscillations (rhythmic activity
in neural cell assemblies), which are thought to be crucial in
mediating network activity [Donner and Siegel, 2011; Fries,
2005], cannot be studied using fMRI. Recent work [Brookes
et al., 2011; Hall et al., 2013; Muthukumaraswamy et al., 2013a]
has however begun to show that networks, with a similar
structure to those in fMRI and including the sensorimotor net-
work, can also be seen using magnetoencephalography (MEG).
This opens up a unique opportunity to study, for the first time,
resting-state electrophysiological activity in the sensorimotor
network, in BECTS.

Here, we hypothesized that resting activity in patients would
differ from controls in the sensorimotor network, but not in the
visual network, which served as a control. We further expected
differences to dominate in the beta band because of its
hypothesized role in mediating long-range network integration
[Donner and Siegel, 2011] and motor processing [Gaetz et al.,
2010; Jurkiewicz et al., 2006], and because the sensorimotor net-
work in fMRI correlates most strongly with beta-band EEG
rhythm fluctuations [Mantini et al., 2007]. In addition to net-
work activity, we investigated variability of amplitude and fre-
quency of focal resting-state background oscillatory activity in
primary motor cortex (the locations of which were obtained
from a separate recording run using a motor response task),
using a coefficient of variation analysis.

MATERIALS AND METHODS

Subjects

Twenty-three patients aged 8–16 diagnosed with BECTS
were recruited through local paediatric clinics. Seventeen
age-matched typically developing controls were recruited
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through approved advertisements on Cardiff University’s
noticeboard, in local primary schools, hospitals and other
public locations. All patients and controls had normal or
corrected-to-normal vision. Subjects and their parents or
guardians gave age-appropriate informed consent accord-
ing to the Declaration of Helsinki. Participating families
received a small reimbursement for their participation. All
procedures were approved by the local Ethics Committee.

A total of four patients were excluded: two patients
were rediagnosed with symptomatic epilepsies after
recruitment, one patient was unwilling to perform the
brain scans on arrival, and one patient’s data were of too
poor quality to analyze.

Participation involved 2–3 h of neurocognitive testing
and 2–3 h of neuroimaging scans on two separate days.
Due to technical issues, subject willingness, and/or time
limitations, we did not always obtain the full set of
planned data acquisition. The current analysis required a
completed eyes-open resting-state MEG dataset, finger
abduction MEG datasets on both hands, and a structural
MRI scan. Of the remaining 19 patients and 17 controls,
we did not manage to obtain the finger-abduction dataset
on one hand for one patient and one control, and the
resting-state dataset for one further patient. The final anal-
ysis thus included 17 patients (aged 8.17–14.89, mean
10.82, 9M/8F, 1 left-handed) and 16 controls (aged 8.32–
15.01, mean 11.11, 8M/8F, 3 left-handed). The two groups
did not differ in age (independent samples t test,
t(31)=20.44, P=0.66) and performed their resting-state
recording at a similar time of day (t(31)=1.22, P=0.23).
Details of the patient group, including frequency of
observed centro-temporal spikes, are given in Table I.

Neurocognitive Testing

All subjects were screened with questionnaires assessing
their neurocognitive abilities by trained psychologists from
the Dyscovery Centre. The testing session included the Kauf-
man Brief Intelligence Test (KBIT-2) [Kaufman and Kaufman,
2004], Movement Assessment Battery for Children (MABC)
[Henderson et al., 2007], Test for Reception of Grammar
(TROG-2) [Bischop, 2003], Detailed Assessment of Speed of
Handwriting (DASH) [Barnett et al., 2007], Matching Famil-
iar Figures Test [Moos and Moos, 1994], and Wechsler Indi-
vidual Achievement Test (WIAT-II) [Wechsler, 2005].

Neuroimaging Data Acquisition and

Preprocessing

Patients and controls underwent an MRI session in which
a T1-weighted 1-mm anatomical scan was acquired, using
an inversion recovery spoiled gradient echo acquisition.

In an MEG session, whole-head MEG recordings were
made using a 275-channel CTF radial gradiometer system.
An additional 29 reference channels were recorded for
noise cancellation purposes and the primary sensors were
analyzed as synthetic third-order gradiometers [Vrba and
Robinson, 2001]. Two or three of the 275 channels were
turned off due to excessive sensor noise (depending on
time of acquisition). Subjects were seated upright in the
magnetically shielded room. To achieve MRI/MEG core-
gistration, fiduciary markers were placed at fixed distances
from three anatomical landmarks identifiable in the sub-
ject’s anatomical MRI, and their locations were verified
afterward using high-resolution digital photographs. For

TABLE I. Patient group description

Patient
Age at
MEG

Age at
onset

Time since
onset

Seizure
freq/yr

Last seizure
(days) Medication EEG spikes

MEG
spikes

1 8.17 5 3.17 6.0 90 none freq R none
2 8.44 7 1.44 2.0 365 none freq L reg BL
3 9.04 6 3.04 0.5 540 none (1 wk off CBZ) freq L none
4 9.46 9 0.46 104.0 1 CBZ freq BL freq BL
5 9.46 7 2.46 12.0 120 CBZ freq L some L
6 9.69 8 1.69 3.0 90 CBZ v freq R-BL freq BL
7 9.82 9 0.82 12.0 60 CBZ v freq L some R
8 9.98 8 1.98 0.0 150 VPA some L none
9 10.26 8 2.26 104.0 7 CBZ freq R-BL some R-BL
10 11.36 10 1.36 2.9 540 none freq L freq R
11 11.80 9 2.80 5.0 120 none v freq L some L
12 11.88 6 5.88 0.5 60 LTG v freq R none
13 12.23 10 2.23 0.4 730 none freq R none
14 12.23 8 4.23 1.0 300 LTG some R none
15 12.26 5 7.26 52.0 2 CBZ some R reg L-BL
16 12.95 8 4.95 0.0 365 VPA some R none
17 14.98 9 5.98 0.5 912 VPA some R none

Medication: CBZ, carbamazepine; VPA, sodium valproate; LTG, lamotrigine. EEG and MEG spikes indicate frequency and dominant
hemisphere. EEG spike information was obtained from the clinical letter and sleep-deprived EEG report. R, right, L, left, BL, bilateral.
The number of observed spikes in the 3-min MEG recording is indicated as: some 5 1–29, regular (reg) 5 30–50, frequent (freq)> 50.
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two patients, we could not obtain an MRI scan of suffi-
cient quality. These were replaced with a scan of a child of
comparable age and head size for coregistration. Head
localization was performed before and after each record-
ing, yielding one measure of head motion per dataset by
calculating the difference between the two localizations. A
trigger was sent to the acquisition computer at relevant
stimulus events.

In the MEG scanner, subjects were asked to perform a
range of tasks. This included a 3-min acquisition where the
subject sat still without a task instruction (“resting state”)
with their eyes open. Subjects further performed a task tar-
geting motor cortex activity, in which they made brisk single
abductions pushing a small lever sideways with their index
finger in response to an auditory cue delivered through ear-
phones. Subjects received visual feedback of how far they
had pushed the lever, aiming to line a small vertical bar up to
the center of a horizontal bar [Hamandi et al., 2011; Muthu-
kumaraswamy, 2010, 2013b]. This task lasted 8 min, and sub-
jects performed one for each hand. Electrodes were placed on
the skin to measure the electromyography (EMG) of the first
dorsal interosseus of each hand.

Eyes-open resting-state datasets were acquired at, or
down-sampled to, 600 Hz, and filtered with a 1-Hz high-
pass and a 150-Hz low-pass filter. The datasets were then
segmented into 2-s epochs. The data were visually inspected
and epochs with major artefacts such as head movements or
large muscle contractions were excluded from subsequent
analysis. Due to the generally infrequent and inconsistent
occurrence of centro-temporal spikes in patients, we did not
exclude epochs containing these from the data (Table I).

Resting-State Independent Component Network

Analysis

We analyzed oscillatory resting networks using the meth-
odology described by Brookes and coworkers [Brookes
et al., 2011; Hall et al., 2013], similar to our previous work
[Muthukumaraswamy et al., 2013a]. Using the preprocessed
data, beamformer weights were computed on an 8-mm grid
for each subject and frequency band, using the Synthetic
Aperture Magnetometry (SAM) beamformer algorithm
[Robinson and Vrba, 1999]. A multiple local-spheres volume
conductor model [Huang et al., 1999] was derived by fitting
spheres to the brain surface extracted by the FSL Brain
Extraction Tool [Smith, 2002]. Beamformer time courses
were then generated at every voxel and normalized by an
estimate of the projected noise amplitude at that voxel [Hall
et al., 2013]. The Hilbert transform was applied to each
voxel time course, and the absolute value was computed to
generate an amplitude envelope of the oscillatory signals in
each frequency band. The data at each voxel were down-
sampled to an effective sampling rate of 1 Hz [Luckhoo
et al., 2012], and transformed to a paediatric template brain
constructed of brain scans from 67 children, aged 9.6–12.9
(mean 11.09) [Wilke et al., 2003] using FLIRT in FSL. Data

from all subjects were then concatenated in the time dimen-
sion across subjects.

Temporal independent component analysis (ICA) was
applied to the concatenated datasets using the fast ICA
(research.ics.tkk.fi/ica/fastica) algorithm. We applied ICA
separately for six bands identical to previous literature: 1–4
Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha), 13–30 Hz (beta),
30–50 Hz (gamma), and 50–90 Hz (high gamma) [Brookes
et al., 2011; Muthukumaraswamy et al., 2013a]. We analyzed
one additional band comprising 90–150 Hz, as High-
Frequency Oscillations (HFOs) have been associated with
epileptiform activity in BECTS [Kobayashi et al., 2011]. Pre-
whitening was applied to reduce the dimensionality of the
source-space Hilbert envelope signals to 25 principal com-
ponents before ICA [Brookes et al., 2011; Hall et al., 2013;
Hyv€arinen and Oja, 2000]. Fifteen independent components
were derived for each frequency band. Although this ICA
method does not require a priori selection of voxels, and is
applied over the group-concatenated times series of all vox-
els in template space, we determined, a priori, to select only
the sensorimotor and visual networks from the produced
components for further analysis. For these two components,
we computed the time-series standard deviation (SD) of the
demeaned component amplitude for each subject (the indi-
vidual’s time series associated with the group-wide pattern
of temporally correlated voxels relevant for the respective
network), using a sliding window (20 1-s samples wide).
The resulting SD time series were then subjected to a boot-
strapping procedure (10,000 bootstrapped means) to obtain
mean and confidence intervals. SDs can be interpreted as a
measure of activity in a network [Muthukumaraswamy
et al., 2013a], or variability thereof.

Beamformers normally suppress temporally correlated
sources. There are a number of reasons why this problem
is unlikely to greatly affect the currently applied ICA
approach. First, correlation is calculated between the enve-
lopes of temporally downsampled oscillatory sources
rather than the raw oscillatory signal in the unfiltered time
domain. This makes it possible to observe sources that are
temporally correlated in their frequency envelopes but not
in their raw signal and hence do not get suppressed
[Brookes et al., 2011]. Furthermore, it is unrealistic that
distant neural sources are perfectly correlated over the
course of several minutes, which would be required to
yield beamformer suppression [Hadjipapas et al., 2005].
Finally, even in scenarios where there may be pathologi-
cally strongly correlated sources, beamformers are still
capable of revealing those sources and networks [Brookes
et al., 2012; Gross et al., 2001; Schnitzler and Gross, 2005].

Coefficient of Variation in Amplitude and

Frequency in Primary Motor Cortex

Localization of primary motor cortex

Analysis of finger-abduction data was time-locked to
EMG onsets, marked as an increase in the rectified EMG
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signal by 2.5 SDs above the noise floor between 20.5 s to
11 s around the auditory cue [Cheyne et al., 2008; Muthu-
kumaraswamy, 2010]. The continuous recording was visu-
ally inspected to verify the EMG onset with readings from
an optical displacement meter. All data were then epoched
from 21.5 s to 12.5 s around the EMG markers. Epoched
data were visually inspected and those with large artefacts
(as above), movements in addition to the single finger
abduction, or extraneous EMG activity were excluded
from further analysis.

Motor cortex coordinates for focal resting-state analysis
were obtained from the finger-abduction MEG data. The
motor cortex response to finger abduction is well-
characterized to have three components (Movement-
Related Beta Desynchronization (MRBD), Movement-
Related Gamma Synchronization (MRGS), and Post-
Movement Beta Rebound (PMBR) [Jurkiewicz et al., 2006]).
We chose the 60–90 Hz MRGS for localization of primary
motor cortex, as it is strongly elicited during a finger
movement [Cheyne et al., 2008], is predominantly contra-
lateral [Cheyne et al., 2008; Crone et al., 1998; Jurkiewicz
et al., 2006], is known to follow motortopical organization
[Cheyne et al., 2008; Crone et al., 1998], is clearly present
in children [Gaetz et al., 2010], and its localization does
not differ with age [Gaetz et al., 2010].

For each hand, peak MRGS coordinates were obtained
from the finger-abduction data using the SAM beamformer
algorithm [Robinson and Vrba, 1999]. Finger-abduction
datasets were first band-pass filtered at 60-90 Hz using a
fourth-order bidirectional IIR Butterworth filter. For source
localization, a multiple local-spheres forward model
[Huang et al., 1999] was derived by fitting spheres for
each sensor to the brain surface extracted by the FSL Brain
Extraction Tool [Smith, 2002]. The SAM beamformer algo-
rithm was then used to create a set of beamformer weights
for the whole brain at 4-mm isotropic voxel resolution for
each dataset. Virtual sensors were constructed at each
voxel, and from these, paired t statistical images of source
power (Student’s t statistic) for a baseline window of 21.3
to 21.0 s premovement compared to an active window of
0–0.3 s postmovement were generated for each dataset.
The individual paired t SAM images of each dataset were
examined and the coordinates of peak activity of the con-
tralateral MRGS response were obtained.

For illustration purposes, we generated group-level
source images of the finger-abduction responses, using the
MNI adult template brain. Previous research has shown
that this approach is sufficiently accurate for localization
of motor cortex activity, as it is an a priori, well-defined,
area of interest [Gaetz et al., 2010].

Coefficient of variation in oscillatory amplitude

In this article, the finger-abduction data were only used
to obtain coordinates of left and right contralateral pri-
mary motor cortex in each individual. The obtained coor-
dinates were then applied to analyze oscillatory activity in

the resting-state datasets. Thus, all results presented here
are from analyses of the resting-state datasets.

For each resting-state dataset, virtual sensor waveforms
were generated at each of the obtained finger-abduction
peak voxel MRGS locations (L/R) using the SAM beam-
former algorithm, optimized for each single obtained (vir-
tual) sensor. For this analysis, resting-state virtual sensor
data were band-pass filtered at 0–150 Hz. Time-frequency
analysis of each single virtual sensor was conducted using
the Hilbert transform from 1 to 150 Hz in 0.5-Hz steps
with an 8-Hz wide band-pass, third-order Butterworth fil-
ter [Le Van Quyen et al., 2001]. Finally, the average
amplitude-time series over epochs was obtained for each
1-Hz step within 6–150 Hz (due to the 8-Hz bandwidth,
time-frequency data below 6 Hz could not be obtained).
We subsequently calculated the mean and SD of oscilla-
tory amplitude in each 1-Hz band over the 1200 averaged
time samples. From these, we calculated the coefficient of
variation (CV) by dividing the SD by the mean, which has
the advantage of being scale-invariant and minimally
affected by between-subject variance [Little et al., 2012].
We then averaged the obtained CV over the relevant 1-Hz
bands per frequency band of interest. We used identical
bands to those used in the network analysis (from 6 Hz,
i.e., the theta band here was calculated from 6–8 Hz, the
remaining bands are identical).

Coefficient of variation in oscillatory peak frequency

To obtain variability in peak frequency, the resting-state
virtual sensor data were first filtered and transformed
identical to amplitude analysis. We then calculated the
amplitude-frequency representation for each 2-s epoch per
dataset, averaging over all time samples per epoch. A sin-
gle local maximum was then obtained per epoch
amplitude-frequency curve to obtain peak frequency and
amplitude per frequency band of interest (using identical
bands to those used in the amplitude CV analysis). We
then obtained the mean and SD of peak frequency, and
amplitude at peak frequency, over epochs per subject. As
a measure of peak frequency variability, we calculated the
CV by dividing the SD of peak frequency over all epochs
per dataset by the mean peak frequency.

RESULTS

Resting-State ICA Network Analysis

The sensorimotor and visual networks were both clearly
present in the beta range (13–30 Hz) (Fig. 1A,B) [Brookes
et al., 2011, 2012]. A t test confirmed our hypothesis that
there was a difference in the resting sensorimotor but not
visual network: the bootstrapped mean of the SD time
series was significantly greater for patients than controls
in the sensorimotor network (t(31)=2.35, P=0.025, effect
size using the pooled SD=0.82, 95% CI using an inverted T
distribution for small sample size=0.08–1.56), but there
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was no difference between groups in the visual network
(t(31)=0.13, P=0.90, effect size=0.05, 95% CI=20.66 to 0.76)
(Fig. 1C,D).

If the difference in the sensorimotor network reflects the
benign nature of a neurodevelopmental delay (a delay that
recovers with age), we would expect negative correlations
in both groups, and the difference between patients and
controls to be most pronounced at the younger ages. The
least-squares linear correlation fit displayed in Figure 1E,F
shows that we indeed observed this pattern for patients,
although the correlation was not significant (R=20.25,
P=0.34), nor for controls (R=20.01, P=0.97). In the visual

network, there was no trend for a negative correlation
with age, with patients in fact showing a positive correla-
tion (patients: R=0.67, P=0.003; controls: R=0.05, P=0.86).

The significantly greater SD in the sensorimotor network
appears to be driven by the high values of three of the
youngest patients (Fig. 1E). Two of these patients were >2
SD (but not >3 SD) from the group mean. However, sev-
eral facts suggest that these values likely represent true
patient variance. First, the three highest-SD patients did
not have extreme values in the visual network (Fig. 1F),
suggesting their values were not due to an artefact causing
global spurious high temporal correlations in the beta
band. Furthermore, there was no clear relationship, aside
from age at time of testing, to these extreme values and
clinical parameters, age of onset, seizure frequency or sei-
zure recency (Table I).

In order of greatest sensorimotor network SD, the three
patients with extreme values had head motion values of
1.10, 0.13, and 1.26 cm. However, head motion did not cor-
relate with sensorimotor SD (R=0.22, P=0.21). In fact, the
patient with the highest head motion value in the group
(1.47 cm) had the lowest component SD (0.55). Moreover,
head motion was not statistically different between groups
(t(31)=1.51, P=0.14). Head motion also did not correlate
with the visual network SD (R=20.07, P=0.71).

We further assessed whether the extreme values were
due to a tilted head position, by inspecting the measured
head-to-dewar distances for each coordinate of each fidu-
cial. Of the two most extreme patients, one patient had
two coordinates (right pre-auricular X and left pre-
auricular Z) that were >2 SD from the group mean of
each respective coordinate. The most extreme case had no
coordinates >2 SD. The third extreme case did not have
any coordinates >2 SD either. Two other patients with
coordinates >2 SD from the mean had sensorimotor SD
values that were very central in the group. In conclusion,
there was no relationship of SD to tilted head position in
the dewar. Finally, the extreme cases were also not related
to a low or high number of epochs analyzed, suggesting
great values were not due to low or high amplitude.

The beamformer weights generated by the ICA network
calculations were normalized by an estimate of weights 3

noise. Any systematic differences between the groups (e.g.,
age, head size, and motion) could potentially bias our ICA
component results. To assess whether there was any such
bias, we conducted a statistical comparison of the volu-
metric weights 3 noise images. The images were first spa-
tially normalized to the paediatric template using FSL
FLIRT with an affine transform. A non-parametric permu-
tation two-sample t test was conducted with FSL Random-
ize using 5,000 permutations for each condition with
8 mm variance smoothing and the resulting P values were
corrected for multiple comparisons using the omnibus test
statistic [Nichols and Holmes, 2002; Singh et al., 2003a,b].
The resulting images, converted to MNI space for imaging
purposes (Supporting Information Fig. 1), showed that

Figure 1.

Sensorimotor (A, C, E) and visual (B, D, F) network independent

components of temporally correlated oscillatory activity in the

beta band (13–30 Hz) generated for the whole group (N=33). (A,

B) Component images transformed to MNI space. Images show

absolute ICA weights (in A.U.) thresholded at 0.5. (C, D) Group

average ICA resting network component amplitude SDs (in A.U.).

Error bars represent SDs of group mean. *P<0.05; n.s. 5 P>0.05.

(E, F) Correlations of individual SDs with age. Data points

represent subject’s bootstrapped SD means with 95% confidence

interval. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

r Koelewijn et al. r

r 3940 r

http://wileyonlinelibrary.com


there was no significant systematic bias for either patient
to control group contrast. This analysis thus suggests that
the component amplitude in the sensorimotor and visual
networks were unlikely to be caused by a bias in beam-
former weights.

MRGS Localization

Figure 2 displays the group average one-sample t statis-
tic images of the 60–90 Hz MRGS per group per finger-
abduction hand, highlighting the strongly localized
response in contralateral motor cortex. Figure 2 suggests
that there may be spatial differences between the MRGS
responses of patients and controls. However, for the CV
analyses, we only used the coordinates at which the peak
response occurred in each individual. A series of inde-
pendent samples t tests on each of the three coordinates of
the MRGS localization in each hemisphere did not reveal
any significant differences in position between the two
groups (6 t tests, all P>0.20). Figure 3 displays the CV
results at individual peak MRGS locations.

Coefficient of Variation in Oscillatory Amplitude

To test whether ongoing resting-state oscillatory ampli-
tude in any frequency band was more variable in patients
or controls (Fig. 3A), we performed a repeated-measures
ANOVA with within-subject factors Frequency Band (6

levels) and Hemisphere (L/R) and between-subject factor
Group (patient/control) on the CV in oscillatory ampli-
tude. This analysis revealed a main effect of Frequency
Band (F(5,155)=25.65, P<0.0005), but not of Hemisphere
(F(1,31)=0.26, P=0.62), or Group (F(1,31)=0.46, P=0.50).
There was a trend for the interaction of Frequency Band 3

Group only (F(5,155)=2.08, P=0.07; Hemisphere 3 Group:
F(1,31)=1.26, P=0.27; Frequency Band 3 Hemisphere:
F(5,155)=0.42, P=0.83; Frequency Band 3 Hemisphere 3

Group: F(5,155)=1.11, P=0.36). Inspection of Figure 3A
shows a trend for patients to have increased amplitude
CV in the 50–90 and 90–150 Hz bands compared to con-
trols, but as the interaction was not significant, we could
not statistically compare these observations.

Coefficient of Variation in Oscillatory Peak

Frequency

As peak frequency was obtained over a limited number
of time samples, and subsequently averaged over a variable
number of epochs, there is a potential risk of a difference in
signal-to-noise confounding the result. However, the aver-
age number of epochs remaining in each dataset after
excluding bad epochs was 89 in patients and 95 in controls,
which was not significantly different (t(31)=21.17, P=0.25).

A Frequency Band 3 Hemisphere 3 Group ANOVA
revealed a main effect of Frequency Band (F(5,155)=296.37,
P<0.001), and a Frequency Band 3 Group interaction
(F(5,155)=2.43, P=0.04). There were no other significant
main effects or interactions (all P>0.2). Simple main effects
to identify the source of the Frequency Band 3 Group
interaction showed that patients had a smaller CV than
controls in the 6–8 Hz band (P<0.05), and showed a trend
for a greater CV than controls in the 13–30 Hz band
(P=0.096), which was driven by five patients that were >1
SD above the whole group mean. No other frequency
bands showed a significant difference (all P>0.05) (Fig.
3B).

Our goal was to assess the variability in peak frequency,
which we obtained by dividing SD by mean peak fre-
quency. However, as we obtained our peak frequency
over a limited number of time samples per epoch, we
need to be cautious about one potentially confounding fac-
tor. A higher frequency has more cycles per time unit than
a lower frequency, and can thus generate a larger variation
as a by-product. Therefore, we assessed whether mean
peak frequency differed between patients and controls. A
Frequency Band 3 Hemisphere 3 Group ANOVA
revealed that as expected, a main effect of Frequency Band
was present (F(5,155)=150840.47, P<0.0005), but no other
significant main effects or interactions (all P>0.05). Thus,
mean peak frequency in primary motor cortex did not dif-
fer between patients and controls nor between hemi-
spheres, in any frequency band.

Figure 2.

Group average t statistic images of the 60–90 Hz Movement-

Related Gamma Response paired t images obtained from the

finger-abduction data. Each panel shows a superior view of a

group and finger-abduction hand, as indicated. Insets are coronal

sections at y=210 mm. The images are normalized to the MNI

template and thresholded at P=0.001 (voxel-based corrected).
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Post Hoc Analysis of Beta-Band Frequency Vari-

ability: Age and Hemispheres

Age is a strong determining factor in BECTS symptoma-
tology. We assessed whether age predicted frequency vari-
ability by performing a regression analysis. As there was no
significant effect of hemisphere in either amplitude or fre-
quency analysis, values were averaged over hemispheres.

There is a potential caveat of spurious local maxima in
the amplitude-frequency curves due to low amplitude
causing artificially high variability. We took two measures
to address this issue. First, we assessed the distribution of
peak frequency in the two frequency bands that showed a
difference in variability between patients and controls
(theta), or was our hypothesis (beta). If true frequency
peaks were obtained, and the frequency band chosen was
appropriate, the distribution of peak frequency should be
relatively normal. Figure 3C shows that for the 6–8 Hz
band, the distribution of peak frequency was skewed
toward 6 Hz, suggesting either an absence of frequency

peaks, or that peaks occurred at a lower frequency than
included in this band. In contrast, peak frequency within
13–30 Hz appeared normally distributed around 18.5 Hz,
with no values at the extremes of the range (Fig. 3D). The
Shapiro–Wilk test for normality confirmed a significantly
non-normal distribution of peak frequency within the 6–8
Hz band (P=0.007), but not for the 13–30 Hz band
(P=0.75). Thus, peak frequency variability may suffer from
an edge effect in our 6–8 Hz theta band. For this reason,
caution is needed in interpreting the theta-band group dif-
ference. Because our main hypothesis regards the beta-
band, we will further focus on the beta band only.

A second precaution to exclude effects due to low
amplitude at peak frequency was to include amplitude as
a covariate in the regression with age. For patients, as
expected, frequency CV correlated negatively with age
(R=20.46, P=0.03) (Fig. 3E). Also, amplitude correlated
positively with age (R=0.58, P=0.007), but frequency CV
did not correlate with amplitude (R=20.06, P=0.42). A
regression model with only age as a predictor of frequency

Figure 3.

Group average CV oscillatory activity in motor cortex. Results

are shown for six frequency bands of (A) amplitude and (B)

peak frequency. Frequency bands are indicated by their Greek

symbols (gamma 1/2/3 5 30–50 Hz, 50–90 Hz, 90–150 Hz). (C,

D) Histograms of oscillatory peak frequency in motor cortex

collapsed over groups. (C) The theta band (6–8 Hz) shows a

non-normal distribution skewed toward the lower frequencies.

(D) The beta band (13–30 Hz) follows a normal distribution. (E)

Negative correlation of motor cortex beta-band peak frequency

CV with age. All results are collapsed over hemispheres. Error

bars represent SEM. *P<0.05. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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CV showed there was a trend for age to predict lower fre-
quency CV (R2=0.21, F(1,15)=4.00, P=0.06; age: b=20.46).
Adding amplitude at peak frequency as an additional pre-
dictor to age increased the predictive power of age, but
the model was not significant (R2=0.28, F(2,14)=2.68,
P=0.10; age: b=20.64, P=0.04; amplitude: b=0.32, P=0.28).

For controls, the same trends were present as for
patients, with a negative correlation between frequency
CV and age (R=20.48, P=0.03), and a trend for a positive
correlation of power with age (R=0.38, P=0.07). Similar to
patients, there was no significant correlation between fre-
quency CV and power (R=20.11, P=0.34). A regression
model with only age as a predictor of frequency CV
showed a trend for a significant prediction (R2=0.22,
F(1,14)=4.02, P=0.07; age: b=20.47), and a model adding
power at peak frequency as an additional predictor to age
was not significant (R2=0.23, F(2,13)=1.93, P=0.18; age:
b=20.50, P=0.08; power: b=0.08, P=0.76). These regression
analyses suggest that the correlation between power and
age did not drive the correlation of frequency CV and age
in either group.

It can be imagined that any age-driven correlation can
be confounded by head motion, as the youngest children
are the smallest and have most room to “move around” in
the scanner. Indeed, there was a trend for head motion to
positively correlate with M1 beta-band frequency CV
(R=0.31, P=0.08, whole group). However, when controlling
for head motion, beta-band frequency CV and age still
showed a significant negative partial correlation (R=20.41,
P=0.02). Therefore, head motion did not fully explain the
strong correlation of M1 beta-band peak frequency vari-
ability with age.

To investigate whether a correlation of peak frequency
with age was unique to the beta band, we also calculated
the correlation of age with all other frequency bands over
the whole group. In contrast to the beta band, a correlation
with age was absent for the theta and alpha bands
(R=0.16, P=0.36; R=0.26, P=0.15, respectively), as well as
the highest gamma band (90–150 Hz: R=20.09, P=0.63). It
was significant, but positive, for the 30–50 Hz and 50–90
Hz gamma bands (R=0.40, P=0.02; R=0.51, P=0.002, respec-
tively). Thus, our results suggest that the negative correla-
tion of M1 peak frequency variability with age in the beta-
band is unique, and may be an informative marker of
child motor cortex development.

BECTS patients often have a predominance of spikes in
one hemisphere. We therefore additionally tested whether
left and right motor cortex beta-band peak frequency cor-
related in individuals. Trial-to-trial peak frequency per
individual did not correlate between hemispheres (all
20.15<R<0.16 (mean 0.005), all P>0.11). However, peak
frequency of the left and right motor cortex correlated pos-
itively in patients (R=0.50, P=0.04), and controls (R=0.51,
P=0.04), and frequency CV correlated positively in patients
(R=0.54, P=0.03), with a trend for a similar correlation in
controls (R=0.46, P=0.08). This suggests that beta-band

peak frequency variability is a trait of an individual, rather
than a lateralization index or an indication of spike side.
We did not observe sufficient numbers of centro-temporal
spikes in the resting-state data of BECTS patients to inves-
tigate the role of spikes here (Table I).

In summary, beta-band peak frequency in primary
motor cortex correlated negatively with age in both
patients and controls. There was a trend for greater peak
frequency variability in BECTS patients than in typically
developing controls, whereas the average peak frequency
did not differ. In the patient group, frequency variability
correlated between the left and right motor cortex, with a
similar trend for the control group. Thus, age and hemi-
sphere effects on peak frequency variability were similar
in patients and controls, and an abnormally high beta-
band frequency variability may be tied to some of the neu-
rological abnormalities present in BECTS.

Comparison of Global Network and Local Motor

Cortex Measures

Over the whole group, there was a trend for a positive
correlation between sensorimotor component amplitude
SD and beta-band peak frequency CV (R=0.30, P=0.09).
Furthermore, of the three patients with very high sensori-
motor network SD values, two were among the five
patients with abnormally high peak frequency CV values.
However, the patient with the highest network SD did not
have an abnormally high peak frequency CV. This,
together with the fact that network measures did not cor-
relate with age, whereas local frequency variability did,
suggests that the two measures are independent markers
that are more closely tied to disease-related disruption and
brain maturation, respectively.

Correlations with Neurocognitive Scores

We performed a cross-correlation on all standard (age-
corrected) subscores to determine which tests best reflected
motor skills and language skills, respectively (Supporting
Information Table I). For motor skills, we chose the
MABC_B (Balance), as it correlated with some of the other
MABC subcomponents and nonverbal IQ, but not with
verbal IQ (KBIT-2). For language skills, we chose the
WIAT_WR (Word Reading), as it correlated with all other
subscores of the WIAT, verbal IQ, DASH, and TROG, but
not the MABC or nonverbal IQ. Two patients did not per-
form the neurocognitive tests. Therefore, all correlations
were based on 15 patients and 16 controls. Patients scored
significantly lower than controls on both tests (MABC_B:
t(29)=23.06, P=0.005; WIAT_WR: t(29)=23.18, P=0.004).

Correlations of neural measures with neurocognitive
scores are displayed in Figure 4. Neither test correlated
significantly with the ICA sensorimotor network SDs in
either group (MABC_B: patients: R=20.12, P=0.68; con-
trols: R=20.08, P=0.77; WIAT_WR: patients: R=20.16,

r Resting Sensorimotor Oscillations in BECTS r

r 3943 r



P=0.56; controls: R=0.25, P=0.37). There were also no sig-
nificant correlations of either neurocognitive test with the
visual network SDs (MABC_B: patients: R=20.13, P=0.64;
controls: R=20.24, P=0.37; WIAT_WR: patients: R=20.36,
P=0.19; controls: R=20.30, P=0.26). MABC_B scores did
also not correlate with the motor cortex beta-band CV in
peak frequency in either group (patients: R=20.02, P=0.95;
controls: R=20.06, P=0.84). The WIAT_WR showed a sig-
nificant positive correlation in patients (R=0.57, P=0.03),
but not in controls (R=20.01, P=0.97). The correlation was
in the opposite direction to our expectations, suggesting
that better language performance correlated with a greater
frequency CV. However, when correcting for multiple
comparisons for 12 correlations at a=0.05, no correlation
survived the adjusted significance threshold (Bonferroni
correction, adjusted a=0.0042). In summary, increased vari-
ability in resting-state sensorimotor beta-band activity was
not directly related to impaired motor and language skills.

DISCUSSION

Using ICA of correlated temporal sources of ongoing
oscillatory neural activity in resting MEG, we found
greater SDs of sensorimotor resting-state network activity

in patients with BECTS than in age-matched typically
developing control children. Consistent with an interpreta-
tion of greater variability in sensorimotor cortex activity,
we further found that a number of BECTS patients had a
more variable peak frequency of spontaneous background
beta-band oscillatory activity in bilateral motor cortex than
average, with greatest variability for the youngest children.
These converging findings were in contrast to activity
within the visual network, chosen as a control network,
and to variability of frequencies higher and lower than
beta, which did not differ between patients and controls,
and did not decline with age. These findings suggest that
children with BECTS have a “less stable” network of areas
involved in sensorimotor functioning. In addition, our
study suggests investigating the variability of oscillatory
peak frequency may be a useful tool to investigate deficits
in neurodevelopmental disorders. Oscillatory amplitude
and frequency are commonly studied, but peak-frequency
variability is not usually reported.

The present findings support the hypothesis that BECTS
is associated with a delay in the development of stable
functioning of the bilateral sensorimotor areas [Koutrou-
manidis, 2007]. Moreover, the pattern of correlations with
age in our results proposes beta-band peak frequency vari-
ability as a neural correlate of this delay. The concept of

Figure 4.

Correlations of neural measures with neurocognitive tests for motor skills (MABC balance, top

panels) and language skills (WIAT word reading, bottom panels). Correlations are displayed for

sensorimotor network SD, visual network SD, and motor cortex (M1) beta-band peak frequency

CV. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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neural “disorganisation” has previously been proposed to
relate to epilepsy [Overvliet et al., 2010], as well as other
neurocognitive disorders such as autism [Kennedy and
Courchesne, 2008], and may also be applicable to brain
immaturity. An exaggerated age-related developmental
instability in patients with BECTS may explain the delay
in their development of motor cortex function, and the
impaired motor control that is generally observed in
BECTS [Overvliet et al., 2011]. Our findings are consistent
with a recent fMRI study by [Besseling et al. 2014] who
showed that the consistency between structural and func-
tional connectivity was reduced for BECTS patients in
medial parietal and centro-temporal clusters, especially at
younger ages, supporting a developmental delay in these
areas. The capability of MEG to study neural oscillations,
thought to be crucial for long-range neural communication
[Donner and Siegel, 2011; Fries, 2005], allowed the present
study to further show that the stability in synchronization,
and the frequency of background beta-band oscillations
appear to be an important determinant of this neurodeve-
lopmental delay in sensorimotor cortex.

Similar to most previous fMRI studies [Besseling et al.,
2013a,b; Tang et al., 2014], a small number of EEG studies
examining resting background rhythms in BECTS found
either global abnormalities, or local abnormalities outside
of sensorimotor cortex. Braga et al. [2000] reported global
increases in oscillatory power in a group of children with
rolandic spikes, particularly in lower-frequency ranges in
older patients. In contrast, using LORETA source localiza-
tion, Besenyei et al. [2012] found increased low-frequency
oscillatory resting-state activity localized to a parietotem-
poral area for patients versus controls. This was found
only in 4–6 Hz out of a range of 1–25 Hz in 1-Hz bands.
In a pilot study of four patients, Clemens et al. [2013] did
not replicate this area, but reported that some patients had
inconsistent “abnormal” connectivity patterns at an early
stage of BECTS, which reverted back to a “normal” pattern
at remission. However, our findings, as well as those of
others [Besseling et al., 2013a,b; Lillywhite et al., 2009],
suggest that there exist clear specific patterns of neural
activity in relevant functional areas that characterize the
abnormalities in BECTS. Understanding these deficits may
be crucial in driving progress in assessing the merits of
treatment and improving the core cognitive deficits associ-
ated with BECTS.

However, the sensorimotor characteristics we found did
not significantly correlate with behavioral measures.
Absence of a correlation between neural findings and cogni-
tive tasks is not uncommon in BECTS research, especially
in sensorimotor cortex [Besseling et al., 2013a; Tang et al.,
2014]. This may be due to the generally small group size,
variability in cognitive impairments [Ewen et al., 2011], and
correlations that may not be linear. However, correlations
with behavioral performance have been found for language
areas or connectivity between language and sensorimotor
areas [Besseling et al., 2013b; Lillywhite et al., 2009]. In

BECTS, language deficits are more commonly reported than
motor deficits. It is possible that the combination of weaker
deficits in motor than language skills and greater variability
of the former obscure clear correlations with sensorimotor
resting activity. Other factors such as socioeconomic status
and intelligence may further contribute to what extent neu-
rocognitive disabilities develop, and children may develop
coping strategies that ameliorate behavioral deficits.

It is unclear whether and how motor deficits in BECTS
relate to the commonly reported linguistic difficulties. The
deficits in the language domain may be a downstream
effect of altered motor cortex functioning, either due to
spread of activity to areas involved in language processing
[Ibrahim et al., 2012; Overvliet et al., 2011; Overvliet et al.,
2010], and/or as a result of motor execution difficulties
such as tongue immobility [Lundberg et al., 2005]. We
may speculate that the presence of epileptiform activity in
sensorimotor areas initially causes a local disruption in
sensorimotor functioning, which may then affect the devel-
opment of functional networks. This, in turn, may cause
the difficulties in motor and language skills. Perhaps epi-
leptiform activity causes a disruption in neural activity
that creates variability in the frequency of rhythmic neural
firing that we observed in the present study, resulting in
“unstable” local and network activity.

Both our network and individual motor cortex findings
suggest bilateral occurrence of abnormalities in sensorimo-
tor cortex, which raises the question of how our findings
relate to centro-temporal spikes. Although spikes generally
have a unilateral predominance, the side of predominance
can change over time [Ewen et al., 2011], and they often
appear bilaterally. One study found that even if spikes
occur unilaterally, patterns of oscillatory disruption occur in
both hemispheres [Lin et al., 2006]. Note however that this
was based on only 10 epochs, all oscillatory ranges tested
increased to some degree, and there was no control region
included in this study, precluding exclusion of a global
increase in oscillatory power. Furthermore, both contra- and
ipsilateral motor cortex are thought to play a role in unilat-
eral motor movements [Jurkiewicz et al., 2006]. Thus, it is
also possible that predominantly unilateral epileptiform
activity is related to the bilateral and network-level neural
variability that we found here. We did not observe suffi-
cient centro-temporal spikes to statistically investigate their
relationship with the present neural findings in our 3-min
MEG recording. However, observed MEG spike frequency
did not appear to show a clear relationship to beta-band
sensorimotor network values (Table I, Fig. 1E), nor fre-
quency CV (Fig. 3E). Perhaps future MEG studies recording
sleep-deprived and sleep resting-state activity may observe
higher spike rates, or a relationship to overnight spikes
from ambulatory EEG may allow investigation of how
spikes link to these neural findings.

In contrast to the negative correlation of age with fre-
quency variability in the beta band, age was positively cor-
related with frequency variability of 30–90 Hz gamma
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oscillations. This measure was not tied to BECTS, but could
serve as an additionally interesting marker of neural devel-
opment. Oscillations in this frequency band have been
related to neck-jaw muscle artefacts, but these are generally
localized to bilateral extrastriate areas which are remote
from sensorimotor cortex [Muthukumaraswamy, 2013].
HFOs in the gamma range are associated with the location
of seizure-onset zone [Guggisberg et al., 2008; Jacobs et al.,
2011; Kobayashi et al., 2009, 2011; Rampp et al., 2010].
Although HFOs are usually of higher frequency than those
assessed in the current study (>80 Hz up to as much as
600 Hz), Ibrahim et al. [2012] found that ictal oscillatory
desynchronization in childhood epilepsy was greatest in the
highest sub-HFO gamma band (81–150 Hz) in the motor
cortex of patients that had motor deficits. Moreover, both
beta and gamma oscillations have been linked to GABAer-
gic inhibition [Gaetz et al., 2011; Kubota et al., 2004]. Our
findings of (opposite) age-related beta and gamma-band
frequency variability in M1 may therefore reflect GABAer-
gic brain maturation [Gaetz et al., 2010].

Our study has a number of limitations. First, the patient
group was heterogeneous with respect to a number of fac-
tors (Table I), potentially confounding interpretation of neu-
ral changes as a group. Patients varied in state and type of
medication, which may have an unknown influence both
on our neural measures and cognition [Ebus et al., 2011].
There was also variability in the group in time since disease
onset, seizure recency, and seizure frequency. There were
no apparent relationships between the neural measures we
report here with any of these patient characteristics. Esti-
mates of seizure recency and frequency were based on
verbal report by patients and their parents or guardians at
the time of data acquisition, and may contain potential inac-
curacies, but are generally reflective of the clinical scenarios.
Given that there is partial covariation of most of these fac-
tors with age, this further complicated interpretation of the
role of these factors with respect to the present neural find-
ings. We have therefore not conducted formal statistical
tests on these relationships. Although several patients at the
time of recording reported little or no recent seizures, some
of these patients showed spikes in their MEG recording,
and vice versa. Thus, seizure recency was not the only mea-
sure of disease status, as some patients who were seizure
free for a year or more still had indications of “active” dis-
ease with typical sensorimotor cortex spikes. Most impor-
tantly, all patients were in the known age range of active
disease in BECTS prior to the expected remission. We feel
this allowed valid gross-group conclusions of disease
marker effects and correlations with age as compared to
typically developing age-matched controls.

Second, we did not control for head size, which is
directly related to age. Smaller head size is known to cor-
relate with lower amplitude of beta-band oscillations
[Gaetz et al., 2008, 2010], but it is not known whether head
size correlates with peak frequency. Peak frequency within
a characteristic oscillatory response is known to decrease

with age, though this may be specific to adults [Gaetz
et al., 2010]. Third, our frequency filtering precluded
investigation of frequencies in the HFO range and below 6
Hz. A recent study suggested that low-frequency oscilla-
tions may be related to the abnormal development of func-
tional networks [Michels et al., 2011], which should be
investigated in future studies. Fourth, we could not assess
the influence of spikes on network and local motor cortex
activity. Finally, both our groups had a relatively small
sample size that may have impacted on statistical power.

CONCLUSION

Two separate analyses converged to show greater vari-
ability in resting-state beta-band sensorimotor oscillatory
activity in BECTS compared to age-matched typically devel-
oping controls. This was in contrast to the visual network,
and variability in other frequency bands, where there was
no difference between groups. This convergence supports
the relevance of our findings for the characterization of neu-
ral abnormalities in BECTS. The present findings support a
neurodevelopmental delay of brain activity related to senso-
rimotor areas, and suggest that the frequency at which
beta-band oscillations are expressed is less stable in patients
with BECTS than in typically developing controls. Network
measures and local frequency variability may be independ-
ent neural markers that are more closely tied to disease-
related disruption and brain maturation, respectively. This
study suggests that, in addition to the language domain, a
focus on sensorimotor functioning in BECTS may contribute
toward defining the most appropriate intervention strat-
egies. In addition, our study suggests that investigating the
variability of oscillatory peak frequency may be a useful
tool to investigate deficits of neural disorganization in neu-
rodevelopmental disorders.
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