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Abstract: Most visual activities, whether reading, driving, or playing video games, require rapid
detection and identification of learned patterns defined by arbitrary conjunctions of visual features.
Initially, such detection is slow and inefficient, but it can become fast and efficient with training. To
determine how the brain learns to process conjunctions of visual features efficiently, we trained par-
ticipants over eight consecutive days to search for a target defined by an arbitrary conjunction of
color and location among distractors with a different conjunction of the same features. During each
training session, we measured brain activity with functional magnetic resonance imaging (fMRI). The
speed of visual search for feature conjunctions improved dramatically within just a few days. These
behavioral improvements were correlated with increased neural responses to the stimuli in visual
cortex. This suggests that changes in neural processing in visual cortex contribute to the speeding up
of visual feature conjunction search. We find evidence that this effect is driven by an increase in the
signal-to-noise ratio (SNR) of the BOLD signal for search targets over distractors. In a control condi-
tion where target and distractor identities were exchanged after training, learned search efficiency
was abolished, suggesting that the primary improvement was perceptual learning for the search
stimuli, not task-learning. Moreover, when participants were retested on the original task after nine
months without further training, the acquired changes in behavior and brain activity were still pres-
ent, showing that this can be an enduring form of learning and neural reorganization. Hum Brain
Mapp 35:1201-1211, 2014.  © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

To quickly and accurately extract biologically important
information from patterns of light on the retina, the
human visual system must be able to learn relevant pat-
terns of features. Such “perceptual learning” typically
occurs with repeated exposure to a particular stimulus
pattern, and leads to improved speed and accuracy in
processing the stimulus [Gibson, 1963; Goldstone, 1998;
Seitz and Watanabe, 2005].

Perceptual learning is well documented for single visual
features [e.g., Vernier offset, motion direction, texture; see
Ball and Sekuler, 1982; Karni and Sagi, 1991; Poggio et al.,
1992]. However, in ecological vision, single visual features
may prove insufficient to guide behavior effectively. For
example, foraging solely for things that are red might turn
up both poisonous and edible berries; foraging for red
objects of a particular shape would be more adaptive. Simi-
larly, there may be many yellow things and many moving
things in the environment, but identifying a lion might
require the ability to process a particular conjunction of yel-
low and motion. A capacity for perceptual learning of con-
junctions of visual features (e.g., color and shape, or color
and motion), particularly in the context of visual search,
would confer a survival advantage because it would afford
the rapid recognition of items of high biological relevance.

In visual search, the relationship between the number of
items in a search array and the average time to find a
search target provides an index of the efficiency with
which the search stimuli are processed [Wolfe, 1998]. Tar-
gets that differ from distractors along a single feature
dimension (e.g., a red target among green distractors) tend
to be found efficiently: the target “pops out” and the
search time remains relatively constant regardless of how
many distractors are present [Treisman and Gelade, 1980].
In contrast, when the search target is defined by a particu-
lar combination of two features (e.g., color and location)
and distractors are defined by different combinations of
the same features, search tends to be inefficient: search
time increases as the number of distractors increases [e.g.,
Treisman and Gelade, 1980].

However, feature-conjunction search can become more
efficient with practice [Carrasco et al., 1998; Heathcote and
Mewhort, 1993; Sireteanu and Rettenbach, 1995, Wang
et al., 1994]. The neural mechanisms underlying perceptual
learning of feature conjunctions are largely unknown. It
has been hypothesized that such learning requires the de-
velopment of more precise neural representations of fea-
ture conjunctions, allowing for improved bottom-up
processing of the stimuli and a reduction in the amount of
top-down attentional processing required [Gilbert et al.,
2001; Walsh et al., 1998; Zhaoping, 2009]. But it is an open
question whether this hypothesis is correct, and, if so,
where exactly such representational changes might occur.
Studies of perceptual learning for single visual features
suggest that changes as early as primary visual cortex are
associated with behavioral improvements [Kourtzi et al.,

2005; Lee et al,, 2002; Sigman et al.,, 2005, Mukai et al,
2007; Yotsumoto et al., 2008]. However, learning of feature
conjunctions might take place at a higher stage of process-
ing where neurons integrate a larger set of visual features
over a larger area.

To determine what visual areas are involved in learning
visual feature conjunctions, we performed a longitudinal
functional magnetic resonance imaging (fMRI) experiment
in which participants learned to detect a conjunction of
color and location during visual search [Kleffner and Ram-
achandran, 1992; Logan, 1995; Wolfe et al., 1990]. We chose
a longitudinal design because the behavioral increases in
search efficiency which take place over the course of such
learning are known to have a nonlinear relationship to the
time course of training. Moreover, some investigations of
single-feature perceptual learning have observed nonli-
nearities in the relationship between brain activity and
training time [Yotsumoto et al., 2008]. Measuring brain ac-
tivity over the entire learning period makes it possible to
observe any potential temporally nonlinear effects.

We simultaneously scanned and measured behavioral
performance while subjects carried out a visual search task
for a conjunction-defined target on eight consecutive days.
We also tested the same participants in several variations
of the search task immediately post-learning, and in the
original task nine months after the initial training. With
these post-tests, we could assess the stimulus-specificity
and durability of learned changes in visual processing.

Based on what has been observed when learning a sin-
gle visual feature, where the degree of search-related activ-
ity changes throughout visual cortex [Kourtzi et al., 2005;
Lee et al., 2002; Sigman et al, 2005; Yotsumoto et al.,
2008], we hypothesized that feature conjunction learning
would be accompanied by changes in visual cortex activity
level. However, because search targets defined by visual
feature conjunctions require more integrated visual infor-
mation to detect, we hypothesized that the changes in acti-
vation accompanying feature conjunction learning would
be in higher visual areas than those found in single-feature
learning experiments, where changes as early as V1 are
commonly reported [Kourtzi et al., 2005; Lee et al., 2002;
Sigman et al., 2005; Yotsumoto et al., 2008].

To test this, we defined retinotopic regions of interest
(ROIs) where processing might change for each partici-
pant. We also functionally localized the object-sensitive lat-
eral occipital complex (LOC) in each participant, since we
expected that changes to processing of visual-feature con-
junctions might occur at a level representing highly inte-
grated information about objects [Grill-Spector et al., 2001].
In addition, human motion-sensitive area MT+ (V5) was
localized to investigate whether the processing of an irrele-
vant feature (motion jitter of target and distractor stimuli)
would also change with learning.

Previous experiments using transcranial magnetic stimu-
lation to investigate processing changes in visual learning
of feature conjunctions have suggested that the involvement
of attentional areas declines as feature conjunctions are
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learned [Walsh et al., 1998]. To investigate whether activity
levels in attentional areas might also change as feature con-
junctions are learned, in each participant we functionally
localized the frontal eye fields (FEF) and the nearby supple-
mentary eye fields (SEF), which are known to be involved
in attentional processing [Corbetta et al., 1998]. We also
anatomically localized the superior colliculi (another atten-
tion-related area) in each participant’s brain. In line with
previous reports, we expected that activity in these atten-
tional ROIs would decrease as learning progressed.

METHODS
Participants

Three of the authors (23-, 24-, and 48-years old, all male)
participated in the study. All were experienced in psycho-
physical and fMRI experiments and had normal vision.
None had been trained on the task before.

Stimuli and Task

Each participant performed 14 experimental sessions on
14 separate days. Each experimental session took place in
a 3-Tesla MRI scanner during functional scanning, and ev-
ery experimental session consisted of eight scanning runs
(~6.5 min) with 39 trials each.

There were four different conditions, explained in detail
below. Each condition contained different stimuli, but
aside from the stimulus differences, other experimental pa-
rameters were identical across sessions. In all cases, 32 cir-
cular stimuli were arranged in four concentric rings
around a fixation point. A fixed number of stimuli were
used because this simplifies interpretation of the neuroi-
maging data and maximizes experimental power. In pre-
liminary behavioral experiments with a variable number
of stimuli, we established that search speed for a single set
size is an effective proxy for search efficiency (i.e., search
slope) (see Supporting Information). In other words, the
relationship between set size and search time is highly lin-
ear. The size of the stimuli and their distance from fixation
were scaled according to the human cortical magnification
factor [Duncan and Boynton, 2003]. The innermost ring
was 0.67 degrees of visual angle (deg.) away from fixation
and the entire display spanned 22.5 deg. Accordingly, visi-
bility of the stimuli was constant over all locations when
the participant fixated a central fixation mark, therefore
allowing covert search without volitional eye movements.

On each of the 32 target-present trials per run, the target
appeared in just one of the 32 disk positions. The partici-
pants” task was to locate this target stimulus as quickly
and accurately as possible, reporting which ring contained
the target (Key 1: inner ring to Key 4: outer ring). They
were required to fixate and search without eye move-
ments. Target location was counterbalanced within each
run, thereby covering each possible stimulus location with

equal frequency. On catch trials (seven per run) no target
stimulus appeared and the search display contained 32
distractors. The participants reported the perceived ab-
sence of the target with another key (Key 5), pressed using
their thumb. The stimulus array was presented for 4 sec,
and stimuli were spatially jittered every 100 msec within
stationary dark-gray circular placeholders to avoid percep-
tual fading. Participants could respond at any time from
the onset of one trial to the onset of the next trial. After
each response, the fixation point changed color, indicating
whether the response was correct or incorrect.

We did not monitor eye movements during scanning.
All participants had extensive experience maintaining fixa-
tion in the scanner and past eyetracking in the scanner
had established that these participants could maintain cen-
tral fixation. Nevertheless, some fixational eye-movements
such as microsaccades are unavoidable. Since such eye-
movements are known to influence brain activity [Tse
et al., 2010], a change in the number of fixational eye-
movements over the course of learning could confound
interpretation of changes in brain activity associated with
learning. To address this concern, we performed eyetrack-
ing outside the scanner in three different participants as
they learned the search task (see Supporting Information).

Primary search task

The target stimulus was a red-green bisected disk pre-
sented amongst green-red bisected disk distractors (see
Fig. 1A). The color intensities were adjusted to be subjec-
tively isoluminant with one another, and the same colors
were used in all subsequent tasks. The participants per-
formed one session daily over a period of eight successive
days. After nine months of no additional training, the par-
ticipants performed one additional session to test the sta-
bility of the initial learning.

Flip control task

After completion of the initial learning, target and dis-
tractor stimuli were reversed so that what had been a tar-
get became a distractor and vice versa (see Supporting
Information Fig. 1A). A total of three sessions—one per
day—were completed in this condition.

Pop-out control task

These control stimuli elicit efficient visual search with-
out learning [Wolfe et al. 1994]. Here, the participants
searched for a red-green colored bull’s-eye disk among
green-red colored bull’s-eye disks (Supporting Information
Fig. 1B). One session was performed.

Conjunction control task

This condition elicited slow visual search after training
on the primary task. The target was a red horizontal bar
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on a green disk presented among two types of distractors:
a green horizontal bar on a red disk and a vertical red bar
on a green disk (Supporting Information Fig. 1C). One ses-
sion was performed.
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Figure 1.

Stimulus Generation and Presentation

Stimuli were programmed in MATLAB version 2007b
(The MathWorks, Natick, MA), using the Psychophysics
Toolbox [version 3.0.8; Brainard, 1997; Pelli, 1997], and
back-projected onto a translucent circular screen (~30 deg.
diameter), located at the back of the scanner bore. The par-
ticipants viewed the screen via a head coil-mounted mirror
(viewing distance: 63 cm).

fMRI Parameters

Data were acquired with a fast event-related design. Event
durations were constant (4 sec), and the inter-stimulus inter-
val was jittered between 4, 6, and 8 sec (balanced within each
run). MRI scanning was performed with a 3-Tesla Allegra
head scanner (Siemens, Erlangen, Germany) and a one-chan-
nel head coil. Functional whole-brain images were acquired
interleaved with a T2*-weighted gradient echo planar imag-
ing (EPI) sequence (time-to-repeat, TR = 2 sec.; time-to-echo,
TE = 30 msec.; flip angle, FA = 90°) consisting of 34 trans-
verse slices (voxel-size = 3 x 3 x 3 mm?; inter-slice gap = 0.5
mm,; field of view, FOV = 192 mm x 192 mm). In addition,
we collected three high-resolution structural scans (160 sagit-
tal slices each) with a Tl-weighted, magnetization prepared
rapid gradient echo (MP-RAGE) sequence (TR = 2.25 sec, TE
= 2.6 msec, FA = 9°, voxel size = 1 x 1 x 1 mm°, no inter-
slice gap, FOV = 240 mm x 256 mm). The sequence was opti-
mized for the differentiation of gray and white matter by
using parameters from the Alzheimer’s Disease Neuroimag-
ing Initiative project (http://adni.loni.ucla.edu/).

MRI Data Analysis

MRI data analysis was performed with Freesurfer ver-
sion 4.1 and the FSFAST toolbox (Martinos Center for

Figure I.

Behavioral task. A: Depiction of example search stimuli. The
correct response for this trial would be “Target in ring 2" To
counteract perceptual fading, stimuli were spatially jittered every
100 ms within the stationary dark gray bounding rings. Each
search display contained 32 stimuli in this arrangement and was
presented for 4 sec. (corresponding to two durations of the MR
volume acquisition or time-to-repeat, TR). The fixation spot
changed color at the end of each trial to indicate a correct or
incorrect response. B: Reaction times as a function of experi-
mental session, in the original sequence of data collection. In or-
ange: initial training sessions and nine-month retest (8-+1 days).
In blue: reversed target/distractor mapping (3 days). In green:
control condition of search for red/green among green/red
“bull’s-eye” patterns, which does not require learning for pop-
out. In red: untrained search for color/aspect ratio conjunction,
containing the same area of red and green as the other 3 stimu-
lus sets. C: Accuracy rates. Conventions as above.
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Biomedical Imaging, Charlestown, MA). The anatomical
scans of each participant’s brain were averaged, recon-
structed, and inflated [Dale et al., 1999; Fischl et al., 1999].
Functional images of each scanning day were motion-cor-
rected [Cox and Jesmanowicz, 1999], co-registered (via the
first functional image of each session) to the reconstructed
individual brain, smoothed with a three-dimensional
Gaussian kernel (full-width at half-maximum = 5 mm),
and intensity normalized [Sled et al, 1998]. fMRI
data were analyzed using a general linear model
(GLM) approach with an event-related design. The blood-
oxygenation-level-dependent  (BOLD) response was
modeled using a gamma-function (delta = 2.25, tau =
1.25, alpha = 2).

We calculated two GLMs. The primary GLM analysis
used the individual trial-by-trial reaction times (RTs) as
event durations. Therefore, for each trial the BOLD-
response, taking into account the hemodynamic delay and
typical response shape, was accumulated from trial onset
until button press and ended thereafter with the typical
fall time. This time-window covered the period expected
to correspond to active search, leading up to the response.
Faster response times therefore yielded an earlier and
smaller peak of the gamma-function relative to slower
RTs. A drawback of this approach is that decreasing event
durations (i.e., faster RTs) across sessions cause variations
in the shape of the gamma-function in the design matrices
for each session. To control for this possible limitation in
the RT-model, we conducted a different GLM analysis
using constant event durations of 4 sec (i.e., stimulus pre-
sentation time) for all scanning days (see Supporting Infor-
mation). In each of the statistical models, a single
predictor for all events (i.e., target and catch trials) was
used. However, for our primary MRI-model with RT as
event duration we conducted an additional analysis with
separate predictors for target and catch trials to check for
any signal-differences between the two conditions (see
Supporting Information). We included motion-correction
parameters as regressors of no interest and a linear scan-
ner drift predictor in all GLMs.

Regions of Interest

All fMRI analyses were focused on activations in inde-
pendently localized ROIs, identified via additional scans
performed on non-experimental days. We used phase-
encoded retinotopy [DeYoe et al., 1996; Engel et al., 1994,
1997; Sereno et al., 1995] to define V1, V2, V3, V3ab, and
V4v in occipital cortex. Accordingly, we presented a flick-
ering (4 Hz) checkerboard bow-tie shaped wedge that
rotated across 16 different screen positions (2 sec each
position) for five cycles. In half of the runs, rotation was
clockwise, in the other half it was counterclockwise. At
least six runs were conducted in total (~2.7 min each). To
functionally localize the FEF and SEF, the participants fol-
lowed with their gaze a small fixation dot that jumped

unpredictably to one of six different locations across the
horizontal screen axis [Kimmig et al., 2001]. During 12 sec
long blocks with saccades the fixation dot covered each
possible location twice (for one second per location). This
stimulus period was contrasted with periods of central fix-
ation. Two runs (9.6 min each) were performed that
yielded reliable estimates of the eye fields. The LOC was
identified by contrasting objects and scrambled objects
presented for 14-sec blocks [Malach et al.,, 1995]. Human
motion-sensitive area hMT+ (V5) was defined by contrast-
ing visual motion against static stimuli [Tootell et al.,
1995]. Specifically, we presented 12 sec long blocks during
which 200 white dots moved coherently in 12 successive
translational directions (1 sec each direction, dot speed: 20
pixels/~0.6° visual angle per image flip, random dot life-
time: 5-10 image flips, image flip rate: 30 Hz). This was
contrasted with blocks of static dots. One run (9.6 min)
was conducted. In all localizer experiments, ROIs were
defined on fMRI data thresholded with a false discovery
rate (FDR) of P < 0.001. In two retinotopic datasets, the
threshold was reduced below this level to facilitate region
delineation. Finally, the superior colliculi were localized
anatomically on each individual’s high-resolution MRI
scan. No ROI overlapped spatially with any other ROIL

ROI results were first computed separately for left and
right hemispheres and then averaged. This compensates
for the effect of left and right ROIs having slightly differ-
ent sizes on the mean activity of the area. Activation in
each ROI during each session was computed as BOLD per-
cent signal change relative to implicit baseline (i.e., the av-
erage activity across events and blanks in the ROI).

The relationship between changes in behavior and neu-
ral activity was assessed by correlating individual search
times (median RT) and BOLD percent signal changes in
each ROI across all conditions and participants.

Finally, we were interested in whether there might be
increasing response-gain in the retinotopic area represent-
ing target location relative to retinotopic areas representing
distractor locations. Following Tootell et al. [1998], we
functionally localized the retinotopic location correspond-
ing to each of the four concentric ring areas that contained
the stimuli (see Fig. 1A). To do so, we stimulated each of
the four rings with an annulus comprised of stripes flick-
ering in different colors (flicker rate: 30 Hz) for 12-sec
blocks, and contrasted these with blank blocks. Partici-
pants maintained fixation throughout the localizer. Next,
we performed an MRI-analysis (RT-model) on target-trials
using four signal-predictors, coding target location within
one of the four rings. The BOLD percent signal change in
each of the four conditions was then computed for the
ring ROIs. The resulting values were averaged separately
for trials where the target was in the represented part of
the visual field and trials where the target was in a differ-
ent part. Results presented are average values across the
four ring ROIs. We also performed this analysis on sub-
ROIs defined by the intersection of primary visual cortex
and the ring-ROIs. We were able to define three sub-ROIs
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within V1, one for the representation of the innermost
ring, one for the outermost, and one for rings 2 and 3
together.

RESULTS
Behavioral Results

Over the eight days of training, participants” speed and
accuracy on the search task improved (see Fig. 1b,c). Reac-
tion times decreased and accuracy increased, both of
which are indicative of learning. During retest on the orig-
inal search task nine months later, participants’ search
times and accuracies were comparable to those recorded
in the final training session. By contrast, when target and
distractor identities were exchanged immediately after
training, search times rebounded to pre-training levels.
Search times were also slow for the conjunction-control
condition, but not the pop-out control condition.

Because the position of the search target within each run
was random without replacement and the participants
knew it, we conducted a control analysis to assess the pos-
sibility that part of what participants learned was a mem-
ory strategy. If participants were able to remember which
positions had already contained a search target within a
run, then by the end of the run, the number of positions
the participant would need to search should be reduced. If
that were the case, then RTs near the end of each run
should be faster than RTs near the beginning of each run.
We compared the RT for the first nine trials in each run to
the RT for the last nine trials in that run using a paired-
samples t-test. There was no significant difference between
RTs early in each run and late in the same run: #(189) =
1.63, ns (two runs were excluded due to missing RTs in
one run and an outlier in the other).

Preliminary data collected outside the scanner indicated
that in our task, reaction time for a set number of stimuli
serves as an extremely effective proxy for search slope
(i.e., the amount of processing time required per item),
which is the standard measure of search efficiency (see
Supporting Information) [Wolfe, 1998]. In the preliminary
data, 98.6% of the variance in search slope (msec/item)
was accounted for by simple RT in the condition with the
maximal number of distractors, because the relationship
between number of distractors and search time remains
extremely linear throughout training (see Supporting
Information).

Some previous studies of learning in visual search have
found a change in the intercept of the search function (i.e.,
a reduction in general task-processing time), as well as
changes to the slope of the search function [Scialfa et al.,
2004]. Such an intercept change could reflect task-learning
not specific to the trained stimuli. In the preliminary data-
set, the intercept of the search function did decline some-
what along with the slope of the function (see Supporting
Information). However, the correlation between RT for the
maximum number of search stimuli and the intercept of

the search function, though significant, was much lower
than the near-perfect correlation between RT and search
slope (see Supporting Information). Thus, the RT measure
used in the MRI experiment is a better proxy of search
slope than search intercept.

Analysis of the eyetracking data collected in the prelimi-
nary dataset suggests that there was no change in the rate
of fixational eye movements as learning progressed (see
Supporting Information).

fMRI Results

As learning of the visual feature conjunctions pro-
gressed, the amount of activity in retinotopic visual cortex
increased (Fig. 2). The pattern of activity in those areas on
the days when participants changed to the flipped-search
condition reflected a sudden departure from the down-
ward trend of training. Activity levels throughout visual
cortex (V1-V4v, LOC, and hMT+ ROIs) during the pop-
out control condition task were similar in magnitude to
the levels observed on the last day of feature conjunction
search training. The amount of activity in those areas dur-
ing the conjunction-control task was similar to that
observed on the first day of training. Importantly, the sig-
nal in retinotopic cortex was still as high upon retesting in
the initial search task nine months later as it was on the
last day of feature conjunction search training (see Fig. 2).

Across all participants and experimental conditions, be-
havioral improvements in search performance were signifi-
cantly correlated with increased brain activity in visual
cortex (V1: r = —0.43, P = 0.005; V2: r = —0.5, P < 0.001;
V3:r = —0.56, P < 0.001; V3ab: r = —0.44, P = 0.004; V4v:
r = —0.64, P < 0.001; LOC: r = —0.46, P = 0.003; hMT+: r
= —0.6, P < 0.001) (see Fig. 3). This pattern of correlations
was also significant for V1, V2, V3, V4v, hMT+, and right
LOC in the control analysis where event durations were
kept constant (see Supporting Information).

It is known that target-present responses are associated
with increased visual cortex activity even when no target
is present (i.e., for both hits and false alarms) [Ress and
Heeger, 2003]. Over the course of learning, participants’
accuracy improved, primarily due to an increase in hit-
rate. To address the possibility that the increases in visual
cortex activity could be attributable to a change in hit rate,
rather than a change in search efficiency (as measured via
the proxy of RT), we attempted to correlate hit rate with
the amount of activity in each ROL In contrast to the sig-
nificant correlations between activity and RT, all but two
of the correlations with hit-rate were not significant. There
was a significant association in V4v (r = 0.36, P = 0.02),
and hMT+ (r = 0.44, P = 0.004), but in both cases the
r-values were lower than the RT-activity correlations.
Furthermore, the correlation between frequency of target-
present responses (i.e., hits 4 false alarms) and BOLD
activity was not significant in any area.
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Functional ROIs and fMRI data over time. Inflated brains depict
individually mapped ROIs (VI-V4v), LOC, hMT+, FEF, and SEF
in an example participant. Plots show percent-signal change val-
ues (RT-model) from learning Day | to learning Day 8 and from
the follow-up scan after 9 months, relative to fixation-baseline

We also correlated BOLD percent signal change that
was computed separately for target and catch trials with
median reaction times in target-present and target-absent
trials, respectively. Correlations for both target and catch
trials were highly similar to those reported in the com-
bined analysis (see Supporting Information).

The analysis of the ring-ROIs revealed that the BOLD
signal level in all retinotopic areas representing the target
ring correlated significantly with RT (r = —0.58, P <
0.001). The correlation between activity in all retinotopic
areas corresponding to the rings containing only distrac-
tors was also significant, though smaller (r = —0.46, P =
0.003). Similar results were obtained for the sub-ROIs cov-
ering the retinotopic locations of the rings within V1 (tar-
get ring: r = —0.42, P = 0.006; distractor rings: r = —0.40,

for VI and V2 in all participants (each line represents one par-
ticipant). For illustrative purposes, missing data from Participant
2 on day 4 (due to a scanner problem) is interpolated, and

“,»

demarcated with an “x.

P = 0.01). Furthermore, we calculated the difference in ac-
tivity between the target and distractor rings, and corre-
lated this difference score with RT. Increasing target/
distractor activity differences were highly correlated with
decreasing RTs (r = —0.70, P < 0.001). This correlation
between target/distractor activity differences and RT was
also present in the V1 sub-ROIs (r = —0.36, P = 0.02).

In the primary analysis where RTs were used to model the
hemodynamic response, no clear pattern of change in activ-
ity over time was apparent in the attentional ROIs. Behav-
ioral improvements were not significantly correlated with
activity in any attentional areas as estimated by the RT-
model (FEF: r = 0.037, P = 0.8; SEF: r = 0.005, P = 1; superior
colliculus (SC): r = 0.089, P = 0.6). By contrast, in the control
analysis with constant event durations, decreasing activity
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Correlation between brain activity and behavior. Plots show the
relationship between behavioral median reaction time and per-
cent signal change relative to fixation baseline (RT-model), for all
ROIs. Each point represents the data from one participant on
one scanning day. The regression line is depicted in the color of
the corresponding ROI. Rapid search is significantly correlated
with high activity in retinotopic visual cortex, LOC, and hMT+
There is no significant correlation between activity in attentional
ROIs (FEF, SEF, SC) and search speed.

in FEF, SEF, and SC was significantly correlated with faster
search times (see Supporting Information).

DISCUSSION

Over the course of eight days, participants in the present
experiment improved markedly in their ability to search
for a conjunction of visual features. This is consistent with
previous behavioral reports [Carrasco et al., 1998; Heath-
cote and Mewhort, 1993; Sireteanu and Rettenbach, 1995;
Wang et al., 1994]. However, this study is the first to per-
form the entire training with concurrent MRI-scanning, en-
abling us to relate session-based changes in behavior to
underlying alterations of neural activity.

We find evidence that learning-induced changes in per-
formance are correlated with increasing activity in retino-
topic cortex (V1-V4v), LOC, and hMT+. These learning-
induced changes in performance and altered brain activity
appear to last for at least nine months.

The significant association between search-speed for a
conjunction of visual features and increases in the amount
of activity at the earliest levels of cortical visual process-
ing, even V1, contradicts our hypothesis that learned
changes in processing of visual feature conjunctions would
occur at a higher stage of processing than changes
reported for simple visual features. Instead, even activity
in the earliest levels of the cortical visual processing hier-
archy correlates strongly with search speed, a behavioral
indicator of stimulus processing efficiency.

We had expected that the amount of activity in atten-
tional ROIs (specifically FEF, SEF, and SC) would decline
as learning occurred, since previous studies have found a
reduction in the involvement of attentional areas in con-
junction search with learning [Walsh et al.,, 1998]. How-
ever, in the primary analysis, which modeled MRI event
durations based on RT, the amount of activity in those
ROIs remained relatively constant. By contrast, in the con-
trol analysis where event durations were fixed at 4 sec, the
amount of activity in those areas appeared to decrease
(see Supporting Information). This is an instructive differ-
ence, for it suggests that these areas are involved in visual
search for feature conjunctions both before and after learn-
ing, but only during the active phase of search. Because
the active phase of search decreases in duration as training
progresses, the amount of activity in these areas appears
to decrease when the event duration is held constant at 4
sec in the MRI analysis, but not when the duration of the
MRI event is tied to the duration of active search (i.e., RT).
The activity in those areas during active search might also
be influenced by fixational eye-movements such as micro-
saccades. In either case, the data do not support the
hypothesis that there would be a decline in the amount of
activity in these areas reflecting a reduction in attentional
allocation.

The significant correlation between visual cortex activity
and search time does not appear to be an artifact of other
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variables which might change alongside search time over
the course of learning and alter neural activity, specifically,
changes in target detection rate or eye movements.

Target detection has been linked to increased activity in
visual cortex even for false alarm responses [Ress and
Heeger, 2003]. In our data, participants” hit-rates increased
slightly over the course of training. However, these
changes in hit rate were not significantly associated with
changes to the BOLD response in our data, except in V4v
and hMT+. Even in those areas the correlation between
activity and hit rate was lower than the correlation
between activity and RT. There was no significant correla-
tion between target-present response frequency (i.e., hits +
false alarms) and BOLD response in any ROL Therefore,
the increasing activity in visual cortex over the course of
training is not attributable to a mere increase in target
detection rate.

Changes in participants’ pattern of eye movements
could introduce another possible confound to the interpre-
tation of the results. Small fixational eye movements such
as microsaccades have been associated with increases in
activity in visual cortex [Tse et al., 2010]. However, analy-
sis of eyetracking data from different participants perform-
ing the same task outside the scanner demonstrates that
the number of microsaccades and saccades made during
the pre-response window within which the MRI analysis
was performed decreases over the course of training (since
the rate remains constant and the window shortens). If
anything, a decrease in the number of fixational eye move-
ments over the course of training would be expected to
produce a concomitant decrease in signal in visual cortex,
given previous findings [Tse et al., 2010]. We find the op-
posite. Therefore, changes in fixational eye-movement pat-
terns appear an unlikely explanation of our results.

Instead, the results of the ring-localizer analyses suggest
that the observed increases in visual cortex activity with
learning result from improved BOLD signal-to-noise ratio
(SNR) for targets relative to distractors. Although the
amount of activity in retinotopic areas corresponding to
distractors increased as training progressed, the amount of
activity in retinotopic areas corresponding to targets
increased more. This divergence of the amount of target
versus distractor activity would have produced an
enhancement of SNR for the target. The difference
between activity levels for targets and distractors was
strongly predictive of RT, both in the target/distractor
ROIs at large, and in the sub-ROIs representing the inter-
section of target/distractor rings and V1.

Another way in which SNR for search targets could be
improved would be if distractor-related activity were
reduced. Though such a reduction in distractor activity is
not apparent in our data, it could take place at a later
stage of learning. Yotsumoto and coworkers [2008] found
that activity in visual cortex first increased, then decreased
as participants learned a texture discrimination task. It
could be that our training regimen, which was shorter
than the one in that study, captured only the first phase of

learning. If we had continued training for longer, it is pos-
sible that the amount of distractor-related activity might
have later declined, giving the appearance of a region-
wide decrease in activity, but further improving SNR for
the target. Alternatively, it might be that the mechanisms
which support learning of texture discrimination follow a
different course of development than the mechanisms sup-
porting visual feature conjunction learning. Further
research will be required to elucidate the reasons for the
difference between the present results and those of Yotsu-
moto and coworkers.

What type of learning do the observed changes in visual
cortex reflect? Learning a complex perceptual task like fea-
ture-conjunction search might involve a synthesis of multi-
ple different types of learning: perceptual learning of the
stimuli, cognitive learning of task strategies, even motoric
learning of response patterns.

Behaviorally, it is clear that the majority of the learning
that took place in the experiment was stimulus-specific
(i.e., perceptual). This is most evident from the pattern of
behavior in the flip-control condition. In that condition, af-
ter 8 days of training, the target and distractor identities
were reversed. If the learning were primarily task-related,
or cognitive, then this exchange should not have impaired
performance: the task remained the same, and participants
were already highly experienced with the stimuli. In fact,
since distractors greatly outnumbered targets during train-
ing, participants had over 30 times more exposure to the
new targets than they had to the original targets at the
time of the switch. Yet, search times returned to pre-train-
ing levels when we switched the stimuli. This suggests
that a change in automatic, bottom-up, processing of the
target stimuli was the primary factor driving the improve-
ments in search performance. In other words, perceptual
learning of the target appears to have formed the primary
basis for the changes.

It is possible that other forms of learning may have con-
tributed to the changes we report, but there is little evi-
dence that they played a major role in the present effects.
First, the lack of learning transfer to the flip-control condi-
tion precludes a major involvement of task-learning.
Similarly, data from the participants in the preliminary,
behavioral version of the task suggests the amount of task-
learning that occurs during training is relatively modest.
Because that version of the task included a variable num-
ber of stimuli from trial to trial, it was possible to estimate
the intercept of the search function (i.e., the amount of
time that would be required to make a response in the
task if the number of stimuli were zero). Changes to the
intercept of the search function over time would thus pri-
marily reflect task-learning. Although there is a slight
decrease in intercept RTs, the effects are far less dramatic
than the changes in the search slope (i.e., the amount of
time required to process each stimulus), a measure of
perceptual learning (see Supporting Information).

Also, while the RT measure collected during scanning
appears to be an extremely good proxy for search slope
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(i.e., perceptual learning), it is a relatively poor proxy for
search intercept (i.e., task-learning). The preliminary data
collected with a variable number of stimuli indicates that
the RT measure is a near-perfect stand-in for search slope:
the two values have a correlation of r = 0.993 (see Sup-
porting Information). RT is also correlated with search
intercept, but to a much lower degree (r = 0.640). Given
the magnitudes of the correlations between RT and slope
versus intercept obtained in the preliminary data, it
appears unlikely that the observed changes in visual cor-
tex can be attributed solely to task-learning.

There is also little evidence that learning of explicit cog-
nitive strategies contributed much if anything to the effects
of learning in the present task. For example, target posi-
tion was counterbalanced within each run and participants
were aware of it. In theory, participants could have devel-
oped a memory strategy to keep track of which positions
had already contained a target over a given run, reducing
the number of positions needing to be searched as the run
progressed. Yet there was no significant difference
between RTs early and late in each run, suggesting that
participants did not employ such a strategy.

In sum, while it remains an open question exactly what
proportion of learning is attributable to non-perceptual
learning processes, it appears reasonable to conclude that
perceptual learning of visual feature conjunctions is the
primary factor driving the relationship between behavior
and brain activity seen in the present experiment.

Exactly what neural mechanism enables this learning
remains an open question. The increasing activity meas-
ured for search targets in visual cortex could be driven by
at least two possible neural mechanisms. One possibility is
that neurons in early visual cortex become better tuned to
the search stimuli, such that target stimuli evoke a larger
response in early visual cortex that propagates up the vis-
ual hierarchy in a feedforward manner [Gilbert et al.,
2001; Walsh et al., 1998; Zhaoping, 2009]. Another possibil-
ity is that the SNR improvements in early visual cortex do
not involve changes to representations in visual cortex per
se, but rather reflect feedback from enhanced allocation of
exogenous visual attention to the targets [Bartolucci and
Smith, 2011]. Or, perhaps the improved SNR results from
some combination of both mechanisms. Future experi-
ments will be required to disentangle these possibilities.

In conclusion, we find that changes to the way the brain
processes stimuli during visual conjunction search are
strongly correlated with behavioral improvements. Given
the ecological prevalence of visual search in daily life,
whether searching for food or a friend in a crowd, it seems
likely that such changes to neural processing occur fre-
quently, if not constantly, outside the laboratory. As we
encounter the “blooming, buzzing confusion” [James,
1890] of the visual world, our brains continually adapt to
apprehend meaningful perceptual patterns more quickly
and accurately. We show that in the case of visual con-
junction search learning, there are lasting changes at even
the earliest levels of visual processing, reshaping our

capacity to recognize complex patterns of visual features
in a matter of days.
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