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Abstract: Because hypoperfusion of brain tissue precedes atrophy in dementia, the detection of demen-
tia may be advanced by the use of perfusion information. Such information can be obtained noninva-
sively with arterial spin labeling (ASL), a relatively new MR technique quantifying cerebral blood flow
(CBF). Using ASL and structural MRI, we evaluated diagnostic classification in 32 prospectively
included presenile early stage dementia patients and 32 healthy controls. Patients were suspected of
Alzheimer’s disease (AD) or frontotemporal dementia. Classification was based on CBF as perfusion
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marker, gray matter (GM) volume as atrophy marker, and their combination. These markers were each
examined using six feature extraction methods: a voxel-wise method and a region of interest (ROI)-
wise approach using five ROI-sets in the GM. These ROI-sets ranged in number from 72 brain regions
to a single ROI for the entire supratentorial brain. Classification was performed with a linear support
vector machine classifier. For validation of the classification method on the basis of GM features, a ref-
erence dataset from the AD Neuroimaging Initiative database was used consisting of AD patients and
healthy controls. In our early stage dementia population, the voxelwise feature-extraction approach
achieved more accurate results (area under the curve (AUC) range 5 86 2 91%) than all other
approaches (AUC 5 57 2 84%). Used in isolation, CBF quantified with ASL was a good diagnostic
marker for dementia. However, our findings indicated only little added diagnostic value when com-
bining ASL with the structural MRI data (AUC 5 91%), which did not significantly improve over accu-
racy of structural MRI atrophy marker by itself. Hum Brain Mapp 35:4916–4931, 2014. VC 2014 Wiley

Periodicals, Inc.

Key words: Alzheimer’s disease; arterial spin labeling; classification; diagnostic imaging; frontotempo-
ral dementia; magnetic resonance imaging; presenile dementia; support vector machines
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INTRODUCTION

The growing prevalence of dementia is an increasing
health problem [Alzheimer’s Association, 2011]. Early and
accurate diagnosis is beneficial for patient care, aiding the
planning of care and living arrangements, and preserving
function and independence for as long as possible
[Paquerault, 2012; Prince et al., 2011]. In addition, an early
and accurate diagnosis increases research opportunities
into understanding the disease process and into the devel-
opment of treatments. However, early stage diagnosis can
be very difficult, as clinical symptoms and the loss of brain
tissue, atrophy, may not yet be marked. To aid the diagno-
sis of dementia, machine-learning techniques applied to
imaging and associated data are of interest. These techni-
ques may improve diagnosis of individual patients, since
they are trained on group differences, which may not be
noted from qualitative visual inspection of brain imaging
data. The machine-learning techniques use labeled data to
train a classifier to categorize two groups (e.g., patients
and controls) based on features derived from brain imag-
ing or other data. Several studies demonstrated the suc-
cessful classification of dementia based on atrophy derived
from structural MRI using such machine-learning meth-
ods, [e.g., Cuingnet et al., 2011; Davatzikos et al., 2008;
Duchesne et al., 2008; Fan et al., 2008a, b; Kl€oppel et al.,
2008; Koikkalainen et al., 2012; Magnin et al., 2009; Vemuri
et al., 2008; Wolz et al., 2011].

Because hypoperfusion of brain tissue precedes atrophy
in dementia [Jack et al., 2010; Sperling et al., 2011], early
diagnosis may be advanced by the use of perfusion infor-
mation. Such information can be obtained with arterial
spin labeling (ASL), an MRI technique, which measures
brain perfusion noninvasively, without the need for inject-
ing contrast media [Detre et al., 1992; Williams et al.,
1992]. ASL uses inversion labeling of arterial blood to
quantify the cerebral blood flow (CBF).

Although previous studies have indicated that perfusion
information may be valuable for diagnosing early stage
dementia [Binnewijzend et al., 2013; Wang et al., 2013;
Wolk and Detre, 2012], to the best of our knowledge only
three studies have applied machine-learning techniques to
ASL data showing the diagnostic value of ASL for Alzhei-
mer’s disease (AD) using linear discriminant analysis
[Dashjamts et al., 2011], for frontotemporal dementia
(FTD) using logistic regression methods [Du et al., 2006],
and for mild cognitive impairment (MCI) using regression
preceded by local linear embedding [Schuff et al., 2012].

In this work, we studied the value of CBF as quantified
with ASL for differentiation of dementia patients from
healthy controls using machine-learning techniques. This
was studied on a patient group consisting of presenile
(disease onset <65 years), early stage dementia patients
suspected of AD or FTD and a matched control group
(Group I). For comparison of the structural-MRI-based
classifications with previous work [e.g., Cuingnet et al.,
2011; Davatzikos et al., 2008; Duchesne et al., 2008; Fan
et al., 2008a, b; Kl€oppel et al., 2008; Koikkalainen et al.,
2012; Magnin et al., 2009; Vemuri et al., 2008; Wolz et al.,
2011], we also included a reference dataset from the AD
neuroimaging initiative (ADNI) database (Group II). We
evaluated several linear support vector machine (SVM)
classification methods. Two aspects of the classification
model were examined: (1) the type of data and (2) the
feature-extraction approach. For the first aspect, we
included three groups of data in the analysis: CBF as per-
fusion marker on its own, gray matter (GM) volume as an
atrophy marker, obtained from high-resolution structural
T1-weighted (T1w) MRI, and their combination. CBF and
GM features were combined using four methods: feature
concatenation, feature multiplication, and classifier combi-
nation using both the product rule and the mean rule [Tax
et al., 2000]. For the second aspect regarding feature
extraction, we examined the two main approaches that
were used in previously published dementia-classification
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papers: voxel-wise [e.g., Kl€oppel et al., 2008] and region of
interest (ROI)-wise feature extraction [e.g., Magnin et al.,
2009].

MATERIALS AND METHODS

Participants

Group I consisted of participants from the Iris study,
which was approved by the review board at our institu-
tion. Informed consent was obtained from all participants.
For this group, 32 presenile patients with early stage
dementia (17 male, age 5 62.8 6 4.1 years) were recruited
from the outpatient clinic. As presenile dementia is
defined by the age at disease onset (<65 years), this does
not exclude a 69-year-old patient to suffer from a presenile
form of dementia. Therefore, we considered patients in the
age range of 45–70 years and with a Mini Mental State
Examination (MMSE) score� 20 for inclusion. Exclusion
criteria were normal pressure hydrocephalus, Hunting-
ton’s disease, cerebral vascular disease, psychiatric disease,
alcohol abuse, brain tumor, epilepsy, or encephalitis. All
patients underwent neurological and neuropsychological
examination as part of their routine diagnostic work up,
and diagnosis of dementia was established in a multidisci-
plinary clinical meeting on the basis of neurological, neu-
ropsychological, and conventional-imaging criteria.
Patients who were subsequently suspected of having
either AD [Dubois et al., 2007, 2010; McKhann et al., 2011]
or FTD [Rascovsky et al., 2011] were asked to participate
in this study. The participating patients had a MMSE score
of 26.6 6 2.9 (mean 6 standard deviation) out of 30. This
indicated that cognitive function was not yet much
impaired, and confirmed that dementia was still at an
early stage. Based on patient history and neuropsychologi-
cal testing, every patient was assigned a provisional diag-
nostic label in the multidisciplinary meeting. These labels
were probable AD (n 5 8), possible AD (n 5 3), AD/FTD
(n 5 9), possible FTD (n 5 8), and probable FTD (n 5 3). We
additionally included 32 age-matched healthy controls (18
male, age 5 62.0 6 4.4 years). Control subjects had no his-
tory of neurological or psychiatric disease and did not
have contraindications for MRI. An MMSE score was
obtained from 23 of the controls, which was 29.0 6 1.0 on
average.

Group II consisted of participants from the ADNI and
was used as reference dataset for validation of the pipeline
for classification based on GM features. This group was
included to enable comparison with results from previous
articles. The ADNI was launched in 2003 by the National
Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Adminis-
tration, private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private part-
nership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD.
The ADNI cohort used in this article is adopted from the
study of Cuingnet et al. [2011], from which we selected
the AD patient group and the elderly control group. The
inclusion criteria for participants were defined in the
ADNI GO protocol (http://www.adni-info.org/Scientists/
Pdfs/ADNI_Go_Protocol.pdf). The patient group consisted
of 137 patients (67 male, age 5 76.0 6 7.3 years,
MMSE 5 23.2 6 2.0), and the control group of 162 partici-
pants (76 male, age 5 76.3 6 5.4 years, MMSE 5 29.2 6 1.0).

MR Imaging

For Group I, images were acquired on a 3T MR scanner
(Discovery MR750, GE Healthcare, Milwaukee, WI) using
a dedicated 8-channel brain coil. For each participant, a
T1w image and a pseudo-continuous ASL image [Dai
et al., 2008; Wu et al., 2007] were acquired. T1w images
were acquired with a 3D inversion recovery fast spoiled
gradient-recalled echo sequence with the following param-
eters: inversion time (TI) 5 450 ms, repetition time
(TR) 5 7.9 ms, and echo time (TE) 5 3.1 ms. These T1w
images had a resolution of 0.94 3 0.94 mm in the sagittal
plane and a slice thickness of 1.0 mm. For 10 of the con-
trols, T1w images were acquired axially with a resolution
of 0.94 3 0.94 3 0.8 mm and acquisition parameters of
TI 5 450 ms, TR 5 6.1 ms, and TE 5 2.1 ms. Acquisition
time was around 4 min. The ASL data were acquired with
a postlabeling delay time of 1.53 s using background sup-
pression. 3D acquisition was performed with an inter-
leaved stack of spiral readouts using 512 sampling points
on 8 spirals, resulting in an isotropic 3.3 mm resolution in
a 24 cm field of view. Other imaging parameters were
TR 5 4.6 s, TE 5 10.5 ms, number of excitations 5 3, label-
ing pulse duration 5 1.45 s. The reconstructed voxel size
was 1.9 3 1.9 3 4 mm. For the ASL data, the acquisition
time was 4:30 min.

For Group II, T1w imaging data were acquired at 1.5T.
Acquisition had been performed according to the ADNI
acquisition protocol [Jack et al., 2008].

Image Processing

Probabilistic tissue segmentations were obtained for
white matter (WM), GM, and cerebrospinal fluid on the
T1w image using the unified tissue segmentation method
[Ashburner and Friston, 2005] of SPM8 (Statistical Para-
metric Mapping, London, UK). To minimize errors in the
image processing, visual inspections of the tissue maps
were performed after specific image processing steps. The
tissue segmentation procedures did not compensate for
WM lesions and infarcts, but this was not necessary as
patients with a history of cerebrovascular accidents (CVA)
or CVA reported in their MRI examination were excluded
from our study. Accordingly, since the study population
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was quite young and vascular dementia patients were not
included, only few WM lesions were present.

For Group I, ASL imaging data consisted of a difference
image (DA) and a control image (A0) [Buxton et al., 1998].
To obtain an indication of the image quality, we estimated
the signal-to-noise ratio (SNR) of the DA images of five
randomly chosen patients and five controls. SNR was
defined as,

SNR DA5
lDA

rnoise
(1)

in which lDA is the mean DA in a small ROI in the brain,
and rnoise is the standard deviation of the signal in a small
ROI in the background. For the patients the SNR was
20.3 6 7.7 (mean 6 std), and for the controls 27.0 6 5.4.
Figure 1A shows an example DA scan for a patient with
SNR 5 24.4.

For each subject, T1w images were rigidly registered
to the A0 images using Elastix registration software
[Klein et al., 2010] by maximizing mutual information
[Th�evenaz and Unser, 2000] within a mask. For the T1w
images, a dilated brain mask obtained with the brain
extraction tool [Smith, 2002] was used, and for the A0

image, voxels with zero intensity, outside the brain,
were masked out. All registrations were visually
checked. Tissue maps and brain masks were trans-
formed to ASL space accordingly. In the ASL space, DA
and A0 were corrected for partial volume effects using
local linear regression based on the tissue probability
maps using a 3D kernel of 3 3 3 3 3 voxels [Asllani
et al., 2008; Oliver et al., 2012]. CBF maps were quanti-
fied using the single-compartment model by Buxton
et al. [1998] as implemented by the scanner manufac-
turer. Figure 1B shows the partial volume corrected CBF

map, which corresponds to the DA image in Figure 1A.
After quantification, CBF maps were transformed to
T1w space. In the analysis only the CBF in the GM was
used, as cortical CBF is of primary interest in the disease
processes studied here. In addition, quantification of
CBF with ASL in WM is less reliable than in GM [Van
Gelderen et al., 2008].

For partial volume correction of the ASL images and for
estimation of intracranial volume, a brain mask was
required for each subject. This brain mask was constructed
using a multiatlas segmentation approach. We performed
brain extraction [Smith, 2002] on the T1w images associ-
ated with a set of 30 atlases [Gousias et al., 2008; Hammers
et al., 2003], checked the brain extractions visually, and
adjusted extraction parameters if needed. The extracted
brains were transformed to each subject’s T1w image and
the labels were fused, resulting in a brain mask for each
subject. The multiatlas segmentation approach is explained
in more detail the next section.

Common Template Space and Individual

Regions-of-Interest (ROIs)

For each subject, we defined two image spaces, which
refer to the coordinate systems of the subject’s ASL and
T1w scan respectively: an ASL-space (XASL) and a T1w-
space (XT1w). Additionally, a common template space
(XTemplate) was defined on the basis of the T1w images of
all subjects. For registration of images, the following nota-
tion is used: a transformation T is applied to an image
(moving image, M) to optimally fit another image (fixed
image, F). The deformed moving image can be written as
M(T). Figure 2 illustrates the image spaces and the trans-
formations between them.

Figure 1.

(A) ASL difference scan (DA) of a dementia patient (SNR 5 24.4), and (B) the corresponding CBF map

in the GM after partial volume correction in color overlay. The background image in (B) is the T1w

image. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The template space (XTemplate) was constructed based on
the T1w images of all subjects using a procedure that
avoids bias towards any of the individual T1w images
[Seghers et al., 2004]. In this approach, the coordinate
transformations from the template space to the subject’s
T1w space (Ti: XTemplate ! XT1wi) were derived from pair-
wise image registrations. For computation of Ti, the T1w
image of an individual subject (T1wi) was registered to all
other subjects’ images (T1wj) using T1wi as the fixed
image. This resulted in a set of transformations Ui,j: XT1wi

! XT1wj . By averaging the transformations Ui,j, the trans-
formation Si: XT1wi ! XTemplate was calculated:

Si xð Þ5 1

N

XN

j51

Ui;jðxÞ (2)

The transformation Ti was calculated as an inversion of
Si: Ti 5 Si

21. Note that the identity transformation Ui,i is
also included in [2]. The pairwise registrations were per-
formed using a similarity, affine, and nonrigid B-spline
transformation model consecutively. A similarity transfor-
mation is a rigid transformation including isotropic scal-
ing. The nonrigid B-spline registration used a three-level
multiresolution framework with isotropic control-point
spacing of 24, 12, and 6 mm in the three resolutions,
respectively. A T1w template image was created by aver-
aging the deformed individual T1w images. This template

was thresholded and dilated to create a dilated brain mask
for this population. To prevent background information in
the T1w images from influencing the process, the complete
pairwise registration procedure was repeated masking the
T1wi images with these dilated brain masks in XT1wi. To
check if subjects were properly registered to the template
space, the final T1w template image was visually
inspected. Processed images (Pi) were transformed to tem-
plate space using Pi(Ti) for the brain masks and tissue
maps, and using Pi(Ri(Ti)) for the CBF maps with Ri: XT1wi

! XASLi . We defined a common GM mask in template
space by combining the GM segmentations of all subjects
using majority vote. The voxel-wise CBF features included
only voxels within this common GM mask.

Five sets of ROIs in the GM were constructed for every
subject individually in T1w space (XT1w) differing in the
number and size of ROIs (Fig. 3): (a) regional labeling of
the supratentorial brain (region; 72 features), (b) selection
of brain regions affected by AD or FTD based on the liter-
ature (selection; 28 features) [Foster et al., 2008; Fukuyama
et al., 1994; Herholz et al., 2007; Ishii et al., 1996, 1998,
1997a, b, 2000; Johannsen et al., 2000; Minoshima et al.,
1997; Santens et al., 2001; Scarmeas et al., 2004; Womack
et al., 2011], (c) brain lobes (lobe; occipital, temporal, parie-
tal, frontal lobes and central structures in both hemi-
spheres; 10 features), (d) hemispheres (hemisphere; 2
features), and (e) the total GM in the entire supratentorial

Figure 2.

Image spaces including processed images in these spaces: ASL space (XASL), T1w space (XT1w),

and the template space (XTemplate). Transformations between the image spaces are indicated by

Q, R, S, T, and U. The arrows are pointing from the fixed to the moving domain. Different sub-

jects are represented by i and j. From all T1wi, a template space image (T1wj) is calculated. In

each image space, the dotted boxes represent the processed images.
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brain (brain; 1 feature). The ROI-sets were constructed
using a multiatlas segmentation procedure. Thirty labeled
T1w images containing 83 ROIs each [Gousias et al., 2008;
Hammers et al., 2003] were used as atlas images. The atlas
images were registered to the subject’s T1w image using a
rigid, affine, and nonrigid B-spline transformation model
consecutively. A rigid transformation model was used
instead of the similarity transformation model that was
used in the template space registrations. The rigid model
was used because the similarity transformation failed here,
probably due to the cropping around the brain, which had
been performed in the atlas images to remove most non-
brain tissue. Registration was performed by maximization
of mutual information [Th�evenaz and Unser, 2000] within
dilated brain masks [Smith, 2002]. For initialization, the
dilated brain masks were rigidly registered. For nonrigid
registration, the same multiresolution settings were used
as in the template-space construction. The subjects’ T1w
images were corrected for inhomogeneities to improve
registrations [Tustison et al., 2010]. Labels were fused
using a majority voting algorithm [Heckemann et al.,
2006]. All final region segmentations were visually
inspected. The brain stem, corpus callosum, third ventricle,
lateral ventricles, cerebellum, and substantia nigra were
excluded. For construction of the lobe, hemisphere, and brain
GM ROIs, the regions were fused in the original atlas
images before transformation to XT1w.

Classification Methods

We evaluated two aspects of dementia classification, which
are discussed in this section: (1) the type of data and (2) the
method used to extract features. For the first aspect, classifi-
cations were performed using three types of data: CBF values
quantified with ASL, GM volumes derived from the T1w
images, and their combination. Four combination strategies
were explored. In the first strategy, the feature vectors for
CBF and GM were concatenated into one large feature vec-
tor, which was used to train the classifier ([CBF GM], feature
concatenation). In the second strategy, we multiplied the CBF
and GM features element-wise (CBF 3 GM, feature multipli-
cation). In the third and fourth strategy, two separate SVM
models for CBF and GM were combined by respectively the
product rule x CBFð Þ � x GMð Þð Þ, and the mean rule

1
2 x CBFð Þ1 x GMð Þð Þ
� �

[Tax et al., 2000]. In these approaches,
the combined classifier was obtained by multiplication or
averaging of the posterior class probabilities (x) of the single
modality classifiers and by renormalizing the posterior prob-
abilities. As an SVM does not naturally output posterior
probabilities, these were obtained from the distance between
the sample and the classifier by applying a logistic function
[Duin and Tax, 1998]. For the second aspect, six methods
were used to extract features from the data: a voxel-wise
method (voxel) and a ROI-wise approach using the five previ-
ously defined ROI-sets (region, selection, lobe, hemisphere, and
brain). These methods were applied in turn to the T1w data,

ASL data and combined data. Voxel-wise features were
defined as CBF intensities and GM probabilistic segmenta-
tions in the template space (XTemplate) [Cuingnet et al., 2011;
Kl€oppel et al., 2008]. For the CBF features, only voxels within
the common GM mask were included. For the GM segmen-
tations, we performed a modulation step, that is, multiplica-
tion by the Jacobian determinant of the deformation field
(Fig. 1, transformation Ti), to take account of compression
and expansion [Ashburner and Friston, 2000]. This modula-
tion step ensures that the overall GM volume was not
changed by the transformation to template space. The ROI-
wise features were calculated in subject T1w space (XT1w) for
the five ROI-sets. The CBF features were defined as the mean
CBF intensity in the GM, and the GM features as the GM
volume obtained from the probabilistic GM maps [Cuingnet
et al., 2011; Magnin et al., 2009]. To correct for head size, the
GM features were divided by intracranial volume. All fea-
tures were normalized to have zero mean and unit variance.

Analysis and Statistics

For classification, linear SVM classifiers [Vapnik, 1995]
were applied using the LibSVM software package [Chang
and Lin, 2011]. Classification performance was quantified
by the area under the curve (AUC). The SVM C-parameter
was optimized using grid search on the training set with
LOO cross-validation.

On Group I, the SVM classifiers were trained and tested
using both LOO cross-validation and iterated four-fold
cross-validation. LOO cross-validation was used for calcu-
lation of classification performance because it uses the
maximum number of available data for training of the
classifier, resulting in the best possible classifier using
those data and features. In four-fold cross-validation, how-
ever, only a part of the available training data is used,
which allows for calculation of the standard deviations on
the AUC. These standard deviations provide an indication
of the robustness of the classifier, that is, the dependence
of the performance on the sampling of training and test
sets. For the iterated four-fold cross-validation, classifica-
tion was performed iteratively on four groups, each con-
sisting of eight patients and eight control subjects, using
repeatedly three groups for training and one group for
testing. The total number of iterations was 50. To assess
whether ASL improved the performance of the classifica-
tions relative to those based on structural GM features
only, we performed McNemar’s binomial exact test.

For detection of features associated with group differen-
ces using the SVM classifier, we calculated statistical sig-
nificance maps (P-maps). Using permutation testing, a null
distribution for the features was obtained using 5000 per-
mutations [Mour~ao-Miranda et al., 2005; Wang et al.,
2007]. The P-maps were calculated for every feature
extraction method on both the CBF and GM data. We
used a P-value threshold of a 5 0.05 and we did not cor-
rect for multiple comparisons, as permutation testing has a
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low false positive detection rate [Gaonkar and Davatzikos,
2013]. Voxel-wise P-maps were visually inspected to iden-
tify clusters of significant voxels.

On Group II, we evaluated the classifications based on
GM features. Instead of cross-validation, separate training
and test sets were used for classification. The participants
were randomly split into two groups of the same size, a
training set and a test set, while preserving the age and
sex distribution [Cuingnet et al., 2011]. All postprocessing
and classification methods were identical to those of
Group I, except for the construction of the template space,
which is for Group II only based on the training set. In
Cuingnet et al. [2011], classification results are presented
as the highest sum of sensitivity and specificity. For com-
parison, we also included this measure for Group II.

RESULTS

Group I

Figure 4 shows the classification results for (a) the LOO
cross-validation and (b) the iterated four-fold cross-validation.
The voxelwise feature-extraction approach (AUC range 5 86–
91%) resulted in higher performance than all other approaches
(AUC range 5 57–84%). CBF and GM single modality classifi-
cations performed similarly in the voxel-wise approach, but in
the ROI-wise approaches the AUC for the CBF classification
declined with decreasing feature numbers.

For the voxel-wise method, the combination of CBF and
GM data (AUC range 5 89–91%) performed somewhat better
than classification based on a single modality (AUC 5 86–
88%) as can be appreciated from the ROC-curves shown in
Figure 5. For the other approaches, the GM classification per-
formed best (AUC range 5 77–84%) and this was not
improved by adding the CBF data (AUC range 5 73–83%). In
the voxel-wise approach, the feature multiplication method
had a slightly higher performance than the other approaches,
but overall the performances of the four combination meth-
ods were similar. For the region-wise method, combination of
CBF and GM by the product and mean combination methods
(AUC 5 83%) performed better than feature concatenation or
multiplication (AUC range 5 78–81%), while in the other
ROI-wise approaches with fewer ROIs, feature concatenation
was the best performing combination method.

The McNemar tests showed no significant differences
between the performance of the voxel-wise classification
based on GM features and the other voxel-wise classifica-
tions: CBF (P 5 0.38), the mean rule (P 5 0.38), and the
other combination methods (all P 5 1.0).

Generally, the mean classification performances for the
iterated four-fold cross-validation were similar to those
obtained with LOO cross-validation (Fig. 4B). The stand-
ard deviations, indicated by the error bars in Figure 4B,
showed that the classifications had a relatively small var-
iance and were rather robust.

Posterior probabilities for the voxel-wise classifications
are shown in Figure 6 and do not indicate that the type of

dementia influences the success for patients of being cor-
rectly classified, as AD and FTD patients cannot be clearly
separated in the plot. It should be noted that the classifiers
were not trained for this specific differentiation.

P-maps for the voxel-wise classifications are shown in Fig-
ure 7. For CBF (Fig. 7A), several clusters of significantly differ-
ent voxels were observed, located mainly in the thalamus,
amygdala, and anterior and posterior cingulate gyrus. For GM
(Fig. 7B), clusters of significantly different voxels were seen in
the hippocampus, insula, posterior cingulate gyrus and thala-
mus. We also observed significantly different voxels in regions
with a low GM probability, around the ventricles and corpus
callosum. Table I lists all regions with visually observed clus-
ters of significantly different voxels in the P-map. Within these
regions, as defined by Hammers et al. [2003] and Gousias et al.
[2008], only a small percentage of voxels was significantly dif-
ferent. For CBF, the highest percentage of significantly differ-
ent voxels was observed in the amygdala (20%), and for GM in
the hippocampus (18%), see Figure 8.

In the Supporting Information, the P-values for the region
classification are listed. For CBF, two significantly different
regions were found, and for GM one region. For CBF, one of
the significantly different regions was also clearly found in
the voxel-wise P-maps. However, for GM this correspon-
dence was less clear since the only significantly different
ROI (right Subgenual anterior cingulate gyrus) was not
shown in the voxel-wise P-map. The regions with the most
clear clusters of significantly different voxels in the voxel-
wise P-map (hippocampus, insula, and thalamus) were not
found to be significantly different in the region-wise
approach. In the selection and lobe ROI-wise approaches, two
significantly different ROIs were found for both CBF (selec-
tion: superior parietal gyrus left and presubgenual anterior
cingulate gyrus right; lobe: occipital lobe left and frontal lobe
right) and GM (selection: subgenual anterior cingulate gyrus
right and presubgenual anterior cingulate gyrus left; lobe:
temporal lobe left and right). For hemisphere and brain, no
significant ROIs were found.

Group II

Classification performances based on GM features for
the ADNI reference data are shown in Figure 9. For both
voxel- and ROI-wise approaches, we obtained an AUC of
about 90%. For the voxel-wise method, the performance
reported by Cuingnet et al. was somewhat higher than
what we found (Table II). For the region-wise method,
performances were similar: we obtained a slightly higher
sum of sensitivity and specificity, and Cuingnet et al.
obtained a slightly higher AUC.

DISCUSSION

We evaluated different approaches for classification of
early stage presenile dementia patients and controls. These
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approaches included different types of MRI data, and both
voxel-wise and ROI-wise methods for feature extraction. In
this section we first discuss the classification performances
on Group I. Second, the added value of ASL for diagnosis
of dementia is discussed. Finally, we discuss the validation
of methods using the reference dataset of Group II.

Classification Performance

The voxel-wise classification methods showed a high
diagnostic performance with an AUC of up to 91% for
early stage presenile dementia (Group I). We can consider
this a high accuracy for this patient population, because

Figure 3.

The five ROI-sets for ROI-wise feature extraction of the GM: (A) region (72 features), (B) selec-

tion (28 features), (C) lobe (10 features), (D) hemisphere (2 features), and (E) brain (1 feature).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the patients were still at an early stage of the disease,
when both clinical symptomatology and GM atrophy are
known to be less pronounced than at more advanced
stages of the disease. Additionally, our patient population
was relatively young, since we only included presenile
dementia patients. The group was also rather heterogene-
ous, as patients were included when they were suspected
of suffering from either AD or FTD, in which different

regions of the brain are affected. In AD, hypoperfusion
and atrophy are expected mainly in the medial temporal
and parietal lobes, while in FTD this is mainly seen in the
frontal and temporal lobes [Hu et al., 2010]. Such hetero-
geneity of affected brain regions makes the classification
of dementia more difficult. Due to these issues, diagnostic
performance in this group may be expected to be lower
than that in homogeneous patient populations at more

Figure 4.

Classification performances quantified by the area under the

ROC-curve (AUC) determined using (A) leave-one-out and (B)

four-fold cross-validation. For the four-fold cross-validation, the

bars represent mean AUC and the standard deviations are

shown as error bars. Features were extracted using two

approaches: voxel-wise and ROI-wise using 5 GM ROI-sets

(region, selection, lobe, hemisphere, and brain). We included

CBF data, GM data, and their combination using (1) feature con-

catenation ([CBF GM]), (2) feature multiplication (CBF 3 GM),

(3) the product rule x CBFð Þ � x GMð Þð Þ, and (4) the mean rule
1
2

x CBFð Þ1 x GMð Þð Þ
� �

. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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advanced stages of disease. However, one can also argue
that a young patient group and therefore also a young
control group, may have positively influenced the diag-
nostic performance as the younger control group is not so
much affected by age-related atrophy and might therefore
be better distinguishable. For Group I, cross-validation
was used for estimating classifier performance. This tech-
nique is frequently used and mainly applied when a rela-
tively small amount of data is available (for classification
of dementia. The voxel-wise methods overall provided
higher performance than the ROI-based techniques, which
indicates that important diagnostic information was lost
by averaging over the ROIs. This is illustrated by the
P-maps obtained with permutation testing (Figs. 7 and 8),
which showed that the voxel-wise classifiers mainly rely
on small clusters of voxels within the anatomically
defined regions used here. These clusters only maximally
covered 20% of the voxels within such a region. There-
fore, we can assume that the used anatomical region
labeling was not optimal for the ROI-wise classifications,
as the regions may have been too large to be sensitive to
information from a small proportion of significantly dif-
ferent voxels.

For the voxel-wise and region methods, the feature con-
catenation method was outperformed by the other combi-
nation methods, possibly due to the large number of
features relative to the small amount of data. However, for
the other ROI-wise approaches, feature concatenation was
the best performing combination methods. The relatively
small standard deviations obtained with the four-fold

cross-validation indicated that the classifications were
rather robust.

When using one feature only, that is, whole brain meas-
ures, ROI-wise methods for GM still gave a relatively
good performance (AUC 5 73%). However for CBF, the
classification performance declined with decreasing num-
ber of features. Especially remarkable was the reduction in
AUC for CBF after selection of 28 dementia-related brain
regions. For the GM classifications, we did not find this
dramatic decrease in performance. This might be due to
the fact that the regions were selected on the basis of the
literature reporting either focal atrophy or hypoperfusion/
hypometabolism. Such regions may not coincide, particu-
larly not in the early stage of dementia. For instance, in
fluoro-deoxyglucose positron emission tomography (FDG-
PET) studies no significant hypoperfusion is found in spe-
cific brain regions which are known to have volume loss
in AD, for example the hippocampus [La Joie et al., 2012;
Maldjian et al., 2012], or vice versa. For assessing the diag-
nostic performance of CBF classification methods, the selec-
tion classification may have reduced performance because
certain regions may have been included that only exhib-
ited atrophy but not perfusion changes.

Using the P-maps, we visualized which features were
significant for classification. For CBF, we mainly found
clusters of significantly different voxels in the amygdala,

Figure 5.

Receiver operator characteristic (ROC) curves for the voxel-

wise classifications using LOO cross-validation: based on CBF

features, GM features, and the combination of both using feature

concatenation ([CBF GM]), feature multiplication (CBF 3 GM),

the product rule x CBFð Þ � x GMð Þð Þ, and the mean rule
1
2

x CBFð Þ1 x GMð Þð Þ
� �

. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Scatter plot of the posterior probabilities for the voxel-wise

classifications based on GM features (x-axis) and CBF features

(y-axis). Patients are represented by dots colored and sized

according to the assigned provisional diagnostic label. Controls

are represented by blue squares. The green line (y 5 1 2 x)

shows the decision boundary for the product rule and mean

rule combination methods (for a threshold of 0.5 on the com-

bined posterior probability). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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thalamus and cingulate gyrus, corresponding to findings
from the literature on AD reporting hypoperfusion in the
cingulate gyrus and prefrontal cortex. Hypoperfusion in
the parietal lobe is also reported, but was not found here
[Wolk and Detre, 2012]. For GM, significantly different
voxels were found in the hippocampus, insula, thalamus
and cingulate gyrus, corresponding to the literature
[Ch�etelat and Baron, 2003; Karas et al., 2003, 2004]. GM
P-maps were mostly symmetrical, showing similar clusters
of significantly different voxels bilaterally, whereas CBF
P-maps where more asymmetrical. Some asymmetry is
expected particularly in FTD patients [McKhann et al.,
2001]. Cuingnet et al. [2011] did not calculate P-maps, but
evaluated the optimal margin hyperplane (w-map), which
provides qualitative information on the classifiers showing
regions in which atrophy increased the likelihood of being
classified as AD. These regions were the medial temporal
lobe (including hippocampus), thalamus, posterior cingu-
late gyrus, inferior and middle temporal gyri, posterior
middle frontal gyrus, and fusiform gyrus. This corre-
sponds well to our P-maps as we found the same regions
except the last two. In addition, we detected clusters of
significantly different voxels in the insula.

Because in AD and FTD different brain regions are
affected, atrophy and hypoperfusion information could be
used to make a differential diagnosis. A future aim of this
work is to perform a multiclass classification to distinguish
the two groups of patients. One year after inclusion,
follow-up information will be used to establish a definitive
diagnosis, which is needed for the multiclass classification.

A minor limitation of this work is that a different T1w
protocol was used for 10 of the control subjects. We
believe that the impact of this is minor, because the used
sequences are very similar, both are near isotropic with a
resolution � 1 mm, and both sequences allow for good dif-
ferentiation between white and GM.

Figure 7.

Statistical significance maps (P-maps) for the voxel-wise classifications: (A) CBF, (B) GM. Non-

blue voxels are significantly different (P< 0.05) between patient and control groups based on

SVM classification. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE I. Regions with clusters of significant voxels in

the P-maps

CBF GM

Amygdala (left> right) Hippocampus (bilateral)
Cingulate gyrus,

anterior part (left)
Insula (bilateral)

Cingulate gyrus,
posterior part (right)

Cingulate gyrus,
posterior part (bilateral)

Thalamus (bilateral) Thalamus (bilateral)
Postcentral gyrus (right> left) Medial temporal

gyrus (bilateral)
Inferior frontal

gyrus (bilateral)
Inferior temporal

gyrus (bilateral)
Putamen (right> left) Lingual gyrus (bilateral)
Insula (left) Superior frontal

gyrus (bilateral)
Medial frontal gyrus (bilateral)
Superior frontal gyrus (left)
Caudate nucleus (left)
Occipital gyrus (left)
Gyrus parahippocampalis (bilateral)
Medial temporal gyrus (bilateral)
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The Added Value of ASL

CBF-based classification yielded high diagnostic per-
formance for the voxelwise and region-wise approaches
with AUCs of 87 and 76%, respectively. For the voxel-wise
classification, this was similar to the diagnostic perform-
ance based on GM features (P 5 0.38, McNemar’s test).
This indicates that CBF quantified with ASL is a good
diagnostic marker for early stage dementia, in concordance
with previous studies [Binnewijzend et al., 2013; Wang
et al., 2013; Wolk and Detre, 2012].

Although CBF may be a good diagnostic marker by
itself, our results showed no added value over atrophy
markers based on structural MRI. The four different com-
bination methods — feature concatenation, feature multi-
plication, the product rule, and the mean rule — showed a
slight improvement in AUC for the voxel-wise approaches,
but the McNemar tests showed no significant increase in
diagnostic performance by using any methods (P� 0.38).
For ASL to add value, other combination methods than
these four may need to be explored to more efficiently
combine the CBF and GM features. In addition, one
should note that the limited added value of ASL over
structural MRI found in this work may be partly attributed
to the specific methodology used, both in ASL acquisition
and analysis. A potential confounder in this study is the
arterial transit time (ATT), which could conceivably be dif-
ferent between patient and control group. However, we
expect these differences to be small, since on the one hand
patients with cerebral vascular disease were excluded and

on the other hand the patients and control groups were
age-matched. We compared our results to those of three
previously published articles or abstracts studying the

Figure 8.

Voxel-wise P-maps (A) within the amygdala for CBF and (B) within the hippocampus for GM.

These two regions showed the highest percentage of significant voxels. The regions were based

on the region labeling in template space. Nonblue voxels are significantly different (P< 0.05).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9.

Classification performances for the ADNI data quantified by the

area under the ROC-curve (AUC). GM features were extracted

using two approaches: voxel-wise, and ROI-wise using 5 GM

ROI sets (region, selection, lobe, hemisphere, and brain). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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added value of ASL for the diagnosis of dementia. Du
et al. [2006] based classification of FTD patients and con-
trols on logistic regression. The mean CBF and GM vol-
ume in certain regions in the frontal and parietal lobes
were used as features. Performance was evaluated on the
training data. Classification based on GM volume only
showed no significant separation between the groups, but
including CBF yielded an AUC of 80% (P< 0.01). The sec-
ond study by Dashjamts et al. [2011] performed linear dis-
criminant analysis to discriminate between AD patients
and controls using LOO cross-validation. Features were
defined for the whole brain as the normalized CBF inten-
sities and the GM segmentation in DARTEL template
space [Ashburner, 2007]. For the GM features no modula-
tion step was performed. The number of features was
reduced using a VBM approach, which performs voxel-
wise t-tests at different significance levels. The classifica-
tion AUCs were 78% for GM, 89% for CBF, and 92% for
the combination of both using concatenation. These find-
ings are similar to our results, except for the AUC for GM,
which in their study was lower than our results and lower
than the values reported by Cuingnet et al. [2011] and
Kl€oppel et al. [2008]. The classifiers may have been over-
trained since the feature reduction was performed on the
complete set and since optimal significance levels for the
classification on both CBF and GM were selected using the
labels of the test data. The third study, an abstract by
Schuff et al. [2012], studied the classification of early MCI
using local linear embedding and logistic regressions.
Features were defined as the mean CBF or tissue volume
for a set of ROIs. The accuracies of the classification were
67% based on the volume features, 58% based on CBF,
and 71% for the combination of both.

These studies on classification using ASL [Dashjamts
et al., 2011; Du et al., 2006; Schuff et al., 2012] conclude
that ASL improves the classification of dementia over
structural MRI. Although in our dataset we also observed
a small increase in performance by combining CBF and
GM, we could not conclude that this significantly
improves classification, as classifications on the basis of
GM features alone already had a high performance. For
early stage dementia lower performances were expected,
as for instance Kl€oppel et al. [2008] reported a GM-based

classification accuracy of 81.1% in a mild AD group (age
� 80 years, MMSE range 5 20–30). The relatively high per-
formances for the GM-based classifications we found here
may be attributed to the presenile patient and control pop-
ulation, as addressed in the previous section. We therefore
assume that the added value of ASL in this study was lim-
ited by the relatively high performance of the classifica-
tions based on structural MRI.

In addition, the small samples sizes of each of these
studies may hinder a reliable comparison. Similar to the
studies mentioned above, we used a relatively small data-
set (32 patients/32 controls; Du et al.: 21 FTD/24 AD/25
controls; Dashjamts et al.: 23 AD/23 controls; Schuff et al.:
7 AD/44 early MCI/17 MCI/29 controls). To our knowl-
edge, the added value of ASL for classification of dementia
has not been assessed with larger sample size studies, but
for further verification of our conclusion larger sample
size studies would be preferred.

Comparison with Related Work

The GM image-processing and classification methods
were evaluated on an AD patient group and a healthy
control group from the ADNI database (Group II) to ena-
ble comparison with related work. The classification per-
formances we obtained were generally comparable (Table
II) to those of Cuingnet et al. [2011], from which the sub-
ject groups were adopted. However, some performance
differences could be observed, which we think may be
largely attributed to three differences in the methodology.
The first difference is in the region approach, in which we
used 72 regions constructed with multi-atlas registration,
whereas the Voxel-Atlas-D-gm of Cuingnet et al. uses 119
regions from a single atlas [Tzourio-Mazoyer et al., 2002].
Although our atlas contains fewer ROIs, which could
impact the performance either positively, as fewer features
reduce the risk of overtraining, or negatively, as fewer fea-
tures contain less information, we chose this atlas because
multi-atlas-based segmentation is more accurate and
robust than single-atlas-based segmentation [Heckemann
et al., 2006]. Second, the data used for template-space con-
struction differs. We based the template space for Group II

TABLE II. Classification performance on the ADNI reference data for the voxel- and region-wise approaches com-

pared with the performances on the same data reported by Cuingnet et al. [2011]

Study Method AUC (%) Sens. (%) Spec. (%) Sum

This study Voxel 89 85 79 165
Cuingnet et al. Voxel-Direct-D-gm 95 81 95 176
This study Region 90 83 90 172
Cuingnet et al. Voxel-Atlas-D-gm 92 78 91 169

The method Voxel-Direct-D-gm is similar to our voxel-wise method, using modulated GM maps, and the method Voxel-Atlas-D-gm is
similar to our method region, using features for a set of ROIs. Performance measures were area under the ROC curve (AUC), sensitivity
(Sens.), specificity (Spec.), and the sum of sensitivity and specificity (Sum).
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on the training data only, whereas Cuingnet’s Voxel-
Direct-D-gm method uses the complete set. Our approach
requires less computation time, which is practical for clini-
cal use, but may perform slightly worse as the testing sub-
jects are not included in the template space. Third, we
used a different method for template-space construction.
Cuingnet et al. uses the DARTEL algorithm [Ashburner,
2007], which differs from our method in three main ways:
(1) DARTEL iteratively maps the scans to their average,
instead of using the pairwise registrations of our
approach; (2) DARTEL uses tissue segmentations instead
of directly registering T1w images; and (3) DARTEL uses
a large-deformation diffeomorphic algorithm, while our
approach uses a small-deformation parametric (B-spline)
transformation model assuming small deformations.
Although the methods use different approaches, both aim
to find the group mean image.

Although some steps in our method differed from the
method of Cuingnet et al., classification performances on the
same dataset were very similar, indicating that our method-
ology is valid and providing context for our findings in the
presenile early stage dementia patients (Group I).

CONCLUSION

Of the different classification methods, voxel-wise classi-
fications provided the best classification performance for
early stage presenile dementia and controls with an AUC
of about 91%. This can be considered a high diagnostic
accuracy in this presenile patient population in the very
early stage of either of two different types of dementia.

Although CBF quantified with ASL was found to be a
good diagnostic marker of dementia, with similar diagnos-
tic accuracy as GM in the voxel-based classifications, its
added value over structural MRI was not significant.
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