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Abstract

Background: Identification of key regulator/s in ovarian cancer (OC) network is important for potential drug target
and prevention from this cancer. This study proposes a method to identify the key regulators of this network and
their importance.

Methods: The protein-protein interaction (PPI) network of ovarian cancer (OC) is constructed from curated 6
hundred genes from standard six important ovarian cancer databases (some of the genes are experimentally
verified). We proposed a method to identify key regulators (KRs) from the complex ovarian cancer network based
on the tracing of backbone hubs, which participate at all levels of organization, characterized by Newmann-Grivan
community finding method. Knockout experiment, constant Potts model and survival analysis are done to
characterize the importance of the key regulators in regulating the network.

Results: The PPI network of ovarian cancer is found to obey hierarchical scale free features organized by topology
of heterogeneous modules coordinated by diverse leading hubs. The network and modular structures are devised
by fractal rules with the absence of centrality-lethality rule, to enhance the efficiency of signal processing in the
network and constituting loosely connected modules. Within the framework of network theory, we device a
method to identify few key regulators (KRs) from a huge number of leading hubs, that are deeply rooted in the
network, serve as backbones of it and key regulators from grassroots level to complete network structure. Using this
method we could able to identify five key regulators, namely, AKT1, KRAS, EPCAM, CD44 and MCAM, out of which
AKT1 plays central role in two ways, first it serves as main regulator of ovarian cancer network and second serves as
key cross-talk agent of other key regulators, but exhibits disassortive property. The regulating capability of AKT1 is
found to be highest and that of MCAM is lowest.

Conclusions: The popularities of these key hubs change in an unpredictable way at different levels of organization
and absence of these hubs cause massive amount of wiring energy/rewiring energy that propagate over all the
network. The network compactness is found to increase as one goes from top level to bottom level of the network
organization.
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Background
Ovarian cancer (OC) is an assorted cancer that begins in
an ovary. Although most of OC’s are non-metastatic or
having low potential to migrate, ovarian tumors can
metastasize to other parts of the body and can be fatal.
In 2016, it was reported 22,280 will receive a new diag-
nosis of ovarian cancer and 14,240 women will die from
ovarian cancer [1, 2]. As the eighth-most common cause
of death, OC is considered as the ‘silent killer’ due to
lack of symptoms in its initial stages [1, 2]. In the pre-
ceding few decades, genetic studies have retrieved some
genetic alterations that are also crucial in the pathogen-
esis of ovarian cancer. The swift growth of next-
generation sequencing technologies recently has allowed
the possibility for identifying many somatic alterations
(genetic) in OC. These somatic alterations can be
assessed as the passengers, which on the other hand
pose challenge in classifying any cancer [3]. Identifica-
tion of molecular drivers associated with a specific can-
cer type/sub-type is crucial and at the same time
important for understanding its heterogeneity to seek
treatment. In recent studies, [4] network based calcula-
tion have been implicated on multiple data sources to
identify driver genes, including copy number variation,
microRNA expression [4].
Epithelial ovarian cancers (EOC) remained the most

lethal cancer among developed nations. From its differ-
ent sub-types mEOC (mucinous epithelial ovarian can-
cers) represent approx. 3% of EOC. It can be divided
into the more common, type II (aggressive) and type I
(slow growing) cancers [5]. Low-grade i.e. type I is
present in young women and have a high prevalence of
KRAS and BRAF mutations, but low in relation to Tp53
mutations (that characterize to type II). These prevalent
mutations qualify as a favourable prognostic factor for
type I EOC. While at the same time identifying MAPK,
mutations are useful in guiding clinical treatment [6].
Most of the new cases present with advanced stage of
disease have initial treatment which consists of a cyto-
reductive surgery and chemotherapy [7]. While the pa-
tients that develop advanced EOC are the ones having
pre-clinical diminution after primary therapy. Though,
long term cure resides in the patients exposed to mul-
tiple chemotherapeutic agents [8]. Thus, the identifica-
tion of malignant ascites is the most common
consequence of EOC. It causes significant symptoms
and impact on the patient’s life, more than ever in cases
where women have regular ovarian cancer [9].

The current paradigm for finding out OC revolves
around the identification of critical regulators in the
Transcriptional factor (TF) networks present in OC
cells. As these TFs might be important therapeutic tar-
gets [10]. To understand the mechanism and predict the
complex interaction within the complex biological

network and how numerous basic functions are per-
formed by the organization of the components between
them. The large scale data from the omics have interest-
ingly been used to map genes with specific diseases [11].
Network theory has been presented to bring a significant
approach to understanding the complex systems dynam-
ics and topo- logical properties, to co-relate to their
functional modules [12]. The large number of the exist-
ing networks fall into different type of network such as,
hierarchical net- work, scale-free, random and small
world [13]. Amongst these type of network, the hier-
archical type network finds special attention from biolo-
gists due to its sparsely distributed hubs that regulates
the ovarian cancer network as well as also appearance of
modules [13, 14]. The appearance of modules in this
type of network is of significance to us because they can
correlate to independent functional factor in the net-
work which comply with their own laws [13]. Therefore,
we tend to focus our study on network of ovarian can-
cer, which is developed from experimentally verified
known genes of ovarian cancer and their interactions to
analyze potential key regulatory (KRs) genes which may
serve as potential target genes. Therefore, We also aimed
to explain its topological properties from which we tend
to attempt to conclude potential key regulators among
that a few are of elementary effect, their regulating as
well as activities mechanism [14].

Methods
Workflow of construction of ovarian cancer network and
techniques of analysis
The detailed workflow of the ovarian cancer network
and analysis is given in Fig. 1 and detail techniques are
given in the Additional file 1. We describe briefly the
workflow of the analysis below.

Acquisition of ovarian cancer data
We extracted 6 (sets) list of ovarian cancer genes from 6
highly cited cancer database and then integrated the
common ovarian cancer gene from all the list in order
to retrieve a list of only experimentally verified gene of
ovarian cancer. The different resources used are COS-
MIC database, Gene cards database, Ovarian kaleido-
scope database, Dragon database of ovarian cancer,
curated ovarian database and OC- Gene database, which
are focused on different aspects of cancer biology (see
Additional file 1). We have assimilated 2000 genes from
the mentioned repositories. This list of genes is sub-
jected to CGI code written in Perl to remove duplication
genes in terms of redundancy of names as well as aliases
used for gene names (for details see Additional file 1).
This method allows to filter unique 660 genes out of
2000. The list of the genes is further curated manually as
well as using Cytoscape 3.7.1 plugin, then mapped to
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UniProt (January 2016) and finally we arrive at 600
genes (for details see Additional file 1).

Network construction of the curated genes
We followed the idea of one protein one gene concept to
construct primary protein- protein interaction network
using the curated list of 600 genes using GeneMANIA
App [15] and verified and uploaded the file in Cytoscape
[16] using Cytoscape 3.7.1. The constructed network now
consists of 4818 nodes having 16320 possible connections
among them (for details see Additional file 1).

Method to identify key regulators
We first find out a list of the first seventy (one can
vary the number) leading hubs characterized by the
degree distribution of the complete network. Now
communities of the network are extracted using New-
man and Grivan’s community finding method [17]
which is the level of organization of communities of
network (say first level of network organization). We
then trace the leading hubs in each community and
isolated hubs are discarded. Now sub-communities of
all the communities are found out using the same
community finding method mentioned above and the
leading hubs are traced in each sub-community at this
second level of organization followed by rejection of

isolated or truncated hubs. The process is repeated
until a situation is reached where the smaller commu-
nities can no longer breakable (most probably at motif
level) by the method and trace the hub genes reach at
this level. The set of the leading hubs reach at this
level (lowest level) is termed as a set of key regulators.
These KRs can be considered as the backbone of the
network, which are deeply rooted and involved at each
level of the organization from top level to bottom level
and vice versa.

Topological analyses of the networks
The topological properties of ovarian cancer PPI net-
work are characterized by degree distribution, clustering
co-efficient, connectivity and centrality (betweenness,
closeness and eigen-vector) measurements (for details
see Additional file 1). We use these parameters to
understand topological changes when the network is
perturbed [14, 18, 19].

Tracking of genes in ovarian cancer network
The most influential genes in the OC network were
identified first through calculating the centrality mea-
sures. Since, higher degree nodes have higher centrality
values, top 70 highest degree nodes were considered
among the hub nodes of the network for tracing the key

Fig. 1 Schematic diagram of the workflow of the methods implemented in the study of ovarian cancer network
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regulators which may play important role in regulating
the network. Then tracing of nodes from the primary
network up to motif level was done on the basis of rep-
resentation of the respective nodes (proteins) across the
sub modules obtained from Louvain method of commu-
nity detection/ clustering. Finally, the hub-nodes (pro-
teins) which were represented at the modules at every
hierarchical level were considered as key regulators of
the OC network.

Knock-out experiment
The role KRs can be investigated by performing knock-out
experiment of the net- work and studying the variations in
topological properties of OC cancer PPI net- work. In the
this experiment the KRs are systematically removed
from ovarian cancer network and calculate topological
properties of ovarian cancer and sub- communities at
each level of organization of network to compare with
the original ones before KRs are removed (for details
see Additional file 1) [14].

Network compactness estimation
The degree of how strongly the nodes are linked in a
network and its associated com- munities and the
sizes can be estimated by LCP-DP (local community
paradigm- decomposition plot) algorithm [20] (for de-
tails see Additional file 1). We used this method to
analyze organizational behavior of the ovarian cancer
network.

Constant Potts model
The energy distribution in a network can be estimated
by using constant potts model [21] (for details see Add-
itional file 1). This technique was applied to understand
the importance of KRs in a network and their regulating
activities.

Survival analysis
Survival analysis of the key regulators were performed
using kemplotter [22, 23]. All the datasets were taken
along with TCGA dataset for the analysis with total sam-
ple size of overall survival (n = 1657) using ovarian can-
cer probset. Overall survival probabilities were plotted
on Y axis and time of survival in months were plotted
on X axis and logrank p value <0.05 was taken as statisti-
cally significant value between the low and high expres-
sions of genes.

Gene ontology and Pathways analysis
We perform GO and pathways analysis by using DAVID
web server (Database for Annotation, Visualization and
Integrated Discovery) [24, 25].

Results
Ovarian cancer network follows hierarchical scale free
features
The ovarian cancer network, which is the proposed
complex regulatory network to be studied, is constructed
from the experimentally verified seventy genes (see
Methods and Table 1). The topological properties of this
network, namely, probability of degree distribution P (k),
neighborhood connectivity CN(k) and clustering co-
efficient C(k) follows power law characters as a function
of k. (Fig. 2 1st row denote Level 0). The power law fits
on the complex data sets of the topological variables of
the ovarian cancer network are performed and con-
formed following a standard statistical fitting procedure
suggested by Clauset et al. [26], where, all p-values (stat-
istical) for all data sets, estimated versus 2500 random
samplings, are establish to be ≥ 0.1 (critical value) and
goodness of fits is establish to be ≤ 0.33 (Fig. 2 first row
blue fitting line). The exponential values are retrieved
from the power law fittings. For the entire ovarian can-
cer network, the results are summarized as follows,

Table 1 Gene Ontology Pathway Enrichment Analysis of level 5 communities of ovarian cancer network

S. No. Community Pathway Identifier Reference Pathway Genes p-value Benjamini
corrected
p-value

1. C32121 Rap1 signalling
pathway

hsa04015 KEGG PIK3CG, RASSF5, PLCB3, KRAS,
RAC2, RASGRP2, RAC1, RALGDS

3.9E-5 5.5E-3

2. C32122 PI3K-Akt signalling
pathway

hsa04151 KEGG IL2RB, IL2RA, PDGFB, PIK3CB,
PPP2R5C, TCL1A, NR4A1, TCL1B,
BAD, BCL2L11, AKT1, EIF4EBP1,
TSC1, PDGFRB, RELN, MTCP1,
NOS3, IL2RG, JAK3, IKBKB,
THEM4, IL2

4.9E-11 7.3E-9

3. C32123 Proteoglycans
in cancer

hsa05205 KEGG CDC42, ANK1, EZR, CD44,
CAMK2G, RRAS, ITGB5, ITGA2,
MSN, FLNC, CD63

2.3E-7 2.6E-5
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These topological properties of the ovarian cancer PPI
interaction network are very close to ideal hierarchical
properties of the network whose values of the exponents
are, γ ≈ 2.26 (mean-field theoretical value) [13], α = 1 [27,
28] and β = 0.5 [29]. This topological function Γi; i = 1, 2,
3 satisfy the Mandelbrot’s classical definition of fractal

[30], which is defined by the following self-affine process
of any scale factor λ,
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where, Di corresponds to fractal dimension of ith

topological parameter. Hence the ovarian cancer net-
work follows the fractal features or the hierarchical
scale free. The negative values in fractal dimension in-
dicate the enrich randomness in the network
organization with sample variability [31]. Since the

Fig. 2 Topological properties of the ovarian cancer network. a. The behaviours of degree distributions (P(k), clustering co-efficient (C(k)),
neighbourhood connectivity (CN(k)), betweenness (CB(k)), closeness (CC(k)) and eigen-vector (CE(k)) measurements as a function of degree k for
original and five key regulators knock-out network at different levels of organization. b. The changes in the exponents of the six topological
parameters due to key regulators knock-out experiment. c. Energy distribution in the network quantified by Hamiltonian calculation as a function
of network levels. d. Changes in the network modules/sub-modules due to five key regulators knock-out experiment. The dotted modules/sub-
modules are the break-down modules/sub-modules
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cN(k) has a negative power in k i.e. β = 0.67, the ovar-
ian cancer network exhibits disassortivity nature
which means that the rich-club formation of a large
number of the leading/major hubs in the network is
unlikely [29].
The centrality measurement, such as, closeness CC, be-

tweenness CB and eigen-value centrality CE, characterize
the importance of the hubs, their regulating mechanisms
(see Methods) and obey the following power law behav-
iors (Fig. 2 first row),
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The power law behaviour of the these CC, CB and CE (cen-
trality measurements) are again confirmed and verified ap-
plying the Clauset et al. procedure of power law fitting,
where, it is found that p-values to be greater than 0.1 and
goodness of fit also greater than 3.5. Since only less numbers
of higher degree nodes have great CC, CB and CE values, the
number of greater regulating hubs, that can regulate the
ovarian cancer network, is less. Hence, moderately low de-
gree nodes (proteins/genes) dominate the network and
therefore, the organization, functioning and regulation of
the network are done mostly by these low degree proteins/
genes. However, the sparsely distributed major/leading few
hubs, that can be significant roles in maintaining as well as
regulating the ovarian cancer network stability. Further,

Fig. 3 Identification of key regulators of ovarian cancer network. a. Organization of the modules/sub-modules of the network. b. Plots of QN and
LCP − corr as a function of network level. c. Characterization of seventy leading hubs of the network by degree (k) distribution and identification
of key regulators. Colour codes are popularities of the leading hubs
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power law behavior of centrality measurements given by
equation (3) follows the following self-affine process for any
scale factor c,

Λi Ckð Þ
Λi kð Þ ¼ CD;D ¼
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δ

2
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The positive values in Di indicate the distribution of the
measurements in the network [31]. Since the topological
variables show fractal nature, as evident from equations
(2) and (4) respectively, the ovarian cancer network ex-
hibits fractal or hierarchical scale free features.

Key regulators in ovarian cancer network and properties
Since ovarian cancer PPI interaction network follows hier-
archical scale free nature, the emergence of modules in
the network is significant and therefore both these
sparsely distributed few leading hubs regulate and mod-
ules, which is organize the network. Application of New-
mann and Girvan’s standard community finding
algorithm, the modular structure and their organization at
different levels of organization were established (see
Methods) [14, 17, 32]. Applying the present algorithm, the
ovarian cancer network is established to be hierarchically
organized through five various levels of organization
shown in Fig. 3a). The corresponding to QN (modularity)
and LCP, LCP-correlation per node as a function of levels
of organization are established to decrease in concert goes
from higher level to down level (Fig. 3b).

Depending on the degree of the nodes in the ovarian can-
cer network, the first seventy leading hubs are identified
(Fig. 3c). The most appropriate question is whether these
hubs are actual target genes that regulate network at funda-
mental level. Hence, we propose to define key regulators in
the act of those proteins/genes that are deeply rooted from
top level to bottom level of the ovarian cancer net- work
organization and vice versa and play the role of backbone
of ovarian cancer network organization (Fig. 3c). These
KRs may or may not necessarily be major leading hubs in
the ovarian cancer network, however randomly variation
their popularities at different levels of organization. Re-
moval of the major hubs doesn’t cause network disruption
since the ovarian cancer network exhibits hierarchical char-
acteristics. Though, the removal of key regulators from the
ovarian cancer network can cause maximum perturbations
both locally and globally in the network, specially at a dee-
per level of organization. Then the perturbations will
propagate through different levels of organization’s top level
to bottom of bottom level to top causing topological vari-
ation in the ovarian cancer network. Hence, we propose
that these key regulators could be driver target genes of
ovarian cancer.
Following the definition of key regulators, we could able

to identify five KRs, namely, AKT1, KRAS, EPCAM, CD44
and MCAM (Fig. 3c, Figs. 4 and 5), that are key regulators
(organizers) of the ovarian cancer network. Surprisingly,
the top 11th leading hubs aren’t obtained to be key regula-
tors as they fail to reach till the deepest/lowest level of
organization. Out of these five KRs few are at low profile/
popularity (CD44 and MCAM) but could able to regulate

Fig. 4 Tracing of key regulators of the network through different levels of the network
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Fig. 5 Network/modules/sub-modules at different network levels which accommodate leading hubs and key regulator regulators. The probability
distributions of the key regulators as a function of level
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till the bottom level of arrangement organization. Further,
these key regulators start separating from one another
after the third level; KRAS and EPCAM go together,
AKT1 moves alone and CD44 and MCAM go together till
motif (triangular type) level (Figs. 4 and 5). These key reg-
ulators perform as signal propagators from top level to
bottom level and vice versa to control the inherent prop-
erties and network stability.
To understand regulating capability of total the five KRs,

we define a probability Py(x
[s]) of a KR y to have a number

of links/edges x[s] at level s out of the total number of links/
edges E[s] of the ovarian cancer network/module/sub-mod-
ule in which that KR is accommodated, which is given by,

Py x s½ �
� �

¼ x s½ �

E s½ � ; ∀E
s½ �≠0 ð5Þ

The calculated Py of all the five KRs exhibit increase in
Py as one goes from top level to bottom level (when s in-
creases) and found that Py→ 1 as s→ 5 (Fig. 5 lowest
panels). This reveals that the regulating capability of each
key regulator becomes more prominent at deeper levels of
organization. Further, the inherent regulating capability of
each key regulator P½I�

y can be approximately measured by

calculating average over Py as in the following,

P½I�
y ¼ 1

M þ 1

XM¼5

s¼0

Py

�
x½s�

�
ð6Þ

The calculated values of P½I�
y shows that P½I�

AKT1 > P½I�
KRAS

> P½I�
EPCAM > P½I�

CD44 > P½I�
MCAM . The inherent regulating

capability of AKT1 is highest and that of P½I�
MCAM is

lowest.

Local perturbations driven by ovarian cancer key
regulators
The knock-out experiment of five key regulators from
ovarian cancer network could able to highlight the local
perturbations driven by these KRs and their effect on
global network properties. The removal of these key reg-
ulators from the complete ovarian cancer network brings
significant variations in the topological properties of the
ovarian cancer network (Fig. 2a first row), where, γ and
α change significantly in complete network level (Fig.
2b), whereas β change slightly. Similarly, the variations
in the measurements of the exponents of centrality (ϵ, η
and δ) also show significant (Fig. 2b). Since, all the five
KRs are present in a single module/sub- module up to
third level of organization, we only consider that mod-
ule/sub-module for the five KRs knock-out experiments
(Fig. 2 second, third and fourth rows). It is noticeable
from the variations in the exponents of topological pa-
rameters (Fig. 2 B) such as one goes to deeper level i.e.

The ovarian cancer network perturbation increases as
goes from top direction to down direction. After the
third level, the removal of these KRs almost breakdown
the sub-modules present in the remaining levels (deeper)
(Fig. 2d). This demonstrate that local perturbation
caused by five KRs together is maximum at deeper levels
and propagates the perturbation through other levels
from bottom to top.
In order to understand variation in energy distribu-

tions in corresponding ovarian cancer network and
modules/sub-modules at different level of organization.
Now we calculated Hamiltonian of respective ovarian
cancer network and modules/sub-modules in five know-
out experiment (Fig. 2c) (see Methods). If ΔHs ¼ H ½O�

s −

H ½R�
s is the change in Hamiltonian functions due to re-

moval of five KRs at level s, where H[O] and H[R] are the
Hamiltonian functions for original and removed net-
works respectively and corresponding modules/sub
modules, then we obtain,
Where, Hs ¼ H ½O�

s . This demonstrates that removal of
key regulators causes excessive destructive of wiring en-
ergy/rewiring energy that is propagated over all the
levels of ovarian cancer network organization.

ΔHs > 0;∀s;

ΔHs

Hs
⟶0

�
s:3⟶0

for s≤3ð Þ
ΔHs

Hs
⟶1

�
∀s

for s > 3ð Þ

8>><
>>:

ð7Þ

Network compactness preserves self-organization in
ovarian cancer
The compactness of the network/modules/sub-modules
with size are calculated using LCP-DP algorithm which
is expressed

ffiffiffiffiffiffiffiffiffi
LCL

p
(local community links) as a function

of CN (common neighborhood) (see Methods) and
found that the number of strongly connected networks/
modules/sub-modules (LCP − corr ≥ 0.8) are greater than
the number of loosely connected network/modules/sub-
modules (LCP − corr < 0.8) at s = 1 (upper level of
organization) (see Fig. 6). The size of the modules at s =
1 ranges from 10 to 180 nodes. However, as one moves
from top to bottom (s > 1), the number of strongly con-
nected modules decrease as compared to loosely con-
nected modules/sub-modules. Since the ovarian cancer
network is tightly bound at the upper level and complete
network, the network itself is organized to maintain its
own properties against any external and internal pertur-
bations (both local and global) in the network.
Now the analysis of LCP-DP of the network/modules/

sub-modules shows that, except one particular module
and its corresponding sub-modules at different levels, all
the other modules/sub-modules become loosely packed
with decrease in size as one move from top to bottom

Malik et al. BMC Cancer         (2019) 19:1129 Page 9 of 16



levels. The particular module/sub-modules, whose size
and compactness do not change much till third level
(LCP-correlation ranges from 0.936 − 0.994 and size 175
− 180) is the module/sub-module in which all the five
KRs are accommodated. This means that the module/
sub-module is tightly regulated by these five KRs along
with their connecting nodes in them (Fig. 6 second panel
in each row). However, the removal of these five KRs do
not cause network breakdown (Fig. 2). Hence, this mod-
ule/sub-module still try to preserve its own properties
against any local and global perturbations.

Centrality lethality is ruled out in the ovarian cancer
network
The ovarian cancer network obeys nearest to ideal hier-
archical type of network, thus the emergent modules/
sub-modules are tightly bound at top levels of
organization. The removal of key regulators does not
cause the network breakdown (Fig. 2). Even though one
module in which the five KRs are accommodated and it
is corresponding few sub-modules breakdown after the
third level, other modules/sub-modules remain stable to
protect the ovarian cancer network properties. So,

Fig. 6 LCP correlation as a function of CN for different modules/sub-modules and their distribution
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Fig. 7 Properties of AKT1. a. The tracing of AKT1 in network/modules/sub-modules at different network levels. b. The variation of
ffiffiffiffiffiffiffi
LCL

p
as a

function of CN for different levels. c. Organization of five key regulators with Tp53. d. Directional tracing of AKT1 at different network levels. Rich-

club parameter as a function of k PH and
ffiffiffiffiffiffiffi
LCP

p
as a function of level
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ovarian cancer network lead out centrality-lethality rule
[33]. But the identified key regulators have significant
regulating activities in the ovarian cancer network that is
reflected in the variations in the topological properties
(Fig. 2) and another network parameter (Figs. 5 and 6)
and its associated communities at different levels of
organization.

AKT1 plays central role in regulating ovarian cancer
network
AKT1, which is a modulator of apoptotic signal and
important therapeutic target gene in ovarian cancer
[34], is found to be tightly bound with other import-
ant leading ovarian cancer regulator genes with large
extension of network/modular sizes 400 to 100
depending on the network level of organization indi-
cated by LCP-DP calculations (see Methods, Fig. 7).
In these calculations, the network/module/sub- mod-
ule in which AKT1 is present are considered, where
LCP-correlations of these networks/modules/sub-
modules are found to be in the range [0.986 − 0.994]
revealing strong compactness of these networks/mod-
ule/sub-module at different levels of organization.
Further, AKT1 is found to act as a main regulator
which allows to crosstalk with other remaining KRs
(CD44, MCAM, KRAS and EPCAM) and Tp53 (Fig.
7C). Since the clustering co-efficient of all five KRs
in the extracting net- work of these five KRs are one
(Fig. 7C), the identified five KRs are again found to
be interacting strongly which is the signature of rich-
club formation in the network [35]. However, if we
consider the whole network, we could not able to
capture the signature of this rich-club formation of
these KRs as evident from network connectivity
property dependence on negative exponent CN (k) ∼
k−β [29, 36] (Fig. 2A) and negative exponent depend-
ence on rich-club parameter R on degree k, R ∼ k−θ

[35]. Since the rich-club data (R versus k) for all
networks, module and sub-modules scale the same
scaling functional dependence, R ∼ k−θ, the network
organization exhibits absence of central controlling
mechanism by AKT1 and its rich-club with KRs.
Hence, even though AKT1 is significantly important
KR in ovarian cancer network, it never tries to dom-
inate the network organization at different levels of
organization.
Now, to understand relative energy ATK1 can have at

different levels of network organization, can be obtained
as follows: Consider, Hs is the Hamiltonian function at
any level of network organization s, where, s = 0, 1, …, 5
(network corresponding to s = 0 is the complete net-
work). If ms is the number of modules/sub-modules at
level s, then Hamiltonian function per module/sub-

module at level s is given by, Hs ¼ 1
ms

Pms
j¼1

X
c j

ðec j−Υn2c j
Þ , where nc j is the size of the jth module/sub-module at
level s. Then the Hamiltonian function of AKT1 at the

module it belongs to can be obtained as, H ½AKT1� ¼ −ð
e½AKT1�−Υn½AKT1�s Þ , Where e[AKT1] and n½AKT1�s are the
number of edges AKT1 has and the size of the module/
sub-module where AKT1 belongs to respectively. Now
the relative energy AKT1 can have at any level s can be
obtained by,

UAKT1 sð Þ ¼ HAKT1

Hs
∼e−ϕs ; ∀s∈I ð8Þ

where, ϕ is a constant. This relative energy of AKT1,
UAKT1 represents the energy associated with AKT1 con-
strained by the level of organization which could be re-
lated to the activities of AKT1 at different levels s. In an
ovarian cancer network, the activity of AKT1 decreases
as one goes down from top to bottom of the network
(Fig. 7F) indicating its important regulating activity at
complete network level than at a basic level.
Further, we calculate the relative compactness of the

module/sub-module which accommodates ATK1 at dif-
ferent level s by using,

WLCP ¼ LAKT1Pms
j¼1Lj

; L→LCP−corr∀s∈I ð9Þ

here, the sum is over non-zero LCP-correlations of the
modules/sub-modules at each levels s. The estimated
values of W_LCP (Fig. 7F) show that the relative com-
pactness increases as one goes down from top to bottom
level indicating the strong interaction of nodes at a
lower level of organization.

Ovarian cancer network exhibit active regulating
mechanism of key regulators with modules
Since ovarian cancer network follows hierarchical net-
work features, the emerged modules/sub-modules be-
come important regulating units at different levels of the
organization along with active participation of KRs in
network phenotypes. The multi-functionality of the net-
work could be the manifestation of the interacting
emerged module/sub-modules at each network level to
keep the network properties stable. The KRs could be
important workers of integrating the components in
each module/sub-module they belong to for efficient
functioning, through optimal signal processing among
the components organized by these KRs. The five identi-
fied KRs in fact form rich-club phenomena at each level
of organization, however, the impact of this rich-club ac-
tivity at each level is weak enough such that this per-
turbation is unable to cause a significant variation in the
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overall network topological properties. Besides the ovar-
ian cancer network/modules/sub-modules are mostly
tightly bound due to strong interaction among the
nodes/genes. Hence, the removal of these important KRs
do not cause network breakdown indicating absence of
central control system, that is a signature of self-
organization [37].
The network also exhibits topological properties close

to the ideal hierarchical network indicated by equation
(3) (Fig. 2) and therefore the regulating mechanism in
the network is active (far from equilibrium) in order to
maintain network properties. At the same time the topo-
logical properties of ovarian cancer network show power
law nature that is suggesting the OC network obeys frac-
tal behaviour. This fractal nature due to self-affine
process in the network could be a signature of self-
organization in the OC network [38].
The knock-out experiment of five key regulators from

the original ovarian cancer network express that the al-
tered properties in the OC network due to knock out of
five KRs don’t cause significant variation in the network
topology. This suggests that the system don’t adopt to
vary by cause due to perturbation communicated by KRs
knock-out from the ovarian cancer network. The net-
work then reorganize itself and adapted to the trans-
formed topological properties of ovarian cancer network.

The ability to adapt to the change for a better network
organization without breakdown of the system is another
signature of self-organization in the network [39].

Key regulators are correlated to disease progression in
ovarian cancer
Higher expressions of AKT1 and CD44 genes in ovarian
cancer patients had higher probabilities of survival than
their lower expressions (Fig. 8). This might be an indica-
tion that they act against the progression of the cancer
and could play tumor suppressing roles. On the other
hand, higher expressions of KRAS and EPCAM genes
lower the probability of survival among OC patients thus
their higher expressions could have tumorogenic effects
and related to disease progression. But in case of MCAM
gene, higher or lower expressions had equal impact on the
overall survival of the patients (Fig. 8). Hence, expressions
of key regulators AKT1, KRAS, EPCAM and CD44 can be
correlated to increasing or decreasing the risk of disease
progression, so, they can be potential prognostics markers
or drug targets in ovarian cancer.

Gene ontology (GO) and pathways analysis of community
at the level 5 module
We have analysed pathways of level 5. The most signifi-
cant pathways associated are given in Table 1. The p-

Fig. 8 Kaplan-Meier curve of key regulators AKT1, KRAS, EPCAM, CD44 and MCAM. p-values were calculated using the log rank test to evaluate
the overall survival analysis between low expression (black) and high expression (red) of key regulator genes of patients
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value denotes the statistical significance of the pathways
in the network. The other associated pathways, which
are also statistically significant, such as RAS signalling,
leucocytes trans endothelial migration, thyroid signalling
pathways etc are listed in Table 1. These pathways are
also been reported in many cancer types.

Discussion
Complex ovarian regulatory network generated from ex-
perimentally verified set of genes show hierarchical fea-
tures, which allows the genes to organize in a few
different pathways (modules/sub-modules) in a compli-
cated way, to exhibit multi- functionality of the system.
Since the network bears hierarchical properties, the ac-
tivities of individual gene are not much important, but
their co-ordination exhibit different important functional
special deeds. At the same time, some of the leading
hubs in the network have significantly important func-
tions, for example, integration of large number of lower
degree nodes in the network for organizing and regulat-
ing activities, serve as a means of intra and inter cross-
talk among different other essential genes, maintaining
network inherent properties, stability and optimizing sig-
nal processing in the network. Though, out of these
leading hubs, few hubs, which we term as key regulator
s, acquire significantly more important roles in keeping
network properties in better perspectives (ability to get
adaptation to the fit change) [40]. In ovarian cancer net-
work, out of seventy leading hubs in the ovarian cancer
network, we could able to explore five such KRs which
are AKT1, CD44, MCAM, KRAS and EPCAM. These
KRs are deeply rooted in the network, they act as the
backbone of the network for any network regulations
and activities and could be a possible target gene for this
disease control mechanisms. Surprisingly, the first few
most popular hubs (eleven hubs) do not fall in KRs and
these KRs need not necessarily be most popular hubs,
but some of them keep a low profile in the network.
These KRs form tightly bound rich-club, but the regulat-
ing activity of this rich-club could not able to show up
in the network properties because the number of mem-
bers in the rich-club is negligibly small as compared to
the whole network. Further, these five KRs fall in a
single module/sub-module up to fourth level of
organization indicating closer working of the KRs and
then start separating afterwards. Some of these identified
KRs have experimentally been shown important back-
bone genes in ovarian cancer. For example, AKT1 is ex-
perimentally found therapeutic target gene [34], CD44 is
found to be target gene, which serve as the backbone for
paclitaxel prodrugs [41], MCAM is reported to be an
important metastasis marker and invasion of ovarian
cancer cells [42], KRAS is identified as important genetic
marker of ovarian cancer [43]. However, even though

EPCAM is involved in ovarian cancer regulation [44], we
propose that this EPCAM could be an important gene
for possible target gene in ovarian cancer.
Since the ovarian cancer network bears hierarchical

properties, removal of these KRs does not cause network
breakdown, rather reorganize the network to an- other
perspective and adapt to it. Since the five KRs are associ-
ated with a single module/sub-module, one can target
(possible drug target genes) these KRs and accommodat-
ing module/sub-module in ovarian cancer. But removal
of KRs from the module they belong to cause modular
breakdown after a certain level of organization in the
network. Hence, one needs to investigate this module/
sub-module for the critical target of this disease.
Higher and lower expression of the key regulatory

genes can be correlated with progression of tumorogen-
esis and overall survival among ovarian cancer patients.
In addition to the topological properties of the modules
of the protein-protein interaction network of ovarian
cancer, the predicted important pathways from the net-
work modules are found to be associated with different
other types of cancer.

Conclusions
This study proposes a new method to identify key regu-
lators of ovarian cancer net- work. The ovarian cancer
network is a tightly bound network and follows certain
properties: first, the network rules out centrality-lethality
rule (no central control system); second, network
topology obeys fractal laws; third, out of KRs AKT1
plays central role in regulating ovarian cancer system.
However, we need to study large scale analysis of the dy-
namical network, which involves different biologically
well-defined modules to understand the time evolution
of the ovarian cancer and for spatio-temporal behaviors
of target genes.
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