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Abstract: Accurate tissue classification is a crucial prerequisite to MRI morphometry. Automated methods
based on intensity histograms constructed from the entire volume are challenged by regional intensity var-
iations due to local radiofrequency artifacts as well as disparities in tissue composition, laminar architec-
ture and folding patterns. Current work proposes a novel anatomy-driven method in which parcels
conforming cortical folding were regionally extracted from the brain. Each parcel is subsequently classified
using nonparametric mean shift clustering. Evaluation was carried out on manually labeled images from
two datasets acquired at 3.0 Tesla (n 5 15) and 1.5 Tesla (n 5 20). In both datasets, we observed high tissue
classification accuracy of the proposed method (Dice index >97.6% at 3.0 Tesla, and >89.2% at 1.5 Tesla).
Moreover, our method consistently outperformed state-of-the-art classification routines available in SPM8
and FSL-FAST, as well as a recently proposed local classifier that partitions the brain into cubes. Contour-
based analyses localized more accurate white matter–gray matter (GM) interface classification of the pro-
posed framework compared to the other algorithms, particularly in central and occipital cortices that gen-
erally display bright GM due to their highly degree of myelination. Excellent accuracy was maintained,
even in the absence of correction for intensity inhomogeneity. The presented anatomy-driven local classifi-
cation algorithm may significantly improve cortical boundary definition, with possible benefits for morpho-
metric inference and biomarker discovery. Hum Brain Mapp 36:3563–3574, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Accurate MRI tissue classification is paramount to state-
of-the-art brain morphometry such as voxel-based mor-

phometry, quantification of cortical thickness, and analysis
of cortical folding and complexity. Commonly, classifica-
tion algorithms establish decision boundaries on MR inten-
sities to identify gray matter (GM), white matter (WM),
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cerebrospinal fluid (CSF), and sometimes mixtures of
them. Most classifiers analyze global intensity histograms
constructed from the entire volume [Ashburner and Fris-
ton, 2005; Collins et al., 1999; Fischl et al., 2004; Zhang
et al., 2001]. A global approach might, however, be chal-
lenged by local intensity inhomogeneity due to radiofre-
quency artifacts occurring during image acquisition, an
effect amplified at higher field strengths [Boyes et al.,
2008]. Since classification performance relies heavily on
correction of this artifact [Sled et al., 1998; Tustison et al.,
2010; Zheng et al., 2009], MRI processing packages, such
as FSL [Jenkinson et al., 2012; Zhang et al., 2001] and SPM
[Ashburner and Friston, 2005], routinely incorporate inho-
mogeneity correction methods.

Regional variations in cortical lamination, myelination
[Geyer et al., 2011; Glasser and Van Essen, 2011; Sereno

et al., 2013], and folding patterns [Sanchez-Panchuelo
et al., 2014] may also cause local intensity inhomogeneity.
On T1-weighted MRI, the most widely used contrast for

brain morphometry, highly myelinated central, and occipi-
tal cortices display intensity characteristics closer to the

WM than to the GM of less myelinated cortices. Conse-
quently, current classification algorithms generally under-
estimate GM in these regions, resulting in artificially thin

cortex. In addition to normal biological variability,
pathology-derived anomalies such as neuronal loss
[Bernhardt et al., 2010; Lerch et al., 2005], gliosis [Tam

et al., 2011], and cytological alterations [Colliot et al., 2006;
Hong et al., 2014; Lerch et al., 2005] may modify image

intensity, challenging subsequent tissue classification.
Previously, techniques that used voxel-wise local

Gaussian mixtures [Grabowski et al., 2000; Joshi et al.,
1999] or an interpolation of partially overlapping models
[Grabowski et al., 2000] have attempted to segment brain
tissues under regional intensity variations. More recent
approaches have combined Gaussian mixtures and cooper-
ative local Markov random fields [Richard et al., 2007;
Scherrer et al., 2009] to ensure smooth transitions; others
have used combinations of multicontext fuzzy C-means
(FCM) with information fusion [Zhu and Jiang, 2003], or
local FCM models with nonlocal means [Caldairou et al.,
2011]. Although these local histogram-based approaches
performed better on MRIs with strong intensity inhomoge-
neity due to radiofrequency artifacts, they may not cope
with intensity varying along the cortical folding, the direc-
tion of which is difficult for them to model.

The current work proposes a novel MRI classification
method that varies decision boundaries locally according
to brain parcels shaped with respect to cortical anatomy.
Classification performance was evaluated against manual
labels from two independent datasets (1.5 Tesla, n 5 20;
and 3.0 Tesla, n 5 15). We furthermore compared our
algorithm to widely used state-of-the-art tissue classifiers,
namely SPM8 [Ashburner and Friston, 2005] and FSL-
FAST [Zhang et al., 2001], as well as a recently developed
method that used a local classification algorithm based on

a cubic (nonanatomical) partitioning [Caldairou et al.,
2011].

MATERIALS AND METHODS

Processing steps are illustrated in Figure 1. The algo-
rithm mainly included two stages: (A) Automatic brain par-
cellation: We first identifed cortical sampling points lying
close to a preliminary CSF skeleton, following cortical
folding patterns. We generated local parcels around the
sampling points and obtained intensity histograms. Over-
lapping was allowed between neighboring parcels; (B) Tis-
sue classification: Within each parcel, nonparametric
clustering was then used to formulate decision boundaries
that were subsequently continuously interpolated to all
brain voxels, resulting in the final classification.

Automatic Brain Parcellation

T1-weighted MRI were skull-stripped using BEaST, a
brain extraction algorithm based on nonlocal means
[Eskildsen et al., 2012]. We generated a preliminary CSF
skeleton (which was refined in a later step) based on partial
volume probabilities of CSF (Fig. 1A-1) [Kim et al., 2005;
Tohka et al., 2004]. In brief, we estimated voxel-wise CSF
partial volume densities using a maximum a prior
approach described in [Kim et al., 2005; Tohka et al.,
2004]. The CSF partial volume was then binarized by set-
ting any voxel containing CSF to 1 and all others to 0. We
then skeletonized this volume using a 2-subfield connec-
tivity-preserving medial surface skeletonization algorithm
[Ma, IEEE Trans. Pattern. Anal. 2002]. Within the brain
mask, we identified sampling points as voxels (Let vn be a
sampling voxel, n be a vector in the Cartesian coordinates
and N be the number of the total sampling voxels) at the
distance of DCSF 5 2 mm from this skeleton using the
Chamfer distance transform (Fig. 1A-1). This value was
heuristically chosen to approximate half the average corti-
cal thickness. We ignored sampling points around the ven-
tricles, as our aim was to classify cortical GM and WM.
Creating parcels at every sampling points and subsequent
tissue classifications within each parcel may cause exten-
sive computational time. To accelerate computations, the
sampling points were, thus, downsampled at every dis-
tance Rmm from {0,0,0} in x,y,z directions in the MR
image space as in a multiresolution approach [Eskildsen
et al., 2012]. The R is a Euclidean distance and was deter-
mined empirically.

From a given sampling point, we performed the Euclid-
ean distance transform to all brain voxels, anatomically
constrained by the CSF skeleton (Fig. 1A-2). This transform
allowed propagations of distance map from the sampling
point to all other voxels in an iterative fashion. At each
iteration, we removed the distance propagation to any
skeleton voxel to prevent the distance from propagating
from one cortex to its neighboring cortices. Thresholding
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Figure 1.

Flowchart of the proposed algorithm. (A) Guided by a prelimi-

nary CSF skeleton (red), sampling points in the cortex were

identified at a depth of 2 mm. Euclidian distance maps respecting

cortical folding were computed and binarized at Dparcel mm.

Each parcel underwent a selective morphological dilation adding

likely CSF candidates. (B) In each parcel, nonparametric mean

shift clustering identified peaks of the intensity histogram, assign-

ing decision boundaries to the sampling points. Final whole-brain

classification was obtained after interpolating decision bounda-

ries from sampling voxels to individual brain voxels, using an

inverse distance weighting. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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this distance map at Dparcel (chosen empirically, see below)
generated a cortical parcel referenced to the sampling
point. Because the current parcel includes only GM and
WM by design, we further extended the parcel to include
CSF voxels through a selective morphological dilation
(3 mm, chosen to best balance between tissue types) that
adds voxels darker than the lowest intensity of the initial
parcel (henceforth, likely CSF candidates). These parcels
then contained candidates for all tissue types. We heuristi-
cally dilated by 3 mm. The parcellation was iterated for all
the sampling points (Fig. 1A-3).

Tissue Classification

For each parcel created from a given sampling voxel vn

Dparcel | vn, we built an intensity histogram H | vn to iden-
tify GM, WM, and CSF (Fig. 1B-1). Because intensity inho-
mogeneity, partial volume, and background noise may
generate a skewed histogram, we used nonparametric
mean-shift clustering to robustly identify the peaks in the
histrogram [Comaniciu and Meer, 2002]. At a given inten-
sity I on the histogram H | vn, the mean shift m was
defined as:

mðIÞ
Pk

i¼1 KrðIi2IÞIiPk
i¼1 KrðIi2IÞ

2I (1)

Kr(�) is a histogram density estimator with the Gaussian
kernel K of bandwidth r centered on I. I1, I2, ., Ii, ., Ik are
intensities within K. Using gradient ascent search, this
algorithm detects modes in the intensity distribution and
identifies boundaries as points of the maximal local gradi-
ent between mode-pairs (Fig. 1B-1). Decision boundaries
were identified in the H | vn were mapped at the given
sampling voxel vn [CSF vs. GM 5 IVn, CSF/GM, GM vs.
WM 5 IVn, GM/WM] (Fig. 1B-2).

To classify a given voxel in the brain mask, we interpo-
lated the previously computed decision boundaries
mapped at sampling points vn for all the voxels vx within
the brain mask (Fig. 1B-3) using an inverse distance
weighting [Lu and Wong, 2008]. This process propagated
weighted decision boundaries (IVn, CSF/GM; IVn, GM/WM) to
each voxel of vx [i.e., CSF vs. GM 5 IVx, CSF/GM, GM vs.
WM 5 IVx, GM/WM]:

Ivx;CSF=GM ¼
XN

n¼1

wnIvn ;CSF=GM;Ivx;GM=WM

¼
XN

n¼1

wnIvn ;GM=WM;wn ¼
d21

n

XN

i¼1

d21
i

(2)

dn is the Euclidean distance between a given voxel vx and
all N sampling points vn. Based on the decision rule
defined by Eq. (2), vx was classified into CSF (Ivx< ICSF/

GM) or GM (ICSF/GM< Ivx< IGM/WM) or WM (Ivx> IGM/

WM). This process was applied iteratively to all the voxels
of vx within the brain mask and permitted whole-brain
classification (Fig. 1B-4). The pseudocode of the proposed
algorithm is presented in Fig. 6.

EXPERIMENTS

Dataset Description

T1-weighted MRI data of 15-healthy individuals (7
males; mean 6 SD age 5 29 6 10 years) were acquired on a
3.0 Tesla Siemens Magnetom TimTrio System with a 32
phased-array receiver head coil using a 3D-MPRAGE
sequence (TR 5 2,300 ms; TE 5 2.98 ms; TI 5 900 ms; flip
angle 5 98; matrix size 5 256 3 256; FOV 5 256 3

256 mm2), resulting in isotropic 1 3 1 3 1 mm3 voxels.
None of the subjects had a mass lesion (malformation of
cortical development, tumor, or vascular malformation) or
a history of traumatic brain injury. The Ethics Committee
of the Montreal Neurological Institute and Hospital
approved the study, and written informed consent was
obtained from all participants.

We also evaluated our method on 1.5 Tesla data of 20-
healthy individuals (8 males; mean 6 SD age 5 23 6 4
years) from the Open Access Series of Imaging Studies
(OASIS; http://www.oasis-brains.org/). Images were
acquired using a 3D-MPRAGE sequence (TR 5 9.7 ms;
TE 5 4 ms; TI 5 20 ms; flip angle 5 108; matrix size 5 256 3

256; FOV 5 256 3 256 mm2, resulting in 1 3 1 3 1.25 mm3

voxels).

Ground Truth: Reference Segmentation

For the 3.0 Tesla dataset, all 15 subjects had manually
labeled whole-brain GM, WM, and CSF available, drawn by
a single rater (JWH). Another rater (SJH) separately labeled
a subset of 6 randomly chosen cases, blinded to the labels
drawn by JWH. In central and occipital cortices where
bright GM intensities are caused by large myelination of
deep cortical layers, 3D orthogonal viewing allowed two
raters to identify a visible border between GM and WM
with a higher gradient than surrounding voxels. As our
purpose was cortical tissue classification, we masked out
subcortical regions including the basal ganglia, thalamus,
and ventricles by the ANIMAL algorithm, a multiresolution
nonlinear warping of an atlas that was manually drawn on
the MNI-ICBM 152 template [Collins et al., 1999].

To quantify inter-rater variability, we calculated the
Dice overlap index:

Dice ¼ 23vðM1 \M2Þ=ðvðM1Þ1vðM2ÞÞ (3)

Where M1 is the segmentation of Rater 1, M2 the seg-
mentation of Rater 2; M1 \ M2 the voxel-wise intersection
of M1 and M2; and v(�) the volume operator. Mean 6 SD
inter-rater reliability was 99.1 6 0.4% for GM and
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99.3 6 0.3% for WM. For the 1.5 Tesla OASIS dataset, only
manual labeling of the neocortical GM was available.

Parameter Sensitivity Analysis and Optimization

Parameter optimization was carried out in each dataset
(i.e., 3.0 Tesla; 1.5 Tesla) separately. The following parame-
ters were chosen empirically: Dparcel as the extent of brain
parcels from the sampling point of reference; r as the
mean-shift kernel bandwidth; R as the distance between
sampling points. Classification was evaluated using a
threefold cross-validation. We randomly assigned our sub-
jects to three sets of similar size (n 5 5 for 3.0 Tesla; n 5 6,
7, and 7 for 1.5 Tesla). A single subsample was selected as
test-set and the two remaining subsamples as training
data. We selected those parameters that maximized the
overlap between automated and manual segmentations in
the training-set, and computed segmentation accuracy in
the test-set to validate. This process was repeated three
times to evaluate across all three subsets.

Performance Comparison with state-of-the-Art

Algorithms

We compared our classification against the following
approaches: (i) Nonlocal fuzzy C-means (NLFCM), which
generates a cubic volume centered at every voxel inside
the brain and assigns tissue memberships to the center
voxel by combining clustering with nonlocal smoothing
[Caldairou et al., 2011]; (ii) SPM8, based on a Bayesian
framework which combines a mixture of Gaussian distri-
bution models and a prior model to constrain spatially
varying intensity nonuniformity and shape deformations
[Ashburner and Friston, 2005]; and (iii) FSL-FAST (ver.
4.1), based on a Hidden Markov Random Field Model and
the Expectation Maximization algorithm [Zhang et al.,
2001].

Default parameters provided in each algorithm did not
always result in the most accurate segmentations when
using our data. Thus, for fair comparison, optimal parame-
ters were empirically selected using threefold cross-
validation, as in the parameter optimization of our algo-
rithm. As SPM8 and FSL-FAST incorporate their own
intensity inhomogeneity corrections, parameters specific to
these processes were also optimized empirically.

Performance Relative to Manual Labeling

Global overlap assessment

To quantify the volume-wise accuracy of our approach,
we computed the Dice overlap between Manual labeling
and Automatic labeling, as in Eq. (3). To measure global
contour differences between manual and automated label-
ing, we computed the mean Hausdorff distance, Hm [Chu-
pin et al., 2007; Kim et al., 2012]:

HmðSM; SAÞ ¼ maxðhðSM;SAÞ; hðSA; SMÞÞ;

hðSM; SAÞ ¼
1

NSM

X

vM2 SM

dðvM; SAÞ;

hðSA; SMÞ ¼
1

NSA

X

vA2 SA

dðvA; SMÞ

(4)

where SM and vM is the surface boundary and its voxels
for the manual label, SA and vA the surface boundary and
its voxels for the automatic label; d(.,.) is the shortest dis-
tance defined by the Euclidean distance. We measured Hm
separately for GM/WM and GM/CSF interfaces.

Surface-based local analysis of contour accuracy

To localize the mis-segmentation, a surface-based frame-
work was used to spatially localize contour difference
between manual and automated segmentations [Kim et al.,
2005; Worsley et al., 2009]. We automatically extracted
parametric surface models of the GM–WM interfaces based
on the manual labels, and based on the tissue classifica-
tions of each automated algorithm [Kim et al., 2005]. To
this end, we deformed an ellipsoid triangulated using mul-
tiresolution icosahedral sampling [Kim et al., 2005], which
allowed a fast fitting while avoiding a possible problem of
local minima. The initial surface was sampled with 320 tri-
angles and deformed towards the boundary of a hemi-
spheric WM while maintaining intervertex distance and
triangular topology. The surface was up-sampled at the
end of each deformation cycle, up to 81,920 triangles. We
did not extract GM–CSF interface as this process required
additional morphological operations on top of the given
segmentation, likely modifying the actual boundary. Indi-
vidual surfaces were aligned to a symmetric template [Lyt-
telton et al., 2007] using a nonlinear surface registration
[Robbins et al., 2004]. Note that the realignment did not
change the original surface morphology but only relocated
vertices on the surface based on the curvature of the corti-
cal surface to provide point-wise correspondence between
automated and manual segmentation. For each classifica-
tion algorithm, we computed the point-wise surface-normal
component of the displacement vector between automated
and manual labels and performed surface-based t-tests on
these differences [Worsley et al., 2009]. To improve statisti-
cal sensitivity and across-subject correspondence, data
were blurred using a surface-based diffusion kernel of
10 mm full-width-at-half-maximum (FWHM). To correct
for multiple comparisons, we corrected significances using
random field theory, thereby controlling the family-wise
error (FWE) to be below 0.01 [Worsley et al., 1999].

Robustness against intensity nonuniformity

Classification accuracy is often dependent on preprocess-
ing of intensity inhomogeneity correction. A nonoptimized
parameter in such correction methods may yield undesirable
tissue segmentation. We thus assessed each segmentation
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algorithm with respect to the wavelength of the estimated
nonuniformity fields: a main parameter in the intensity inho-
mogeneity correction. FSL-FAST was evaluated by varying
the smoothing extent parameter in its own bias-correction,
and SPM8 by varying the bias FWHM parameter. The pro-
posed method and NLFCM were evaluated by varying the
smoothing distance parameter of a conventional correction
method, N3 algorithm [Sled et al., 1998].

Influence of CSF Skeleton on Segmentation

As our algorithm relies on the CSF skeleton that defines
the initial GM/CSF interface, we assessed whether the
final segmentation improved GM/CSF interface classifica-
tion against the initial segmentation by computing their
mean Hausdorff distances to manual segmentation.

RESULTS

Parameter Optimization

Optimal performance was achieved with the parameters
D 5 13 mm, r 5 7, and R 5 2 mm (note: we obtained an
identical result at R 5 1 mm. However, the segmentation was
computationally more efficient at 2 mm) in each dataset sep-
arately (3.0 Tesla, Dice range across the three different eval-
uations 5 97.5–98.1%; 1.5 Tesla OASIS, 89.2–89.4%; Fig. 2).

Parameters of all other algorithms were optimized for
each dataset separately as explained in the method.

Cross-Method Comparison

Manual labeling and classification of all evaluated algo-
rithms are shown in Figure 3.

Global assessment

Classification performance is listed in the Table I. Across
the two datasets, our method provided the highest accu-
racy (3.0 Tesla: t> 11.5, P< 0.001, Bonferroni-corrected; 1.5
Tesla: t> 10.1, P< 0.001, Bonferroni-corrected).

Our method’s high performance was maintained even
with a sparse sampling up to R 5 18 mm (Fig. 2; 3.0 Tesla:
Dice 5 94.1 6 2.3%; 1.5 Tesla: Dice 5 88.3 6 1.1%). Notably,
while sparse sampling decreased computation time from
790 to 9 min for a single scan (Linux workstation, 1 CPU,
2.30 Ghz, 8GB RAM), performance remained superior to
the other algorithms, (t< 4.4, P< 0.01 Bonferroni-
corrected).

Our algorithm significantly improved the segmentation
accuracy of GM/CSF interface defined by CSF skeletoniza-
tion (Hm: 0.21 6 0.04 mm vs. 0.43 6 0.06 mm, t 5 11,
P< 0.0001). The choice of CSF skeletonization algorithm
did not affect classification performance of our algorithm
in the 3T and 1.5T datasets (Table I; Tohka vs. SPM8, 3T:
GM: Dice 5 97.9 6 0.6 vs. 97.7 6 0.8, Hm, GM/

CSF 5 0.21 6 0.04 vs. 0.21 6 0.05, P> 0.3, FWE; 1.5T OASIS:
GM: Dice 5 89.2 6 0.7 vs. 89.3 6 0.6, Hm, GM/

CSF 5 0.58 6 0.10 vs. 0.57 6 0.09, P> 0.4, FWE). Subsequent
evaluations were based on the CSF skeleton based on Toh-
ka’s method.

Surface-based contour accuracy

At the WM–GM interface, all conventional algorithms
underestimated central and occipital GM compared to
manual labeling (0.7–1.5 mm; Fig. 4). Our algorithm seg-
mented these areas very well (displacement: <0.3 mm)
When mis-segmentation was compared between the

Figure 2.

Parameter optimization for the 3.0 Tesla dataset. Classification

accuracy was quantified using the Dice index between auto-

mated and manual labels. (A) Optimal classification was

achieved at a parcel distance of Dparcel 5 13 mm and a band-

width kernel size r 5 7 of the mean-shift clustering. (B) Accu-

racy was maintained by imposing an intersampling distance

pruning of R 5 2 mm (left). Accuracy linearly decreased until

R 5 30 mm, while increasing R exponentially reduced computa-

tional complexity (right). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

Exemplary tissue classification in an individual brain. Columns display T1-weighted MRI, manual

labels, and automated classification results of the proposed method, NLFCM, SPM8, and FSL-FAST.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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proposed algorithm and others, our algorithm indeed
showed more significantly superior performance
(FWE< 0.001). SPM8 and FSL-FAST furthermore showed
lower accuracy in anterior temporal and frontal regions
(FWE< 0.01).

Robustness against intensity-inhomogeneity

Performance of the proposed method and NLFCM was
independent from the bandwidth parameter of nonuni-
formity correction (i.e., N3) (r< 0.12, t< 1.3, P> 0.1, uncor-
rected; Fig. 5). Conversely, classification accuracy of SPM8
and FSL-FAST decreased with larger wavelength of their

own correction methods (r> 0.5, t> 3.4, P< 0.005,
Bonferroni-correction).

DISCUSSION

MRI intensities within a given tissue type are subject to
considerable nonuniformity across the brain, challenging
the mapping from intensity values to classes. One source
of inhomogeneity relates to poor radio frequency coil uni-
formity and gradient-driven eddy currents. While several
preprocessing strategies have been developed to reduce
such intensity bias [Ashburner and Friston, 2005; Sled

TABLE I. Comparison between automated segmentation methods and manual labeling using Dice similarity index

(Dice, mean 6 SD, in %) and mean Hausdorff distance (Hm, mean 6 SD, in mm) for the 3.0 Tesla and 1.5 Tesla

datasets

Proposedskel1 Proposedskel2 nonlocal FCM SPM8 FSL-FAST

3 Tesla
Dice,GM 97.9 6 0.6 97.7 6 0.8 91.4 6 1.0a 91.1 6 1.3a 89.6 6 1.0a

Hm,GM/CSF 0.21 6 0.04 0.21 6 0.05 0.61 6 0.13a 0.43 6 0.06a 0.58 6 0.14a

Hm,GM/WM 0.13 6 0.02 0.13 6 0.02 0.24 6 0.04a 0.43 6 0.05a 0.27 6 0.04a

1.5T Tesla
Dice,GM 89.2 6 0.7 89.3 6 0.6 86.7 6 0.6a 83.7 6 1.0a 81.2 6 1.7a

Hm,GM/CSF 0.58 6 0.10 0.57 6 0.09 0.59 6 0.09 1.15 6 0.24a 1.33 6 0.28a

Hm,GM/WM 0.32 6 0.02 0.32 6 0.03 0.39 6 0.02a 1.10 6 0.10a 1.01 6 0.12a

skel1/skel2: CSF skeleton extracted from partial volume map generated using a method in [Tohka et al., 2004]/[Ashburner and Friston,
2005], respectively.
alower accuracy compared to the proposed method that used either skel1 or skel2 (P� 0.05, Bonferroni-corrected).

Figure 4.

Contour analysis. Surface maps show mean displacement of

automated algorithms compared to manual segmentation (in

mm). Significantly larger displacements (i.e., increased segmenta-

tion errors) of NLFCM, SPM8, and FSL-FAST compared to the

proposed algorithm, corrected for multiple comparisons using

random field theory for nonisotropic images at FWE< 0.01, are

highlighted by white borders. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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et al., 1998], correction parameters and their efficacy may
vary across datasets and magnetic field strengths [Boyes
et al., 2008]. Aside from MRI-related artifacts, neuroimag-
ing investigations on normal brain anatomy have shown
substantial signal variations in T1 or T1-weighted images
that are of biological origin, with a darker appearance of
association cortices relative to bright-appearing primary
sensory and motor cortices [Dinse et al., 2013; Fischl et al.,
2004; Salat et al., 2009; Steen et al., 2000]. In the light of
early neuroanatomical work on cortical myeoloarchitecture
[Flechsig, 1920; Vogt, 1910], and correlative studies, it has
become increasingly evident that T1 and T1-weighted sig-
nal strongly relates to cortical myelin content, which has
been shown to vary substantially across cortical regions
[Bock et al., 2013; Eickhoff et al., 2005; Geyer et al., 2011;
Glasser and Van Essen, 2011].

In this work, we present a novel tissue classification
algorithm that created anatomically constrained local par-
cels from the brain, instead of operating over the entire
image. The success of local tissue classification is highly
related to the size and shape of the formed parcels. On
the one hand, parcels should be sufficiently large to sam-
ple adequate amount of tissue, yet small enough to avoid
intensity bias effects. Moreover, consistency across neigh-
boring parcels needs to be guaranteed. Previous techni-
ques based on use of cubic parcels used voxel-wise local
Gaussian mixtures [Grabowski et al., 2000; Joshi et al.,
1999] or an interpolation of partially overlapping models
[Grabowski et al., 2000]. More recent approaches have
combined Gaussian mixtures and cooperative local Mar-
kov random fields [Richard et al., 2007; Scherrer et al.,
2009] to ensure smooth transitions; others have used
combinations of multicontext FCM with information
fusion [Zhu and Jiang, 2003], or local FCM models with
nonlocal means [Caldairou et al., 2011]. The latter
approach, NLFCM [Caldairou et al., 2011], is forced to
use wide cubes to obtain a reasonable balance of tissue
classes, which in turn increases sensitivity to intensity

inhomogeneity. In our evaluation, while NLFCM reduced
segmentation errors in central and occipital regions com-
pared to SPM and FSL-FAST, it could not completely
eliminate them. On the other hand, the proposed algo-
rithm incorporates sulco-gyral information through a pre-
liminary CSF skeleton, which allowed the generation of
small parcels adhering to cortical topology, while ensur-
ing balanced tissue proportions; notably, the skeleton ini-
tialized the placement of the sample points; it was not
used for final tissue classification. Since parcels have a
small number of voxels, we opted for the nonparametric
mean-shift clustering to obtain modes of the parcel-wise
intensity distributions. This robust method allows not
only finding local modes but also local thresholds
between two tissue classes. In our approach, consistency
across neighboring parcels was obtained by interpolating
these thresholds across all brain voxels to provide the
final segmentation.

Using comprehensive evaluations against a validated
manually labeled dataset (i.e., 20 cases scanned at 3.0
Tesla), we showed excellent overall accuracy to segment
GM, WM, and CSF surrounding the cortical ribbon, irre-
spective of the correction of intensity inhomogeneity.
Noteworthy, compared to two widely used algorithms in
which tissue classes are estimated from global intensity
histograms across the entire volume (i.e., SPM8 and FSL-
FAST), our algorithm showed increased accuracy. Further
confidence in the generalizability of our approach derives
from its highest performance in an independent 1.5T data-
set among the tested algorithms. Surface-based contour
analysis between gold standard and automatic segmenta-
tions across thousands of cortical points localized regions
of improved performance primarily at the GM/WM
boundary of central and occipital cortices, even after con-
servative correction for multiple comparisons. These find-
ings confirm our hypothesis that local classification
accounts for a more flexible differentiation between highly
myelinated GM and its underlying WM.

Figure 5.

Impact of intensity inhomogeneity correction parameters on

automated classification. Each algorithm was tested at various

smoothing distance parameters, or without correction. For

SPM8 and FSL-FAST, we used their integrated correction rou-

tine; our method and NLFCM were tested using the N3 algo-

rithm [Sled et al., 1998]. While global methods (i.e., SPM8, FSL-

FAST) showed reduced performance when no bias correction

was chosen, local classification algorithms (i.e., the proposed

method and NLFCM) maintained high accuracy irrespective of

the correction parameters.
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Biomarkers of structural brain integrity have been
increasingly applied to develop novel diagnostic, monitor-
ing, and treatment strategies in various neurological condi-
tions. The excellent performance of the proposed anatomy-
driven local classification method advocates for its use in
the study of the healthy and diseased brain.

Our segmentation was optimized to segment GM/WM
near the cortex. Decision boundaries were regionally deter-
mined at every sample points extracted along the neocor-
tex including the insula and the mesial temporal lobe.
These values were then interpolated to all other brain
regions including the brainstem, deep GM structures and
midsagittal WM. Accordingly their decision boundary val-
ues were determined by the interpolation of neocortical

samples. We found that non-neocortical segmentation was
quite similar to that determined by the global classifica-
tion. A further study that expands our sampling scheme to
these structures may improve their segmentation.

The parameters in the proposed tissue classification
were optimized empirically on each 1.5T and 3T dataset
separately. As a result, parameters could have been differ-
ent between the two datasets. However, the parameters
resulting in the best performance for both datasets were
identical. Even though the two datasets were scanned in
different field strength, a same imaging sequence (i.e., 3D-
MPRAGE) and a same preprocessing that corrected for
intensity inhomogeneity, and performed registration and
resampling were applied to the both datasets. This may

Figure 6.

Overview of the proposed algorithm in pseudocode.
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explain that the imaging sequence and image preprocess-
ing would be more important factors to determine the
classification parameters than the MRI field strength. The
field strength is yet associated with the classification per-
formance as the accuracy was higher in the 3T dataset
than the 1.5T dataset. It is noted that some parameters
(DCSF, 3 mm dilation to include CSF voxels in parcels)
should be carefully chosen based on the cortical thickness
or the sample balance between tissue types. Also, Dparcel

related to the size of the used parcels should be chosen as
small as to prevent from inclusion of tissues from multiple
cortices.
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