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Abstract: Constructing an atlas from a population of brain images is of vital importance to medical
image analysis. Especially in neuroscience study, creating a brain atlas is useful for intra- and inter-
population comparison. Research on brain atlas construction has attracted great attention in recent
years, but the research on pediatric population is still limited, mainly due to the limited availability
and the relatively low quality of pediatric magnetic resonance brain images. This article is targeted at
creating a high quality representative brain atlas for Chinese pediatric population. To achieve this
goal, we have designed a set of preprocessing procedures to improve the image quality and developed
an intensity and sulci landmark combined groupwise registration method to align the population of
images for atlas construction. As demonstrated in experiments, the newly constructed atlas can better
represent the size and shape of brains of Chinese pediatric population, and show better performance
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INTRODUCTION

Brain magnetic resonance imaging (MRI) plays an impor-
tant role in neurological disease diagnosis and neuroscience
study. In neuroscience study, to compare the structural and
functional difference in brains of different groups [Bai
et al., 2012; Gerber et al., 2010; Nitsche et al., 2004; Tang
et al., 2010; Toga et al., 2003] and study the development of
human brain [Gerber et al., 2010; Giedd et al., 1996, 1999;
Gogtay et al., 2002; Lenroot and Giedd, 2006], one impor-
tant step is to construct a brain template or atlas. Brain
atlas, generated either from a single subject or from multi-
ple subjects, can provide a population-specific baseline
from which to investigate population deviations. A more
complete multipopulation understanding of brain develop-
ment is essential in the detection of early vulnerability and
the delivery of appropriate intervention.

An early standard atlas is the Talairach and Tournoux
atlas [Talairach and Tournoux, 1988], which was created
based upon the postmortem sections of a 60-year-old
French female who had a smaller than average brain size.
It provides a standard brain coordinate system reference,
but using it as atlas means that most individual brains
must be considerably warped to fit the small size of the
atlas, inducing some error. Later, with continuing progress
achieved in medical imaging field, more advanced techni-
ques have been used in atlas construction. Population-
based atlas, which defines a more representative brain of
the population, has become more acceptable. Based on dif-
ferent populations and using different atlas construction
techniques, many atlases have been created, such as the
MNI305 atlas [Collins et al., 1994] (by averaging 305 young
normal subjects’ MR images), ICBM152 [Mazziotta et al.,
1995] (the average of 152 normal MRI scans that have been
matched to the MNI305 using a 9 parameter affine trans-
form), Colin27 [Holmes et al., 1998] (one subject scanned
27 times, co-registered and averaged to create a very high
detail MRI dataset of one brain). In recent years, to achieve
more anatomical details in atlas image, rather than linear
registration, more complicated nonlinear registration has
been applied to transform each scan. With a group of
brain images, the atlas is built by registering the popula-
tion of subjects into one common space. The early repre-
sentative work in this category is the congealing
registration method proposed in Learned-Miller [2006]. An
objective function based on the pixel stack entropy is
defined over all aligned images in the dataset, to solve the
groupwise registration problem by a gradient-based sto-
chastic optimizer. The congealing registration method has

been extended by Balci et al. [2007] and Z€ollei et al. [2005]
to perform non-rigid registration, by Wang et al. [2010] to
use the attribute vector for guiding the registration and
achieving more robust and accurate registration results.
Another popular atlas construction by groupwise registra-
tion was proposed by Joshi et al. [2004]. The groupwise
registration is implemented by iteratively constructing the
group mean image and estimating the transformation
fields of all subjects towards the estimated tentative group
mean image. Several follow-up studies such as [Fletcher
et al., 2009; Jia et al., 2010; Wu et al., 2011] have been pro-
posed in recent years to improve Joshi’s work and solve
the problem of fuzzy group mean image.

The human brain is highly variable among individuals
and different groups (e.g., population with different ages,
genders, and races), thus a brain atlas is a population
specific image, which can serve as a useful tool for inter-
population comparison. Meanwhile, to study one popula-
tion, it is better to construct the population-specific atlas. In
this study, we mainly focus on Chinese pediatric popula-
tion. To the best of our knowledge, there are several works
studying Chinese brain atlas construction [Tang et al., 2010;
Wang et al., 2013], but this is still the first attempt to con-
struct a high quality brain atlas for Chinese pediatric popu-
lation. Substantial morphological changes occurring during
early development of brain render the use of an adult brain
atlas for analyzing pediatric data may introduce some
errors and bias. Currently, increasing attention has been
attracted in pediatric studies. Wilke et al. [2003] studied 200
healthy children with the age range of 5–18 years. They
also suggested that caution should be used when analyzing
pediatric brain data using adult a priori information. Fonov
et al. [2011] created T1-weighted, T2-weighted, and proton
density-weighted atlases for 4.5–18.5 years old children.
Bhatia et al. [2007] used an expectation-maximization
framework to build an MRI atlas for 1- and 2-year olds. Shi
et al. [2011] collected a longitudinal dataset involving 95
normal infants at three ages: neonate, 1-year-old, and 2-
year-old, and obtained age-specific atlases for each age
group. All the above pediatric studies are based on Western
populations. However, the anatomical differences between
Western and Eastern populations provide great variation,
with fundamental genetic and environmental disparities
resulting in overall and regional differences in brain shape,
size, and volume [Lee et al., 2005; Tang et al., 2010]. Addi-
tionally, most of current studies for pediatric brain atlas
construction adopt similar procedures with the adult brain
atlas construction. But as indicated in Fonov et al. [2011]
and Shi et al. [2011], the image quality has considerable dif-
ference between child brain scans and adult brain scans, it
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is necessary to take a unique set of procedures for child
brain image processing to achieve higher accuracy.

In this article, we propose a set of procedures to create
an MRI brain atlas for Chinese pediatric population. Some
specially designed preprocessing steps were implemented
to improve the quality of child MR brain images. A new
intensity and sulci landmark combined groupwise registra-
tion method was proposed to continually improve the
quality of constructed atlas. The final constructed atlas
was compared with other standard atlases in different
aspects and showed its superiority in handling Chinese
pediatric brain data. The experimental results have dem-
onstrated the necessity of creating the atlas for the specific
Chinese pediatric population. To our knowledge, this is
the first high quality MRI brain atlas constructed for Chi-
nese pediatric population. In addition, the proposed atlas
construction method is also novel for handling brain MR
images of children, which can also be adapted for analyz-
ing other brain images of pediatric population.

MATERIALS AND METHODS

Subjects and Image Requisition

The anatomical data were collected from 53 normal Chi-
nese children volunteers, age ranged from 5.93 to 8.01
years (6.98 6 0.49 years). These subjects were consisted of
26 females and 27 males, 52 of which were righted-
handed. None of the subjects has any history of neurologi-
cal, psychiatric, or significant medical illness. T1-weighted
brain images were acquired in the sagittal plane with a
Phillips Achieva 1.5 T MRI scanner with an eight-channel
SENSE head coil. A 3D FFE sequence was applied with
following parameters: 150 slices, TR/TE 5 25/4.6 ms, flip
angle 5 15�, FOV 5 256 3 256 mm2, matrix size 5256 3

256, voxel size 5 1 3 1 3 1 mm3.

Preprocessing

Before atlas construction, MR images need to go through
some preprocessing procedures to improve the image qual-
ity. For normal adult MR brain images, the preprocessing
steps usually include intensity normalization, bias field cor-
rection, and brain extraction. To handle child brain MRI
scans, some special techniques are required, as the quality of
child brain MR images are relatively lower than adult brain
MR images. The main reason for the low quality is the diffi-
culty during image acquisition and the inherent property of
child brain structures. It is relatively harder for children to
stay still during the whole image acquisition process. The
movement of subjects will introduce some noise and image
artifacts in the obtained images. It can be obviously seen in
Figure 1a that noise to signal level is high and there exist
some motion artifacts resulting from the movement of imag-
ing subjects. Another major issue impacting the quality of
child brain MR image is the low tissue contrast, as the devel-
opment of brain structures is still in a primary stage, and

myelination is still incomplete. These factors, that is, low
signal-to-noise ratio, motion artifacts, low tissue contrast, will
greatly undermine the performance of subsequent process-
ing. Therefore, we use three steps to preprocess child brain
MR images to improve the image quality.

N4ITK bias field correction

Bias field is a low frequency intensity nonuniformity pres-
ent in the image data, which arises from the imperfections
of the image acquisition process. Because of the exisitence of
bias field, the intensity of the same tissue varies with the
location of the tissue within the image [Vovk et al., 2007].
Many image analysis techniques, such as segmentation and
registration, are highly sensitive to the spurious varistions of
image intensities. Amongst the various bias correction algo-
rithms that have been proposed in the research literature,
the nonparametric nonuniform normalization (N3) approach
formulated in Sled et al. [1998] has established itself as a
standard in the field. It is iterative and seeks the smooth
multiplicative field that maximizes the high frequency con-
tent of the distribution of tissue intensity. Later, N4ITK [Tus-
tison et al., 2010], as a variant of the N3 algorithm,
proposed the substitution of a newly developed fast and
robust B-spline approximation routine and a modified hier-
archical optimization scheme for improved bias field correc-
tion over the original N3 algorithm. N4ITK has been
imbedded into 3D Slicer, which is used for bias field correc-
tion in this study. With bias field correction, the inhomoge-
niety of intensity can be reduced, which would improve the
performance of registration and segmentation.

Non-local mean filtering

MR images are contaminated by random noise which lim-
its the accuracy of any quantitative measurements from the
data. Non-local mean (NLM) filter [Manj�on et al., 2008] is a
recently developed and widely used denoising algorithm.
Unlike other local smoothing filters, NLM filter averages all
observed pixels to recover a single pixel. The weight of each
pixel depends on the distance between its intensity gray
level vector and that of the target pixel. In MR images, the
image intensity in the presence of noise is shown to be gov-
erned by a Rician distribution [Gudbjartsson and Patz,
1995]. To estimate the noise level of MR images, the noise
measurement method in Rajan et al. [2010] is used. Then
NLM filter is applied with the estimated noise level. The
basic priciple of NLM is illustrated as follows. Given a noisy
image I, the estimated denoised image O is calculated as a
weighted average of all the pixels in the image:

OðiÞ5
X

j2I
xði; jÞIðjÞ;

xði; jÞ5 1

ZðiÞ e
2ðjjIðNiÞ2IðNjÞjj2=h2Þ;

where Ni denotes a square neighborhood of fixed size and
centered at a pixel i, Z(i) is the normalizing constant, and
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h acts as the degree of filtering. NLM averages similar
image pixels according to their intensity distance. It uses
more robust regional information rather than pixel-wise
information to compute the similarity between pixels. The
ability of NLM reduing random noise in MR images has
been well demonstrated in many literatures [Buades et al.,
2005; Manj�on et al., 2008]. In our case, we find that NLM
filter not only can reduce the noise level but also can help

reduce the motion artifacts. The motion artifacts always
exist in a local region and follow a stripe-like pattern. The
dissimilarity between the background and the stripe arti-
facts reduces the contribution of motion artifacts in calculat-
ing the filtered background intensity. We demonstrate the
performance of NLM filter with one example, as shown in
Figure 1. It can be seen obviously that the noise removed
includes both random noise and artifacts in a stripe pattern.

Figure 1.

The MRI image applied with NLM filter. (a) Original MRI image. (b) MRI image after NLM filter-

ing. (c) The error image.
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Enhance tissue contrast

The low tissue contrast in child brain MR images can
influence the performance of subsequent image registration,
as it brings some difficulties in finding correspondences
between images with the unclear boundaries between struc-
tures. The relative lower tissue contrast in child brain MR
images compared with adult brain MR images is mainly
due to the incomplete myelination and larger noise during
image acquisition. To increase the tissue contrast, it is pro-
posed in this study to match the histogram of a child brain
MR image with that of a standard adult brain atlas. We use
Colin27 atlas, an average atlas of 27 T1 MRI scans of the
same individual, as the target brain scan. Colin27 provides
a lot of anatomical details, thus it is helpful to use its histo-
gram as the target histogram. It is clearly seen in Figure 2
that the tissue contrast of a child MR image can be greatly
enhanced by matching its histogram towards the histogram
of an adult MR image. With this improvement, the bounda-
ries between some major tissues, such as white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF), can
be much more clear, helping increase the accuracy of ensu-
ing image registration for atlas construction.

Atlas Construction

To generate an atlas from a population, groupwise regis-
tration is used to bring the group of images into the com-
mon space and the group mean image is calculated to
serve as the atlas image. We use the symmetric image nor-

malization (SyN) algorithm in ANTS software (http://
www.picsl.upenn.edu/ANTS/) to implement groupwise
registration because it is one of nonlinear registration
methods with top performance [Klein et al., 2009]. It real-
izes a symmetric registration method within the space of
diffeomorphic maps and provides the Euler-Lagrange
equations necessary for optimization. It defines a varia-
tional energy that explicitly divides the image registration
diffeomorphisms into two halves such that the moving
image and the reference image contribute equally to the
path and deformation is divided between them. SyN guar-
antees subpixel accurate, invertible transformations in the
discrete domain by directly including invertibility con-
straints in the optimization. We use cross-correlation (CC)
that estimates the local image average and variance as our
intensity similarity metric. In our experiments, CC can
give the best performance compared with other similarity
metrics, such as mean square difference and mutual
information.

Intensity-based registration can have good performance
in aligning the subcortical structures, but it sometimes has
poor performance in matching cortical folding patterns of
the human cerebral cortex due to the difficulty to distin-
guish neighboring folds with similar geometric characteris-
tics and find the cortical folds correspondences across
subjects. To handle this problem, we employ a registration
method combining both intensity and cortical folds
matching.

BrainVISA (http://brainvisa.info/) can help extract the
sulci automatically for each brain. BrainVISA is a popular

Figure 2.

(a) The original MRI scan; (b) MRI scan after contrast enhancement.
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software platform of brain morphology analysis, and has
been widely used [Clouchoux et al., 2010; Gimenez et al.,
2006; Juch et al., 2005; Sun et al., 2007]. We use the mor-
phologist 2012 [Perrot et al., 2011] toolbox in BrainVISA to
recognize sulci. The toolbox uses a coherent Bayesian
framework to automatically identify approximately 60 sul-
cal labels per hemisphere based on a probabilistic atlas (a
mixture of spam models: Statistical Probabilistic Anatomy
Map) estimating simultaneously normalization parameters.
These sulcal labels are used as landmarks in registration,
so that we can match different sulci in different brains.
The preprocessing steps in the above section also help to
improve the performance of recognizing and locating the
sulci. It is shown in Figure 3a that without preprocessing,
some regions of the brain surface tends to be smooth,
where sulci cannot be detected in these regions. With
improved image quality, the brain surface becomes
sharper, thus more sulci can be recognized correctly as
shown in Figure 3b.

Landmarks are incorporated into SyN by adding an
additional term to the optimization criterion, as described
in Yushkevich et al. [2009]. SyN optimizes the prior (land-
mark) correspondence term simultaneously with the
appearance term, leading to a different solution than an
unguided normalization, in particular in the vicinity of the
landmarks. We equally weight the contribution between
intensity metric and landmark metric. The optimization
will be performed over three levels of resolution, with a
maximum of 50 iterations at the first two coarse levels and

10 iterations at the full resolution level. A Gaussian regu-
larizar with a sigma of 3 that operates only on the defor-
mation field is applied. The optimization will stop when
either the energy cannot be smoothly minimized or the
maximum number of iterations is reached. In each round
of groupwise registration, the group of images are regis-
tered towards the tentative group mean image. After each
round of groupwise registration, the atlas is computed
based on Euclidean mean of the group of aligned images,
and served as the reference image for the next round of
groupwise registration. The whole process will terminate
until convergence (i.e., the change of group mean image is
small enough), and the final group mean image will serve
as the representative atlas of the population.

RESULTS AND DISCUSSIONS

Atlas Construction

Our atlas construction method was applied on the MRI
scans of the 53 children to produce a representative atlas.
First of all, one arbitrary chosen image served as the target
image and all other images were affinely registered to the
target image. A tentative group mean image was produced
and served as intermediate atlas image. Then nonrigid
intensity and sulci landmark combined groupwise registra-
tion was performed to bring the population of images into
the common space. In our experiments, three rounds of
groupwise registration were sufficient to reach convergence.

Figure 3.

Sulci recognition results using brainVISA. (a) Sulci recognition applied on original MRI data.

(b) Sulci recognition applied on preprocessed MRI data. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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With the population of images progressively approached
the center, the intermediate atlas image was updated, and
its anatomical details grew clearer and clearer, as shown in

Figure 4. To observe the progression of the population of
images, the standard deviation maps of the population in
the end of each round of groupwise registration are also

Figure 4.

The atlas constructed in each round of registration. (a) Atlas constructed after affine registra-

tion. (b)–(d) Atlases constructed after each round of nonrigid registration.
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Figure 5.

The intensity standard deviation after each round of registration. From (a) to (d), the intensity

standard deviation is gradually reduced, indicated by the color of the map. Warm color indicates

large deviation, and cold color indicates small deviation. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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shown in Figure 5, where we can clearly see that the voxel-
wise intensity variability is gradually reduced with succes-
sive iterations.

To obtain the tissue segmentation labels for the atlas
image, FAST (FMRIB’s Automated Segmentation Tool) was
used [Zhang et al., 2001], as it does not need any a prior
information for segmentation. It can automatically segment
WM, GM, and CSF using a hidden Markov random field
model and associated Expectation-Maximization algorithm.
The resulting tissue maps of the atlas together with the
intensity slice of the final atlas are shown in Figure 6.

Atlas Comparison

We designed the method to construct the Chinese pedi-
atric atlas, which can better represent the shape and size
of the Chinese pediatric population. To show the benefit
of creating such an atlas, we compare our atlas with other
standard atlases, that is, the Chinese adult brain atlas, the
ICBM 152 atlas, and the UNC pediatric atlas. The first two
standard atlases are publicly available on http://www.
loni.ucla.edu/Atlases/, the UNC pediatric atlas is avail-
able on http://www.nitrc.org/projects/unc_brain_atlas/.

� Chinese adult brain atlas, which is an average brain
template composed of high quality brain MRI data
from 56 Chinese young subjects (24.46 6 1.81 years).
The T1 weighted MR images were acquired on a 3.0 T
GE SIGNA scanner. The imaging parameters are: 1.40
mm axial slices, TR/TE 5 6.68/2.88 ms, flip angle 5 25�,
FOV 5 240 3 240 mm2, matrix size 5 512 3 512 3 248,
voxel size 5 0.47 3 0.47 3 0.70 mm3. All Chinese brains
were spatially normalized using linear and nonlinear
transformation via the “AIR Make Atlas” pipeline
workflow within the LONI pipeline environment;
� ICBM 2009c nonlinear asymmetric atlas. The MRI data

from 152 young normal adults (18.5–43.5 years) were
acquired on a Philips 1.5 T scanner. The imaging
parameters are: 140 slices, TR/TE 5 18/10 ms, flip
angle 5 30�, FOV 5 256 3 204 mm2. The atlas construc-

tion procedure involved multiple iterations of a pro-
cess, where at each iteration, individual native MRIs
were non-linearly fitted to the average template from
the previous iteration, beginning with the MNI152 lin-
ear template;
� The UNC pediatric atlas, created by NeuroImage

Research and Analysis Laboratories at UNC-Chapel
Hill, was constructed using 10 4-year old cases plus
mirrored ones. It was created from training images by
iterative, joint deformable registration into an unbiased
average image. Imaging parameters and detailed infor-
mation about the training images are not provided on
the website.
� Chinese pediatric atlas created uisng traditional atlas

construction protocol. To further demonstrate the use-
fulness of the proposed atlas construction procedure
(the preprocessing steps and the new registration
method), we also create an atlas using traditional atlas
construction protocol based on our MRI data. The
compared protocol follows the gerneral scheme used
in the standard atlas construction (Chinese_56 atlas,
ICBM atlas, and UNC pediatric atlas). The images
were first linearly aligned to a targe image (with
FLIRT registration [Jenkinson, 2001]), the tentative lin-
ear atlas was created using intensity average. Then
nonlinear registrations (intensity-based SyN method
in ANTS software) were applied to warp the images
to the tentative average brain atlas for several rounds
and generated the final nonlinear brain atlas.

The original MRI scans of the compared atlases are
shown in Figure 7. Furthermore, to compare the size and
shape of the Chinese pediatric atlas with other atlases, all
the atlases were rigidly aligned in ICBM152 space using a
six-parameter transformation to preserve the original char-
acteristics in size and volume. The global features of the
atlases were measured and some differences were found
among different atlases, as indicated in Table I. It is found
that Chinese pediatric atlas (mean age of 7 years) is rela-
tively shorter in length than UNC pediatric (mean age of

Figure 6.

The final constructed atlas and its tissue maps. From left to right are the atlas intensity image,

WM tissue map, GM tissue map, and CSF tissue map.
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Figure 7.

The atlases to be compared with our atlas. (a) The Chinese adult atlas constructed based on 56

Chinese young subjects; (b) ICBM 152 nonlinear asymmetric atlas created based on 152 young

subjects; (c) UNC pediatric atlas constructed based on 10 4-year old subjects. (d) Atlas con-

structed with traditional protocol based on our Chinese pediatric data. (e) Atlas constructed

with proposed protocol based on our Chinese pediatric data.
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4 years), and its W/L, H/L, and H/W ratios are closer to
1 than other atlases. Although we use different methods to
construct the atlas based on Chinese pediatric population,
the measured global features are consistent and the differ-
ences mainly lie in the sharpness of the brain structures
presented in the atlas images (as seen in Fig. 7d,e).

Tissue segmentation by atlas-based segmentation
algorithm

With the constructed atlas and its tissue maps, we can
segment the population of pediatric images using
registration-based segmentation method. Registration was
performed between each atlas intensity image and the 53

TABLE I. The comparison of brain size between Chinese pediatric atlas and other standard atlases

Atlas Length (mm) Width (mm) Height (mm) W/L H/L H/W

Chinese56 169 144 110 0.86 0.66 0.77
ICBM 152 177 136 124 0.77 0.70 0.91
UNC Pediatric 151 115 93 0.76 0.62 0.81
Chinese Pediatric atlas(old protocol) 148 133 106 0.90 0.72 0.80
Chinese Pediatric atlas (proposed protocol) 148 133 106 0.90 0.72 0.80

TABLE II. Segmentation results comparison

Atlas WM GM CSF

Chinese56 0.712 6 0.015 0.665 6 0.020 0.546 6 0.070
ICBM 152 0.779 6 0.016 0.746 6 0.027 0.587 6 0.055
UNC Pediatric 0.806 6 0.023 0.738 6 0.023 0.608 6 0.033
Chinese Pediatric

atlas (old protocol)
0.545 6 0.036 0.541 6 0.038 0.288 6 0.038

Chinese Pediatric
atlas (proposed
protocol)

0.819 6 0.017 0.783 6 0.023 0.656 6 0.052

The dice volume overlap (mean 6 standard deviation) of WM,
GM, and CSF using different atlases.

Figure 8.

Registration example with different atlases. Panel (a) is the target image to be registered. (b)

Registration result with Chinese_56 atlas; (c) registration result with ICBM 152 atlas; (d) regis-

tration result with UNC pediatric atlas; (e) registration result with our atlas using old protocol;

(f) registration result with our atlas using proposed new method.
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pediatric brain MR scans. The SyN method in ANTS soft-
ware was used for image registration, with CC served as
similarity metric. Three level multi-resolution registration
was performed, with a maximum of 100 iterations at the
first two coarse levels and 20 iterations at the full resolu-
tion level. A Gaussian regularizar with a sigma of 3 oper-
ates only on the deformation field. The resulting
deformation fields were applied on the tissue maps of the
atlas, forming the tissue maps for each pediatric subject.
These atlas-based segmentation results are compared with
the automatic segmentation results obtained using FAST.
Quantative comparison is conducted based on Dice vol-
ume overlap [Dice, 1945] of WM, GM, and CSF, shown in
Table II. The Student’s t-test was performed on the Dice
comparison, and statistically significant difference was
found between our atlas and other atlases (P< 0.001). It
can be seen that using our atlas much higher segmentation
accuracy can be obtained than using other atlases.

Registration with new pediatric brains

To show the effect of atlas choice in registeration, we
conducted image registration experiments using the five
atlases. We chose 15 new and distinct Chinese pediatric
brains (10 males and 5 females aged 11.68 6 0.14 years),
the imaging parameters can refer to Subjects and Image
Requisition section. We registered each of the five atlas
images to these brains using SyN method in ANTS. The
registration parameters are consistent among different
atlases: similarity metric is CC, iteration number is 100 3

100 3 20, Gaussian sigma is 3. One example of registration
result is shown in Figure 8. It can be visually inspected
that using our constructed atlas to register a Chinese pedi-
atric brain can yield more accurate results. With other
atlases, more artifacts exist in the registered image. To
quantatively demonstrate the benefit of using our atlas,
the mean magnitude of deformation field and mean mag-
nitude of log Jacobian of the deformation field were com-
pared in Table III. It is shown that the magnitudes of
deformation and log Jacobian are significant smaller
(P< 0.001) using our atlas (both using old protocol and
our new protocol) than using other atlases. It indicates
that our atlas requires less deformation to register the Chi-

nese pediatric brains and can better represent the shape
and size of the Chinese pediatric population.

CONCLUSIONS

In this article, we have presented a method for generat-
ing a representative atlas for Chinese pediatric population.
Facing the challenge of handling low quality of MRI pedi-
atric brain images, we designed several special preprocess-
ing techniques to improve the image quality and proposed
to use an intensity and sulci landmark combined group-
wise registration method. It is demonstrated that the
resulting atlas maintains high anatomical details and
shows better performance in atlas-based segmentation
compared with other standard atlases. And our newly
designed procedure for pediatric atlas construction shows
better performance in atlas construction, which results a
much sharper atlas and shows higher segmentation accu-
racy. It is further validated with registration examples that
our atlas can better represent the Chinese pediatric popu-
lation, which validates the necessity of creating such atlas
for the specific population. In the future work, the created
Chinese pediatric atlas will help us perform more pediatric
study, such as study of the development of brains of chil-
dren, the comparison between healthy children and chil-
dren with autism or other neurological diseases.
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