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Abstract: In this manuscript, we present connectivity cluster analysis (CoCA), a novel computational
framework that takes advantage of structure of the brain networks to magnify reproducible signals
and quash noise. Resting state functional Magnetic Resonance Imaging (fMRI) data that is used in esti-
mating functional brain networks is often noisy, leading to reduced power and inconsistent findings
across independent studies. There is a need for techniques that can unearth signals in noisy datasets,
while addressing redundancy in the functional connections that are used for testing association. CoCA
is a data driven approach that addresses the problems of redundancy and noise by first finding groups
of region pairs that behave in a cohesive way across the subjects. These cohesive sets of functional con-
nections are further tested for association with the disease. CoCA is applied in the context of patients
with schizophrenia, a disorder characterized as a disconnectivity syndrome. Our results suggest that
CoCA can find reproducible sets of functional connections that behave cohesively. Applying this tech-
nique, we found that the connectivity clusters joining thalamus to parietal, temporal, and visuoparietal
regions are highly discriminative of schizophrenia patients as well as reproducible using retest data

and replicable in an independent confirmatory sample. Hum Brain Mapp 36:756-767, 2015.  © 2014 Wiley
Periodicals, Inc.
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INTRODUCTION

Schizophrenia is often characterized as a disease of dis-
connectivity in the brain [Friston and Frith, 1995, Fornito
et al., 2012]. Several studies have been performed to test
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this hypothesis using resting state fMRI data in the last
two decades. Unfortunately, the regions showing discon-
nectivity in the disorder are inconsistent across studies
[Pettersson-Yeo et al., 2011]. Liang et al. [2006] noticed that
functional abnormalities in patients with schizophrenia are
distributed across several regions of the brain rather than
localized. Bluhm et al. [2007] observed significantly
reduced strength of functional connections between poste-
rior cingulate and the lateral parietal, medial prefrontal,
and cerebellar regions in disease subjects. Conversely,
Zhou et al. [2007] found reduced functional connectivity
between bilateral hippocampi and posterior cingulate cor-
tex, extrastriate cortex, medial prefrontal cortex, and para-
hippocampus gyrus in disease cases. Salvador et al. [2010],
noted that hyperconnectivity of medial and orbital frontal
structures with caudate, right hippocampus, and amygdala
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were associated with schizophrenia. Pettersson-Yeo et al.
[2011] summarized the findings from 35 studies in chronic
schizophrenia patients, including those mentioned. While
connectivity in the frontal lobe is among the most com-
monly implicated functional connections, there were a
number of other strong candidate circuits implicated in
psychosis such as frontotemporal connections, connectivity
of corpus callosum, and anterior cingulate gyrus to cortical
and subcortical regions such as the thalamus

Most of these studies first construct a brain network
(using a standard Automated Anatomical Labeling [AAL]
atlas [Tzourio-Mazoyer et al., 2002]) for each subject from
the resting state fMRI data where each AAL region is a
node and edges connect every pair of regions. The
strength of an edge between a pair of nodes is computed
as the correlation between the mean time series of voxels
from each region. The association between two regions is
evaluated using a standard t-test to compare differences in
the connectivity strength (time series correlation) of the
regions between subjects with schizophrenia and those
without. The issue of multiple comparisons is handled
using a common false discovery rate (FDR) approach. All
those edges that are statistically significant after FDR cor-
rection, according to a user-chosen threshold, are treated
as implicated edges in schizophrenia. A graph with n

nodes has (’21 connections, and even for graphs with

small number of nodes the number of connections is often
very large, for example, a graph with 90 nodes will have
4,005 connections. The large number of such connections
along with low signal-to-noise ratio hinders the chance of
discovering true associations.

To address this challenge, Zalesky et al. [2010] proposed
a network-based statistic (NBS) approach. NBS first evalu-
ates the significance of association for every edge in a brain
network and then constructs a network with only those
edges whose t-statistic is greater than a user-specified
threshold. The largest connected component in this newly
constructed network is evaluated for statistical significance
using a randomization experiment. The key contribution of
this approach is that instead of evaluating individual edges
for significance, it evaluates the biggest connections. How-
ever, it still relies on the univariate testing of edges to
determine the interesting edges to construct the network
and so low signal-to-noise ratio can adversely affect this
step and the outcome of this approach. Another approach
in the form of spatial pairwise clustering (SPC) [Zalesky
et al., 2012] is proposed to control the FDR by leveraging
the spatial proximity of the nodes in the edges whose
t-statistic is greater than a user-specified threshold. This
approach groups two (or more) edges into one where each
node in one edge is close to the corresponding nodes in
the other edge. The group with greatest number of edges is
then evaluated for statistical significance using a random-
ization experiment that is similar to that of NBS. This
approach is also limited due to the use of univariate testing
of individual edges and due to the fact that there could be

connections that are not in close proximity that are dis-
rupted in schizophrenia.

In this article, we propose an alternative approach, Con-
nectivity Cluster Analysis (CoCA), to discover disrupted
subnetworks in schizophrenia while controlling the FDR.
Our approach is based on two key observations. First, the
functional connections are assumed to be statistically inde-
pendent of each other (that is, the strength of two func-
tional connections in a subject are not related) in traditional
univariate testing, in NBS, and in SPC. However, studies
have shown that there are several subnetworks within the
brain, suggesting that the connections within the subnet-
works and those that are in between two subnetworks
behave similarly [Lee et al., 2012, van den Heuvel et al,
2008]. Moreover, individual testing of connections from a
subnetwork that are strongly related can penalize the result-
ing P values during multiple hypothesis correction, thereby
leaving only those connections that, perhaps by chance,
show the greatest group differences. Second, due to the
noise in fMRI data testing connections individually will
result in the selection of only a few connections from differ-
ent underlying subnetworks resulting in spurious findings
like diffuse disconnectivity [Liang et al., 2006]. Lack of
adherence to these two observations in earlier approaches
could be contributing to inconsistent findings.

Empirically, multiple groups of brain regions that are
found to exhibit strongly correlated BOLD time series are
deemed to work together toward a specific function and
are, therefore, referred to as modules [Meunier et al., 2009].
The presence of modules also results in redundant informa-
tion in terms of functional connections in the brain network.
For example, consider a part of a hypothetical brain net-
work shown in Figure 1, where three blue and two green
nodes are shown. These blue and green sets of nodes repre-
sent two modules where the functional connectivity (corre-
lation) of the nodes within each set is expected to be strong.
For each subject, the time series for blue and green nodes
are shown. When all blue nodes and the green nodes
“emit” their respective time series, then all the six connec-
tions between blue and green nodes will show very similar
correlation values. Therefore, the presence of modularity
results in multiple connections with similar strengths as
shown in the example in Figure 1. These connections with
similar strengths will potentially inflate the number of
hypotheses that are tested when group differences are stud-
ied. This problem is further compounded by the fact that
the noise inherent in the measured BOLD signal will distort
the P values irregularly and so the connections that are sig-
nificantly associated with the group in question tend to be
different in different scenarios. In summary, low signal-to-
noise ratio and the redundancy in the connections pose a
challenging problem for studying the “disconnectivity
hypothesis” in schizophrenia.

The CoCA approach first groups functional connections
with similar correlation values over a group of (healthy
and disease) subjects into clusters, and represents the clus-
ter with its mean functional connectivity. The connectivity
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(b)

Figure I.

An example to illustrate the presence of duplicate connections.
The network with three blue and two green nodes has two
types of connections: (i) within group (shown in black), (ii)
across group (shown in orange). The within group connections
are those that have high correlations in all subjects. The across
group connections can be high or low, but they all have the

clusters thus discovered can be further used to study their
role in disease. In grouping similar functional connections,
CoCA reduces the redundancy in the analysis, by repre-
senting a cluster with the mean functional connectivity
strength of its constituent edges CoCA addresses the low
signal-to-noise ratio in fMRI data. Moreover, several
regions in the brain are known to work synergistically to
achieve a specific function (e.g., visual network, frontopari-
etal control network [Fornito and Harrison, 2012]); the
CoCA approach has the potential to reveal, in a data-
driven fashion, the synergistic relationships between dif-
ferent regions of the brain, as well as their role in disease.
A key component of the CoCA approach is choosing the
appropriate number of clusters: too few clusters will result
in loss of signal and too many clusters will reduce data
redundancy suboptimally. We also examine whether an
emphasis on reproducibility of the clusters on data col-
lected from same samples also enhances replicability of
the results in independent sample sets. Following the ter-
minology established in [Wisner et al., 2013], we refer to
the consensus between features or findings from two dif-

same strength. Instead of studying group differences using each
of the within group and across group connections, one can rep-
resent them as groups and study the significance of each group
in explaining group differences. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

ferent sets of fMRI scans obtained from the same sample
as reproducibility. We refer to the consensus between find-
ings from two sets of samples as replicability. We repeat
our approach on a confirmatory sample to study cross-
sample replicability. Our results indicate that the associ-
ated connectivity clusters are not only reproducible in the
same sample but also replicable in independent sample
sets. We compare our findings with that of NBS to demon-
strate the additional value of the CoCA approach.

METHODS
Connectivity Cluster Analysis
Discovering subnetworks

Using the AAL atlas to define 90 brain regions, we sum-
marized the voxel level time series for each region by com-
puting the average time series of the member voxels from
each fMRI scan. We then constructed a brain network
where the 90 brain regions of interest (ROIs) were nodes
and edges connected all pairs of nodes. The correlation
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between the mean time series from two regions was treated
as the weight of the edge connecting the two regions. Using
all the brain networks computed from cases and controls,
each with 4,005 functional connections (ROI pairs), we per-
formed Ward’s method for clustering on the functional con-
nections with a Euclidean distance metric [Tan, 2007]. The
ROI pairs constituting each cluster were expected to behave
cohesively, due to the Euclidean distance metric used. This
allowed us to interpret each cluster as a functional subnet-
work that was active or inactive in a given subject.

Determining the number of clusters

Several approaches for choosing the number of clusters
have been studied in the statistics and machine learning
community. They include ratio of within-cluster and
between cluster distances [Tan, 2007], information-theoretic
criteria [Still and Bialek, 2004] and gap-statistic [Tibshirani
et al., 2001]. In this article, we use the gap-statistic approach
that determines the appropriate choice for number of clus-
ters as one where the gap (difference) between the loga-
rithm of within clusters distances in a given dataset and the
expected logarithm of within clusters distances for a dataset
with similar range of values is maximal.

Computing features from subnetworks

Functional networks from all subjects can be represented
as a data matrix with n subjects (cases + controls) as rows

and (920) =4,005 functional connections as columns. To

estimate the association of functional connections in schizo-
phrenia a two-sided t-test is generally performed on each of
the columns individually. Now, to test our hypothesis that the
discovered subnetworks (clusters) may be associated with
diagnostic status, we need to represent the submatrix of size
I'subjects | X |ROI pairs | that belong to a cluster as a vector of
I'subjects| X Icluster|. To do this, we have to summarize the
activity of the subnetwork by considering the strength of the
functional connections that constitute the cluster. This can be
done in several ways including computing the mean of the
functional connections that form a cluster, the median or the
variance. The mean or median values would indicate the activ-
ity of the subnetwork in a given subject, whereas the variance
would reflect the cohesiveness of the cluster. Here we are
interested in understanding the association between the activ-
ity of a subnetwork and the disease, and so we rely on mean
of the values to determine the activity of the cluster.

We compared the results of CoCA with that of existing
approaches, univariate testing and NBS, to demonstrate
advantages of CoCA.

Construction of a Synthetic Dataset and
Comparison

We created a synthetic fMRI dataset with 100 subjects
(50 cases and 50 controls). For each “synthetic” subject, we

created a random set of 90 time series to represent fMRI
signal measured from each of the 90 AAL regions. Real
fMRI data has natural modules in the data such as visual
and auditory regions. To detect this structure, we first
computed the median value of a functional connection
overall all subjects in T1 data for all functional connec-
tions. We then created a brain network of 90 regions by
placing an edge when the median functional connectivity
was greater than 0.8. The components (connected set of
nodes) in this network are treated as natural modules. We
imposed this module structure onto the synthetic data
using the same time series along with Gaussian noise
(mean =0, sigma =1) for all the regions within the same
component. For example, a, b, and ¢ were brain regions
that formed one module. To impose this structure on the
synthetic data, we randomly selected one of these brain
regions and used its “synthetic” time series for the other
two regions after adding a small amount of random noise.
This process results in fMRI data that yielded networks
with similar properties for all the 100 subjects and so there
was no signal to separate hypothetical cases from controls
in the data. We then imposed a signal to separate cases
from controls by using the same time series (with Gaus-
sian noise) for the regions in the components that had six
and eight regions, respectively, in a selected percentage of
cases. The selected percentages were 4, 10, 20, 30, 40, 50,
and 60%. The resultant dataset should have had (8 X 6=)
48 connections that exhibit different connectivity strength
in the selected subjects.

We then used univariate testing, NBS, and CoCA to
evaluate the degree to which they recovered the 48
imputed edges. For the univariate testing approach, we
selected the top 48 edges with significant P values and
computed the number of imputed edges that were recov-
ered. For NBS, we selected the top 2% edges (80 connec-
tions) to construct the network and further discovered the
biggest connected component. Note that the number of
edges chosen for network construction here was higher
than that of the imputed number of edges. The fraction of
imputed edges that were part of the discovered largest
connected component was computed for NBS. For CoCA,
we found 50 clusters and the subnetwork with the signifi-
cant P value was used to determine the fraction of
imputed edges that were recovered. Note that in this
synthetic evaluation, we did not compare the significance
values or perform any FDR correction for univariate
testing of CoCA as our goal was to test the relevance
of the selected connections to that of the imputed
connections.

Samples

A set of 27 chronic schizophrenia patients (23 male and
4 female, age: mean =34.1, SD =9.6) and 31 healthy sub-
jects (24 male and 7 female, age: mean = 30, SD = 9.6) were
enrolled for the study as per [Camchong et al., 2009].
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Written informed consent was provided by all the subjects
and they received payment for participation. All subjects
recruited in this study were free of neurological problems.
Schizophrenia diagnosis was confirmed according to the
Structured Clinical Interview for DSM-IV. fMRI data was
obtained from these 58 subjects at two different time
points 9 months apart. We refer to the first set of scans as
T1 data and the second set of scans as T2 data. We also
used a set of scans from 75 schizophrenia subjects (52
male and 23 female, age: mean = 36.4, SD = 11.8) and 105
healthy subjects (69 male and 36 female, age: mean = 37.6,
SD =12.6) as our cross-validation sample to replicate our
findings obtained from T1 and T2 data.

In terms of characterizing the sample at T1, the mean
(n = 25) total score for the scale for the assessment of nega-
tive symptoms (SANS) was 34.04 (std. = 14.58) and for the
scale for the assessment of positive symptoms (SAPS) was
23.64 (std.=14.26). For the cross-validation sample, the
mean (1 =55) of SANS and SAPS was 32.32 (std. = 15.78)
and 27.29 (std. =17.35), respectively. With regard to medi-
cation, among patients at T1 (1 =27), 20 were on one atyp-
ical drug and no typical drugs, two were on two atypical
drugs and no typical drugs, and five were not on any anti-
psychotic drugs. At T2, 17 were on one atypical drug and
no typical drugs, two were on two atypical drugs and no
typical drugs, and eight were not on any antipsychotics.
Of the patients in our cross-validation sample (n =75), 63
were on one atypical drug and no typical drugs, six were
on two atypical drugs and no typical drugs, two were on
one atypical and one typical drug, one was on a typical
antipsychotic, and three subjects were not on any
antipsychotics.

Image Acquisition and Preprocessing

A 6-min-resting state fMRI scan was collected from
each subject using a Siemens Trio 3T scanner (Erlangen,
Germany). Sequence parameters: gradient-echo EPI 180
volumes, TR=2 s, TE=30 ms, 34 contiguous AC-PC
aligned axial slices, voxel size=3.4X34X4 mm,
matrix = 64 X 64 X 34. Participants were instructed to be
as still as possible, keep their eyes closed and stay awake.
At the end of the scan, all participants were asked to rec-
ollect if they fell asleep. A replacement scan was obtained
from one participant who reported having fallen asleep.
A high-resolution T1l-weighted anatomical image was
acquired using a magnetization prepared rapid gradient
echo sequence.

Preprocessing on each scan was performed using
FMRI Expert Analysis Tool Version 5.91, part of FMRIB’s
Software Library [Smith et al., 2004]. Motion correction
was carried out using MCFLIRT [Jenkinson et al., 2002].
B0 fieldmap unwarping was performed using acquired
field maps and PRELUDE+FUGUE [Jenkinson, 2003,
2004] to correct for geometric distortion. Slice-timing cor-
rection was carried out using Fourier-space time-series

phase-shifting. Voxels that are not part of the brain were
removed using BET [Smith, 2002]. Spatial smoothing was
performed using a Gaussian kernel of FWHM 6 mm.
Highpass temporal filtering was performed to remove
low-frequency artifacts mostly due to signal drift in scan-
ner stability (Gaussian-weighted least-squares straight
line fitting, with sigma = 50.0 s). Functional images were
then registered into standard space (Montreal Neurologi-
cal Institute-152) using standard procedures.

Measuring Reproducibility of Subnetworks

We first generated 150 clusters from the T1 and T2
datasets of the same subjects independently. The choice
of 150 clusters was obtained using the gap-statistic
approach mentioned above. We then estimated the simi-
larity in the cluster configurations by computing Jaccard
similarity between the clusters discovered from T1 and
T2 datasets. Jaccard similarity for any two clusters is
computed as the fraction defined by the number of func-
tional connections that are shared by both the clusters
divided by the total number of functional connections
present in both the clusters [Tan, 2007]. Note that this is a
conservative estimate of the similarity between two clus-
ters, as it penalizes for any functional connections that
are not shared. We selected the most reliable clusters,
that is, those that had a Jaccard score greater than 0.5, for
further evaluation.

RESULTS

Performance Evaluation of CoCA
in Simulated Data

We first created synthetic datasets by imposing connec-
tions between two selected modules with various signal
strengths, that is, fraction of cases in which the imputed
signal was relatively higher than normal. We then used
univariate testing, NBS, and CoCA to evaluate the degree
to which they recovered the 48 imposed edges. These
results are shown in Figure 2. When signal strength is
extremely low (4%) and when the signal strength is higher
than (60%), all three approaches perform similarly, with
very low and very high recovery, respectively. As
hypothesized, NBS performed better than the univariate
testing in most cases. CoCA outperformed both NBS and
univariate testing when the signal strength was not too
weak or not too strong (10%-40%). The high recovery
score of CoCA in contrast to that of NBS and univariate
testing was mainly due to its ability to directly group the
imposed between-module connections and thereby handle
the low signal-to-noise ratio. Therefore, these results shed
light on the ability of CoCA to recover the imposed
between-module connections with low-moderate signal, a
circumstance that is likely to characterize many empirical
datasets.
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Figure 2.
Fraction of imputed edges recovered using univariate testing,
NBS, and CoCA at different signal strengths.

Application of CoCA to Empirical Schizophrenia
Data

We first studied the effect of the number of clusters on
redundancy using gap-statistic. We chose k = {20, 30, 40, 50,
100, 150, 200, 250, 300, 350, 400, 500}. For every choice of k,
we computed the gap-statistic as shown in Figure 3. Higher
gap-statistics indicate a greater difference in the within-
cluster logarithm of the sum of the distance from that of the
null distribution. The gap-statistic stays above 4 for k = 150,
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Figure 3.

Relationship between the number of clusters and gap-statistic.
The maximum gap is seen at k = 150 and 250.

200, and 250. As our goal was to reduce redundancy among
the connections and a smaller number of clusters are effec-
tive in achieving this goal we chose k = 150.

A test of reproducibility of clusters was performed by
comparing how similar the cluster configurations (i.e., the
functional connections that are part of a cluster) were
when discovered from T1 and T2 data sets independently.
Figure 4 shows the overlap in the connections between
every pair of clusters where one cluster is from T1 and the
other is from T2, as measured by their Jaccard score. The
clusters were ordered in decreasing order of the Jaccard

————>

10 20 30 40

Figure 4.
Pairwise Jaccard scores for 150 clusters discovered from T1 and T2 data, independently. Jaccard
scores reflect the degree of similarity in connectivity cluster composition. Larger the Jaccard sim-
ilarity, greater is the confidence that the connectivity cluster is nonrandom. There are 37 clus-

ters with a Jaccard score greater than 0.5.
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Figure 5.

Replicability of the functional connections, measured as the cor-
relation of connectivity strength derived from Tl and T2 data
using the clusters. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

scores between two scans. Note that Jaccard is a conserva-
tive score that penalizes a pair of clusters when either of
them have a connection that is not a part of the other clus-
ters. We chose a threshold of 0.5 for the Jaccard score used
to select the most similar clusters. There were 37 clusters
that passed this threshold.

We then computed the cluster connection strength of each
of the 37 selected clusters in each subject as described in the
Methods section. We further evaluated the reproducibility
of cluster connection strengths (computed as the correlation
of 37 cluster connections strengths in each subject at T1 and
T2) for each subject and compared it to that of individual
connections. The distribution of the correlations for all 58
subjects (27 cases and 31 controls), computed using clusters
on T1, T2 data as well as individual functional connections
is shown in Figure 5. This figure suggests that the reprodu-
cibility of the features obtained from clusters was high
(mean r=0.71, SD r = 0.14) compared to that of individual
connections (mean r = 0.61, SD r = 0.12). Thus the reduction
in noise from summarizing a set of functional connections
resulted in 13% more variance being accounted for across
timepoints. This is a marked effect.

In the above comparison, the number of ROI pairs was
4,005 while the number of clusters was only 37. Correlations
between cluster means and individual connections were not
directly comparable as the number of data points in com-
puting the correlations were very different. To account for
this difference, we randomly sampled 37 ROI pairs from
each subject and computed the intersession reproducibility.
We repeated this for 10,000 random samples of 37 ROI pairs.
We then computed the fraction of random samples whose
median correlation was greater than the median correlation
of cluster mean values to attain a P value of 0.0074.

Characterizing Connectivity Clusters in Patients
with Schizophrenia

Using the 37 reliable clusters between T1 and T2 data,
we constructed connectivity cluster strength and evaluated
them for association with schizophrenia. The cluster
strength values of the reliable clusters were tested for asso-
ciation using a t-test-based analysis in T1 and T2 data,
independently (See Supporting Information Figure 1, for
examples of clusters, how their strength is computed and
used to study group differences). The P values of these
clusters are shown in Figure 6. The Clusters 24, 19, and 8
were the best three clusters in T1 data in the decreasing
order of their discriminative power. Similarly, Clusters 8,
24, and 19 were the best three clusters in T2 data. The
same set of clusters was found to be highly associated
with schizophrenia in both the T1 and T2 datasets, indicat-
ing high reproducibility of the findings. All of these clus-
ters had a significance value that was better than P value
0.05 (—log(P value)=1.3), however, this threshold does
not account for multiple comparisons. To avoid inflating
experimentwise error, we computed FDR by generating a
null distribution of P values by permuting the labels on
the subjects and computing the P values for the 37 subnet-
works, 1,000 times. The FDR suggested the probability for
any subnetwork to P value equal to or higher than the one
seen in the true label scenario by random chance. The
FDR values of these clusters in T1 data were 0.5%, 0.5%,
and 0.2%, respectively, and the FDR values in T2 data
were 0%, 0%, and 0%, respectively. These strong signifi-
cance values and the fact that the same clusters were sig-
nificant in both datasets are suggestive of their role in

S
T

-log(p) value
=

no
T

0 5 10 15 20 25 30 35
Clusters

Figure 6.
Discriminative power of 37 reliable clusters in T| and T2 data.
Clusters 8, 19, and 24 are top 3 discriminative clusters in Tl
and T2 data. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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TABLE I. Statistical significance of the three clusters, 8,
19, and 24, from the T1, T2, and the CV datasets.

—log P Degrees of Effect

Sample Cluster value t-Statistic  freedom size
Time 1 (T1) 8 4.95 2.97 54.28 1.38
19 3.82 3.05 55.95 0.79

24 1.83 3.40 54.57 0.84

Time 2 (T2) 8 491 5.09 54.87 1.90
19 3.39 4.73 51.55 1.10

24 2.25 4.77 55.08 1.36

Cross-validation 8 4.95 4.52 172.51 0.89
(CV) 19 3.82 3.87 174.08 0.56
24 1.83 2.46 167.31 0.35

Note: Cluster configurations from T1 and T2 are used to compute
these values in T1 and T2 datasets, respectively. Cluster configura-
tions from T1 are used to compute these values for the CV sam-
ple. The values were very similar when cluster configurations
from T2 were used.

schizophrenia. Effect sizes for these clusters are reported
in Table L

Figure 7 shows the wireframe diagrams for three clus-
ters, 8, 19, and 24. Note that all the three clusters were
bilateral that involved thalamus in the left and right hemi-
spheres. Cluster 8 composed of connections between thala-
mus and primarily striate visual regions, whereas Cluster
19 composed of connections between thalamus and extras-
triate, lateral visual regions. Cluster 24, conversely, com-
posed of connections between thalamus and lateral
temporal cortex. All clusters were generally Dbilateral,
although this was not a constraint of the method. Figure 8
shows the mean connection strength of the members of
these clusters in T1 and T2 datasets. In all cases, patients
showed greater connectivity strength than did healthy
controls.

Cross-Validation of Connectivity Clusters in
Schizophrenia

We also evaluated the significance of association of the
three clusters, 8, 19, and 24, discovered from T1 data on
an independent cross-validation sample with 75 schizo-
phrenia subjects and 105 healthy subjects. The —log(P
value) for Clusters 8, 19, and 24 were 4.9554, 3.8280, and
1.8335, respectively. Effect sizes and t-statistics for the
cross-validation sample are reported in Table I. Our inde-
pendent sample evaluation confirmed the replicability of
these associations in independent datasets.

Comparison of CoCA with alternative
approaches

To compare the performance of CoCA with univariate
testing and NBS, we computed the P values and FDR for

individual connections as well as P values for the largest
connected component. The P values and FDR for individ-
ual connections are shown in Supporting Information
Figure 2. The connection with best P value in T1 has an
FDR of 0.29 indicating the adverse impact of redundancy
and noise in the data. Conversely in T2 there are 111 con-
nections with P value <0.05 and FDR < 5%.

NBS is an alternative approach that can discover dis-
criminative subnetworks from functional networks. It first
discovers significantly associated functional connections in
schizophrenia and then constructs a network using the
most significant connections. The largest connected com-
ponent from this network is then recovered and a P value
to quantify its statistical significance is computed by
repeating the NBS approach on data obtained by random
permutation of class labels. Figures 9a and 9b show the
subnetworks discovered using NBS from T1 and T2 data,
respectively. Each of these subnetworks had 20 connec-
tions of which only two were common. In addition, the
two subnetworks were not significantly different between
patients and controls. The lack of agreement between the
subnetworks in Tl and T2 datasets and poor P values
indicate that the noise in the data was preventing from
discovering reliable associations in the data, whereas our
approach circumvents this problem by first discovering
clusters that group similar signals as well as filters for
unreliable clusters.

Demographic, Clinical, and Behavioral factors

We evaluated the relationship between the cluster con-
nectivity strength for the Clusters 8, 19, and 24 (found in
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Figure 7.

Best three discriminative subnetworks in the brain: (a) thalamus
and visual region (Cluster 8), (b) thalamus and parietal region
(Cluster 19), and (c) thalamus and temporal regions (Cluster
24), respectively. FDR values for these three clusters are 0.005,
0.005, and 0.002, respectively. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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Distribution of mean connection strength for each of the top three discriminative clusters in T]

[(@), (b), and (c)] and T2 data [(d), (e), and (f)].

In all these subnetworks, the connections are

stronger in schizophrenia as opposed to healthy subjects. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

T1 data) and the demographic, clinical, and behavioral fac-
tors. We correlated the age of all the subjects (T1 and the
cross-validation sample) used in this article with the con-
nectivity strength of the three clusters (8, 19, and 24) that

: i
(b) = =
Figure 9.

Subnetworks discovered using a competing NBS approach from
(a) T and (b) T2 data. Twenty edges were selected in each of
these networks and only two of them are common. The P val-
ues for these networks are 0.07 and 0.32, respectively. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

were found to be significantly associated with schizophre-
nia. These results are shown in Supporting Information Fig-
ure 3a—c. We found a weak but significant relationship r =
0.13 (P value < 0.02) with cluster 19 and age. The other two
clusters did not show a significant relationship with age.

We also evaluated the relationship between gender and
the strength of the three clusters. We found no relation-
ship between gender and connectivity strength, as shown
in Supporting Information Figure 3d—f.

SANS and SAPS were assessed for 80 schizophrenia
subjects (25 from T1 and 55 from the cross-validation sam-
ple) with the structured clinical interview. These results
are shown in Supporting Information Figure 4. There was
no significant relationship between either of these varia-
bles with that of connectivity of the three clusters that
were found to be significantly associated with schizophre-
nia. Antipsychotic dosage information that was collected
as part of Camchong et al. [2011] study was used to assess
Chlorpromazine dosage equivalents for 18 schizophrenia
subjects. For these subjects, the relationship between clus-
ter connectivity strength and Chlorpromazine dosage was
assessed. These results are shown in Supporting Informa-
tion Figure 5. We did not find any significant relationship
between medication and connectivity of the three clusters
(8, 19, and 24), perhaps due to the noise inherent to this
means of measuring medication effects.
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DISCUSSION

We studied the hypothesis that redundancy and noise in
the edges of brain network can be reduced by grouping sim-
ilar edges over a group of subjects using a data-driven
approach known as CoCA. Using synthetic data we demon-
strated that CoCA is suited to address the redundancy and
noise in the connections much more than the competing
approaches. We also studied the relevance of these connec-
tivity clusters to schizophrenia. We found that connectivity
clusters are in fact an efficient representation of the connec-
tivity data, and we determined that for our dataset the opti-
mal number of clusters was 150. In an analysis of all
connectivity clusters with adequate reproducibility, connec-
tions from thalamus to parietal, temporal, and visuoparietal
regions were most highly associated with schizophrenia.
These thalamic clusters were significantly predictive of the
disorder in both baseline and retest datasets. They were also
found to be significantly associated with schizophrenia in
an independent sample. These thalamic clusters showed
hyperconnectivity in patients with schizophrenia. We also
found that these connectivity clusters could not be discov-
ered using state-of-the-art subgraph association methods.

Established, edge-based evaluation has several limitations
and some subnetwork based evaluation approaches [Fornito
et al., 2011, Zalesky et al., 2010] that are perceived to be bet-
ter for capturing intraregional disruption in the case of
schizophrenia also have these limitations. These approaches
first evaluate the association of every edge separately and
so the problem of noise is not directly addressed. Moreover,
the redundancy that exists between connections is ignored.
Our results on a synthetic dataset demonstrate that CoCA
has the ability to address these problems by grouping
redundant and often noisy edges into clusters that dramati-
cally reduce the number of hypothesis tests, thereby
improving power. Although in our evaluation, we imposed
only one set of between-module connections, in reality there
can be more between module connections that are associ-
ated with schizophrenia and CoCA has the ability to
directly find them. This is demonstrated in our evaluation
of CoCA on real fMRI datasets.

Our results on real datasets demonstrate that not only
do these earlier approaches find subnetworks involving
different nodes from what our CoCA approach discovered,
but also that their findings are inconsistent between T1
and T2 datasets. These observations suggest the utility of
the CoCA-based approach for discovering subnetworks
associated with schizophrenia. The key parameter of our
approach is the choice of number of clusters. This parame-
ter is unique to our approach because the existing techni-
ques do not deal with grouping features. One could
arbitrarily choose a number of clusters, and work with the
resultant clusters. However, this will affect the degree to
which the redundancy and noise are handled. Further-
more, this also affects the reproducibility of the findings.
We provided a systematic analysis to choose this parame-
ter that took into consideration the redundancy of the fea-

tures. Our results suggested that if too many clusters are
chosen the redundancy between the clusters is high and
when too few (<150) clusters are chosen the redundancy
is still high because of grouping too many nonrelated fea-
tures together which results in the loss of information.

Improving reproducibility and replicability is a primary
motivation for the CoCA technique. Existing resting state
fMRI base studies that test every edge in the functional
network for association with schizophrenia report findings
that do not agree with each other. Lack of replicability
could be attributed to various factors including small sam-
ple size, noise in the data, difference in the scanners, dif-
ference and study population, preprocessing pipelines
used, and choice of analysis techniques. However, no
efforts have evaluated the replicability of the reported
graph theoretic analysis based findings in the context of
schizophrenia. In this article, we quantify replicability of
the findings using state-of-the-art analysis techniques and
compare it to that of the proposed CoCA approach. Our
findings suggest that the state-of-the-art analysis techni-
ques result in findings that are less reproducible, whereas
the findings of CoCA approach are not only reproducible
on data from the same set of subjects but also replicable in
independent subjects. Our results indicate that the lower
than expected level of reproducibility and replicability
with existing studies derives from the triangle of fMRI
problems from noise, redundancy, and multiple hypothe-
sis testing [Zalesky et al., 2010] may be overcome by clus-
tering functional connections in an optimal manner.

We discovered that connectivity clusters connecting thal-
amus to parietal, temporal, and visuoparietal regions are
associated with schizophrenia. Multiple graph theoretic
analysis studies of resting state fMRI data have reported
that frontotemporal disconnection is associated with schiz-
ophrenia, in addition to prefrontal cortex disconnectivity
with parietal and temporal cortices [Fornito et al., 2011;
Liu et al.,, 2008; Repovs et al., 2011; Zalesky et al., 2010].
These findings suggest that disconnectivity in schizophre-
nia is diffuse in multiple regions of the brain, that is also
observed using NBS approach on our data. However, it is
important to note that using T1 and T2 data we observed
that diffuse disconnectivity is associated with schizophre-
nia but the disconnections are not consistent between T1
and T2 data. This lack of consistency could be partly
attributed to the noise in the data, that our CoCA
approach is capable of handling, due to which our tha-
lamic connectivity clusters are found to be consistent.

Moreover, we found that thalamus exhibits hypercon-
nectivity in schizophrenia subjects, while existing studies
report hypoconnectivity in most of their findings. Consist-
ent with the current result, Skudlarski et al. [2010] and
Zhang et al. [2012] also reported that hyperconnectivity in
thalamus to be associated with schizophrenia. This sug-
gests that connectivity that is higher than normal could
result in functional disruption. Recent work by Driesen
et al. [2013] found that N-methyl-pD-aspartate glutamate
receptor (NMDA-R) antagonist ketamine, that is known to
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affect gamma oscillations, when administered to 22 sub-
jects resulted in schizophrenia like symptoms as well as
global hyperconnectivity in resting state fMRI data. While
this study relates hyperconnectivity with schizophrenia
like symptoms, it does not shed light on the reason for
hyperconnectivity. Moreover, the inconsistency between
studies that report hyperconnectivity and hypoconnectivity
in schizophrenia requires further investigation.

Limitations and future work

Although we show the utility of using connectivity clusters
that are capable in addressing challenges relevant to fMRI
data as well as result in consistent findings, our study has
several limitations. First, the proposed CoCA approach dis-
covers connectivity clusters that are common in both the
healthy and disease subjects. It is possible that some connec-
tivity clusters exist in only healthy subjects or the disease
subjects. CoCA approach will not be able to discover such
connectivity clusters. One potential approach to address this
limitation is to use CoCA to first discover clusters in each of
the groups separately on one dataset and test for group dif-
ferences on a different dataset. Second, the brain network
constructed relies on the AAL map based parcellation and
the effect of this on the findings is yet to be studied. More-
over, we use 90 brain region in this map, and the effect of
granularity of this map on the choice of number of clusters,
reproducibility, and the reported associations needs to be
studied. Third, our findings are based on 6-min-scan length
that is commonly used in the community, although 6 min
may be too short for optimally reliable estimates of connec-
tivity. Moreover, the edges in the brain network have been
found to be dynamic and we hypothesize that the connec-
tions in the brain networks do not change with time. The
effect of dynamic brain connections on our analysis needs to
be studied. Fourth, information pertaining to the degree of
severity of disease, psychopathology scores (SANS/SAPS)
and antipsychotic drug dosage is not available on all disease
subjects. We restricted our analysis of the effect of disease
severity and antipsychotic drug use on the discovered clus-
ters to those samples for which this information was avail-
able. Sixth, our study is also limited by the moderate sample
size in our T1 and T2 datasets. Sixth, our findings are based
on our analysis on resting state fMRI data and their relevance
to task-based fMRI datasets is yet to be studied. In addition,
we did not consider the impact of choice of preprocessing
steps such as spatial smoothing, motion regression, white
matter regression, CSF signal regression, and global signal
regression on the outcome. These steps and the respective
parameter choices were earlier found to affect the outcome
[Triantafyllou et al., 2006, Weissenbacher et al., 2009].

CONCLUSION

Schizophrenia is a disease that is characterized by the
disconnectivity in the brain [Fornito and Harrison, 2012,

Friston and Frith, 1995]. Disconnectivity hypothesis has
mainly been studied with respect to each functional con-
nection individually [Fornito and Harrison, 2012], while it
is increasingly found that there exist subnetworks in the
brain that accomplish specific functions. We proposed a
novel connectivity cluster analysis approach, called CoCA,
that can directly find subnetworks in the brain that are
associated with schizophrenia. This approach is capable of
addressing the noise and redundancy in edge-based analy-
sis that has been conventionally used in graph theoretic
analysis of brain networks in the context of schizophrenia.
We found that connectivity clusters connecting thalamus
to parietal, temporal, and visuoparietal regions are associ-
ated with schizophrenia and they exhibit hyperconnectiv-
ity. We demonstrated that these findings are not only
consistent between two datasets collected from same set of
subjects, but also between those collected from independ-
ent samples.
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